
Comparing Plan Recognition
Algorithms through Standard Libraries

Reuth Mirsky, Ran Galun,
Ya’akov (Kobi) Gal

Ben-Gurion University of the Negev, Israel
{dekelr,ranga,kobig}@bgu.ac.il

Gal Kaminka
Bar-Ilan University, Israel

galk@cs.biu.ac.il

Abstract

Plan recognition is one of the fundamental problems of AI,
applicable to many domains, from user interfaces to cyber
security. We focus on a class of algorithms that use plan li-
braries as input to the recognition process. Despite the preva-
lence of these approaches, they lack a standard representa-
tion, and have not been compared to each other on common
testbed. This paper directly addresses this gap by providing
a standard plan library representation and evaluation criteria
to consider. Our representation is comprehensive enough to
describe a variety of known plan recognition problems, yet
it can be easily applied to existing algorithms, which can be
evaluated using our defined criteria.
We demonstrate this technique on two known algorithms,
SBR and PHATT. We provide meaningful insights both about
the differences and abilities of the algorithms. We show that
SBR is superior to PHATT both in terms of computation time
and space, but at the expense of functionality and compact
representation. We also show that depth is the single feature
of a plan library that increases the complexity of the recogni-
tion, regardless of the algorithm used.

Introduction
Plan recognition is a key AI problem that deals with rea-
soning about an agent’s goals and plans according to a se-
quence of observed actions. Recent advancements have ap-
plied PR technologies to a variety of real world domains,
including education (Amir and Gal 2013; Uzan et al. 2015),
cyber security (Geib and Goldman 2001; Bisson et al. 2011;
Mirsky et al. 2017b) and more (Vered and Kaminka 2017;
Keren et al. 2014).

A plan recognition algorithm allows an observer to reason
about the goals and execution process of an agent, the actor
given a plan library and a set of observed actions. It uses a
partial sequence of observations and a plan library as input
and outputs either a sequence of future steps or a plan (Bui
2003; Blaylock and Allen 2006; Wiseman and Shieber 2014;
Chakraborti et al. 2017). Although all of these problems
have a lot in common, there is no single standard represen-
tation to allow comparison of these works.

The problem this paper addresses is the lack of stan-
dardized methods to compare between PR algorithms. We

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

highlight the lack of standardization in the plan recogni-
tion community and propose a standardized representation,
Plan Library Domain Description (PLDD), that will allow
algorithms and domains to be evaluated on the same basic
grounds. We also provide a list of criteria that should be con-
sidered for such an evaluation and the order they should be
used. This work takes the first steps in this effort, by present-
ing the following contributions:

1. PLDD - A general, XML-based, plan library description
that can be used as a standard for plan library representa-
tions.

2. A proposed list of criteria to evaluate different plan recog-
nition algorithms and choose the most fitting one for a
specific problem.

3. A use-case example that compares two leading algorithms
based on the proposed comparison criteria.

For our comparison, we will use two plan recogni-
tion algorithms that represent two plan recognition fami-
lies – SBR (Avrahami-Zilberbrand and Kaminka 2005) and
PHATT (Geib and Goldman 2009). PHATT and SBR were
both designed to perform plan recognition using a plan li-
brary domain representation, but are fundamentally differ-
ent. PHATT was inspired by parsing and natural language in
order to allow comprehensive representation that can handle
real-world qualities, while SBR was inspired by planning
and its focus is on fast performance in order to be able to be
integrated in a robot, for example.

This difference in focus translates into different abilities
of the algorithms: SBR is faster and can give partial answers
about the current state of the actor, but these answers might
not be consistent with future observations. PHATT, on the
other hand, is more comprehensive and flexible with the pos-
sible inputs it can process and the outputs it can produce,
but its runtime is sometimes even exponentially slower than
SBR.

This work provides a first thorough evaluation of these
two algorithms, using a list of predefined evaluation criteria
and a variety of domain settings. This evaluation provides
interesting insights, both specific to the algorithms and gen-
eral to plan recognition domain description.

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

622



Figure 1: A plan describing the observation sequence ns,
sad, sds, sr.

