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Abstract—In formation-maintenance (formation control) tasks,
robots maintain their relative position with respect to their peers,
according to a desired geometric shape. Previous work has exam-
ined formation-maintenance algorithms, based on formation con-
trol graphs, that ensure the theoretical stability of the formation.
However, an exponential number of stable controllers exists. Thus
a key question is how to select (construct) a formation controller
that optimizes desired properties, such as sensor usage. We present
a novel representation of the sensing capabilities of robots in for-
mations, using a monitoring multigraph. We first show that graph-
theoretic techniques can then be used to efficiently compute optimal
sensing policies that maintain a given formation, while minimiz-
ing sensing costs. In particular, separation-bearing (distance-angle)
control targets are automatically constructed for each individual
robot in the formation, taking into account its specific sensor mor-
phology. Then, we present a protocol allowing control graphs to
be switched on line, to allow robots to adjust to sensory failures.
We report on results from comprehensive experiments with phys-
ical and simulated robots. The results show that the use of the
dynamic protocol allows formations of real robots to move signifi-
cantly faster and with greater precision, while reducing the number
of formation failures, due to sensor limitations. We also evaluate
the sensitivity of our approach to communication reliability, and
discuss opportunities and challenges raised by our approach.

Index Terms—Coordinated movement, mobile robots, multi-
robot formations, multirobot systems.

I. INTRODUCTION

IN FORMATION-MAINTENANCE (formation control)
tasks, robots maintain their relative position with respect

to their peers, according to a desired geometric shape. Var-
ious formation maintenance algorithms have been suggested
(e.g., [2]–[4], [6], [7], [9], [11], [13], [14], [16]). The algorithms
assign each robot with a single or multiple neighboring robots
(targets) that it must monitor, to maintain the given geomet-
ric shape while moving. The set of assigned targets (and their
associated controller type) is called control graph in [6] and [7].

Previous work has examined constraints on a given con-
trol graph, that would ensure the stability of the formation.
In particular, one popular method is separation-bearing control
(SBC) [2], [6]–[9]. In SBC, a single robot is chosen as the leader
of the formation. Each robot (but the leader) must maintain a
given distance (separation) and angle (bearing) with respect to
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an assigned target. It was shown that control graphs that induce
SBC controllers for each robot, and satisfy other constraints
(e.g., connectivity, a single leader, etc.) are sufficient to main-
tain stable formations.

However, for a given geometric formation, an exponential
number of stable possible control graphs may exist [6], [7].
Thus, a key question is how to select (construct) a control
graph that optimizes other desired properties in addition to
stability. Many such desired properties have to do with each
robot’s sensor morphology—the type, placement, and con-
figuration of sensors on robot bodies. For instance, a con-
trol graph in which one robot must pan its camera backward
(relative to the direction of movement) is less likely prefer-
able than one in which the same robot can monitor a target
ahead of it. Unfortunately, previous work has often ignored
the role of the sensor morphology in selecting between control
graphs (see Section II for a detailed discussion, and notable
exceptions).

This paper presents an instantiated graph-theoretic framework
for control graph selection, based on sensor-morphology consid-
eration. The framework represents alternative sensing schemes
in a monitoring multigraph in which directed, weighted, edges
denote sensing capabilities and their associated costs. By apply-
ing graph-theoretic techniques, sensor-optimal control graphs
can be constructed efficiently.

We present two contributions. First, we provide an efficient
method for automatically constructing sensor-optimal control
graphs for SBC control. Second, we present a protocol allowing
control graphs to be switched online, to allow robots to adjust
to permanent and intermittent sensory failures.

To evaluate these contributions, the monitoring multigraphs
framework has been implemented for Sony AIBO robots, and
for the player-stage simulator [10]. We show the results of ex-
tensive experiments, demonstrating the robustness of the for-
mations resulting from using monitoring multigraphs. We show
empirically that use of dynamic switching of control graphs
leads to significantly increased precision, better performance,
and robustness to changing environmental conditions. We addi-
tionally discuss the opportunities and challenges raised by the
use of the framework, in particular, in allowing heterogeneous
multirobot formations (in which each robot may have a dif-
ferent sensor morphology), and greater robustness to obstacles
interfering with robot sensing.

This article is organized as follows. Section II presents re-
lated work and background. Section III presents a method for
constructing SBC control graphs, given a description of the for-
mation shape and each robot’s sensor morphology. Section IV
presents a protocol for online dynamic switching of control
graphs, for improved robustness. Section V presents the results
of the experiments. Section VI discusses opportunities and chal-
lenges. Section VII concludes.

1552-3098/$25.00 © 2008 IEEE
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II. BACKGROUND AND RELATED WORK

We focus here on most related previous investigations. These
have typically made the assumption that sensor configurations
match the control graphs. Moreover, existing works often as-
sume all robots are homogeneous, and thus do not generate
monitoring rules that are individually tailored to the sensing
capabilities of different robots. Our paper addresses these chal-
lenges. Other differences with existing work are discussed next.

Perhaps the most closely related work to ours is that of Lemay
et al. [13] and Michaud et al. [14], which present a distributed
method by which robots are assigned to positions in a formation.
The distributed computation uses a cost function that takes into
account distances and angles to the teammates, similar to the
cost function we develop next; a bounded search process is used
to determine the best (lowest cost) assignment of robots to for-
mation positions. Each robot in a formation determines a cost for
assigning its teammates to positions in the given formation, as-
suming it is the leader (which they refer to as conductor). Then,
the best (minimal cost) assignment of roles to robots (including
the leader) is made. Our approach complements this work. We
use computation of sensing costs after robots have already been
assigned to their positions, to determine the sensor configuration
used by each robot to monitor its target. Furthermore, the tech-
nique we present allows dynamic switching of control graphs
within the same formation, where the work by Lemay et al. and
Michaud et al. allows switching of the formation shapes.

