
Master Thesis

Competitive Multi-Swarm
Systems

Author:

Karen Katz

Supervisor:

Prof. Gal A. Kaminka

Department of Computer Science

Bar-Ilan University

March 25, 2023





Acknowledgments

I would like to express my sincere gratitude to my advisor, Prof. Gal A. Kaminka

for his outstanding support and guidance throughout my master's thesis journey.

Prof. Kaminka's expertise, encouragement, and mentorship were invaluable to me

as I learned crucial research skills, as well as critical thinking and academic writing

skills. His support has helped me grow both personally and academically, and I

am grateful for his dedication to my success.

In addition, I would like to express my appreciation to the members of the

MAVERICK Research Group for their valuable feedback and support during this

time period. I am particularly grateful to Dr. Hana Weitman for her support and

assistance throughout my time in the group and while working on this thesis.

I would also like to thank the Department of Computer Science faculty and

sta� for providing me with the resources needed to complete my academic degree.

Special thanks to Ms. Dafna Gad, for helping me with administrative processes

throughout my academic studies.

Last but not least, I would like to extend a special thanks to my family for their

support throughout the way. Your faith in me has been a source of motivation,

promoting my growth and development in every aspect of my life.

i



Abstract

A competitive multi-swarm system, is a system with two or more distinct swarms

of simple agents, with limited local knowledge, sharing the same environment and

resources, where each swarm's goal is to outperform the other swarms.

In this work, we developed a general model for multiple competitive swarms

from game theoretic perspective. We formulated the individual and global utilities

for K -swarms competition, based only on a single assumption of zero-sum game

between two individual players from di�erent swarms. A special case of two swarms

competition is shown to be a zero-sum game, and a possible extension to zero-sum

game for the K -swarm case is presented.

To show the applicability of the model, the theory is applied into the �eld of

competitive robot swarms. Global and individual utilities, and the estimation of

the individual player's impact on its surroundings are presented as a function of

times, to support applicability to any generic task. One result from this approach

is that a robot can increase its swarm's utility not only by performing its original

task, but also by interfering in its opponents' performance of their tasks.

We propose a learning process for each individual robot in multi-swarm com-

petition, by calculating its own reward, and providing a general way for evaluation

and selection of its possible actions. The proposed learning model tries to over-

come the gap due to the partial information known to each robot, by considering

the swarm identity of the other robots during each interaction, and approximating

di�erences between the swarms.

As an example, the general model is applied for the more speci�c sub-�eld

of multi-swarm competitive foraging. It examines the model on the unexplored

problem of how robots in a competitive multi-swarm environment should interact

during spatial con�icts, in order to outperform the other swarms.

ii



The proposed model has been validated and tested through an extensive series

of simulated experiments, including two- and three-swarm competitions, in various

densities, with and without learning. Part of the experiments were expanded for

cases of a learning swarm with initial disadvantages. The results show that a

learning swarm performed at least equally and usually better than a non-learning

swarm, which uses a prede�ned policy. Surprisingly, in many cases, the overall

score of all the swarms together increased when competition was involved.

iii



Table of Contents

List of Figures vii

List of Tables xiii

Nomenclature xiv

1 Introduction 1

2 Background and Related Work 4

2.1 Swarm Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Cooperation and Competition in Swarms Systems . . . . . . . . . . 6

2.3 Reinforcement Learning in context of Multi-Agent Systems . . . . 7

3 A Game Theoretic View of Multiple Competitive Swarms 10

3.1 Game Models of Competitive Swarms . . . . . . . . . . . . . . . . . 10

3.2 Formulating Global Utilities . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Finding Individual's Contribution to the Swarms' Utilities . . . . . 19

4 Competitive Robot Swarms 26

4.1 Spatial Interactions in Robots . . . . . . . . . . . . . . . . . . . . . 26

4.2 Time as a Measure of Individual Player's Utility . . . . . . . . . . 28

4.2.1 Estimating Intra-Swarm Utility from Time . . . . . . . . . . 30

4.2.2 Estimating Inter-Swarm Utility from Time . . . . . . . . . . 30

4.2.3 Estimating Utility of Mixed Intra- and Inter-Swarm Interac-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Using Time for WLU . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



4.4 Learning in Multi-Swarm Competition . . . . . . . . . . . . . . . . 37

4.4.1 Evaluation and Selection of Actions . . . . . . . . . . . . . . 37

4.4.2 The Learning Process . . . . . . . . . . . . . . . . . . . . . . 39

5 Competitive Multi-Swarm Robot Foraging 41

5.1 Simulated Robots and Competitive Foraging Environment . . . . . 42

5.2 Robots Carrying Out Competitive Foraging . . . . . . . . . . . . . 43

5.3 Learning in Swarm Robots . . . . . . . . . . . . . . . . . . . . . . . 46

6 Competitive Foraging with Symmetric Swarms 50

6.1 The Reward Function for the Case of Identical Swarms . . . . . . . 51

6.2 Baseline Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Experiments with Fixed-Policy Competition . . . . . . . . . 52

6.2.2 Experiments with Inter-swarm Learning . . . . . . . . . . . 56

6.2.3 Adding Intra-swarm Learning . . . . . . . . . . . . . . . . . 61

6.3 Additional Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 The Use of WLU Based Reward . . . . . . . . . . . . . . . . 66

6.3.2 Rewards Comparison . . . . . . . . . . . . . . . . . . . . . 69

6.3.3 Robustness to Initial Conditions . . . . . . . . . . . . . . . 73

6.3.4 Comparing Di�erent Exploration and Selection Methods . . 75

6.3.5 Learning in a Single Swarm . . . . . . . . . . . . . . . . . . 77

7 Asymmetric Competition 79

7.1 The Reward Function for Asymmetric Swarm . . . . . . . . . . . . 80

7.2 Competing a Faster Swarm . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.1 Baseline: Two Non-learning Swarms with Speed Di�erence . 81

7.2.2 Learning Swarm vs. a Faster Attacking-Swarm . . . . . . . . 84

7.2.3 Learning Swarm vs. a Faster Avoiding-Swarm . . . . . . . . 88

7.2.4 Learning Swarm vs. a Faster Mixed-Swarm . . . . . . . . . . 91

7.3 Three Swarms Competition: Learning with Speed Disadvantage . . 93

7.4 Learning to Compete with a Larger Swarm . . . . . . . . . . . . . . 96

7.5 Learning to Compete in a Disadvantaged Arena . . . . . . . . . . . 99

7.5.1 Learning Swarm Competing with an Arena-Advantaged Avoiding-

Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

v



7.5.2 Learning Swarm vs. an Arena-Advantaged Attacking-Swarm 103

8 Discussion 107

9 Conclusion 110

Bibliography 112

vi



List of Figures

3.1 Extensive form game of a player interacting with a friend or a foe,

for the case of two competing swarms. . . . . . . . . . . . . . . . . 12

4.1 A typical time sequence of a single robot's interactions in a single

run. Each interaction c composed of a response action ac, followed

by program execution pc. . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 A representative time sequence of multi-player interactions. For

each player, each interaction is composed of a response action, fol-

lowed by program execution. Interactions of players from swarm Sk

are marked in yellow, and of a player from Sm in green. . . . . . . . 28

5.1 Simulated arena of two swarms of 25 robots each, marked with green

and red lights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Competitive Foraging States Overview . . . . . . . . . . . . . . . . 44

5.3 Illustration of an example of �ght and �ight methods. . . . . . . . . 45

(a) Both robots moves towards each other and detect a spatial

con�ict from their front sensors. . . . . . . . . . . . . . . . . . 45

(b) Green (left) robot choose to �ght and drives toward the right

robot, red (right) robot choose to �ight, and turns to most

vacant direction. . . . . . . . . . . . . . . . . . . . . . . . . . 45

(c) The con�ict is resolved, red robot wanders towards a vacant

direction, green robot wanders in the same direction. . . . . . 45

6.1 Pucks collected by two competitive swarms in a 10 minutes limited

game with di�erent densities and �xed swarms-policies. . . . . . . . 53

vii



(a) Pucks collected when both S1, S2 avoid collisions. . . . . . . . 53

(b) Pucks collected when both S1, S2 attack. . . . . . . . . . . . . 53

(c) Pucks collected when S1 avoids and S2 attacks . . . . . . . . . 53

6.2 Number of pucks collected by two competitive swarms in a 50 pucks

limited game, S1, green, uses Avoid policy, S2, red, uses Attack policy. 54

6.3 Percentage of inter-, intra-, and total-collision time for both swarms

of experiment shown in Fig. 6.2. . . . . . . . . . . . . . . . . . . . . 55

6.4 Number of pucks collected by two competitive swarms in a 10 min-

utes limited game, with learning involved. . . . . . . . . . . . . . . 57

(a) Green swarm S1 uses avoid policy, red swarm S2 learns policy. 57

(b) Green swarm S1 uses attack policy, red swarm S2 learns policy. 57

6.5 Number of pucks collected by two competitive swarms in a 50-puck

limited game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

(a) S1 uses Avoid policy, S2 learned individual best policy using the

proposed model. Score results are either tie or win for S2. . . . . . 60

(b) S1 uses Attack policy, S2 learned individual best policy using the

proposed model. Score results are always win for S2. . . . . . . . 60

6.6 Number of pucks collected by two competitive swarms, where swarm

S2 Learns in intra-swarm and Avoids in inter-swarm, while swarm

S1 Attack in inter-swarm. . . . . . . . . . . . . . . . . . . . . . . . 62

6.7 Number of pucks collected by two competitive swarms, where swarm

S2 Learns in intra-swarm and Avoids in inter-swarm, while swarm

S1 Avoids in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.8 Number of pucks collected by two competitive swarms, where swarm