Related Work

There are several approaches to represent a domain in plan
recognition. Some recent advent of work on plan recog-
nition as planning takes as input a planning domain, usu-
ally described in STRIPS, a set of possible goals and se-
lects one of the goals (Ramırez and Geffner 2010; Sohrabi
et al. 2016; Pereira et al. 2017; Freedman and Zilber-
stein 2017; Shvo et al. 2017; Vered and Kaminka 2017;
Masters and Sardina 2017). In this work, we focus on plan
library-based plan recognition (Blaylock and Allen 2006;
Sukthankar and Sycara 2008; Kabanza et al. 2013; Geib
2017). Previous works used PHATT or SBR as baseline and
showed aggregated improvements based on specific proper-
ties.

YAPPR (Geib et al. 2008) can improve PHATTs runtime
significantly if the user is not interested in complete plans,
but rather in the goals of the actor and predictions about
future actions. DOPLAR (Kabanza et al. 2013) extended
YAPPR using probabilistic reasoning to reach even better
performance, at the cost of completeness. CRADLE (Mirsky
et al. 2017a) augmented PHATT with the ability to pro-
cess PLs with parameters and proposed a set of pruning
heuristics. Avrahami and Kaminka enhanced the basic SBR
to handle interleaving of more than one plan and proposed
an algorithm that reasons about the utility of the actor as
part of the recognition process (Avrahami-Zilberbrand and
Kaminka 2007). Sukthankar and Sycara (2008) based on
SBR to deal with large domains and multiple agents.

Other notable works are ELEXIR (Geib 2009),
SLIM (Mirsky and Gal 2016) and YR (Maraist 2017)
which present new approaches for plan library-based plan
recognition algorithms.

All of the above works used a single existing algorithm as
a baseline and showed improvements in specific properties,
but they did not compare to more than one algorithm nor did
they investigate the differences between the algorithms.

Previous papers surveyed methods for plan recognition,
but did not try to run and evaluate the presented algorithms
as well (Carberry 2001; Sukthankar et al. 2014). This work
is the first attempt to present empirical comparison of works
in plan recognition.

Background
We start by mentioning briefly several basic concepts in the
world of plan recognition, simplified for brevity. For a more
detailed and formal description, we refer the reader to (Ka-
banza et al. 2013). In a plan recognition problem, there is an
observer and actor, and the observer needs to infer the goals
and plans of the actor. The observer is given a plan library
describing the possible expected behaviors of the actor.
Definition 1 (Plan Library) A plan library (PL) is a tuple
L = 〈B,C,G,R〉, where B is a set of basic actions, C is
a set of complex actions, G ⊆ C is the goals the actor can
achieve and R is a set of recipes that provide context of how
complex actions can be decomposed into other actions, and
in which order the constituent actions need to be performed.

A plan for achieving a complex action g ∈ G is a tree whose
root is labeled with g. Each intermediate node is labeled with
a complex action such that its children are a decomposition
of the complex action according to a recipe. The order of the
children must not collide with the ordering constraints en-
forced by the recipe. An observation sequence is an ordered
set of basic actions that represents actions carried out by the
actor. A plan p describes an observation sequence O iff ev-
ery observation is mapped to a leaf in the tree. The actor is
assumed to plan by choosing a subset of complex actions
as intended goals and then carrying out a separate plan for
completing each of these goals, using basic actions.

We will use a running example based on a real-world
domain, an open-ended educational system called Tinker-
Plots. It is used world-wide to teach students in grades four
through eight about statistics (Konold and Miller 2004). Us-
ing TinkerPlots, students build stochastic models and gener-
ate pseudo-random samples to analyze the underlying prob-
ability distributions. Our running example will use a Tinker-
Plots problem, called ROSA:

There are 4 letters printed on cards, each card contains
one letter: A,O,R,S. The cards are lined up in a row.
After mixing the cards up, what is the probability that
the cards would spell ROSA?
In order to solve this problem, a student must perform

three subtasks: (1) create a sampler model (the complex ac-
tion csm); (2) run the model (r); (3) plot the results (po).
When accomplishing all subtasks successfully, the student is
said to have solved the ROSA problem, which can be repre-
sented by the complex action - Solve ROSA problem (srp).

