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Abstract

Plan recognition is the process of inferring other agents’ plans
and goals based on their observable actions. Essentially all
previous work in plan recognition has focused on the recog-
nition process itself, with no regard to the use of the infor-
mation in the recognizing agent. As a result, low-likelihood
recognition hypotheses that may imply significant meaning to
the observer, are ignored in existing work. In this paper, we
present novel efficient algorithms that allows the observer to
incorporate her own biases and preferences—in the form of
a utility function—into the plan recognition process. This
allows choosing recognition hypotheses based on their ex-
pected utility to the observer. We call this Utility-based Plan
Recognition (UPR). While reasoning about such expected
utilities is intractable in the general case, we present a hybrid
symbolic/decision-theoretic plan recognizer, whose complex-
ity is O(NDT ), where N is the plan library size, D is the
depth of the library and T is the number of observations. We
demonstrate the efficacy of this approach with experimental
results in several challenging recognition tasks.

Introduction
Keyhole plan recognition (Charniak & Goldman 1993;
Duong et al. 2005; Geib 2004) focuses on mechanisms for
recognizing the unobservable state of an agent, given ob-
servations of its interaction with its environment. Most ap-
proaches to plan recognition utilize a plan library, which en-
codes the behavioral repertoire of observed agents. Obser-
vations are matched against this plan library in sequence.

Essentially all plan recognition techniques ignore the de-
cision processes of the recognizing agent. Thus existing
work focuses on probabilistic or heuristic ranking of recog-
nition hypotheses, with no regards to the task for which
knowledge of the plans of others is needed. As a result, low-
likelihood recognition hypotheses that may carry significant
gains or costs to the observer, might be ignored.

For instance, suppose we observe a sequence of Unix
commands that can be explained by for some intention I
or for a more common intention L. Most plan recognition
systems will prefer the most likely hypothesis L, and ignore
I . Yet, if the expected cost (risk) of I for the observer is high
(e.g., if I is a plan to take down the computer system), then
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that hypothesis should be preferred when trying to recognize
suspicious behavior.

We advocate a novel plan recognition approach, utility-
based plan recognition (UPR), in which the observer
folds its biases and preferences—in the form of a utility
function—into the plan recognition process itself. Using
UPR, the recognition process ranks recognition hypotheses
based on their expected utility to the observer. This allows
the observer, for instance, to select hypotheses based on
their expected costs (e.g., in the case of a risk-averse ob-
server), or expected gains. Unfortunately, while in princi-
ple UPR can be carried out via influence diagrams or other
means, such reasoning about interactions with others is in-
tractable in the general case (Howard & Matheson 1984;
Noh & Gmytrasiewicz 2005).

We present an efficient UPR recognizer, able to carry
out plan recognition in worst-case complexity of O(NDT ),
where N is the size of a hierarchical plan library, D is
the depth of the library, and T is the number of obser-
vations. This complexity is achieved by using an hybrid
approach that combines an efficient symbolic plan recog-
nizer (Avrahami-Zilberbrand & Kaminka 2005; Avrahami-
Zilberbrand, Kaminka, & Zarosim 2005), with a decision-
theoretic inference mechanism. We restrict these algorithms
to the case of keyhole recognition, where the observed agent
does not modify its behavior based on the knowledge that it
is being observed.

We evaluate the use of the algorithms in several scenarios
requiring a differentiation between neutral recognition (in
which the recognition hypotheses are only ranked based on
their expected likelihood), and utility-based plan recognition
(UPR). Finally, we show that previous work, which intro-
duced heuristic ranking functions for selecting hypotheses
in adversarial settings, can now be recast in terms of UPR,
in a principled manner.