Fierro et al. [8] analyzed the stability of SBC and other
controllers, and proposed using manually constructed control
targets to allow up to three robots to switch between alterna-
tive controllers online without relying on communications. Our
work complements their results by providing: (1) a method for
optimal selection of alternative control graphs, for any number
of robots and (2) a protocol using communications for making
synchronized control graph decisions.

Desai et al. [6], [7] show how a formation can be maintained
if each robot monitors an angle and distance to another robot.
They use an unweighted control graph to describe monitoring
from a global perspective. Desai et al. do not discuss selec-
tion of a control graph, and assume omnidirectional sensing.
However, they discuss switching the geometric shape defining
the formations (and their associated control graphs) to tackle
terrain changes. Our framework complements such switching.

Balch and Arkin [2] examine three techniques for forma-
tion maintenance of up to four homogeneous robots. Two of
these (leader-referenced and neighbor-referenced) techniques
are essentially SBC controllers, using static (fixed) control
graphs. Fredslund and Matarić [9] describe an algorithm for
generating SBC monitoring rules for robots in a given forma-
tion. The robots are assumed to have specific sensing capabil-
ities, and the position of the leader is given. The monitoring
rules are supplemented by communications for robustness. Our
algorithms consider the unique sensor configuration of each
robot.

Balch and Hybinette [3] use social potential fields that use
attraction and repulsion to position robots within their relative
positions in a defined formation. This technique is robust to

obstacles in the path of the robots, an important challenge our
approach does not yet take into account.

Mourikis and Roumeliotis [15] discuss optimal sensor
scheduling policies for formations, in which sensor use for lo-
calization within the formation is optimally balanced between
resource consumption (e.g., energy) and localization accuracy.
The sensors themselves are assumed to be fixed in configura-
tion, but the frequency in which they are used is determined
by the policies. Our work is complementary: The frequency in
which sensors are used is fixed, but the sensor configuration is
dynamically adjusted.

III. COST-OPTIMAL FORMATION CONTROL GRAPHS

We begin by describing the use of monitoring multigraphs to
analytically describe various ways in which a robot may monitor
its peers by observation (Section III-A). Then, we describe how
a multigraph can be used in formation-maintenance tasks to
assist in the automatic generation of monitoring rules for robots
(Section III-B).

A. Monitoring Multigraphs in Formation Control

We introduce the use of multigraphs to represent the monitor-
ing capabilities of robots in a multirobot system. A monitoring
multigraph is a tuple 〈V,E〉 where V is a set of vertices, de-
noting robots, and E is a bag (sometimes called multiset) of
weighted edges {〈u, v, w〉}, each linking two vertices u, v ∈ V ,
and having a nonnegative weight w ∈ N. Since E is a bag, an
edge linking two vertices may appear more than once (even with
the same weight).

Edges denote monitoring capabilities. An edge 〈u, v, w〉 ex-
ists if robot u is able to monitorsense robot v in some distinct
fashion, i.e., through a specific sensor. The weight w indicates
the monitoring robot’s cost of using the sensor, e.g., in terms
of energy use, or expected reliability for the given distance
and heading [13], [14] (see next). As multiple sensors may
exist for one robot to monitor another, multiple edges may
exist, with various costs. When a robot can monitor another,
the reverse is not always true; thus edges are directed, i.e.,
〈u, v, w〉 ∈ E �⇒ 〈v, u, z〉 ∈ E.

In practice, most tasks require monitoring to be selective.
A monitoring multigraph can be useful in such reasoning, and
allows the robot to represent monitoring options available to
it, and the costs involved. The robots can reason about their
monitoring decisions in the context of the global monitoring
constraints.

We construct monitoring multigraphs to represent the sen-
sory capabilities of robots in the formation. Vertices (denoting
robots) are positioned according to the robots’ positions in the
formation, relative to their peers. As the vertices represent robots
in the formation, the multigraph is embedded in the plane; each
vertex has associated Cartesian coordinates in R

2 . The initial
pose of all robots is to the direction of the movement. Com-
plementary previous work has already addressed issues in the
allocation of robots to positions in the formation [13], [14].
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TABLE I
TYPE-1 ROBOT SENSOR CONFIGURATION

Fig. 1. Monitoring possibilities change based on sensor panning. (a) Pan 0◦.
(b) Pan 30◦. (c) Pan 90◦.

For each robot (vertex), we add edges by considering its
sensors that can be used for monitoring other robots. We focus
on sensors that can provide identification, distance, and bearing
to other robots, such as combinations of cameras and distance
sensors. We exclude sensors that cannot be used for monitoring
others, such as location (e.g., GPS), distances traveled (e.g.,
odometry), etc.

The weight of an edge is an indication of its expected cost-of-
usage: Smaller weights indicate lower costs, and thus, greater
preference for usage. This cost can be computed based on any
number of factors. We empirically found the following three
factors to be useful in practice: Sensing distance limits (similarly
to [13] and [14]), field of view limits, and panning angle (rotation
of the field of view with respect to the center of the robot). We,
therefore, focus on these in this paper. However, sensor planning
literature (e.g., [1]) reports on additional factors in reasoning
about sensing and sensing costs, such as resolution, focus, and
feature detectability. These will be addressed in future work.

For each factor, for each relevant range of values, we assign
a cost, which reflects our inverse preference for the particular
setting of the factor (i.e., to the range of values). For instance,
Table I shows an example of a set of such assignments, for a
hypothetical robot. The first column (attribute) marks the sensor
attribute in question—distance, field of view, or panning angle.
The second column (range) marks the values (ranges of values)
for which we wish to specify costs. The costs are noted in the
final column. Note that several ranges may be possible for each
attribute, which may differ in their costs or range of values. We
remind the reader that lower costs signify higher preference.