A teacher who wishes to understand if the student is solv-
ing the ROSA problem correctly, is trying to solve a plan
recognition problem. We can model it such that the basic
actions in the PL are the actions the student can perform in
the software, such as add new sampler (ns), add device to
sampler (sad), set number of draws in the sampler (sds) and
number of repetitions (sr); srp, csm, r and po are some of
the complex actions; and the recipes describe how complex
actions are built from a sequence of other actions. For ex-
ample, one of the recipes will state that srp is constructed
from a sequence of csm, r and po. r must follow csm, as
one must first create a sampler before it can be used to run
tests, but po, creating a plot, can be executed at any time.

623



Figure 2: Example Plan from a Plan Library mapping by SBR.

Figure 3: An example outputted explanation by PHATT.

Figure 1 shows an example plan, describing the observa-
tion sequence ns, sad, sds, sr. The goal of the plan, srp,
is colored in blue and the student started executing the ba-
sic actions, colored in red, to achieve csm. Notice that the
actions required for r and po are still missing. This means
that this plan is incomplete. It is an important point, as the
algorithms we wish to evaluate here are online algorithms,
meaning that the can start process observation sequences on-
line while the actor is still executing the plan.

Algorithms
We will test our standard representation and evaluation cri-
teria on SBR and PHATT. Both algorithms can output the
complete plans of the actor rather than just their goals. Both
algorithms can output plans that describe incomplete obser-
vation sequences, allowing them to perform on-line infer-
ence. Moreover, both algorithms can handle partial order-
ing, multiple goals and bounded recursions. Recursion in a
PL means that a recipe can have an action as a constituent of
itself. Bounded recursion means that these recipes can only
be used a predefine number of times.

While both these algorithms share many common traits,
they represent different approaches for plan recognition with
fundamental differences.

SBR is a descriptive algorithm, in the sense that it gener-
ates a single structure – a mapping of all the possible plans
that can be generated from the PL. Given an observation, it
traverses this structure and marks specific nodes upon it that
can represent the observation, consistent with only the last
observation. After a sequence of observations O1, . . . , On

were marked on the data structure, SBR can be requested
to output the plans describing them. It traverses the struc-

ture once more and tries to collect consistent paths that can
explain the observation sequence soundly.

PHATT, on the other hand, is a generative algorithm, in
the sense that it builds possible explanations incrementally.
Given a set of explanations En−1 for an observation se-
quence O1, . . . , On−1 and a new observation On, PHATT
generates branches with On as a leaf node, based on the
recipes of the PL, and tries to attach these branches in all
possible combinations to En−1.

To illustrate the different approach each algorithm is us-
ing to infer the actor’s plans, consider the complete plan that
can be created for the ROSA problem in Figure 2, and the
observation sequence ns, sad, ns. This sequence means that
a student created two samplers and then added a device to the
first sampler. SBR will construct this complete plan once in
the initialization stage, and every time it will process an ob-
servation, it will mark its timestamp on that single structure.
Thus, the ns node will receive the timestamps 1 and 3, while
the node sad will receive the timestamp 2.

PHATT, on the other hand, will construct a copy of a plan
for each possible explanation to the observation sequence.
Figure 3 shows one such explanation, where the first and
third observations are described by the left plan, and the sec-
ond observation is described by the right plan.

Plan Library Domain Description (PLDD)
In order to facilitate desired properties from several algo-
rithms, we chose to represent the domain file in an XML
format and create a language for PL descriptions, called Plan
Library Domain Description (PLDD). The XML format was
chosen as it can handle quite complex representations, in a
fashion that is both readable to the human eye and easy to
parse by a computer. It was designed to be robust, so it can
be extended in the future to allow more properties, such as
prior probability and effects of a basic action. Figure 4 con-
tains a graphical representation of the DOM (Document Ob-
ject Model) description of PLDD. It shows all the elements
in a PL and their attributes.

Each PL contains a list of letters, divided to terminals
which are the basic actions, and non-terminals which are the
complex actions, as described earlier. Each letter has a name
which describes what this letter represents, and a more com-
pact id to use in recipes. Figure 5 shows an example for let-

624



Figure 4: Structure of a plan library XML representation.