Related Work and Motivation
There has been considerable research exploring plan recog-
nition algorithms. Almost all of it ignores the use of utili-
ties; we leave those aside for lack of space. Similarly, we
leave aside investigations of (sequential) multi-agent deci-
sion making which take into account the utility of other’s
actions, but deemphasize the recognition process—which is
complex in itself—necessary to establish the hypotheses un-
derlying the decisions. Here we only address those efforts



that are closely related.
Most existing work addresses utilities of the other agent’s

actions to itself, in contrast to our work. (Mao & Gratch
2004) has explored explicit modeling of observed agents’
utilities as part of ranking recognition hypotheses. Here,
equally-likely hypotheses are ranked based on the prefer-
ences of the observed agent, as expressed in its own util-
ities, and under the assumption of rationality. Similarly,
Suzic (Suzic 2005) proposes a generic framework for tacti-
cal plan recognition using Multi-Entity Bayesian Networks
(MEBN). MEBN also take into account a-priori knowledge
of the utility, given plans. Our work differs from (Suzic
2005; Mao & Gratch 2004) in that we consider the impact
of recognition hypotheses on the observer, not the observed.

(Sukthankar & Sycara 2005) present a cost minimization
approach, in which the recognizer uses behavior transition
cost function to select the most parsimonious, minimal-cost,
recognition hypothesis. However, the cost is to the observed
agent, transitioning between behaviors, and is intended to
increase recognition coherence.

More closely-related work examined reasoning about the
utility of recognition hypotheses for the observer. (Tambe
& Rosenbloom 1995) have examined the use of reactive
plan recognition in simulated air-combat domains. Here, the
observing agent may face ambiguous observations, where
some hypotheses imply extreme danger (a missile being
fired towards the observer), and other hypotheses imply
gains (the opponent running away). RESC takes a heuris-
tic approach that prefers hypotheses that imply significant
costs to the observer (e.g., potential destruction). The rel-
ative likelihood of such hypotheses is ignored. While we
are inspired by this work, we take a principled, decision-
theoretic, approach. In the algorithms we present, the likeli-
hood of hypotheses is combined with their utilities, to calcu-
late the expected impact on the observer. We show that this
subsumes the earlier, heuristic work.

In general, a UPR recognizer could be implemented by
extending the use of plan-recognition Bayesian Networks
(Charniak & Goldman 1993) to influence diagrams (Howard
& Matheson 1984) or similar representations. However, the
run-time complexity of inference in such representations is
inhibitory for real-world cases.

A Hybrid UPR Technique
This section presents an efficient hybrid UPR tech-
nique. Here, a highly efficient symbolic plan recognizer
(Avrahami-Zilberbrand & Kaminka 2005) is used to filter
through hypotheses, maintaining only those that are consis-
tent with the observations (but not ranking the hypotheses in
any way). We then add a decision-theoretic layer which is
run on top of the symbolic recognizer.

Efficient Symbolic Plan Recognition
We exploit SBR, a highly-efficient symbolic plan recog-
nizer, briefly described below. The reader is referred to
(Avrahami-Zilberbrand & Kaminka 2005) for details.

SBR’s plan library is a single-root directed graph, where
vertices denote plan steps, and edges can be of two types:
Decomposition edges decompose plan steps into sub-steps,

and sequential edges specify the temporal order of execu-
tion. The graph is acyclic along decomposition transitions.

Each plan has an associated set of conditions on observ-
able features of the agent and its actions. When these con-
ditions hold, the observations are said to match the plan. At
any given time, the observed agent is assumed to be execut-
ing a plan decomposition path, root-to-leaf through decom-
position edges. An observed agent is assumed to change its
internal state in two ways. First, it may follow a sequential
edge to the next plan step. Second, it may reactively inter-
rupt plan execution at any time, and select a new (first) plan.

The recognizer operates as follow: First, it matches ob-
servations to specific plan steps in the library according to
the plan step’s conditions. Then, after matching plan steps
are found, they are tagged by the time-stamp of the obser-
vation. These tags are then propagated up the plan library,
so that complete plan-paths (root to leaf) are tagged to in-
dicate they constitute hypotheses as to the internal state of
the observed agent when the observations were made. The
propagation process tags paths along decomposition edges.
However, the propagation process is not a simple matter of
following from child to parent. A plan may match the cur-
rent observation, yet be temporally inconsistent, when a his-
tory of observations is considered. SBR is able to quickly
determine the temporal consistency of a hypothesized rec-
ognized plan (Avrahami-Zilberbrand & Kaminka 2005).