S2 learns both for inter- and intra-swarm, while S1 avoids collisions. 64

6.9 Pucks collected by non-WLU based learning swarm S2, and attack non-

learning swarm S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.10 A comparison of the Swarm Utility Di�erence (SUD), US2 , of di�er-

ent learning-swarms S2 competing with a swarm of a non-learning

swarm S1. The SUD of the swarm that learns non-WLU-based

reward is marked in cyan and the swarm learns with WLU-based

reward is marked in magenta. WLU-based reward is always equal

or better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



(a) The SUD of two di�erent learning-swarms got by playing ver-

sus an enemy-attackers swarm. . . . . . . . . . . . . . . . . . 68

(b) The SUD of two di�erent learning-swarms got by playing ver-

sus a swarm that avoids collisions. . . . . . . . . . . . . . . . 68

6.11 Number of pucks collected by two competitive swarms in a 10 min-

utes limited game, after 50 minutes of learning, using di�erent learn-

ing rewards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

(a) Pucks collected by a learning swarm S2, using a reward where

∆(α)=0.25, and attack non-learning swarm S1. . . . . . . . . . . 70

(b) Pucks collected by a learning swarm S2, using a reward where

∆(α)=0.2, and attack non-learning swarm S1. . . . . . . . . . . . 70

(c) Pucks collected by a learning swarm S2, using a reward where

∆(α)=0.08, and attack non-learning swarm S1. . . . . . . . . . . 70

(d) Pucks collected by a learning swarm S2, using a reward where

∆(α)=0.02, and attack non-learning swarm S1. . . . . . . . . . . 70

6.12 The SUD US2 , of learning-swarm S2 using di�erent ∆(α) values in

reward, the plays versus faster swarm S1, that attack all players in

swarm S2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.13 Number of pucks collected by two competitive swarms in a 10 min-

utes limited game, after 50 minutes of learning. . . . . . . . . . . . 74

(a) Swarm S2 use Attack policy, while swarm S1 use Avoid policy. 74

(b) Both swarms use Avoid policy. . . . . . . . . . . . . . . . . . . 74

(c) Swarm S2 Learns policy, while swarm S1 use Attack policy. . . 74

(d) Swarm S2 Learns policy, while swarm S1 use Avoid policy. . . 74

6.14 The Swarm Utility Di�erence (SUD) US2 , of learning-swarm S2 us-

ing di�erent selection methods during the learning process. The

reward function is equal for all learning swarms. . . . . . . . . . . . 76

6.15 Number of pucks collected by a single swarm using di�erent colli-

sion actions and during intra-swarm learning. The learned result

(yellow) overlaps the best non-learned results (blue). . . . . . . . . 78

7.1 Swarm S1 is faster than swarm S2, both always avoid collisions. The

advantage of swarm S1 is consistent for all densities. . . . . . . . . . 82

ix



7.2 Number of pucks collected by two competitive swarms in a 10 min-

utes limited game with di�erent densities, where the swarms has

di�erent driving speeds of 60 and 70. . . . . . . . . . . . . . . . . . 83

(a) Pucks collected when faster swarm S1 Avoids, slower swarm

S2 swarm Attacks. . . . . . . . . . . . . . . . . . . . . . . . . 83

(b) Pucks collected when faster swarm S1 Attacks, slower swarm

S2 swarm Avoids. . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Swarm S1 moves in 70 speed always attacks enemies, swarm S2 move

in 60 speed and learns how to act in collisions, using reward R0.145. 84

7.4 The SUD US2 , of learning-swarm S2, the plays versus faster, attack-

ing swarm S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Swarm S1 moves in 70 speed always avoids collisions, swarm S2

move in 60 speed and learns how to act in collisions, using reward

of R0.145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.6 The SUD US2 , of learning-swarm S2, that competes a faster swarm

S1, that avoids collisions. . . . . . . . . . . . . . . . . . . . . . . . . 90

7.7 Number of pucks collected by two competitive swarms, in a 10 min-

utes limited game. S1 is faster, half of its players attacks all players,

and the other half avoids all players. . . . . . . . . . . . . . . . . . 91

(a) Swarm S2 moves in 60 speed and always avoids collisions. . . 91

(b) Swarm S2 moves in 60 speed and always attacks swarm S1. . . 91

7.8 The SUD US2 , of learning-swarm S2, using di�erent rewards, that

competing with a faster mixed-swarm S1. . . . . . . . . . . . . . . . 92

7.9 Three swarms on the �eld, swarm-ID is visible with red, green and

yellow LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.10 The SUD US2 , of learning-swarm S2, that competes faster swarms

S1 and S3, using equal reward parameters. . . . . . . . . . . . . . . 95

7.11 The SUD US2 , of learning-swarm S2, that competes faster swarms

S1 and S3, using di�erent reward parameters. . . . . . . . . . . . . 96

7.12 Swarm S1, (marked in green) is larger than swarm S2 (red), in ratio

of 7:6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



7.13 Number of pucks collected by two competitive swarms in a 10 min-

utes limited game with di�erent densities, where swarm S1 is larger

than swarm S2 in ration of 7:6. . . . . . . . . . . . . . . . . . . . . 98

(a) Pucks collected when larger swarm S1 Attacks, smaller swarmS2

swarm Avoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

(b) Pucks collected when larger swarm S1 Attacks, smaller swarm

S2 learns best policies. . . . . . . . . . . . . . . . . . . . . . . 98

7.14 Upper puck is 16cm closer to S1's homebase, marked in cyan, than

to the S2's homebase, marked in magenta. . . . . . . . . . . . . . . 100

7.15 Swarm S1 has an advantaged homebase location. Both swarms

avoid collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.16 Number of pucks collected by two competitive swarms, in a 10 min-

utes limited game. S1 has an advantaged homebase location. . . . . 102

(a) Swarm S1 has an advantaged homebase location. S1 avoid

collisions, S2 learn how to act during collisions with reward

based on β1 = β2. . . . . . . . . . . . . . . . . . . . . . . . . . 102

(b) Swarm S1 has an advantaged homebase location. S1 avoid

collisions, S2 learn how to act during collisions with reward

based on β1 : β2 = 7 : 6. . . . . . . . . . . . . . . . . . . . . . . 102

7.17 Swarm S1 has an advantaged homebase location. Swarm S1 attack

enemies, swarm S2 avoid collisions. . . . . . . . . . . . . . . . . . . 104

7.18 Number of pucks collected by two competitive swarms, in a 10 min-

utes limited game. S1 is faster, half of its players attacks all players,

and the other half avoids all players. . . . . . . . . . . . . . . . . . 105

(a) Swarm S1 has an advantaged homebase location. S1 attack

enemies, S2 learn how to act during collisions without consid-

ering the di�erence in β values. . . . . . . . . . . . . . . . . . 105

(b) Swarm S1 has an advantaged homebase location. S1 attack

enemies, S2 learn how to act during collisions considering the

di�erence in β values. . . . . . . . . . . . . . . . . . . . . . . 105

xi



7.19 The SUD of swarm S2 in both learning processes, where Swarm

S1 has an advantaged homebase location and uses attack policy.

The magenta SUD represents the equal beta case, and the cyan

represents the di�erent beta case. . . . . . . . . . . . . . . . . . . . 106

xii



List of Tables

2 List of symbols and notations used in this thesis. . . . . . . . . . . xiv

3.1 Folded Game Matrix for two players, multiple swarms and two pos-

sible actions assuming the Markov property. . . . . . . . . . . . . . 13

3.2 Example of utility matrices of two actions for inter- and intra-swarm

interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

(a) Utility of a two-player cooperative intra-swarm game presented

as a General-sum game. . . . . . . . . . . . . . . . . . . . . . 14

(b) Utility of a two-player competitive inter-swarm game pre-

sented as a Zero-sum game. . . . . . . . . . . . . . . . . . . . 14

6.1 Percentage of players from swarm S2 learned to use Attack policy. . 58

6.2 Percentage of policies learned by players from swarm S2 in the ex-

periment of Fig. 6.8. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Percentage of players from swarm S2 learned to use Attack policy

in the experiment of Fig. (6.12). . . . . . . . . . . . . . . . . . . . . 72

7.1 Percentage of players from swarm S2 learned to use Attack policy,

in the experiment of Fig. (7.4). . . . . . . . . . . . . . . . . . . . . 87

7.2 Percentage of players from swarm S2 learned to use Attack policy,

in the experiment of Fig. 7.4. . . . . . . . . . . . . . . . . . . . . . 103

xiii



Nomenclature
Symbol Meaning

S = {S1, ...SK} Set of players in game of K swarms

N =
∑
Ni Total number of players

ai ∈ A A speci�c action a taken by player i in an

interaction, from set A of possible actions

pi ∈ P A speci�c program action p executed by player

i, between two interactions, from set P of

possible actions

si ∈ S = {1, .., K} The state (collision type) of player i in an

interaction

a = (a1, ...aN) An action pro�le: the joint action composed of

the players' actions in a speci�c interaction

umi The utility of player i from interacting with a

player from swarm Sm

Ui =
∑K

m=1 u
m
i The accumulated utility of a player i , obtained

by all of its interactions with all K swarms

USk
=
∑

i∈Sk
Ui The accumulated utilities obtained by all Nk

members of swarm Sk

USk
= USk

−
∑K

m=1
m ̸=k

USm The Swarm Utility Di�erence (SUD) of swarm

Sk

T (ai) Action time of player i in an interaction

T (pi) Program time of player i in an interaction

T ∈ R Total game time for all players

πi ∈ AK The policy of actions player i uses in all K

types of interactions

πSk
: π1× ...×πNk

∈ AK×Nk The policy of swarm Sk

Table 2: List of symbols and notations used in this thesis.

xiv



Chapter 1

Introduction

Swarms are collectives of multiple simple agents with only limited and local com-

munications, and no central control [29, 53, 7]. The agents typically act towards a

common goal and share resources. Swarms are easily found in nature, for example

in bird �ocks and �sh schools. Such natural behaviors inspire arti�cial systems,

e.g., in Swarm Robotics [46, 57, 6, 5].