Figure 5: An example to the XML representation for letters.

ter description. It shows the beginning of the Non-Terminals
list and two actions: one is the srp action, and the other is
csm. Solve ROSA Problem, srp, is a possible goal, so it has
the method “goal” in it. “Create Sampler Mechanism”, csm,
is an action with a parameter representing the sampler’s id,
which is labeled with s.

The recipes of the PL are represented as a list as well,
where each recipe contains several properties: lhs is the id
of the letter in the left hand side, and prob is the probability
of the recipe. The probability of a recipe, prob, is the prob-
ability of choosing this recipe to execute its complex action
from all the possible actions. More formally, Given a recipe
r∗ and Rlhs∗ ⊆ R, a set of all recipes with the same left hand
side lhs∗ as r∗, prob∗ is the probability of choosing r∗ from
Rlhs∗ . Each letter element in a recipe represents a letter
from the recipe’s right hand side. Since XML does not have
inherent support of ordered elements, a letter’s index is used
to refer to that letter in the ordering constraints. order is a
list of ordering constrains, where the two indexes represent
two actions that must come in a specific order. The action in
the secondIndex must follow an action in the firstIndex.

Figure 6 shows an example of a recipe, describing how the
complex action labeled srp can be executed by performing 3
other actions - csm, r and po. The first OrderCons enforces
that the action with the index 1, csm, must come before the
action with the index 2, r. The action po can be executed at
any execution order with csm and r.

Figure 6: An example to the XML representation for recipes.

Methodology

Using the standard representation above, different algo-
rithms can receive the same input and be evaluated on the
same grounds. Before measuring any numerical value, it is
crucial to make sure that the output of the algorithms is the
same as well, and that they are trying to solve the same prob-
lem. After this is set, there are several types of criteria that
can be used to evaluate the algorithms in terms of efficiency,
robustness and more. The following list is a proposal for the
order of the evaluations and tests to perform.

1. Problem definition. Each algorithm focuses on different
problems with different features. For example, some al-
gorithms only output the goals of the actor. Others out-
put the goal and a prediction about future actions, but no
plan decomposition. In order to compare the algorithms,
we must first make sure that they try to solve the same
problem. In this work, we chose two of the most compre-
hensive plan recognition algorithms, that can output the
complete plans of the actor.

2. Abilities. While we require all compared algorithms to
use the same problem definition and output similar results,
we know that every algorithm is designed differently, to
solve different challenges. This is why we also wish to
allow qualitative evaluation of the various abilities of the
algorithms. This part of the comparison is also meant to
allow each algorithm to highlight its novelty.

3. Runtime. While runtime measurements are practical, it
might not be enough for a thorough evaluation. However,
as shown in our empirical work, it can provide with some
insights when the run times are significantly different be-
tween compared algorithms. We divided this evaluation
into two measures – evaluation of runtime and number
of function calls. The runtime measure is divided to ini-
tialization runtime, that can be executed offline before the
actor begins to act, and processing runtime, which is the
actual recognition in real-time.

4. Space. Since this measure depends heavily on the imple-
mentation, we tried to provide with a more general metric,
which is the number of nodes in the plans each algorithm
creates. This measure is also good as a sanity check, as
there is a lower bound to it, which is the number of nodes
in all of the plans that should be outputted. Any algorithm
can be evaluated in comparison to this ideal number.

625



Plan Libraries
Using PLDD as our standard plan library representation, we
were able to run and compare implementations of PHATT
and SBR. In order to evaluate the impact of several PL prop-
erties, we used a PL generator (Kabanza et al. 2013) that
can be configured to output PLs that vary in several features
which are known to affect the explanation set size (Geib and
Goldman 2009):
Number of Goals Representing the number of different

goals an actor might pursue at the same time.
Depth Representing the depth of the plan library. In the

generator, this value is set to be the depth of all plans,
but in other PLs, it is set as the depth of the deepest plan
that can be created in the library.

Alphabet Size Representing the number of basic actions in
the PL.

Or Branching Factor This is the number of different ways
a complex action can be decomposed into a sequence of
constituent actions.

And Branching Factor This is the number of constituents
which decompose a complex action.
The generator outputs a plan library which is constructed

from partially ordered AND/OR trees. We then translated
these trees to a set of recipes: an AND node is translated
into a single recipe, with the same ordering constraints as
the partial order of the AND node’s children. An OR node
labeled with an action c is translated into a list of recipes
with c as their left hand side, such that each recipe represents
one option that can be executed to achieve c.