At the end of the SBR process we are left with a set
of current-state hypotheses, i.e., a set of paths through the
hierarchy, that the observed agent may have executed at
the time of the last observation. The overall worst-case
run-time complexity of this process is O(LD) (Avrahami-
Zilberbrand & Kaminka 2005). Here, L is the number of
plan-steps that directly match the observations; D is depth
of a degenerate plan-library (i.e., a linked list). Extensions to
this model address interleaved plans and limits on durations
(Avrahami-Zilberbrand, Kaminka, & Zarosim 2005).

Computing the Expected Utility of an Hypothesis
After getting all current state hypotheses from the symbolic
recognizer, the next step is to compute the expected utility of
each hypothesis. This is done by multiplying the posterior
probability of a hypothesis, by its utility to the observer.

We follow in the footsteps of Hierarchical Hidden
Markov Model (HHMM) (Fine, Singer, & Tishby 1998) in
representing probabilistic information in the plan library.
We denote plan-steps in the plan library by qd

i , where i is
the plan-step index and d is its hierarchy depth, 1 ≤ d ≤ D.
For each plan step, there are three probabilities maintained:

Sequential transition. For each internal state qd
i , there is a

state transition probability matrix denoted by Aqd

= (aqd

i,j),

where aqd

i,j = P (qd
j |q

d
i ) is the probability of making a se-

quential transition from the ith plan-step to the jth plan-step.
Note that self-cycle transitions are also included in Aqd

.

Interruption. We denote by a
qd

i,end a transition to a spe-
cial plan step endd which signifies an interruption of the
sequence of current plan step qd

i , and immediate return of
control to its parent, qd−1.
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Figure 1: An example plan library. Recognition time-stamps
(example in text) appear in circles. Costs appear in diamonds.

Decomposition transition. When the observed agent first
selects a decomposable plan step qd

i , it must select be-
tween its (first) children for execution. The decomposi-
tion transition probability is denoted Πqd

= πqd

(qd+1) =

P (qd+1

k |qd
i ), the probability that plan-step qd

i will initially
activate the plan-step qd+1

k .

Observation Probabilities. Each leaf has an output emis-
sion probability vector Bqd

= (bq
d

(o)). This is the proba-
bility of observing o when the observed agent is in plan-step
qd. For presentation clarity, we treat observations as chil-
dren of leaves, and use the decomposition transition Πqd

for
the leaves as Bqd

.
In addition to transition and interruption probabilities, we

add utility information on the edges in the plan library. The
utilities on the edges represent the cost or gains to the ob-
server, given that the observed agent selects the edge. For
the remainder of the paper, we use the term cost to refer to
a positive value associated with an edge or node. As in the
probabilistic reasoning process, for each node we have three
kinds of utilities: (a) Eqd

is the sequential transition util-
ity (cost) to the observer, conditioned on the observed agent

transitioning to the next plan-step, parallelingAqd

; (b) eqd

i,end

is the interruption utility; and (c) Ψqd

is the decomposition
utility to the observer, paralleling Πqd

.
Figure 1 shows portion of the plan library of an agent

walking with or without a suitcase in the airport, occasion-
ally putting it up and picking it up again, an example dis-
cussed below. Note the end plan step at each level, and the
transition from each plan-step to this end plan step. This
edge represent the probability to interrupt. The utilities are
shown in diamonds (we omitted zero utilities, for clarity).
The transitions allowing an agent to leave a suitcase without
picking it up are associated with large positive costs, since
they signify danger to the observer.