A Competitive Multiple Swarm system, is a system with two or more dis-

tinct swarms, sharing the same environment and resources. In such systems, each

swarm's goal is to score better than the other swarms, where score is quanti�ed in

some task performance measure. Unfortunately, there is little research on multiple

competitive swarms (see Chapter 2 for more details).

We take competitive foraging as an example for the task to be performed by

the competing swarms. Foraging is a domain of swarm robotics, where robots

are repeatedly searching and collecting items, and carrying them to a home base

[30, 62, 34]. Foraging results are usually measured by counting the number of

collected items, by the whole swarm. In competitive swarm foraging, the winning

swarm is the one that collectively brought the highest number of items to their

home base.

In this work we develop a game-theoretic model for multiple competitive swarms.

We concentrate on robots' spatial interactions, and more speci�cally on the chal-

lenge of how robots in a competitive multi-swarm environment should interact

during spatial con�icts, to outperform the other swarms.

1



This is challenging because the robots cannot communicate with each other.

Thus, global information such as the collective score of a swarm or the total number

of members in each swarm, is unknown to any of its member agents.

We apply reinforcement learning methods to train robots individually in a com-

petitive multi-swarm environment. The proposed learning model tries to overcome

the challenges due to the partial information known to each robot, by considering

the swarm identity of the other robots during each interaction.

This work is organized as follows. Chapter 2 provides background and review

of related work. It �rst reviews swarm robotics, cooperation and competition in

swarm systems, and multiple robot coordination. It then reviews reinforcement

learning in the context of multi-agent systems. The chapter concludes by refor-

mulating previously proposed competitive coordination model notation, to �t the

context of this work.

Chapter 3 takes a game-theoretic view for the case of multiple swarms. It

starts with extensive form game which is then represented as a series of normal-

form game, using zero-sum game assumption for competitive games. The chapter

then formulates the global utilities, concluded by �nding the individual player's

contribution to the swarm utility di�erence, while taking into account also the

impact of the absence of a player.

Chapter 4 applies the theory introduced in the previous chapter to competitive

robot swarms. It de�nes the global and individual utilities as a function of time for

a generic multi-swarm competition, by estimating the individual player's utility

and the e�ect on its surroundings. It then de�nes the learning process of each

individual robot in multi-swarm competition, by calculating its own reward, and

providing a general way for evaluation and selection of its possible actions.

Chapter 5 uses the proposed model for a more speci�c case of multi-swarm

competitive foraging, and proposes an experimental environment and settings. It

adopts the previously proposed model to competitive foraging, and de�nes relevant

action sets and policies. Concludes by proposing approximations to the reward

functions, due to partial information of the individual robot.

Chapters 6 and 7 describe and discusses experiments and results which support

the proposed theory and learning model. Chapter 6 examines various baseline

cases using the proposed models and validates the assumptions made as a basis

2



for the model. Chapter 7 elaborates on the case of non-identical program executing

behavior for di�erent swarms, and in particular when one of the swarm has some

kind of advantage over the other, and a case of three swarms competition.

Finally, Chapter 8 discusses gaps found in this work, open questions and

thoughts raised during experiments, and propose directions for future work. Chap-

ter 9 concludes and summarizes this work.

3



Chapter 2

Background and Related Work

Our work is related to several areas in multi-robot and multi-agent systems. We re-

view related work in these areas, and their relation to this work. We review swarm

robotics, cooperation and competition in swarm systems, and multiple robot co-

ordination. We then review reinforcement learning in the context of multi-agent

systems, and conclude by reformulating previously proposed competitive coordi-

nation model notation, to �t the context of this work.

2.1 Swarm Robotics

Swarm robotics is an approach to robotics that takes inspiration from the self-

organized behaviors of social animals and insects, which provide fascinating ex-

amples of how a large number of simple individuals can interact to create col-

lectively intelligent systems [46]. Through simple rules and local interactions,

swarm robotics seeks to generate robust, scalable, and coherent collective behav-

iors for large numbers of robots [8]. In contrast with traditionalmulti-robot systems

which use centralized or hierarchical control and communication systems, that al-

low all robots in the system to coordinate with each other, swarm robotics adopts

a decentralized approach in which the desired collective behaviors emerge from

the local interactions between robots, and between robots and their environment

[47]. Therefore, in a swarm-robotic system the robots' sensing and communication

capabilities are local, and do not have access to global knowledge. Essentially,

4



single-swarm of robots addresses cooperative behavior, acting towards a mutual

goal, even though the individual robots may not be aware of it. Robot swarms can

either be homogeneous or heterogeneous in terms of hardware, software, behavior,

parameters and goals [28].

Examples of swarm tasks include coverage [45, 50], patrolling [19, 31], collective

motion [60, 69], mapping [44, 16] and more. Many practical and potential applica-

tions of swarm robotics are unmanned aerial vehicles (UAVs) [12], spacecrafts [37],

autonomous underwater vehicles (AUVs) [49], ground mobile robots [3], and other

swarm-robotic based applications in hazardous [40] or unknown [24] environments.

A canonical task of swarm robotics is Foraging [34, 67, 13, 55]. As described

in [62], foraging robots are mobile robots capable of searching for, and when found

transporting objects to, one or more collection points, called home bases. Foraging

may be carried out by an individual (i.e., a single robot in the swarm), or in groups

(multi-robot swarm), as in our work. Examples of potential real-world applications

of foraging robots include mine-clearing, hazardous waste clean-up, and search

and rescue tasks [51]. In this work, we use foraging as a basis for a multi-swarm

competition.

A major challenge in swarm-robotic systems, is resolution of spatial interac-

tions or con�icts. Spatial con�icts must be resolved since robots cannot share the

same spot at the same time. There are many approaches to collision avoidance

and resolution, each may in�uence di�erently on the overall performance. There

is no single perfect policy for collision avoidance in swarms [43]. Therefore a re-

inforcement learning based approach is used to adjust the reactive coordination

method to use in each con�ict [18, 27]. In this work we propose a model for the

open question of how robots should act during spatial interactions in settings of

multiple competing swarms to best perform.

It is also challenging to estimate the in�uence of a speci�c action in a limited

information system. The work by Erusalimchik et al. [27] has examined the use of

the ratio of collision avoidance time as a substitute for the robot's estimation of its

own utility. In particular, minimizing this ratio was proposed to be an alternative

to maximizing the swarm utility. However, this conjectured connection was not

satisfactorily proven in their work. The work by Rosenfeld et al. [43], shows that

there is a strong correlation between interaction costs and group performance.

5



The more a robot, or a group of robots invest on the global task, the lower their

con�icts duration, and therefore, their performance is higher. Thus, the gains of

the swarm, and of each robot individually, are proportional to the total program

execution time of the swarm. We build on Douchan et al. [18] and assume that the

utility of a player from an interaction is a linear combination of both the con�ict

and the program execution durations. We expand the latter to the competitive

multi-swarm case in Chapter (4).

2.2 Cooperation and Competition in Swarms Sys-

tems

Collective behaviors of complex systems emerge from local interactions among

individuals [25]. The interaction type can be either cooperative or competitive. In

this work we investigate the case of at least two distinct swarms, and the in�uence

of interaction type on the overall performance.

Cooperative behavior refers to interaction among robots along with increasing

the system's overall utility. Hence, all the robots in the system interact and work

for a common goal or reward [59]. Various illustrative examples of cooperation

within a single swarm, are motion planning [17], foraging [30], and cooperative

search [38]. Another example of a single-swarm system is shown in [42], questioning

whether cooperative or competitive behavior between agents with a common goal

should be preferred, resulting with a preference for cooperation. We preserve the

cooperation within the swarm, and expand the problem to a multi-swarm system

case. In this work we demonstrate that a certain type of a competitive behavior

between distinct swarms is either equal or better than cooperative behavior both

for the competitive swarm, and for the overall performance of all swarms.

Competitive behavior, which is the opposite of cooperative behavior, refers to

the case in which multiple robots compete among themselves in order to satisfy

their own individual interest [59]. Examples of competition between individual

robots are [20, 48]. Another di�erent �eld related to competitive behavior is mul-

tiple agents in adversarial environments. The works [1, 66] discuss area coverage

in a known adversarial environment, or patrolling along a perimeter to increase an

6



intruder detection probability. However, these works did not consider swarms.

In a competitive swarm behavior, each swarm's goal is to outperform the other

swarms. Some works dealing with multiple swarms competition, are [15], where

two UAV swarms are trying to destroy each other; In [14], one swarm defends an

area by collectively surrounding the attackers' swarm; and [52], where the swarm

of defenders try to block the other swarm from intruding into a protected area.

The last three competitive swarm works are di�erent from ours as follows: the �rst

two do not include game theoretic analysis and approach, and the last one does

not involve learning.

We address multi-swarm competitive settings. All swarms have the same goal,

which is to compete on the same limited resources and outperform any other

swarm. Previous works [18, 27, 43, 22] have been applied to cooperative single

swarm systems where the goal is to achieve the highest possible score. However,

in competition, a better score may be achieved by interfering with the other team,

preventing them from achieving scores, by concentrating on scoring, or using a

combination of both. In multiple swarm systems, spatial interactions occur either

within the swarm (intra-swarm collision) or between swarms (inter-swarm colli-

sion). Therefore, techniques and models from the above works, cannot directly be

applied to multi-swarm competitive systems.

2.3 Reinforcement Learning in context of Multi-

Agent Systems

An agent using reinforcement learning (RL) learns by interacting with its dynamic

environment [10, 61, 26, 54]. At each time step, the agent perceives the state of

the environment and takes an action, which causes the environment to transit into

a new state. A scalar reward signal evaluates the quality of each transition, and

the agent has to maximize the cumulative reward along the course of interaction

[10].