As a baseline, we used the same configuration as (Ka-
banza et al. 2013). In the baseline PL, the ordering con-
straints are set to about about 1/3rd of the possible orderings,
the number of possible goals is set to be 5, the depth is set to
2, the alphabet size to 100, the AND branching factor is set
to 3, and the OR branching factor is set to 2.

Using PLDD, we were able to run and compare imple-
mentations of PHATT and SBR on a set of these synthetic
PLs. We measured both the runtime of the algorithms, di-
vided into initialization time and process time, the number
of created nodes in each algorithm and the number of basic
function calls.

Empirical Results
Problem Definition
As stated before, both algorithms are complete and should
be evaluated when they output the same plans. However,
some fundamental properties of the algorithms cause them
to output different explanations given the same input.

Consider the TinkerPlots PL, which has the following
properties: its And-branching factor is 5, Or-branching fac-
tor is 2, an alphabet size of 32 and a depth of 3. This PL is
highly recursive, and the recipes can create an unbounded
number of permutations of plans. While PHATT has the
ability to create plans of unlimited depth, SBR cannot output
plans that were not created during initialization. Due to this
difference, the algorithms output a significantly different set

of explanations: for a sequence of mere 4 observations, SBR
outputted 2 explanations, while PHATT outputted 6000.

Another difference is that PHATT has the ability to handle
interleaved plans. While both algorithms can reason about
an actor that executes more than one plan, only PHATT al-
lows the actions of the plans to interleave. For example,
when cooking a dinner, the actor might make a pasta dish
and a salad dish. While the first action will be to start boil-
ing water for the pasta, the next action might be chopping
vegetables for the salad. In order to allow this, PHATT is re-
quired to keep track of all open plans, which means it keeps
a copy of every plan in every explanation rather than using a
single representation for all possible plans.

Even when the evaluated PLs do not allow interleaved
plans, it can contain observation sequences that can be de-
scribed by such plans. In the following example, based on
our TinkerPlots example domain, the given observation se-
quence is: ns, ns, sad. This means that a student created
two samplers and then added a device to the first sampler.
Figure 3 depicts one of the explanations that are outputted
from PHATT for this observation sequence. The left plan
is incomplete when the second ns is executed, and then we
come back to it with the action sad (outlined in red). PHATT
outputs this explanation (among others), while SBR does not
output it. Other than that, all other explanations appear both
in PHATT and SBR’s outputs.

Notice that this difference is only apparent when plans
interleave - if one plan is complete and only then another
begins, or if we don’t return to the first plan after starting
the second one - there is no difference between the algo-
rithms. However, an instance will possible interleaving only
appeared twice in 800 runs, both of which were in the PL
with increased depth. In these cases, SBR outputted 3 and
4 explanations. PHATT outputted 4 and 5 explanations, re-
spectively. In each case, the additional explanation had two
plans with interleaved actions.

Abilities
The major difference between these two algorithms is SBR’s
inherent capability to provide an answer to a query about
the actor’s current state (Current State Query), without the
need to reason back through all of the previous observations.
For example, in the TinkerPlots domain, we might want to
understand whether the student is currently working on the
ROSA problem, or performing an action that biases from
any solution. In such a scenario, we would like to highlight
to the student or the teacher that the student is doing some-
thing wrong, regardless of their previous actions.

The ability to output only the current state gives the algo-
rithm real-time responsiveness, but at the expense of consis-
tency with future actions: the set of returned states might not
be consistent with respect to future observations, and in or-
der to find the consistent paths, a new plan traversal process
is needed. In PHATT, on the other hand, the ability to query
about the current state is not inherent in the algorithm, and
can only be calculated by computing complete explanations
and then eliciting from then the current possible states.

There are additional properties that both algorithms keep,
and every additional algorithm will have to keep as well if

626



Figure 7: A comparison of runtime (in seconds).

it is to be compared to them: Both algorithms can handle
partial ordering of the actions, which is a compact way to
represent a sequence of actions that can be performed in sev-
eral permutations. Both can output the complete plans of the
actor rather than just their goals. Both algorithms can also
reason about observation sequences that execute more than
one plan, although as described above, only PHATT allows
these plans to interleave.