We use these probabilities and utilities to rank the hy-
potheses selected by the SBR. First, we determine all paths
from each hypothesized leaf in time-stamp t− 1, to the leaf
of each of the current state hypotheses in time stamp t. Then,
we traverse these paths multiplying the transition probabil-
ities on edges by the transition utilities, and accumulating
the utilities along the paths. If there is more then one way to

get from the leaf of the previous hypothesis to the leaf of the
current hypothesis, then it should be accounted for in the ac-
cumulation. Finally, we can determine the most costly cur-
rent plan-step (the current-state hypothesis with maximum
expected cost). Identically, we can also find the most likely
current plan-step, for comparison.

Formally, let us denote hypotheses at time t − 1 (each a
path from root to leaf) as W = {W1,W2, ...,Wr}, and the
hypotheses at time t as X = {X1, X2, ..., Xl}. To calculate
the maximum expected-utility (most costly) hypothesis, we
need to calculate for each current hypothesisXi its expected
cost to the observer, U(Xi|O), where O is the sequence of
observations thus far. Due to the use of SBR to filter hy-
potheses, we know that the t − 1 observations in O have
resulted in hypotheses W , and that observation t results in
new hypotheses X . Therefore, under assumption of Marko-
vian plan-step selection, U(Xi|O) = U(Xi|W ).

The most costly hypothesis is computed in Equation 1.
We use P (Wk), calculated in the previous time-stamp, and
multiply it by the probability and the cost to the observer of
taking this step from Wk to Xi. This is done for all i, k.

X̂i = argmax
Xi

∑

Wk∈W

P (Wk) ·P (Xi|Wk) ·U(Xi|Wk) (1)

To calculate the expected utility E(Xi|Wk) =
P (Xi|Wk) · U(Xi|Wk), let Xi be composed of plan steps
{x1

i , ..., x
m
i } and Wk be composed of {w1

k, ..., w
n
k} (the up-

per index denotes depth). There are two ways in which
the observed agent could have gone from executing the leaf
wn ∈ Wk to executing the leaf xm ∈ Xi: First, there may
exist w ∈ Wk, x ∈ Xi such that x and w have a common
parent, and x is a direct decomposition of this common par-
ent. Then, the expected utility is accumulated by climbing
up vertices in Wk (by taking interrupt edges) until we hit
the common parent, and then climbing down (by taking first
child decomposition edges) to xm. Or, in the second case,
xm is reached by following a sequential edge from a vertex
w to a vertex x.

In both cases, the probability of climbing up from a leaf
wn at depth n, to a parent wj (where j < n) is given by

α
j
wn =

j∏

d=n

ad
w,end (2)

and the utility is given by

γ
j
wn =

j∑

d=n

ed
w,end (3)

The probability of climbing down from a parent xj to a leaf
xm is given by

β
j
xm =

m∏

d=j

πxd

(xd+1) (4)

and the utility is given by

δ
j
xm =

m∑

d=j

ψxd

(xd+1) (5)



Note that we omitted the plan-step index, and left only the
depth index, for presentation clarity.

Using αj
w, βj

x, γj
w and δj

x, and summing over all possible
j’s, we can calculate the expected utility (Equation 6) for the
two cases in which a move from wn to xm is possible .

E(Xi|Wk) = P (Xi|Wk) × U(Xi|Wk)

=

1∑

j=n−1

[(αj
w · βj

x) × (γj
w + δj

x) × Eq(xj , wj)]

+

1∑

j=n−1

[αj
w · aj

w,x · βj
x] × (γj

w + ej
w,x + δj

x)

(6)

The first term covers the first case (transition via inter-
ruption to a common parent). Let Eq(xj , wj) return 1 if
xj = wj , and 0 otherwise. The summation over j accu-
mulates the probability multiplying the utility of all ways of
interrupting a plan wn, climbing up from wn to the common
parent xj = wj , and following decompositions down to xm.

The second term covers the second case, where a sequen-
tial transition is taken. aj

w,x is the probability of taking a
sequential edge from wj to xj , given that such an edge ex-
ists (aj

w,x > 0), and that the observed agent is done in wj .
To calculate the expected utility, we first multiply the prob-
ability of climbing up to a plan-step that has a sequential
transition to a parent of xm, then we multiply in the prob-
ability of taking the transition, and then we multiply in the
probability of climbing down again to xm. Then, we multi-
ply in the utility summation along this path.