Multi-agent (MA) learning has received attention in the past years [68, 23,

56, 9, 65, 32, 39]. When designing multi agent systems, it is impossible to predict

all the potential situations agents may encounter and specify all agents' behaviors

7



optimally in advance. Therefore, agents in such systems should learn from, and

adapt to their operating environment and their counterparts [64].

Multi-agent reinforcement learning (MARL) may be used either due to the

complexity or the decentralization of the system. [9, 39, 64]. We use such tech-

niques in this work, where agents may learn either to coordinate or compete with

other learners.

The game-theoretic analysis and experiments of single-swarm systems in [18,

27, 43] show convergence to signi�cantly improved results using reinforcement

learning, when compared with a predetermined �xed baseline. These works showed

that multiple action policies within a single swarm can be bene�cial to the overall

score of the swarm. We hypothesized and show in this work that the improvement

using MARL resulting with multiple action policies, can be achieved in competi-

tive multi-swarms systems. However, the di�erence between the single cooperative

swarm of the previous work, vs. competitive multi-swarm systems in this work,

requires distinguishing and treating di�erently inter-swarm and intra-swarm inter-

actions. Distinguishing also in�uences rewards, evaluations, policies and behaviors.

The work of Yang and Wang, [65] shows learning in zero-sum games, but for

individuals rather than for swarms. An approach to reinforcement learning in

multi-agent general-sum games is described in [33], where a learner is told to treat

each other agent as either a �friend� or �foe�. Unlike our work, this work analyzed

the case for multiple individual agents, maximizing their individual reward, and has

only two types of players. We were inspired by this approach during this research,

and expand to swarms of players, where the considered reward is aggregated over

the swarm rather than individual player. Furthermore, we expand the approach

from two types to K types, i.e., K di�erent swarms.

An approach we use in this work is the Wonderful Life Utility (WLU), pre-

sented in [63]. WLU is the marginal contribution made by the agent to the global

utility. In other words, it is the di�erence between the group utility with the

agent, and without it. It is known that agents that learn with WLU as a utility

function play a potential game with the global utility as the potential function

[35, 2]. WLU is expected to make each agent's utility more learnable by removing

the unnecessary dependencies on other agents' assignment decisions, while keeping

the agent's utilities aligned with the global utility.

8



To conclude, there are multiple previous works on each of the related sub�elds.

However, the challenge of how robots should act during spatial interactions in

settings of competitive multi-swarm system, is still open.

9



Chapter 3

A Game Theoretic View of

Multiple Competitive Swarms

A Competitive Multiple Swarm System, is a system with two or more distinct

swarms, sharing the same environment and resources, where each swarm's goal is

to outperform any of the other swarms. Each swarm is composed of agents with

limited knowledge, and the swarm score is function of all of its members' individual

scores.

This chapter applies a game-theoretic view to competitive multiple swarm sys-

tems. In Section 3.1 we present the game between competitive swarms as an

extensive-form zero-sum game. Under certain assumptions this is transformed

into a sequence of normal-form games of di�erent types, i.e., a Markov game. We

then de�ne the di�erent types of games based on the swarms involved, and further

formulate the utilities of individual agents and of each swarm, in Section 3.2. In

Section 3.3 we use the Wonderful Life Utility (WLU) function to determine the

marginal contribution of an individual player to the utility, to overcome the limited

knowledge of an individual.

3.1 Game Models of Competitive Swarms

A swarm is composed of agents with limited knowledge, and with local awareness

of their surroundings: the agents do not have any global information about the

10



game, and cannot communicate with any other agent. Agents interact with other

agents, resulting in individual utilities. The aggregation of all individual utilities

is of the swarm's global utility. The swarms seek to each achieve greater global

utility than the others.

Previous works [27, 18] modeled a single swarm cooperative task as a game,

which interactions occur between players. Each single player selects an action to

be performed from a prede�ned set. Individual utilities are generated from the

combination of the individual actions.

We expand the representation of the single cooperative swarm to the case

of multiple competitive swarms, as a basis for this work. In a multiple swarm

competitive game, it is important to distinguish between interactions with players

of the same swarm (intra-swarm interactions), to cooperate with, and players from

a di�erent swarm (inter-swarm interactions), to compete with. In this work we

assume that a player can identify the swarm identity of other players with which

it interacts, but not their individual identity.

In the general case, there are K competing swarms. We denote the K partic-

ipating swarms as S = {S1, ..., SK}, where each swarm Sk ∈ S, is comprised of

Nk players, with total number of players from all swarms, of N =
∑

kNk. In each

interaction between players, each player selects an action from a prede�ned set,

a ∈ A. Once an interaction has been concluded, each of the participant players,

is rewarded an individual utility value, marked u. The global utility of a swarm,

is a function of all individual utilities of its players.

We use a simple running example of a game with two competing swarms, to

illustrate. Fig. 3.1 shows the extensive form game, for two competing swarms,

assuming interactions of two types, either intra- or inter-swarm, marked Friend or

Foe, respectively, and a set of two possible actions to perform in each interaction,

marked as Left or Right. Here we assume that there are at least three players in

the game, the player of interest, Pi, and at least another player from each swarm,

marked Pj from other swarm, and Pl from the swarm of player Pi.

11



Figure 3.1: Extensive form game of a player interacting with a friend or a foe, for
the case of two competing swarms.

In this example, the root node of the game tree, represents the interaction

type, known to the players, marked as a selection of Nature, i.e., none of the

participants can select the identity of the opponent player. The next two layers

represent the simultaneous choices of player Pi and the other player, Pj or Pl, for

action. The players are aware of the other players' swarm-identities, but not their

choices of actions. The process described above in the �rst three layers, repeats for

any interaction until the game ends. Note that at the end of each interaction, all

participants are rewarded with a utility value, which contributes to their swarm

utility, as detailed in the next subsection.

In principle, the utilities of the players can depend on the history of the states

and joint actions played from the game start until the current interaction. We

follow previous work [18] in assuming the Markov property, meaning that given a

game state, the utilities do not depend on the complete history of all joint actions

performed, but rather on the game state immediately preceding the interaction,

and the actions taken by the players in the current interaction. This also means

that no matter what interaction it is, as long as the state and the joint actions

remain the same, the outcome remains the same. Under this assumption, we can

12



transform the extensive form game into a series of normal form games.

We mark with k the swarm identity of the individual player Pi, i.e., i ∈ Sk.

Similarly, we mark the other player, Pj, and its swarm as m, i.e., j ∈ Sm. We mark

the two possible actions as 'L' and 'R', and mark ai, aj as the actions performed

by players Pi, Pj respectively. We also mark ui and uj as the utilities of the players

from the current interaction.

Table 3.1 presents a two-player game (interaction), with two possible actions

for each player. Under the Markov property, for competitive swarms, the swarm

identity of a player's opponent, a�ects the interaction state. Therefore, each indi-

vidual utility in Table 3.1, depends on the other player's swarm identity, as well

as both actions performed.

i ∈ Sk, j ∈ Sm aj = L aj = R

ai = L ui(m, (L,L)), uj(k, (L,L)) ui(m, (L,R)), uj(k, (L,R))

ai = R ui(m, (R,L)), uj(k, (R,L)) ui(m, (R,R)), uj(k, (R,R))

Table 3.1: Folded Game Matrix for two players, multiple swarms and two possible
actions assuming the Markov property.

For each swarm, there are K di�erent versions of Table 3.1, since there are K

di�erent swarms in the competitive swarm game model. Every matrix represents a

possible interaction type, depending on the swarm identity of the opponent player.

In our example, since K = 2, we therefore need two matrices, one for inter-swarm

interaction and one for intra-swarm interaction, where the identities are known to

the participating players.

For intra-swarm interactions, where the two interacting players belong to the

same swarm, i.e., i, j ∈ Sk, Table (3.2a) shows the utility outcome of a cooperative

game where the swarm accumulates utility over time.

For the inter-swarm interactions, where i ∈ Sk, j ∈ Sm,m ̸= k, it is logical

to assume that as a result of interaction between opponent players of compet-

ing swarms, one player's gain is the other's loss, i.e., a zero-sum game. Table

(3.2b) shows the utility outcome of a competitive game. Note the zero-sum of the

individual utilities in each cell. We use this assumption for the rest of this work.

13



i, j ∈ Sk aj = L aj = R

ai = L ui((L,L)), uj((L,L)) ui((L,R)), uj((L,R))

ai = R ui((R,L)), uj((R,L)) ui((R,R)), uj((R,R))

(a) Utility of a two-player cooperative intra-swarm game presented
as a General-sum game.

i ∈ Sk, j ∈ Sm,m ̸= k aj = L aj = R

ai = L ui((L,L)),−ui((L,L)) ui((L,R)),−ui((L,R))

ai = R ui((R,L)),−ui((R,L)) ui((R,R)),−ui((R,R))

(b) Utility of a two-player competitive inter-swarm game presented as a Zero-sum
game.

Table 3.2: Example of utility matrices of two actions for inter- and intra-swarm
interactions.

We now formulate the utility for a single player and for a swarm based on

the assumptions demonstrated in Tables (3.2a) and (3.2b). Namely, for an inter-

swarm interaction, an interaction between two players, each belongs to a di�erent

swarm, we assume a zero-sum game, meaning that for such interaction, the gain of

one player is the loss of the others. For an intra-swarm interaction, an interaction

between two players from the same swarm, we assume a general-sum game as in

previous works.

For a single inter-swarm interaction, between player i ∈ Sk, and player j ∈ Sm,

where k ̸= m, we denote the utility obtained by player i from interacting with

player from swarm Sm, and the utility obtained by player j from interacting with

player from swarm Sk, as umi and ukj , respectively. Similarly, for intra-swarm

interactions, between players of the same swarm, we denote the utilities as uki and

umj , for the case where player i interacted with some other player from the same

swarm, Sk, and player j interacted with a player from its own swarm, Sm.