Additional important property that was added to PHATT
in successive work is the ability to reason about domains
with parameters (Mirsky et al. 2017a). Such a PL descrip-
tion allows a more compact representation, focused on real-
world domains. For example, in the TinkerPlots domain it
allows us to label each action with an id of the sampler, thus
we do not need to have a different action per sampler, but
rather a single action that can be bounded to a specific sam-
pler with an id parameter. While allowing a more compact
PL representation, this ability has a large impact on run-
time, since with every new observation, the algorithm needs
to make sure that the parameters of the observations agree
with the parameters of previous ones. Thus, there is a need
to propagate the parameter values across the plans.

Runtime
In this subsection, we present the evaluated runtime of the
algorithms on the various PLs. We stress than this compar-
ison is only meant to provide with general notion of the al-
gorithms’ abilities – SBR was implemented using Java, and
PHATT was implemented in Python. Both algorithms were
tested on the same commodity i-7 computer. Figure 7 shows
the runtime of 800 different instances both in PHATT and
SBR. Each point represents an average of 100 instances us-
ing a single algorithm and single PL settings, with error bars
representing the standard deviation of these runs. The points

in the graph are also divided into the initialization time and
the observation processing time. The y axis shows the run-
time in log scale of seconds.

As seen in the figure, SBR is always faster than PHATT
in an order or magnitude or more. It is interesting to see that
most of SBR’s effort is put in creating the initial data struc-
ture upon which it performs the traversal, as it needs to read
and create a complete map of all possible plans once, and af-
ter that it just traverse this structure. PHATTs runtime, on the
other hand, is mostly invested in the observation processing,
as it generates the plans per explanation.

Additional point is that SBR’s observation processing is
robust to different PL settings. While PHATT’s observation
processing does depend on the PL type, SBR is indifferent
to it – after it builds the complete map of plans, the observa-
tion reading and processing time is not significantly differ-
ent, even in the PL with the large depth value, which takes
the longest for SBR to process.

Another point that rises from this graph is that the type of
the PL have the same impact on both algorithms – for exam-
ple, the PL with increased depth is the hardest to process for
both algorithms. In PHATT the depth is significant because
the algorithm generates the plans incrementally, meaning
that the depth of the branches that needs to be added is larger.
In SBR, it means that the tree traversal takes longer.

Another evaluation method we present is the total number
of function calls used. This measure might not stand on its
own as an important evaluation metric, but it can complete
the time measurement to provide some more insights. Fig-
ure 8 shows the total number of function calls used both in
the PHATT and SBR runs. It is consistent both with the com-
plexity of the PL, and with the runtime of the algorithms.
First, it is clear that the baseline PL required less function
calls than some of the variant domains. Second, SBRs run-

627



Figure 8: A comparison of function calls.

Figure 9: A comparison of space.

time is an order of magnitude or more faster than PHATT,
and the gap in the number of function calls is similar.

Space
SBR was designed to save time – during observation pro-
cessing, it only requires to traverse the plan library, while
PHATT requires building new trees. The cost is that SBR
spreads the complete PL in the beginning of the run. The-
oretically, we would expect such a layout to consume more
memory than PHATT. However, as seen in Figure 9, PHATT
generated more nodes than SBR in the empirical tested PLs.
This can be attributed to the fact that the more observations
processed, the more trees that PHATT produces. It does so
to consider every possible combination of adding a new ob-
servation into an existing explanation. This overhead was
addressed in previous works, such as in the YAPPR algo-
rithm (Geib et al. 2008). In this work, most of the bookkeep-
ing of the plans is shed from PHATT, so that it only keeps
the goal nodes and future actions that were yet to be seen in
incomplete plans. However, the cost of this improvement is
that the complete plans can no longer be outputted.

Discussion
In this paper we presented a first standard representation of
plan libraries, PLDD. It is used as a standard of evaluation
for plan recognition algorithms. Using this representation,
we presented a checklist of criteria that should be consid-

ered when comparing plan recognition algorithms. We used
this technique to evaluate, both theoretically and empiri-
cally, two known plan recognition algorithms. This evalu-
ation sheds light both on the algorithm themselves, and on
plan recognition domains in general.