A naive algorithm for computing the expected costs of
hypotheses at time t can be expensive to run. It would go
over all leaves of the paths in t − 1 and for each of these,
traverse the plan library until getting to all leaves of paths
we got in time-stamp t. The worst-case complexity of this
process is O(N2T ), where N is the plan library size, and T
is the number of observations.
Efficient UPR Algorithms
We developed a set of algorithms that calculates the ex-
pected utilities of hypotheses (Equation 1) in worst-case run-
time complexityO(NDT ), whereD is the depth of the plan
library (N ,T as above). The algorithms are based on the ob-
servation that the structural constraints on the plan library
are such, that all the paths from any path (hypothesis) true
at time t − 1, to a given hypothesis Xi, true at time t, must
necessarily go through a single node S that is a part of Xi.
Moreover, S is necessarily a common node to Xi and one or
more paths at time t−1. If we can compute αS and γS up to
this node S, then we could propagate from it to all paths X
in which it is a part, that are true at time t. In other words,
we can reuse the summation αS and γS for all hypotheses in
which S participates.

This translates into the following procedure. We begin
with the leaves of all t− 1 hypotheses Wk (1 ≤ k ≤ n). We
sum the utilities and multiply the probabilities while climb-
ing up from the leaves along the hierarchy, all the way to
the root, storing intermediate results in the internal nodeswj

�

�

� �

�

� �

tt-1 t-1

Figure 2: Efficient UPR Example
(plan-steps) of the hierarchy. We then look for internal nodes
(i) that have a child marked at time t (i.e., wj is a common
parent, Eq(wj , xj) is true); or (ii) that have a sequential tran-
sition to an internal node marked at time t (i.e., aj

w,x > 0).
A node (marked time t) that satisfies either of these cases is
one through which one or more time t hypotheses Xi pass,
i.e., a node S as above. We then propagate down the calcu-
lated probability and utility downward (βS and δS).

To illustrate the efficient UPR algorithm, let us examine a
portion of a plan library at figure 2. Suppose that in time t−1
the SBR had returned that the two plan-steps C and D are
matching, and G in time-stamp t. To calculate the expected
utility with the naive algorithm, we would traverse the plan
library in the following manner: E(G|C,D) = (αA

C · βG
A +

αA
D · βG

A )× (γA
C + δG

A + γA
D + δG

A). With the efficient UPR:
E(G|C,D) = [(αB

C +αB
D)×αA

B ×βG
A ]× (γB

C +γB
D +γA

B +
δG
A). Meaning that the probabilities and utilities of C and
D are stored in B, so we are not traversing the plan library
more then necessary.

Complexity Analysis. The run-time complexity of the
algorithm isO(NDT ): We first propagate the t−1 expected
utilities up the hierarchy, not visiting plans that already been
visited, in worst-case time O(N). Then, calculating β for
different depths, for paths tagged with t, is O(ND). We
do this for every observation, of which there are T , thus the
overall complexity is O(NDT ).

Note the reliance on the underlying SBR: Since the sym-
bolic recognizer provides the possible paths at times t−1, t,
we do not need to consider all possible paths, and can be-
gin the propagation process directly at the leaves of paths.
Hopefully, many paths are disqualified by the symbolic al-
gorithm, due to temporal coherence; in that case, we ex-
pect performance in practice to improve significantly over
the worst case complexity.

Experiments
To demonstrate the novel capabilities of UPR, and its ef-
ficient implementation as described above, we tested the
capabilities of our algorithms in three different recognition
tasks. The domain for the first task consisted of recognizing
passengers that leave articles unattended, as in the example
above. In the second task we will show how our algorithms
can catch a dangerous driver that cuts between two lanes re-
peatedly. The last experiment intends to show how previous
work, which has used costs heuristically (Tambe & Rosen-
bloom 1995), can now be recast in a principled manner. All
of these experiments show that we should not ignore the ob-
server biases, since the most probable hypothesis sometimes
mask hypotheses that are important for the observer.
Leaving unattended articles
It is important to track a person that leave her articles unat-
tended in the airport. It is difficult, if not impossible, to catch
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Figure 3: Leaving unattended articles: Probabilities and Costs

this behavior using only probabilistic information. We ex-
amine the instantaneous recognition of costly hypotheses.