Fig. 1 shows this Type 1 robot using its single sensor at dif-
ferent pan angles. Each curved sub-region denotes monitoring
areas with different costs. The two arcs differentiate distance
limitations. The numbered squares denote other robots. For in-
stance, Fig. 1(a) shows the robot panning straight ahead (at 0◦).
Another robot (1) is outside of the distance range of the mon-
itoring, regardless of the panning angle or field of view. Robot
3 (bottom right) cannot be monitored given the current pan and

field of view. The remaining robot (2) is currently within the
central field of view. Figs. 1(b) and (c) shows all robots in the
same positions, but with different panning angles for the sensor.

An important issue to consider is the origin of sensor costs.
With each factor’s values, we can associate a number of pref-
erences that would encourage or discourage us from using the
sensor in these settings. Factors that come to bear on the cost in-
clude: energy consumption (some sensors use more energy than
others), latency, reliability (e.g., measurements within some
ranges are more reliable than in other ranges), the ability of us-
ing the sensor for other purposes (e.g., to detect obstacles), and
actual monetary costs, in case we are only planning the forma-
tions and wish to try different combinations. The combination
of all of these different factors (and any others) into a single
cost value can be done using existing methodologies for multi-
ple attribute decision-making, once the factors are known [17].
In this paper, we utilized only a single factor (reliability) in our
sensor cost models.

To contrast alternative sensing possibilities, we construct
edges from the monitoring robot to the other (monitored) robots.
An edge is created for each combination of distance, field of
view, and pan angle, that can sense the other robot. This is
done as follows. First, we compute the area covered by a sen-
sor, given its field-of-view possibilities, distance ranges, and
pan options. For a field-of-view range [fmin , fmax], a pan range
[pmin , pmax], and a distance range [dmin , dmax], the area cov-
ered is a curved region enclosed by the distance range, and
defined by the arcs at an angle [pmin + fmin , pmax + fmax].
Multiple pan, field-of-view, and distance range options give rise
to multiple curved regions, which may overlap. For instance,
based on Table I, the leftmost field-of-view range covers the
arc [−50 + −90,−30 + 90] = [−140, 60]◦, the central field of
view covers [−30 + −90, 30 + 90] = [−120,+120]◦, etc.

We then locate robots within each region. For each, we create
a directed edge from the monitoring robot. Since the positions
of vertices in the multigraph correspond to geometric positions
in the formation, the distance between two robots corresponds
to the length of the line connecting them, and the angle between
any two robots can be computed relative to the initial pose,
which faces the direction of movement. For instance, in Fig. 1,
robot 1 is outside of the distance range of the monitoring robot.
Thus, there would be no edge from the monitoring robot to this
left top robot. Figs. 1(a) and 1(b), shows multiple ways in which
robot 2 can be monitored—within the central field of view (when
the pan angle is set to 0◦) and within the left field of view (pan
angle set to 30◦). Thus two edges to it would be created.

Finally, we compute the weight of each edge, as a function of
the costs of the distance, field of view, and pan ranges involved.
We use a weighted sum function [17] to combine cost factors
into a single cost value for the weight of the edge.

In real-world settings, robots may occlude each other. Thus,
the last step includes removal of physically occluded edges. As
embodied robots occlude each other, any robot x positioned on
an edge between a pair of other robots a, b will block their view
of each other. In this case, edges {〈a, b〉, 〈b, a〉} are removed
from the monitoring multigraph. When applying this tech-
nique with physical robots, we have found it useful to consider
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occlusion even if x is not positioned exactly on the edges be-
tween a and b, to account for the size of the physical body of an
occluding robot.

The result of this process (after it is repeated for all robots,
and all sensors) is a weighted, directed, monitoring multigraph,
where vertices denote robots and (multi-) edges represent all
possible ways in which the robots can monitor each other, given
their sensors and limitations.

B. Computing Optimal SBC Control Graphs

Now that the monitoring multigraph is complete for a given
formation, it can be used to induce individual controllers for
each robot, such that if all robots maintain the distances and
angles represented by the selected edges, the formation will be
correctly maintained. In particular, we show how to use a version
of Dijkstra’s single-source shortest paths (S3P) algorithm to
construct SBC controllers for each robot, that guarantee optimal
sensing-cost formations.

In SBC, a robot—called leader—is responsible for deter-
mining the overall global path (e.g., by deferring to a human
operator [12], or using a path planner). Each of the other robots
(followers) is given individually-tailored distance and angle goal
values, with respect to its target—either the leader, or another
follower—that, in turn, monitors its own target. SBC thus relies
on a single monitoring link for each robot. The distance and
angle are given with respect to the direction of movement.

We can induce the SBC monitoring rules from the monitoring
multigraph, by choosing edges that signify sensor choices. The
edges’ length and angle with respect to the initial pose signify
the separation and bearing, respectively. For now, we make the
assumption that the leader position has been predetermined.
Given the leader, a formation graph can be maintained using the
SBC under the following conditions:

1) The outdegree of the leader robot is 0.
2) The outdegree of every follower robot is exactly 1, the

outgoing edge pointing to its target.
3) There exists a path from every follower to the leader.
The first condition guarantees that the leader does not have

to monitor anyone. The second condition guarantees that each
of all other robots has an separation-bearing target to monitor.
The final condition guarantees that the formation is connected
such that all robots monitoring others will eventually monitor
the leader. In other words, it guarantees that the leader robot is
indeed positioned such that it is capable of leading, given how
it is monitored.

We define a formation graph as optimal, if in addition to
the conditions mentioned earlier, it also guarantees that each
individual robot is monitoring the leader, directly or indirectly
(transitively) using the minimal sensor cost. This is not achiev-
able, in general, by simply selecting the least costly edge out
of each robot’s position, since such local selection may cause
robots to form a cycle, where robots monitor each other, instead
of the leader. Moreover, such local selection does not address a
key challenge: a robot’s overall monitoring cost in the context
of a formation depends also on its target’s monitoring cost. This
is because a robot’s position depends on its target, and thus,

shorter paths to the leader reduce latency in position update. In
other words, it may be better to monitor a robot at a higher local
cost, to guarantee that overall, the path from the target to the
leader is shorter and less expensive.