De�nition 1. Based on the zero-sum game assumption, for a single inter-swarm

interaction (Table 3.2b), we can rewrite the value of each player's utility:

umi = −ukj (3.1)

From Eq. (3.1) above, for every swarm pair, (Sk, Sm), where k ̸= m, the accumu-

lated utility of all Sk players from interactions with players from Sm is the negative

14



accumulated utility of all Sm players from interactions with players from Sk:∑
i∈Sk

umi = −
∑
j∈Sm

ukj (3.2)

To generalize for the case of K competitive swarms in a game, one may use one of

the $K$-player zero-sum game methods of Polymatrix Game or Stochastic Multi-

player Game, described in [58, 11].

To summarize, we have expanded the single swarm cooperative model into

a competitive K -swarm game, and transformed the extensive form game into a

sequence of K-types repeated games, i.e., a Markov game1. We also distinguished

between cooperative intra-swarm interaction, within each of the swarms, which can

be described as a general-sum game, and assumed a zero-sum game for competitive

inter-swarm interactions.

3.2 Formulating Global Utilities

We now analyze the utilities gained by the swarms, and their relation to the

individual players' utilities.

De�nition 2. We denote Ui, as the accumulated utility of a single player i ∈ Sk,

obtained by all of its interactions with all K swarms:

Ui =
K∑
k=1

uki (3.3)

We can split the accumulated utility of each player to the sum of inter-swarm and

intra-swarm utilities:

Ui =
K∑
k=1

uki = uki +
K∑

m=1
m ̸=k

umi (3.4)

1We assume that any of the K game types are equally likely.

15



De�nition 3. The accumulated utilities obtained by all Nk members of swarm

Sk, is denoted as USk
:

USk
=
∑
i∈Sk

Ui (3.5)

We can split the total utility of each swarm to the sum of inter-swarm and intra-

swarm utilities, using Eq. (3.3), (3.4) and (3.5):

USk
=
∑
i∈Sk

Ui =
∑
i∈Sk

K∑
k=1

uki =
∑
i∈Sk

uki +
∑
i∈Sk

K∑
m=1
m ̸=k

umi (3.6)

The performance of a swarm in a competitive multi-swarm system, should

relate to the performance of the other swarms in the game. We de�ne the Swarm

Utility Di�erence (SUD) function to evaluate the swarms' performances.

De�nition 4. We de�ne the Swarm Utility Di�erence (SUD) of swarm Sk,

marked as USk
, as the di�erence between the accumulated utilities of all play-

ers in Sk, and the accumulated utilities of all other players in all other swarms

Sm̸=k.

USk
= USk

−
K∑

m=1
m ̸=k

USm (3.7)

In the general multiple swarm case, where there are K swarms, and no con-

straints on the total utility gained by any swarm, USk
, we show that when using

USk
, the game is not necessarily a zero-sum game. This results from the general-

sum property of intra-swarm interactions.

Theorem 5. The game between K > 2 swarms is not necessarily a zero-sum

game.

16



Proof. By summing all Swarm-Utilities using Eq. (4) we can write:

K∑
k=1

USk
=

K∑
k=1

(
USk

−
K∑

m=1,m̸=k

USm

)

=
K∑
k=1

USk
−

K∑
k=1

(
K∑

m=1

USm − USk

)

=
K∑
k=1

USk
−

K∑
m=1

K∑
k=1

USk
+

K∑
k=1

USk

= 2 ·
K∑
k=1

USk
−K ·

K∑
k=1

USk

= (2−K) ·
K∑
k=1

USk
= (2−K) · U (3.8)

where U is the sum of all swarm's utilities: U =
∑K

k=1 USk
.

The sums of all Swarm-utilities in a K -swarm game depends on the sum of the

swarms' total utilities, USk
, and the number of playing swarms, K. We see that

Theorem (6) is a special case of

We now claim and show that for the two swarm case (K = 2), the whole game

becomes a zero-sum game, using the SUD function.

Corollary 6. In the case of S = {Sk, Sm}, the game between the two swarms with

utility function of USk
is a zero-sum game.

Proof. Using de�nition (4), we can write:

USk
= USk

− USm

USm = USm − USk

Therefore, the sum of the Swarm-utilities is zero:

USk
+ USm = (USk

− USm) + (USk
− USm) = 0

17



Theorem (6) shows that for the general case of unconstrained game, where

K = 2, it is guaranteed regardless of any speci�c individual, or accumulated utility

functions, that the game between two swarm is a zero-sum game.

We have shown in Theorem 5 that unlike the two-swarm case, in the general

case of K > 2 competitive swarms, the game is not necessarily a zero-sum game.

However, we now show that under the following assumption, this work can still

be applicable to K > 2 swarms, and even show experimental results for such case,

later in this work.

Under the assumption of constant-sum game, e.g., where the total resources

are limited and the end of the game is reached when all resources has been used,

the following theorem shows how to modify such a K -swarm game into a zero-sum

game.

Theorem 7. Under the assumption of a limited global-utility in a game, the game

between K swarms is a constant-sum game and therefore can be modi�ed to a K+1

swarms zero-sum game.

Proof. Assigning the assumption that the accumulated utilities obtained by all

players in all swarms is constant, C, we can write:

U =
K∑
k=1

USk
= C

Using Eq. (3.8), we can further write:

K∑
k=1

USk
= (2−K) ·

K∑
k=1

USk

= (2−K) · C

By adding a new swarm SK+1 with a constant total-utility of USK+1
= −C, by

using Eq. (3.7) we get:

18



K+1∑
k=1

USk
=

K+1∑
k=1

(
USk

−
K+1∑

m=1,m ̸=k

USm

)

=
K+1∑
k=1

USk
−

K+1∑
k=1

(
K+1∑
m=1

USm − USk

)

=
K+1∑
k=1

USk
−

K+1∑
k=1

K+1∑
m=1

USm +
K+1∑
k=1

USk

= 2 ·
K+1∑
k=1

USk
− (K + 1) ·

K+1∑
m=1

USm

= (1−K) ·
K+1∑
k=1

USk

= (1−K) ·

(
K∑
k=1

USk
+ USK+1

)
= (1−K) · (C − C) = 0

Therefore, the game of the swarms set S = {S1, S2, ..., SK}, where the global-
utility is constant,

∑k=K
k=1 USk

= C, can be converted to a zero-sum game by adding

a swarm Sk+1 with a constant Total-utility, USK+1
= −C.

To summarize the subsection, we de�ned di�erent swarm utility functions based

on the individual players' utilities. We have shown that any competitive two-swarm

game is a zero-sum game, and generalized for the case with more than two swarms.

3.3 Finding Individual's Contribution to the Swarms'

Utilities

In the previous subsection, we formulated the utility of individual players and of

a swarm. However, players are neither aware of the other players' actions nor of

their utilities. As a result they cannot choose their individual actions to improve

their Swarm Utility Di�erence. To overcome this, we propose to transform the

19



game into a potential game.

In a Potential Game, the incentive of all players to change their strategy can

be expressed using a single global function called the potential function [36]. A

Potential Game is a normal form game where for every player i, the di�erence

in the utility of every unilateral deviation of player i 's action ai is related to the

di�erence of a single potential function ψ(a) mapping joint actions to a scalar.

Potential games can solve the challenge of converging to the optimal action while

requiring only data from each player.

In the context of multi-agent coordination and to facilitate learning, we need

to �nd a reward function for each player based on its intrinsic measurements in a

way that the agent plays a potential game. This will make the players converge to

an optimal joint action.

The Wonderful Life Utility (WLU), presented in [63] is the marginal contri-

bution made by the agent to the global utility. In other words, it is the di�erence

between the group utility with the agent, and without it. It is known that agents

that use WLU as a utility function play a potential game with the global utility

as the potential function [35, 2]. WLU is expected to make each agent's utility

aligned without needing to consider dependencies on other agents' decisions, while

keeping the agent's utilities aligned with the global utility.

De�nition 8. The WLU of player ρ ∈ Sk, using the SUD de�ned in Eq. (4), is:

WLU
USk
ρ = W

USk
ρ = USk

− USk/{ρ} (3.9)

In the rest of this subsection, we �nd the Wonderful Life Utility of player ρ ∈ Sk,

W
USk
ρ of Eq. (3.9). The contribution of player ρ to USk

, which is the di�erence

between the swarm utilities, results from its contribution to both its own utility,

and the other swarms' utilities. In a previous subsection we calculated USk
. We

now explore USk/{ρ}, the SUD of Sk, where player ρ is absent.

We de�ne the e�ect of player ρ on the utility of swarm Sk, denoted as ϕρ
Sk
.

De�nition 9. The e�ect of player ρ on swarm Sk, which is the marginal contri-

20



bution of ρ to Sk, is:

ϕρ
Sk

= ϵρSk
− ϵρ̃Sk

(3.10)

where ϵρSk
is the utility got by the swarm when ρ is present, and ϵρ̃Sk

is the alternative

utility that would have gotten by the swarm when ρ is absent.

Lemma 10. ϵρSm
= −umρ , when ρ ∈ Sk, k ̸= m.

Proof. Due to the zero-sum game assumption of Eq. (3.1) and Eq. (3.11), and

summing over all of the interactions between player ρ ans players from swarm

Sm̸=k.

In other words, the utilities achieved by swarm Sm due to the presence of player

ρ ∈ Sk, is the negative of the sum of the utilities got by player ρ due to the presence

of swarm Sm.

To provide some intuition about swarm utilities, using the zero-sum game as-

sumption, we explore the case of two swarms competition. This restriction may

assist in evaluating the individual's contribution to the swarms' utilities.