We demonstrate the process using the plan library in Fig-
ure 1. This plan library is used to track simulated passengers
in an airport that walk about carrying articles, which they
may put down and pick up again. The recognizer’s task is
to recognize passengers that put something down, and then
continue to walk without it. Note that the task is difficult
because the plan-steps are hidden (e.g., we see a passenger
bending, but cannot decide whether it pick something up,
put something down, or neither; we cannot decide whether
a person has an article when they walk).

For the purposes of a short example, suppose that in time
t = 2, the SBR had returned that the two plan-steps marked
walk match the observations (walkN means walking with
no article, walkW signifies walking with an article); in time
t = 3 the two stop plan steps match (stopN and stopW ),
and in time t = 4 the plan step pickN and plan step putW ,
match (e.g., we saw that the observed agent was bending).
The probability in t = 4 will be P (putW |stopW ) =
0.5× 0.2 = 0.1 (the probability of stopW in previous time-
stamp is 0.5, then following sequential link to putW ), and
in the same way P (pickN |stopN) = 0.5 × 0.3 = 0.15.
Normalizing the probabilities for the current time t = 4,
P (putW |stopW ) = 0.4 and P (pickN |stopN) = 0.6.
The expected utility in time t = 4 is U(putW |stopW ) =
P (putW |stopW )×E(putW |stopW ) = 0.4×10 = 4. The
expected utility of pickN is zero. The expected costs, rather
than likelihoods, raise suspicions of a passenger putting
down an article (perhaps not picking it up).

Let us examine a more detailed example. We gener-
ated the following observations based on Figure 1: In time
stamps t = {1− 5} the simulated passenger walks in an air-
port, but we can not tell whether she has an dangerous article
in her possession. In time-stamps t = {6−7} she stops, then
at time t = {8} we see her bending but can not tell whether
to put or to pick something. In time-stamps t = {10 − 12},
she walks again.

Figure 3 shows the results from the recognition process.
The X-axis measures the sequence of observations in time.
The probability of different leaves (corresponding to hy-
potheses) is shown on the Y-axis in the upper graph. The

Left Lane

Right Lane

Figure 4: Simulated trajectories for drivers.

expected costs are shown in the lower graph. In both, the
top-ranking hypothesis (after each observation), is the one
whose value on the Y-axis is maximal for the observation.

In the probabilistic version (upper graph) we can see that
the probabilities, in time t = {1 − 5}, are 0.5 since we have
two possible hypotheses of walking. with or without an ar-
ticle (walkW and walkN ). Later when the person stops
there are again two hypotheses stopW and stopN . Then, in
t = {7} two plan steps match the observations: pickW and
putN , where the prior probability of pickN is greater than
putN (after all, most passengers do not leave items unat-
tended). As a result, the most likely hypothesis for the re-
mainder of the sequence is that the passenger is currently
walking with her article in hand walkW.

In the lower graph we can see a plot of the hypotheses,
ranked by expected cost. At time t = 8 when the agent pick
or put something, the cost is high (equal to 5), then in time
stamp t = {9 − 12} the top-ranking hypothesis is walkN,
signifying that the passenger might have left an article unat-
tended. Note that the prior probabilities on the behavior of
the passenger have not changed. What is different here is the
importance (cost) we attribute to observed actions.

Catching a dangerous driver
Some behavior becomes increasingly costly, or increasingly
gainful, if repeated. For example, a driver switching a lane
once or twice is not necessarily acting suspiciously. But a
driver zigzagging across two lanes is dangerous. We demon-
strate here the ability to accumulate costs of the most costly
hypotheses, in order to capture behavior whose expected
costs are prohibitive over time.