Fortunately, graph-theoretic algorithms have already been de-
vised to address such challenges. In particular, we use a version
of Dijkstra’s S3P algorithm (described in [5]). However, rather
than computing the shortest paths from a source vertex to all oth-
ers, we compute the single-target shortest paths. This is easily
done by traversing edges backward.

Another departure from Dijkstra’s algorithm is that it must
be modified to work with multigraphs. In particular, its edge-
selection policy now must consider multiple edges between any
two vertices, when selecting a minimum-cost edge. It can be
shown that this does not change the optimality of the algorithm,
in the sense of generating lowest-cost shortest paths. We only
provide a proof sketch, as we rely on the standard proof for
the optimality of Dijkstra’s algorithm [5, Section 25.2]. The
optimality of Dijkstra’s algorithm depends on a greedy step in
which it chooses the lowest-cost edge from a vertex that has
already been visited, to a vertex that has not been visited yet.
The minor modification we introduced, such that the algorithm
considers multiple edges, does not modify the result, which is a
single lowest-weight edge from the current vertex.

This step in which edges are selected also touches on a final
modification of Dijkstra’s algorithm for our purposes. In theory,
any ties in alternatives (i.e., edges with same weight) can be
broken arbitrarily by the algorithm, since the selection will not
affect optimality. In practice, however, we have found it useful to
reduce hops, the number of edges that leads from a given robot
to the leader. This is done by breaking ties in such a manner as
to prefer edges that minimize hops

Using the modified Dijkstra’s algorithm, a single edge is se-
lected optimally for each robot but the leader. These edges form
an SBC control graph to be executed by the robots, i.e., the al-
gorithm induces a control graph G out of the monitoring multi-
graph MG. Because each edge is specific to the robot in which
it originates, the separation and bearing targets of each robot are
individually tailored to the monitoring capabilities of the robot.
This admits sensor-heterogeneous robots (see Section VI-A).

To deploy the formation, the robots are assumed to possess
controllers capable of reaching and maintaining the separation
and bearing target values. On one hand, the assumption of capa-
ble controllers makes this technique potentially useful for many
different robots. On the other hand, this abstract view of the
individual controllers also removes the possibility of addressing
important details, such as movement constraints of the robots.
We leave further exploration of individual controllers—and their
effect on the control graphs—to future investigations.

IV. DYNAMIC SWITCHING OF CONTROL GRAPHS

The generation of SBC control targets for each robot is done
automatically, based on the expected cost of using the robots sen-
sors. However, during deployment, sensors may act differently
from what was anticipated, due to catastrophic or intermittent
failures. For instance, a camera may get stuck in a particular



KAMINKA et al.: USING SENSOR MORPHOLOGY FOR MULTIROBOT FORMATIONS 275

angle, or lighting conditions may inhibit the ability to track
specific colors.

To address this, we propose a distributed protocol that allows
robots to dynamically switch control graphs while maintaining
the formation. Such a protocol (by explicit or implicit communi-
cations) is required, to coordinate the robots in their switching
of control graphs. Uncoordinated switches may result in two
or more robots following each other, cyclically, instead of the
leader. The protocol works in several steps

1) If a robot fails to monitor its preselected peer, or needs to
update its cost estimates for its peers, it first broadcasts
a message to all team members, to let them know that a
recomputation of the graph is needed. During this phase,
any number of robots may broadcast in parallel. Messages
include revised edge costs. Note that such revised costs can
reflect increases (e.g., due to sensor failures, as discussed
next), as well as decreases (e.g., due to greater availability
because of changes to body pose).

2) Each robot that receives the message halts the movement,
and adds it to a local list of robots R that require reas-
signment of targets and sensors. The robot receiving the
message will not report on any readjustment it wishes to
make while within this step of the protocol.

3) All robots make sure that all messages have been received
and processed. This can be done either by having receivers
acknowledge received communications, or more simply
(but less reliably) by having a timeout mechanism that
ensures no new messages are generated.

4) All robots call on Algorithm 1 to determine the set Rk

of robots in the team that are potentially affected (i.e.,
transitively) by a change in the initial list of robots’ target
assignments.

5) All reexecute the modified Dijkstra’s algorithm on the
monitoring multigraph MG, to generate a new control
graph. However, because only the subset of team-members
Rk is affected (by increases or decreases in edge costs),
decisions for other robots do not have to be revisited.

The GetVertexesToUpdate algorithm computes all robots that
are upstream from an affected robot, where upstream is taken
to mean traversing the edges in the multigraph backward, from
the leader to the outmost followers. The algorithm essentially
follows all edges backward, from the initial set of robots, adding
additional affected robots as it goes. It halts when no new af-
fected robots can be discovered.

The protocol shown earlier can be executed in parallel by
all teammembers, or using a centralized computation that will
distribute the result. When executed in parallel, care must be
taken to ensure that 1) the robots begin their decision-making

in a synchronized manner (i.e., work on the same initial list of
robots R); 2) arrive at the same choices in the recomputation of
the new control graph. The first requirement can be enforced in
several ways. We chose to enforce it by introducing a timeout
mechanism: Once a robot announces that a recomputation is
necessary, other robots have a certain time period in which they
can add to the list. To prevent parallel execution of Dijkstra’s al-
gorithm from making different decisions, any ties are arbitrarily
broken by preferring the robot with lower identifying number
(ID).

The reliance on communications to synchronize the set of
affected robots and revised edge costs raises several challenges
with respect to communications. Most importantly, the protocol
for dynamically switching between control graphs, as proposed
in this section, can clearly be sensitive to communication fail-
ures. For instance, loss of a message announcing a revised edge
cost (and the need for a recomputation) may cause the formation
to break, as the sender might stop while the intended receivers,
never having received the message, continue to move on. More
reliable protocols may be used (e.g., requiring acknowledgment
of any message, and retransmission after a time-out), but they
may affect overall performance, and bandwidth usage. We em-
pirically evaluate the effects of message loss on the dynamic
switching method, in the next section. We also note in passing
that, of course, the calculation of a static sensor-optimal control
graph is not reliant on such communications.