The difference in approaches of SBR and PHATT can be
translated into different outputs, as the evaluation using the
TinkerPlots PL showed. In order to allow a fair evaluation,
at least one of the algorithms will need to be fundamentally
changed. This domain highlights the importance of stan-
dardizing the library description and expected behavior.

In most of the tested measures, SBR outperformed
PHATT. Although SBR was implemented in Java and
PHATT in Python, Java/Python speed differences are of lin-
ear factor (Prechelt 2000), (Prechelt 2003), and similar in
terms of memory consumption. Even allowing for such dif-
ferences, PHATT is by far slower than SBR, and uses more
space.

SBR is more robust, faster, and can give partial answers
about the current state of the actor, but at the expense of
the soundness of these partial answers. PHATT, on the other
hand, is more comprehensive and flexible with the possible
inputs it can process. It has advanced capabilities, such as
inference of interleaved plans and the inherent ability to out-
put prediction about future actions that were yet to be seen.
These future actions are represented as the leaves in the gen-
erated plans that are not bounded to any observed action, like
the second ccd node in Figure 3. These inherent abilities can
be quite useful, and can justify using PHATT over SBR for
certain applications.

Another contribution that emerges from this paper is a
general evaluation of PL impact on the recognition process,
regardless of the used algorithm. It was shown that these fea-
tures of the PL are algorithm-dependent, meaning that some
PL properties have a direct impact on the efficiency of the
recognition. For example, shallower PLs are easier to handle
than PLs with lower And- or Or- branching factor, regardless
of the algorithm we will choose to use later. This result also
serve as a motivation for works that try to design the domain
such as (Keren et al. 2017).

Future Work
We believe that this work opens many opportunities for other
levels of evaluation: We would like to evaluate more algo-
rithms and see how they can be compared using PLDD-
defined PLs. We would also like to evaluate existing do-
mains from the literature by running them on a variety of al-
gorithms, to receive more general insights about plan recog-
nition representation. Another interesting research direction
is to apply this standardization to other plan recognition
models, such as the PDDL-based works. This will also re-
quire to perform fundamental changes, such as adding states
and effects to PLDD.

Acknowledgments
This research was partially funded by the Cyber@Ben-
Gurion center. R.M. is a recipient of the Pratt fellowship at
the Ben-Gurion University of the Negev.

628



References
O. Amir and Y. Gal. Plan recognition and visualization in
exploratory learning environments. ACM Transactions on
Interactive Intelligent Systems, 3(3):16:1–23, 2013.
D. Avrahami-Zilberbrand and G.A. Kaminka. Fast and com-
plete symbolic plan recognition. In International Joint Con-
ference of Artificial Intelligence (IJCAI), volume 14, 2005.
D. Avrahami-Zilberbrand and G.A. Kaminka. Incorporating
observer biases in keyhole plan recognition (efficiently!). In
AAAI, volume 7, pages 944–949, 2007.
F. Bisson, F. Kabanza, A. R. Benaskeur, and H. Irandoust.
Provoking opponents to facilitate the recognition of their in-
tentions. In AAAI, 2011.
N. Blaylock and J. Allen. Fast hierarchical goal schema
recognition. In National Conference on Artificial Intelli-
gence, volume 21, page 796. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2006.
H.H. Bui. A general model for online probabilistic plan
recognition. In Proc. 18th International Joint Conference
on Artificial Intelligence (IJCAI), 2003.
S. Carberry. Techniques for plan recognition. User Model-
ing and User-Adapted Interaction, 11(1):31–48, 2001.
T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambham-
pati. Plan explanations as model reconciliation: Moving be-
yond explanation as soliloquy. In IJCAI, 2017.
R.G. Freedman and S. Zilberstein. Integration of planning
with recognition for responsive interaction using classical
planners. In AAAI, pages 4581–4588, 2017.
C.W. Geib and R.P. Goldman. Plan recognition in intru-
sion detection systems. In DARPA Information Survivabil-
ity Conference & Exposition II, 2001. DISCEX’01. Proceed-
ings, volume 1, pages 46–55. IEEE, 2001.
C. W. Geib and R. P. Goldman. A probabilistic plan recog-
nition algorithm based on plan tree grammars. Artificial In-
telligence, 173(11):1101–1132, 2009.
C.W. Geib, J. Maraist, and R.P. Goldman. A new proba-
bilistic plan recognition algorithm based on string rewrit-
ing. In International Conference on Automated Planning
and Scheduling (ICAPS), pages 91–98, 2008.
C. W. Geib. Delaying commitment in plan recognition using
combinatory categorial grammars. In IJCAI, pages 1702–
1707, 2009.
C.W. Geib. Partial observability in grammar based plan
recognition. In Proceedings of the AAAI Workshop on Plan,
Activity, and Intent Recognition (PAIR), 2017.
F. Kabanza, J. Filion, A. R. Benaskeur, and H. Irandoust.
Controlling the hypothesis space in probabilistic plan recog-
nition. In IJCAI, pages 2306–2312, 2013.
S. Keren, A. Gal, and E. Karpas. Goal recognition design.
In ICAPS, 2014.
S. Keren, L. Pineda, A. Gal, E. Karpas, and S. Zilberstein.
Equi-reward utility maximizing design in stochastic envi-
ronments. HSDIP 2017, page 19, 2017.
C. Konold and C. Miller. TinkerPlots Dynamic Data Explo-
ration 1.0. Key Curriculum Press, 2004.