Corollary 11. For the case of two swarms S = {Sk, Sm}, (K = 2), the SUD of

swarm Sk is:

USk
=
∑
i∈Sk

uki −
∑
j∈Sm

umj + 2 ·
∑
i∈Sk

umi (3.11)

Proof. For the case of two swarms, we can rewrite Eq. (3.6) and (3.7) as:

USk
= USk

− USm (3.12)

USk
=
∑
i∈Sk

2∑
k=1

uki =
∑
i∈Sk

uki +
∑
i∈Sk

umi (3.13)

USm =
∑
j∈Sm

2∑
m=1

umj =
∑
j∈Sm

umj +
∑
j∈Sm

ukj (3.14)

21



Therefore, assigning Eq. (3.2) into Eq. (3.14):

USm =
∑
j∈Sm

umj −
∑
i∈Sk

umi (3.15)

Assigning equations (3.15) and (3.13) into Eq. (3.12)

USk
= USk

− USm =
∑
i∈Sk

uki +
∑
i∈Sk

umi −

(∑
j∈Sm

umj −
∑
i∈Sk

umi

)
=
∑
i∈Sk

uki −
∑
j∈Sm

umj + 2 ·
∑
i∈Sk

umi

From Corollary (11), we observe that the Swarm Utility Di�erence (SUD) of

swarm Sk equals to the sum of the intra-swarm utilities of all players from Sk,

minus the the sum of the intra-swarm utilities of all players from Sm, plus twice

the inter-swarm utilities of all players of Sk.

In order to evaluate the contribution of a single player to its swarm, we �rst

evaluate the SUD in the absence of that player.

Corollary 12. For the case of two swarms, the SUD of swarm Sk when ρ ∈ Sk is

absence is:

USk/{ρ} =
∑
i∈Sk

uki −
∑
j∈Sm

umj + 2 ·
∑

i∈Sk/{ρ}

umi − ϕρ
Sk

Proof. By de�nition, the total utility of swarm Sk, is the sum of: (1) the utilities

achieved by Sk/{ρ} when ρ is absent, (2) the utility achieved by ρ, and (3) the

e�ect of ρ on players Sk/{ρ}.

USk
= USk/{ρ} + Uρ + ϕρ

Sk

Therefore,

USk/{ρ} = USk
− Uρ − ϕρ

Sk
(3.16)

22



Assigning equations (3.6) and 3.4 into Eq. (3.16):

USk/{ρ} =

(∑
i∈Sk

uki +
∑
i∈Sk

umi

)
−
(
ukρ + umρ

)
− ϕρ

Sk

=
∑
i∈Sk

uki +
∑
i∈Sk

umi − ukρ − umρ − ϕρ
S1

=
∑

i∈Sk/{ρ}

uki +
∑

i∈Sk/{ρ}

umi − ϕρ
S1

(3.17)

Similarly, the total utility of swarm Sm, is the sum of: (1) the utilities achieved

by Sm when ρ ∈ Sk is absent, and (2) the utilities achieved by Sm when colliding

with ρ:

USm = USm/{ρ} + ϕρ
Sm

= USm/{ρ} + ϵρSm
− ϵρ̃Sm

Therefore,

USm/{ρ} = USm − ϵρSm
+ ϵρ̃Sm

(3.18)

Therefore, using Eq. (3.2) and Lemma (10),

USm/{ρ} =
∑
j∈Sm

umj +
∑
j∈Sm

ukj − ϵρSm
+ ϵρ̃Sm

=
∑
j∈Sm

umj +
∑
i∈Sk

(−umi )−
(
−umρ

)
+ ϵρ̃Sm

=
∑
j∈Sm

umj −
∑
i∈Sk

umi + umρ + ϵρ̃Sm

=
∑
j∈Sm

umj −
∑

i∈Sk/{ρ}

umi + ϵρ̃Sm
(3.19)

Assigning (3.17) and (3.19) into Corollary (11),

USk/{ρ} = USk/{ρ} − USm/{ρ}

=
∑

i∈Sk/{ρ}

uki − ϕρ
Sk

+
∑

i∈Sk/{ρ}

umi

23



−

∑
j∈Sm

umj −
∑

i∈Sk/{ρ}

umi + ϵρ̃Sm


=

∑
i∈Sk/{ρ}

uki −
∑
j∈Sm

umj + 2 ·
∑

i∈Sk/{ρ}

umi − ϕρ
Sk

− ϵρ̃Sm

Our �nal step is evaluating WLU function of a single player ρ ∈ Sk, based on

the above.

Theorem 13. In the case of two swarms, where ρ ∈ Sk :

W
USk
ρ = ukρ + 2 · umρ + ϕρ

Sk
+ ϵρ̃Sm

Proof. Assigning Corollaries (11) and (12) into De�nition (8), we can write:

W
USk
ρ =

∑
i∈Sk

uki −
∑
j∈Sm

umj + 2 ·
∑
i∈Sk

umi


−

 ∑
i∈Sk/{ρ}

uki −
∑
j∈Sm

umj + 2 ·
∑

i∈Sk/{ρ}

umi − ϕρ
Sk

− ϵρ̃Sm


=

∑
i∈Sk

uki −
∑

i∈Sk/{ρ}

uki

+ 2 ·

∑
i∈Sk

umi −
∑

i∈Sk/{ρ}

umi


+

∑
j∈Sm

umj −
∑
j∈Sm

umj

+ ϕρ
Sk

+ ϵρ̃Sm

=ukρ + 2 · umρ + ϕρ
Sk

+ ϵρ̃Sm

To summarize, we have found thatW
USk
ρ , which is the contribution of player ρ to its

Swarm Utility Di�erence, consists of the sum of four terms, as shown in Theorem

(13). The �rst term, ukρ, is its utility resulted from intra-swarm interactions, the

second term, 2 ·umρ , is twice the utility resulted from inter-swarm interactions. The

24



third term, ϕρ
Sk
, is the utility accumulated by the other players in its own swarm,

Sk, resulted from interactions with ρ, minus the alternative e�ect, which is the

e�ect on other players in its own swarm when player ρ is absent. This term is

equal to ϵρSk
− ϵρ̃Sk

, which is the di�erence between the e�ect of the presence and

the absence of player ρ on its own swarm. The last term, ϵρ̃Sm
, is the e�ect of the

absence of player ρ on the opponent swarm.

If known, the value of the W
USk
ρ enables the players to estimate their own

contribution to their swarm's utilities, thus determine the optimal action, from

possible action-set.

The reader should note that in this chapter, there where no assumptions on

individual and global utilities, except for the zero-sum game assumption for inter-

swarm interactions. Therefore, such utilities can apply for many types of games

and problems. In the following chapters, we make more speci�c assumptions to

enable estimations and approximations of utilities by individual players, and there-

fore apply learning.

25



Chapter 4

Competitive Robot Swarms

In the previous chapter, we proposed a theoretical model of competitive multiple

swarm game, where cooperative behavior occurs within the swarm and compet-

itive behavior between swarms. The formulation makes no speci�c assumptions

on either individual or global utilities, except for the zero-sum game assumption

for individual inter-swarm interactions. In this chapter, we apply the theory to

competitive robot swarms, where there are spatial interactions between individual

robots during the performed game: collisions. To overcome the gap results from

the partial information known to each robot, and the noisy local sensing, learning

may be applied. To enable learning we propose a Multi-Armed Bandit (MAB)

reinforcement learning model, and apply it to the theoretical model presented in

the previous chapter. Section 4.1 presents the problem of spatial interactions ap-

plied to robots. Section 4.2 estimates the swarm utilities as a function of time.

Section 4.3 further explores the contribution of an individual robot to the utility

of the swarm as a function of time. And Section 4.4 proposes a learning model to

be performed by each individual robot.

4.1 Spatial Interactions in Robots

We assume that when a robot detects another in its vicinity, it enters into a spatial

interaction state, sometimes referred as spatial con�ict or collision, marked with

A. When entering such interaction, the robot stops executing its main task, and

26



acts to address the spatial con�ict according to a policy. Once the con�ict is

resolved, it returns to its main task, which is also referred as program execution,

marked with P.

We assume that each robot has a swarm-identity that it is aware of, and is

detectable by its surroundings. Thus, a robot is able to identify what is the swarm-

identity of the robot it interacts with. The number of possible spatial-interaction

types is the number of existing swarms in the �eld.

Figure (4.1) shows a typical sequence of robot behavior during a single run,

which includes a sequence of interactions, separated by executing the main task.

Figure 4.1: A typical time sequence of a single robot's interactions in a single
run. Each interaction c composed of a response action ac, followed by program
execution pc.

A single interaction c for a single agent i in the swarm can be represented as

a tuple (aci , p
c
i , s

c
i), where a

c
i is a collision-handling action from the set of possible

actions aci ∈ A when the robot is in state Action (A), and pci is a program-execution

action from the singleton set of actions pci ∈ P when the robot is in state Program

(P). The collision-state, denoted as sci ∈ {1, .., K} describes the collision type,

which is the swarm identity of the interacted robot. We denote the set of actions

taken by an individual robot i in each state (interaction type) as πi ∈ AK . In

other words, the policy de�nes an action suitable for every possible interaction

type. We mark the related durations of the actions a and p in collision c as T (aci),

T (pci) respectively. For simplicity of notation, when concentrating on a speci�c

collision, we mark the interaction and program times as T (ai) and T (pi).

27



Figure 4.2: A representative time sequence of multi-player interactions. For each
player, each interaction is composed of a response action, followed by program
execution. Interactions of players from swarm Sk are marked in yellow, and of a
player from Sm in green.

Fig. 4.2 demonstrates multiple interaction between players from di�erent

swarms. For each player, each interaction is composed of a response action, fol-

lowed by program execution. The �rst and third rows correspond to two agents

from the same swarm Sk.

In case that a new con�ict is created during the resolution of the current

con�ict, a new resolution of the new con�ict is started. The program time between

these two con�icts will be 0. An example of this case is shown at the bottom row

of Fig. 4.2, where a third collision occurs immediately after the second one for

player l ∈ Sk.