Another challenge raised by the reliance on communications
is the issue of range and bandwidth usage. In environments with
limited bandwidth, and/or limited range of communications, the
protocol described earlier may become unsuitable for use. For
instance, the leader and one of the last followers, some edges
(hops) away, may be too far apart to communicate directly. As
a result, a message by the follower, informing of a change in
edge cost, may fail to directly reach the leader. For such cases,
the communication layer used by the robots would have to be
revised to allow for indirect communications (i.e., by routing).
Such a mechanism falls well beyond the scope of this paper, and
we raise the issue here to emphasize the reliance of dynamic
switching on the communication capabilities of the robots.

V. EVALUATION

To evaluate the use of monitoring multigraphs in practice, we
first show a series of experiments on physical robots (Sony AI-
BOs), in which automatically-generated, static control graphs
are used (Section V-A). The results show that static (fixed),
non-switching, control graphs can result in diverse performance
quality. Then, we show that the use of the dynamic switch-
ing of control graphs solves this problem: In extensive experi-
ments, dynamically-switching formations proved more robust
and better-performing than a static control graph formation
(Section V-B).

A. Static Control Graphs

The first set of experiments uses static control graphs, gen-
erated from the monitoring multigraphs, to control formations
of Sony AIBO ERS-7 robots. Each of these robots has a single
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TABLE II
SENSOR SPECIFICATION, AIBO

Fig. 2. Ideal formations in static control graph experiments. Robot names are
shown. (a) Ideal triangle. (b) Ideal diamond.

camera on its panning head that can be used to detect color blobs
in its ≈ 120◦ view-field ([−59◦, 59◦]), although practically, the
effective view-field is ([−35◦, 35◦]). Using such color identifi-
cation, the robot can identify others, when appropriately color
marked. The head also contains an infrared range sensor that can
measure distances in the range [200mm , 1500mm], with some un-
certainty. We treat the head (camera and distance sensor) as a
single logical sensor, providing bearing and distance to another
robot (identified in the camera image, at computable angle to the
body of the observer). The head pans 90◦ left and right, and thus,
the maximal practical angle range for its vision, when combined
with the practical field of view of [−35◦, 35◦], is [−125◦, 125◦].
However, in our experience, maintaining the pan angle in the
range [−30◦, 30◦] tends to produce better results. Based on the
manufacturer’s specifications, and our experience with the robot,
we generated a sensor cost specification for the robot, based on
reliability (Table II). Using this table, we used our technique to
produce alternative control graphs for the triangular formation
specified in Fig. 2(a), and the diamond formation in Fig. 2(b).

We discuss the triangle formation first. In the first (normal)
case, the resulting SBC formation had Gavri as the leader (see
Fig. 2 for robot names), and the other two robots monitoring
it directly [Fig. 3(a)]. To experiment with different monitoring
rules, we modify the sensor specification table for one of the
robots (Shayke), such that the cost of panning in the range
[50◦, 90◦] is 0.7, and infinity anywhere else (forcing Shayke to
look sideways, with only 40◦ of leeway). This case simulates,
for instance, a failure where Shayke’s camera pan motor is
stuck. Providing this modified input to our algorithm produces
a different monitoring graph, where Shayke is monitoring robot
Poli, which, in turn, monitors robot Gavri [Fig. 3(b)].

In the diamond formation, many control graphs are possible
in principle. For the purposes of the experiments, we have re-
stricted the algorithm to control graphs in which the last robot,
Shayke, is the only one to select different targets. This is done
by tweaking its associated cost table, in effect rendering it het-

erogeneous from its peers. We experimented with three control
graphs: Shayke monitoring the leader [Fig. 3(c)], the right fol-
lower [Fig. 3(d)], and the left follower [Fig. 3(e)]. All control
graphs were generated automatically.

We ran 15 trials with each of these alternative SBC formations
(a total of 75 trials). In these trials, the leader was controlled
manually to determine an obstacle-free straight line of about 6 m
in length. The objective was to contrast the stability and robust-
ness of the different control graphs under reasonable operating
conditions.

Fig. 4 shows the resulting formations, as represented by the
average positions of robots with respect to each other. Fig. 4(a)
shows the two triangle formations, while Fig. 4(b) shows the
three diamond formations. Each figure also plots the ideal for-
mation for comparison. The formations are shown in an X,Y
coordinate system measuring millimeters. For the purpose of
comparison, the leader is positioned at (0, 0).

Qualitatively, it can be seen that there exist large variances in
the quality of the formations when maintained statically by dif-
ferent control graphs. In the triangle formation, the control graph
in which Shayke monitors the leader directly yields much better
formation maintenance than the control graph in which Shayke
is monitoring the leader indirectly, through another robot. This
is likely the result of latency in the responses of Shayke to the
movements of the leader, as they are filtered by the intermediate
robot’s actions and perceptions.

However, in the diamond case, the reverse is true. Here, two
control graphs prove to yield good results; both of these control
graphs monitor the leader indirectly. In contrast, the control
graph in which Shayke monitors the leader directly shows that
the formation is not maintained. We believe that this is due to
the effective sensor range of the robot, which causes Shayke to
believe that the leader is farther than it really is, thus leading
Shayke to move more quickly to get closer to the leader.

B. Dynamically Switching Control Graphs

The principal lesson from the first set of experiments is that
static formation control graphs can lead to markedly different
results. We thus wanted to evaluate the ability of dynamically-
switching control graphs to compensate for such limitations,
and yield better and more robust formations.