J. Maraist. String shuffling over a gap between parsing and
plan recognition. 2017.
P. Masters and S. Sardina. Cost-based goal recognition for
path-planning. In AAMAS, pages 750–758. International
Foundation for Autonomous Agents and Multiagent Sys-
tems, 2017.
R. Mirsky and Y. Gal. Slim: Semi-lazy inference mechanism
for plan recognition. In International Joint Conference of
Artificial Intelligence (IJCAI), 2016.
R. Mirsky, Y. Gal, and S.M. Shieber. Cradle: An online
plan recognition algorithm for exploratory domains. ACM
Transactions on Intelligent Systems and Technology (TIST),
8(3):45–1, 2017.
R. Mirsky, Y. Gal, and D. Tolpin. Session analysis using
plan recognition. arXiv preprint arXiv:1706.06328, 2017.
R.F. Pereira, N. Oren, and F. Meneguzzi. Plan optimality
monitoring using landmarks and planning heuristics. In Pro-
ceedings of the AAAI Workshop on Plan, Activity, and Intent
Recognition (PAIR), 2017.
Lutz Prechelt. An empirical comparison of seven program-
ming languages. Computer, 33(10):23–29, 2000.
Lutz Prechelt. Are scripting languages any good? a valida-
tion of Perl, Python, Rexx, and Tcl against C, C++, and Java.
Advances in Computers, 57:205–270, 2003.
M. Ramırez and H. Geffner. Probabilistic plan recognition
using off-the-shelf classical planners. In Proceedings of the
Conference of the Association for the Advancement of Arti-
ficial Intelligence (AAAI 2010). Citeseer, 2010.
M. Shvo, Sohrabi S., and S.A. McIlraith. An ai planning-
based approach to the multi-agent plan recognition problem.
In Proceedings of the AAAI Workshop on Plan, Activity, and
Intent Recognition (PAIR), 2017.
S. Sohrabi, A.V. Riabov, and O. Udrea. Plan recognition as
planning revisited. In IJCAI, pages 3258–3264, 2016.
G. Sukthankar and K. P. Sycara. Hypothesis pruning and
ranking for large plan recognition problems. In AAAI, vol-
ume 8, pages 998–1003, 2008.
G. Sukthankar, C.W. Geib, H.H. Bui, D. Pynadath, and R.P.
Goldman. Plan, Activity, and Intent Recognition: theory and
practice. Newnes, 2014.
O. Uzan, R. Dekel, O. Seri, and Y. Gal. Plan recognition for
exploratory learning environments using interleaved tempo-
ral search. AI Magazine, 36(2):10–21, 2015.
M. Vered and G.A. Kaminka. Heuristic online goal recog-
nition in continuous domains. In IJCAI, pages 4447–4454,
2017.
S. Wiseman and S. Shieber. Discriminatively reranking ab-
ductive proofs for plan recognition. In ICAPS, 2014.

629