4.2 Time as a Measure of Individual Player's

Utility

Since robots in a system have limited sensing and communication capabilities,

they are unable to know the utilities of other robots, even of those they interact

with. Furthermore, each robot does not even know how its own action a�ects its

own utility. The only information available to it is data from its own sensors and

internal state information, which is accumulated and do not contain its full history.

We build on Douchan et al. [18] and assume that the utility of a player from

an interaction is a linear combination of T (p), T (a). The challenge is to estimate

the utility of a robot in a single interaction from T (p), T (a), based both on the

zero-sum assumption for inter-swarm interactions presented earlier, and on the

previous works. More speci�cally, as described in the theoretical model, since

there are di�erent types of collisions, inter-swarm and intra-swarm, we assume

28



di�erent utility functions and values.

In order for a player to learn a policy in a game, it estimates a measure for

its performance in di�erent taken actions, i.e., its individual utility, de�ned in

Section (3.1). The work [18] assumed that the individual utility increases with the

program execution time, T (p), and decreases during the time of interaction with

other players, T (a). We adopt this approach for intra-swarm interactions. For

inter-swarm interactions, it can sometimes be more bene�cial to invest the time in

continuing the con�ict rather than getting back to the program, i.e, interfere with

the opponent, preventing it from execute its own main task (own program). Thus

in this case, utility can increase with T (p).

We now de�ne αi and βi, used in the rest of this work. We denote the contri-

bution of the program execution time, T (p) for individual player, i, as βi · T (p),
where βi > 0. Robots always operate in the same fashion during program execution

time, and therefore any single player i, has a single parameter βi. We also denote

the contribution during interaction. Since the action during interaction time is

a function of known actions, we denote the contribution of interaction time as a

αi(ai, si), where ai is the chosen action, and si is the state of the player during the

interaction, i.e., the swarm identity of the colliding robot. To ease readability, we

shall write αi(ai, si) as αi. Therefore we can write this contribution as −αi · T (a),
where αi > 0.

To preserve the generality of the approach, each player has its own weights

αi, βi, which might di�er from other players' weights, both players from its own

swarm and from another competitive swarm. Furthermore, each player may use

di�erent inter- and intra-swarm weights to denote the di�erent in�uence of those

respective interactions.

We now propose terms for the individual utilities. We distinguish between

the cases of single- and multi-player interactions, both for inter- and intra-swarm

interactions. Based on Eq. (3.3) the individual utility, Ui, is the sum of all such

interactions. We conclude by showing that the utilities satisfy the assumptions of

Section 3.1.

29



4.2.1 Estimating Intra-Swarm Utility from Time

We now propose terms for individual utilities for the single and multiple-player

intra-swarm interactions.

Proposition 14. In the simple case of an intra-swarm collision between two play-

ers i, j ∈ Sk, the utility of player i from the intra-swarm interaction is taken to

be:

uki∈Sk
= βi · T (pi)− αi · T (ai) (4.1)

From Prop. 14 one can observe that the individual utility improves with longer

program time, and shorter intra-swarm interaction. This is correct for all intra-

swarm interaction, regardless of the exact values of α and β.

Proposition 15. In the case of a multi-player intra-swarm interaction between

robot i ∈ Sk and nk other robots from swarm Sk, we can split the interaction to

nk di�erent collisions. The utility of player i from the intra-swarm interaction is

proposed as:

uki∈Sk
=

nk∑
1

(βi · T (pi)− αi · T (ai))

= nk · (βi · T (pi)− αi · T (ai)) (4.2)

4.2.2 Estimating Inter-Swarm Utility from Time

We now propose terms for individual utilities for the single and multiple-player

inter-swarm interactions.

Proposition 16. In the simple case of an inter-swarm interaction between two

opponent robots i ∈ Sk, j ∈ Sm, where k ̸= m, the utility of player i from the

inter-swarm interaction is proposed:

umi∈Sk
= (βi · T (pi)− αi · T (ai))− (βj · T (pj)− αj · T (aj)) (4.3)

= (βi · T (pi)− βj · T (pj))− (αi · T (ai)− αj · T (aj))

30



From Prop. 16, one can easily see that the utility of a player from an inter-

swarm interaction, can either be negative or positive, and is in�uenced by the

di�erence between the α and β values of the interacted players. Therefore, in

some cases, during inter-swarm interactions, a better utility can be achieved from

a longer interaction time with the opponent rather than in executing the main

task.

Lemma 17. Propositions (14) and (16) satisfy the zero-sum game assumption as

in Eq. (3.1), i.e.:

umi∈Sk
+ ukj∈Sm

= 0

Proof. Replacing the indices of players i and j from the opponent swarms in Eq.

(4.3), results with the utility of player j ∈ Sm from the inter-swarm interaction:

ukj∈Sm
= (βj · T (pj)− αj · T (aj))− (βi · T (pi)− αi · T (ai)) (4.4)

Summing Eq. (4.3) and (4.4):

umi∈Sk
+ ukj∈Sm

=

=((βi · T (pi)− αi · T (ai))− (βj · T (pj)− αj · T (aj)))

− ((βj · T (pj)− αj · T (aj))− (βi · T (pi)− αi · T (ai)))

= 0

Therefore, the zero-sum game assumption of Eq. (3.1) is satis�ed using propo-

sitions (14) and (16).

We now expand a single inter-swarm interaction into a multi-player inter-swarm

interaction.

Proposition 18. In a case of a multi-player interaction between i ∈ Sk and other

nm robots from swarm Sm, we can split the collision to nm di�erent collisions.

31



Using Eq. (4.3) to get:

umi∈Sk
=

nm∑
j=1
j∈Sm

((βi · T (pi)− βj · T (pj))− (αi · T (ai)− αj · T (aj)))

=

nm · βi · T (pi)−
nm∑
j=1
j∈Sm

βj · T (pj)

−

nm · αi · T (ai)−
nm∑
j=1
j∈Sm

αj · T (aj)


= nm ·

(
βi · T (pi)− βm · T (pm)

)
− nm ·

(
αi · T (ai)− αm · T (am)

)
(4.5)

where to simplify the notation, we de�ne βm · T (pm) and αm · T (am) as:


βm · T (pm) = 1

nm
·
∑nm

j=1
j∈Sm

βj · T (pj)

αm · T (am) = 1
nm

·
∑nm

j=1
j∈Sm

αj · T (aj)
(4.6)

Eq. (4.6) provides a simpli�ed way for calculation of the individual utilities

which is based on averages rather than on multiple individual values.

We now show that the inter-swarm utilities obtained by all participating players

in a multi-player interaction also satis�es the zero-sum game assumption.

Lemma 19. Eq. (4.5) of Proposition (18) satis�es the zero-sum game assumption

of Eq. (3.2), i.e.:∑
i∈Sk

umi +
∑
j∈Sm

ukj = 0

Proof.

∑
i∈Sk

umi +
∑
j∈Sm

ukj =

=
∑
i∈Sk

(
nm · βi · T (pi)−

∑
j∈Sm

βj · T (pj)− nm · αi · T (ai) +
∑
j∈Sm

αj · T (aj)

)

32



+
∑
j∈Sm

(
nk · βj · T (pj)−

∑
i∈Sk

βi · T (pi)− nk · αj · T (aj) +
∑
i∈Sk

αi · T (ai)

)
= nm ·

∑
i∈Sk

βi ·T (pi)−
∑
i∈Sk

∑
j∈Sm

βj ·T (pj)−nm ·
∑
i∈Sk

αi ·T (ai)+
∑
i∈Sk

∑
j∈Sm

αj ·T (aj)

+nk ·
∑
j∈Sm

βj ·T (pj)−
∑
j∈Sm

∑
i∈Sk

βi ·T (pi)−nk ·
∑
j∈Sm

αj ·T (aj)+
∑
j∈Sm

∑
i∈Sk

αi ·T (ai)

= nm ·
∑
i∈Sk

βi ·T (pi)−nk ·
∑
j∈Sm

βj ·T (pj)−nm ·
∑
i∈Sk

·αi ·T (ai)+nk ·
∑
j∈Sm

αj ·T (aj)

+nk ·
∑
j∈Sm

βj ·T (pj)−nm ·
∑
i∈Sk

βi ·T (pi)−nk ·
∑
j∈Sm

αj ·T (aj)+nm ·
∑
i∈Sk

αi ·T (ai)

= 0

In this subsection we proposed a time-based utility estimation. We started

with a simple case of interaction between two players from di�erent swarms, and

showed it to be a zero-sum game. We then expanded the utility to the case of

single interaction with multiple opponents, concluded by Lemma 19, showing that

zero sum game is valid at the swarm level.

4.2.3 Estimating Utility of Mixed Intra- and Inter-Swarm

Interactions

The case of multi-player interaction from two di�erent swarms, can also be formu-

lated as follows.

Proposition 20. In the complex case of a multi-player collision of nk robots from

swarm Sk and nm robots from swarm Sm with player i ∈ Sk, we can split the

collision to nk intra-swarm collisions and nm inter-swarm collisions. Using Eq.

(4.5) and (4.2), the utility of player i from this collision is:

Ui∈Sk
= uki + umi (4.7)

= nk · (βi · T (pi)− αi · T (ai))

+ nm ·
((
βi · T (pi)− βm · T (pm)

)
−
(
αi · T (ai)− αm · T (am)

))
33



Prop. (20) combines the previous terms proposed in this section, to speci�cally

enable calculation of the individual utility of a player, based on its own times

and parameters, and only average parameters for the other competitive swarm:

αm · T (am) and βm · T (pm).
We can generalize the 2-swarm case into a K -swarm case, as follows:

Proposition 21. In the general case of K swarms with n1, ..., nK robots involved

in a multiple-player collision:

Ui∈Sk
=uki +

K∑
m=1

umi

=nk · (βi · T (pi)− αi · T (ai))

+
K∑

m=1
j∈Sm

nm ·
((
βi · T (pi)− βm · T (pm)

)
−
(
αi · T (ai)− αm · T (am)

))

To conclude, we applied the assumptions of time as utility to the general theory

proposed in the previous chapter, by de�ning individual weight parameters for

interaction and program execution times. We proposed terms for the individual

utilities for inter- and intra-swarm interactions, for both single- and multi-player

interactions (Prop. (14), (15), (16), (18), (20) and (21)). We also showed the zero-

sum game assumption is satis�ed under the transformation to time as a proxy

to utility (Lemmas (17) and (19)). We also concluded from Prop. (16) that for

inter-swarm interaction, it can sometimes be more bene�cial to interfere with an

opponent player in performing its own task.