To experiment with this, we reexecuted the diamond forma-
tion experiments, contrasting a static control graph with that
of a dynamically-switching control graph, using the switching
protocol described in Section IV. In both cases, the robots be-
gan with the same control graph, but in the dynamic cases, they
were allowed to switch to a different target. To control and
trigger such switches, we varied a threshold in the vision sys-
tem, determining whether a target was lost. A lower threshold
causes the vision system to quickly give up on a target, simu-
lating noisy sensing conditions (in which a target would often
be lost). A larger threshold causes the vision system to wait to
reacquire the target before giving up. The numbers actually de-
note the number of consecutive frames in which the target was
not identified. We used values of 4, 20, and 40. As the typical
frame-rate was 28–30 frames/s, this translates into giving up
after approximately 140 ms, 690 ms, or 1370 ms, respectively.
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Fig. 3. AIBO robots executing static triangle (a, b) and diamond (c–e) SBC control graphs. Note bottom robot (Shayke) head pose. (a) Shayke follows leader.
(b) Shayke follows Poli. (c) Shayke follows leader. (d) Shayke follows Poli. (e) Shayke follows Ubu.

Fig. 4. Ideal and actual robot positions. (a) Triangle. (b) Diamond.

Each of the three noise settings was repeatedly tried with
a static and dynamic control graph. Each configuration was
repeated 15 times, for for a total of 90 trials (45 with the static
control graph, 45 with the dynamic control graph). In the static
control graph settings, all robots used the leader as the target.

Fig. 5. Average Formation. (a) Static control graph. (b) Dynamic control
graph.

Unlike the previous set of experiments, the velocity of the leader
was constant, and thus, shorter time for finishing the course
indicates improved performance.

Fig. 5 shows the average positions of robots in the diamond
formation, in the case of static and dynamic control graphs, for
each value of the threshold. As can be seen in the figures, the
dynamic control graph yields results that are 1) more consistent
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Fig. 6. Position errors.

across the experimental conditions and 2) closer to the ideal
formation form.

Fig. 6 provides quantitative analysis of the same phenomenon.
Here, the X-axis measures the different threshold settings, sim-
ulating different perception errors, as described earlier. For each
of the robots, we recorded its actual trajectory, and compared
it to the ideal trajectory with respect to the leader. This allows
us to measure, for each robot, its actual average position in the
formation. The Y-axis measured the average error in position of
the robots with respect to the ideal formation, i.e., the distance
between their actual positions, and their ideal positions. The
two curves show the average position errors in the static and
dynamic control graph techniques. As can be seen in the figure,
in all three conditions, the dynamic switching technique leads
to smaller errors.

The reason for this difference between the static and dynamic
control results is that in the static control settings, the robots
cannot switch to a different target, and are thus, more signifi-
cantly affected by noise settings. In particular, a lower threshold
(simulating higher noise) causes followers to lose their targets
more often. As a result, they often have to stop, and reacquire
their targets. This frequent stopping and starting ends up caus-
ing the formation to be deformed. In different noise settings,
this does not happen as often, and thus, the formation is not
as deformed. In contrast, in the dynamic control settings, the
robots adjust the control graph in response to frequent failures
to track their target, until they settle on a control graph that is
more stable (in terms of tracking). Thus their formation is not
deformed, regardless of the noise settings.

Fig. 7 shows the number of tracking failures in the static and
dynamic settings. The X-axis shows the tracking failure thresh-
olds, as described earlier. The Y-axis shows the number of track-
ing failures, i.e., the number of times the thresholds were passed.
In the static case, each such tracking failure would result in the
formation stopping to let the robots reacquire their lost target.
In the dynamic case, the formation would stop to let the robots
switch (acquire) a different robot. The figure shows that the num-
ber of tracking failures is significantly reduced in the dynamic

Fig. 7. Number of target tracking losses. Error bars show one standard
deviation.

Fig. 8. Time to complete course. Error bars show one standard deviation.

case. This is because after switching, tracking is much more suc-
cessful, and thus, very few additional tracking failures occur.

We examine additional performance measures. Fig. 8 shows
the time that it took the formation to finish the course. The X-
axis shows the different threshold settings, simulating different
perception errors. The Y-axis measures the time; smaller val-
ues are better. The figure shows that the dynamically-switching
technique leads to significantly smaller durations for finishing
the task. A two-tailed t-test (assuming unequal variances) of this
data results in a null-hypothesis probability value p < 0.0001 in
all settings. Here again, the cause for the greater time to com-
plete the course, in the static case, is due to the frequent stopping
and restarting of the formation, which occurs whenever the robot
loses its target and must reacquire it.

Finally, we examine the percentage of time the formation was
maintained, i.e., both angles and distances were within their
tolerance levels (10◦, 15 cm). In Fig. 9 the Y-axis shows the
percentage of time, and thus, larger values are better. The figure
shows, two benefits to the dynamic-switching approach. First,
the percentage of time the formation was maintained was sig-
nificantly higher than with the static control graph (a two-tailed
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Fig. 9. Percentage of time formation maintained. Error bars show one standard
deviation.

t-test assuming unequal variance shows p < 2.40109 × 10−15).
Second, and perhaps more importantly, the percentage essen-
tially remains constant despite the significant change to envi-
ronmental conditions. This is in contrast to the static control
graph approach, whose performance was lower, and also incon-
sistent across the controlled conditions.

C. Dynamic Switching and Communication Reliability

The previous section has demonstrated the efficacy of dy-
namic switching over static control graphs. However, dynami-
cally switching between control graphs is a procedure that relies
on reliable communications, as previously discussed. Here, we
evaluate the effects of message loss, a common cause for unre-
liability, on formations utilizing dynamic control.