Figure shows two lanes left and right in a continuous
area, divided by a gird. There are 2 straight trajectories and
one zigzag trajectory from left to right lane. From each po-
sition, the driver can begin moving to the next cell in the
row (straight), or to one of the diagonal cells. We empha-
size that the area and movements are continuous—the grid
is only used to create a discrete state-space for the plan li-
brary. Moreover, the state-space is hidden: A car in the left
lane may be mistakenly observed (with small probability) to
be in the right lane, and vice versa.

Each grid-cell is a plan-step in the plan library. The asso-
ciated probabilities and utilities are as follows: The proba-
bility for remaining in a plan-step (for all nodes) is 0.4. The
probability of continuing in the same lane is 0.4. The proba-
bility of moving to either diagonal is 0.2. All costs are zero,
except when moving diagonally, where the cost is 10.

We generated 100 observation sequences (each of 20 ob-
servations) of a zigzagging driver, and 100 sequences of a
safe driver. The observations were sampled (with noise)
from the trajectories; with 0.1 probability, an observation
would incorrectly report on the driver being in a given lane.
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For each sequence of observations we accumulated the cost
of the most costly hypothesis, along the 20 observations. We
now have 100 samples of the accumulated costs for a dan-
gerous driver, and 100 samples of the costs for a safe driver.
Depending on a chosen threshold value, a safe driver may
be declared dangerous (if its accumulated cost is greater than
the threshold), and a dangerous driver might be declared safe
(if its accumulated cost is smaller than the threshold).

Figure 5 shows the confusion error rate as a function of
the threshold. The error rate measures the percentage of
cases (out of 100) incorrectly identified. The figure shows
that a trade-off exists in setting the threshold, in order to im-
prove accuracy. Choosing a cost threshold at 50 will result in
high accuracy, in this particular case: All dangerous drivers
will be identified as dangerous, and yet 99 percent of safe
drivers will be correctly identified as safe.

Air-Combat Environment
(Tambe & Rosenbloom 1995) used an example of agents in a
simulated air-combat environment to demonstrate the RESC
plan recognition algorithm. RESC heuristically prefers a
single worst-case hypothesis, since an opponent is likely to
engage in the most harmful maneuver. The example used
was of a air-combat maneuver, in (Tambe & Rosenbloom
1995) showed this heuristic in action in a simulated air-
combat, where the turning actions of the opponent could
be interpreted as either leading to it running away, or to its
shooting a missile. RESC prefers the hypothesis that the
opponent is shooting. However, unlike UPR, RESC will al-
ways prefer this hypothesis, regardless of its likelihood, and
this has proven problematic (Tambe & Rosenbloom 1995).
Moreover, given several worst-case hypotheses, RESC will
choose arbitrarily a single hypothesis to commit to, again re-
gardless of its likelihood. Additional heuristics were there-
fore devised to control RESC’s worst-case strategy (Tambe
& Rosenbloom 1995).

In contrast, UPR incorporates the biases of an observing
pilot much more cleanly. Because it takes the likelihood of
hypotheses into account in computing the expected cost, it
can ignore sufficiently improbable (but still possible) worst-
case hypotheses, in a principled manner. Moreover, UPR
also allows modeling optimistic observers, who prefer best-
case hypotheses.

Summary and Future Work
This paper presents a utility-based plan recognition (UPR)
approach, for incorporating biases and preferences of the
observer into keyhole plan recognition. This allows choos-
ing recognition hypotheses based on their expected utility to
the observer. While reasoning about such expected utilities
is intractable in the general case, we present a hybrid sym-
bolic decision-theoretic plan recognizer, whose complexity
is O(NDT ), where N is the plan library size, D is the
depth of the library and T is the number of observations.
We demonstrated the efficacy of this approach with experi-
mental results in several challenging recognition tasks. We
plan to further explore the use of UPR algorithms in addi-
tional queries and cases such as intended recognition, where
the observed agent may modify its behavior based on the
knowledge that it is being observed.
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