To carry out this evaluation, we utilized simulated AIBO
robots in the player-stage API [10]. The robots were placed in
a diamond formation, facing in the direction of the movement.
A fixed 5 m course was to be traversed by the robots, as mea-
sured by the last robot in the diamond formation. We then tested
several configurations of two independent variables: First, we
controlled the rate of message loss by randomly dropping point-
to-point messages at a rate of 0%, 5%, 10%, 20%, and 30%;
0% message loss implies perfect communications (as earlier),
and 30% message loss means almost a third of all messages are
lost. Second, we controlled the number of times the switching
procedure was triggered (i.e., the opportunity for utilizing dy-
namic switching). We tested with 2, 8, and 16 switches of the
last robot in the formation, within the 5 m course). For all 15
combinations, we carefully measure the average position error
of the robots as they finish the course, i.e., the average of the
distances between each of the robots’ actual (ground truth) loca-
tions, and their ideal locations according to the formation shape.
Each of the 15 combinations was run 15 times. Robots utilized
an approximate 800 ms timeout to wait for an acknowledgment
of each sent message (the exact value varied somewhat, as it
was tied to the perception rate of the robots in question). If
the acknowledgment was not received (e.g., because the sender

Fig. 10. Position errors (in millimeters) due to message loss, for different
message loss rates, and different rates of switching (requiring communications).

did not receive the message triggering the acknowledgment, or
because the acknowledge message itself was lost), the sender
would retransmit the message. During such times, the formation
would be deformed, as robots that did not receive a message to
recompute the graphs might continue to move.

Fig. 10 shows the results for each combination, averaged
over 15 trials. The X-axis shows the message loss rate. The Y-
axis shows the average position error in millimeters. Each of
the curves corresponds to a different setting of the number of
switches (2, 8, and 16). Two immediate results are evident: First,
that given a message loss rate (i.e., a specific value on the X-
axis), greater opportunity for communications generally leads
to greater position errors. Second, that given a fixed number of
switches (i.e, a curve), greater message loss leads to greater er-
rors. Thus, one conclusion is that indeed the dynamic switching
technique is very much affected by the reliability of communi-
cations; the more communications are required, the greater the
effect of message loss on the formation.

However, a more subtle qualitative conclusion may be drawn
from these results. None of the curves show linear increase in the
position errors. Instead, the position errors seem to increase non-
linearly with message loss rates. For low message loss rates (up
to 5%), there seems to be only slight degradation in the perfor-
mance of the formation for each curve. At higher message loss
rates (e.g., above 20%), the effect on position error is dramatic.
This suggests that the simple protocol we utilized (acknowledg-
ment with timeout) is capable of handling only limited message
losses, and a more robust protocol should be sought. Thus,
while generally, dynamic switching assumes reliable communi-
cations, it would be more accurate to say that dynamic switching
is reliant on the protocol used to exchange messages.

Indeed, a second experiment demonstrates that dynamic
switching is sensitive to the choice of protocols. Here, we re-
peated the configuration of 30% message loss, with 16 switches
along the 5 m course (the most challenging of the communica-
tion experiment settings). However, in these runs, we changed
the protocol slightly, to cut in half the time-out (waiting for an
acknowledgment on a sent message). The intuition here is that
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Fig. 11. Average position error (in millimeters) with normal (light) and short-
ened (dark) time-out in the communication protocol.

if robots wait less time for peers to acknowledge receipt of a
message, they would more quickly resend the message, and thus
be more quick to overcome message losses. This, in turn, would
lead to shorter opportunities for robots to continue to move,
despite their peers halting (to recompute the control graph).

Fig. 11 shows the results from these experiments. The Y-axis
marks the average position errors in millimeters. The two bars
mark the results for the time-out used in the previous experi-
ments (here, called “long time-out”), and the use of a shorter
time-out (half the longer one). The figure shows that by cut-
ting the waiting period, robots are able to reduce the formation
position errors, as the formation is less deformed.

These results support the conclusion that the efficacy of dy-
namic switching, in the presence of message loss, is dependent
on the reliability and speed of the communication protocol uti-
lized to trigger the recomputation of the control graph. The
exploration of novel communication protocols is beyond the
scope of this paper. We thus leave this to future work.

VI. DISCUSSION

The techniques presented (and evaluated) in the previous sec-
tions carry several implications for the design and deployment
of multirobot formations. In this discussion section, we raise
several of these implications and attempt to discuss the oppor-
tunities and challenges offered by the techniques presented.

A. Multigraphs for Heterogeneous Teams

Not all robots are created equal—at least not in terms of their
sensor morphologies. One key opportunity raised by the tech-
nique we present is for automatically generating SBC control
graphs for heterogeneous teams. Because the control graphs are
automatically generated from the sensor-morphology descrip-
tions of each robot, it is possible, using the algorithms in this
paper, to generate control graphs that are optimized for each in-
dividual robot. For instance, the techniques in this paper would
automatically generate SBC control graph for a triangular for-
mation composed of one robot with an omnidirectional camera
(with a shorter range), one Sony AIBO robot (with a limited
panning capability, and limited field of view), and a Pioneer

TABLE III
TYPE 2 ROBOT SENSOR

TABLE IV
TYPE 3 ROBOT SENSOR

TABLE V
TYPE 4 ROBOT, MULTIPLE SENSORS

robot using an onboard pan-tilt-zoom camera with a 180◦ field
of view.

We demonstrate the use of the technique in producing control
graphs for heterogeneous teams of robots, where hypotheti-
cal robots vary in their sensor morphologies. We define three
hypothetical types of robots, with which we create a variety
of formations. The sensor specification for these appears in
Tables 1 (Type 1) and III–V (Types 2–4). All tables follow the
same format as that of Table 1. Table V reports on multiple
sensors. The details are shown for the first sensor, and the rest
replicate its distance and field of view ranges, though at different
panning values.

These hypothetical robots are not meant to necessarily corre-
spond to any existing realistic robots. Rather, we defined their
sensor morphologies to demonstrate a range of sensor-optimal
control graphs that emerge, given different combinations of
robots with diverse sensor morphologies. For example, Table IV
describes a robot that can more easily pan its camera forward
(within a 10◦ angle, −5◦ to +5◦) than to the sides, and cannot
at all turn it backward. The camera’s field of view is 60◦-wide,
and the effective distance measurement length is 0–310 mm.
Slightly further, it is still possible to measure distance, but at
a larger cost (stemming from the decreased accuracy of the
sensor’s measurements).

We have experimented with different formations and dif-
ferent combinations of these robots, and produced monitoring
multigraphs and resulting formation graphs. All graphs were
produced automatically, using the algorithms described earlier.
These show the diversity of control graphs resulting from the
use of the algorithms described earlier.
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Fig. 12. Triangular, seven robots. (a) All type 3. (b) All type 4.

Fig. 13. Square, eight robots. In (c), the robots in positions 0,2,5 are of type
1, positions 1,4,6,7 are of type 2, and position 3 holds a robot of type 3. (a) All
type 1. (b) All type 3. (c) Mixed types 1,2,3.

Fig. 12 shows the formation graphs for triangular formation
with seven robots, of type 3 [Fig. 12(a)] and type 4 [Fig. 12(b)].
In the latter, given the possibility of using a sensor at a pan angle
unavailable to the first, it became cheaper for a trailing robot to
directly monitor a robot farther from it, but only once removed
from the leader, as opposed to monitoring a closer robot that is
much more removed from the leader. This shows the importance
of using individual monitoring cost as the optimality criterion,
and thus, the choice of the Dijkstra’s algorithm.

Fig. 13 shows the results for a square formation, with eight
robots. Here, we show both homogeneous teams [Figs. 13(a)
and (b); all robots of same type], and nonhomogeneous teams
[Fig. 13(c)].

Finally, we demonstrate the use of the technique with the
complex stairs formation, with nine robots. Fig. 14(a)–(c) show
homogeneous teams (type 4, 1, and 3, respectively). Fig. 14(d)
shows the result of using a mixed team.

We note that the allocation of robots to different positions
within the formation was made arbitrarily in these examples:
First, the robots were assigned to roles, and only then was the
algorithm run to generate the control graph. It is possible, how-
ever, to utilize the algorithms of Lemay et al. [13] and Michaud
et al. [14], to generate an improved assignment of roles, even
prior to execution of our algorithms.

B. Obstacle Avoidance

The dynamic switching technique does not specifically ad-
dress obstacles, any more than other SBC methods. However,
under some conditions, dynamic switching can, in fact, result in
somewhat greater robustness to obstacles. To demonstrate this,
we carried out a simple experiment in the player-stage simula-
tion environment [10], shown in Fig. 15.

The figure shows a triangle formation overcoming an obsta-
cle to visibility (but not to movement), by relying on dynamic

Fig. 14. Stairs, nine robots. In (d), positions 1,4 have robots of type 1; positions
0,2,5,7 hold robots of type 2; positions 3,6 hold robots of type 3, and finally
position 8 holds a robot of type 4. (a) All type 4. (b) All type 1. (c) All type 3.
(d) Mixed all types.

Fig. 15. Triangle formation overcoming an obstacle. The obstacle is a short
wall (vertical in the images earlier), which can interfere with the left robot’s
monitoring of its teammates.

switching. In (a), the left robot is about to lose visibility of
leader, as the obstacle is about to enter its field of view, and oc-
clude the leader. In (b), it switches to monitoring the right robot,
in response to losing sight of the leader. In (c), it switches back
to monitoring the leader, in response to losing sight of the right
robot. Note that no static control graph could have overcome
the visibility constraints imposed by the obstacle.

This demonstration shows that using dynamic switching may
result in additional robustness, under specific conditions. How-
ever, an in-depth exploration of these conditions and the scope
of the obstacle avoidance characteristics of dynamic switching
is beyond the scope of this paper.

C. Sensor Interference

The issue of sensor interference is rarely, if ever, raised in the
context of multirobot formations. We believe that one reason for
this is that, in most cases, SBC control graphs are generated by
hand, by a designer who takes sensor interference into account.
However, when automatically generating control graphs—as
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we do in this paper—sensor interference should ideally be ad-
dressed automatically, at least to some extent.

In general, sensor interference can occur when a combination
of sensors—here employed by different robots—is activated in
parallel, and their measurements actively interfere with each
other. For instance, ultrasonic (sonar) sensors may suffer from
interference when the signals generated by one sensor bounce
back from the target, and are picked up by another sensor. Care-
ful timing of the sensing operations is one solution approach to
this problem. In general, however, sensor interference is diffi-
cult to model in a sensing multigraph, as we construct in this
paper. In particular, this is because sensor interference is de-
pendent on two (or more) sensors being active at once, and
thus, requires modeling the dependency between edges in the
multigraph, contrary to the (implicit) assumption of indepen-
dence between edges, which is used by the extended Dijkstra
algorithm. Modeling edge dependence seems to require a dif-
ferent representation, and a significant change to the algorithms
presented earlier.

However, at least a limited possibility exists to address sensor
interference using the current technique. In particular, just as
the multigraph construction procedures eliminates edges that
are realistically impossible due to robots occluding each other,
it is possible to add additional edge-removal heuristics, which
would remove edges corresponding to sensing modes that have
a high risk of interference, such as sensing modes that cross
each other.

In practice, we did not experience sensor interference issues
in the formations and Sony AIBO robots used in the experiments
of this paper, despite the use of infrared sensors for measuring
distance. We, thus, chose to leave this challenge for future work.

VII. SUMMARY

We presented a novel representation and algorithms for au-
tomatically generating multirobot formation control graphs,
based on directed weighted monitoring multigraphs. We have
shown that the approach allows the use of graph-theoretic tech-
niques, to: 1) optimally account for sensor morphology and con-
straints in generating distributed formation-maintenance SBC
controllers and 2) allow robots to dynamically switch formation
control graph for added robustness. We demonstrated the use
of the technique in systematic experiments with AIBO robots,
and have shown in these experiments that the use of our tech-
niques leads to significant increases in both performance and
robustness to environmental conditions. In addition, we discuss
a number of challenges and opportunities in multirobot forma-
tions, raised by the techniques we presented, and open for future
research.
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