4.3 Using Time for WLU

We saw in previous works that WLU may be useful for a single player to estimate

its contribution to the swarm. We now apply utility estimate from time (Prop.

(20)) into W
USk
ρ , found in Section (3.3).

34



Proposition 22. Using Eq. (4.7) and Theorem 13, we get:

W
USk
i = uki + ϕi

Sk
+ 2 · umi + ϵiSm

= nk · (βi · T (pi)− αi · T (ai)) + ϕi
Sk

+ ϵiSm
(4.8)

+ 2 · nm ·
(
(βi · T (pi)− αi · T (ai))−

(
βm · T (pm)− αm · T (am)

))

To evaluate W
USk
i , we can use expressions for the utilities uki and umi , of Eq.

(4.8) in Section (4.2). We next concentrate on evaluating the terms ϕi
Sk

and ϵĩSm
.

As mentioned previously in this chapter, since robots in a system have limited

sensing and communication capabilities, they are unable to know the utilities of

other robots, even in the same interaction. The robots do not have the knowledge

of the states of their surrounding robots, and therefore, they do not know how

their own action in�uenced the program time of other robots. Hence, they need

somehow to estimate their e�ect on other robots in every collision. Therefore, in

order to calculate its own WLU, a robot must evaluate its impact on other robots,

denoted earlier as ϕ, ϵ.

Proposition 23. We propose the estimated e�ect of player i ∈ Sk on player j ∈ Sm

in a speci�c collision when i is absent, marked as ĩ, as follows:

ϵĩj = βj · (T (pj) + T (aj)) (4.9)

ϵĩSk
= nk · βk ·

(
T (pk) + T (ak)

)
= nk · βk · T (pk) + nk · βk · T (ak) (4.10)

ϵĩSm
= nm · βm ·

(
T (pm) + T (am)

)
= nm · βm · T (pm) + nm · βm · T (am)

(4.11)

Eq. (4.9) is an estimated utility a player j ∈ Sm would have gotten in a speci�c

collision if player i ∈ Sk is absent. The idea is that if there was no con�ict between

the players, player j would be in program execution time instead of in interaction

time. Therefore, it should add to the utility βj · T (aj) in the absence of i, instead

of αj · T (aj) in the presence of i.

Similarly to Eq. (4.9), equations (4.10) and (4.11) are the estimated utilities

that swarms Sk and Sm with number of players nk, nm respectively, would have

35



gotten in a speci�c collision if player i ∈ Sk is absent, as they are multiplied by

the average βm instead of αm.

Proposition 24. We propose the estimated e�ect of player i ∈ Sk on player l ∈ Sk

in a collision when i is present:

ϵil = βl · T (pl)− αl · T (al) (4.12)

ϵiSk
= nk ·

(
βk · T (pk)− αk · T (ak)

)
(4.13)

Due to Eq. (4.1), Eq. (4.12) is the utility got by player l ∈ Sk in a speci�c

collision when player i ∈ Sk is present. Similarly, Eq. (4.13) is the utility got by

swarm Sk, that counts nk players.

We have found the e�ect of an individual player on its surrounding by applying

the time based utility on the theory from the previous chapter. Our goal now is

to �nd the value of a W
USk
i , the WLU of player i ∈ Sk during a speci�c collision,

using the estimated of utilities and e�ects in equations (4.8), (4.10),(4.11), and

(4.13).

Proposition 25.

By assigning equations (4.10),(4.11),(4.13) into Eq. (4.8), the Wonderful Life

Utility of player i ∈ Sk, during a collision is:

W
USk
i = uki + 2 · umi + ϕi

Sk
+ ϵĩSm

=
(
uki + ϵiSk

− ϵĩSk

)
+
(
2 · umi + ϵĩSm

)
=
(
nk · (βi · T (pi)− αi · T (ai)) + ϵiSk

− ϵĩSk

)
+
(
2 · nm ·

(
(βi · T (pi)− αi · T (ai))−

(
βm · T (pm)− αm · T (am)

))
+ ϵĩSm

)
= nk · (βi · T (pi)− αi · T (ai)) + nk ·

(
βk · T (pk)− αk · T (ak)

)
− nk · βk · T (pk)− nk · βk · T (ak) + 2 · nm · (βi · T (pi)− αi · T (ai))

− 2 · nm ·
(
βm · T (pm)− αm · T (am)

)
+ nm · βm · T (pm) + nm · βm · T (am)

= nk · βi · T (pi)− nk · αi · T (ai) + nk · βk · T (pk)− nk · αk · T (ak)

− nk · βk · T (pk)− nk · βk · T (ak) + 2 · nm · βi · T (pi)− 2 · nm · αi · T (ai)

36



− 2 · nm · βm · T (pm) + 2 · nm · αm · T (am) + nm · βm · T (pm) + nm · βm · T (am)

= (nk · βi + 2 · nm · βi) · T (pi)− (2 · nm · αi + nk · αi) · T (ai) (4.14)

− nk ·
(
αk · T (ak) + βk · T (ak)

)
− nm

(
2 · αm · T (am) + βm · T (am)− βm · T (pm)

)
So far we have quanti�ed WLU based on the program and action times of

a single robot in a multi-swarm competitive game, using the de�ned weights α

and β and the number of interacting robots, while taking into account all swarm-

identities.

4.4 Learning in Multi-Swarm Competition

To overcome the gap in knowledge, resulting from the partial information known to

each robot, we apply learning. The learning process must be individual, and each

robot should estimate parameters rather than use the true but unknown values

during the learning process. Rather, each robot should use known information to

evaluate its actions, thus learn a speci�c policy πi. The goal is to �nd a policy,

π∗
i , which maximizes W

USk
i and thus the swarms' policies π∗

Sk
that maximize the

Swarm Utility Di�erence USk
.

In the following section we de�ne and formulate the proposed learning model

which is comprised of a reward function, a proposed estimation and evaluation, and

the learning process. We relate it to the WLU of player i from a single interaction,

as the reward obtained after performing an action, and mark it as R(T (ai), T (pi)),

and use it to select optimal actions.

4.4.1 Evaluation and Selection of Actions

The simplest reinforcement-learning problem is known as the Multi-Armed Bandit

(MAB) problem [23]. In MAB, the agent is in a room with multiple gambling

machines. At each time-step the agent pulls the arm of one of the machines and

receives a reward. The agent's purpose is to maximize its total reward over a

sequence of trials. Usually, each arm is assumed to have a di�erent distribution

of rewards, therefore, the goal is to �nd the arm with the best expected return as

early as possible, and then to keep gambling using that arm.

37



Thus, in MAB problem, the agent estimates each action's value, which is the

the action's expected or mean reward, marked as q(a) = E[R]. We denote the

estimated value of action a for player i, as Qi(a) ≈ q(a). We use a common

estimation method in MAB problems called Sample Average [54]. This method

estimates the value of an action a by dividing the total reward achieved by the

agent when action a was taken in previous steps, by the total time that a was

taken. Hence, each robot's estimation of its value of action a is:

Qi(a) =

∑N(a)
c=1 R (T (aci), T (p

c
i))∑N(a)

c=1 (T (aci) + T (pci))
(4.15)

where N(a) is the number of times action a was taken by the robot so far.

Techniques from MAB problems have been used to deal with the exploration-

exploitation trade-o�. In other words, the robot can take one of |A| actions, and
can evaluate its actions using a reward function, R. At any such decision point,

the choice of the action can be greedy, i.e., by taking the action that has the

best value at that point. However, this policy is not optimal when reward are

stochastic, as in our case, since non-greedy action might found to be better in

the longer term. Therefore, it is valuable to use a known action selection method

named Upper Con�dence Bound (UCB), where the uncertainty value of an action

is considered during the decision process [54]. The UCB algorithm [4] guarantees

low regret under certain conditions. UCB uses the principle of optimism in the

face of uncertainty to select its actions, by assuming an optimistic guess on the

expected rewards. The use of MAB and UCB in the proposed model is described

in this section.

The idea of UCB action selection is that the square root term is a measure of

the uncertainty or variance in the estimate of a's value:

a∗ = argmax
a

[
Q (a) +

√
γ · logeN
N (a)

]
(4.16)

where γ is a hyper-parameter a�ects exploration rate of UCB, and N is the

38



total number of collisions, regardless of the action selection, i.e.,

N =
∑
a∈A

N(a)

A typical game that contains learning is usually partitioned into two parts, the

�rst is when learning or training of a system occurs, and the second is operating

the trained model and measuring its success. After the training period has ended,

each individual robot has its own learned policy, π∗
i , consists of a set of actions for

each opponent swarm. This policy is used during the evaluation phase. When the

learning process has ended, the action selected for each swarm identity is the one

maximizes the value of Q(a). The set of all actions selected, creates the policy π∗
i .

4.4.2 The Learning Process

We now use all presented parts to build a learning procedure, to �nd a suitable

policy for each individual player, that will eventually contribute to better per-

formance of its whole swarm. The learning process contains the following steps,

described in Algorithm 1.

To conclude this chapter, we concentrated on the domain of competitive robot

swarms. We made some speci�c assumptions to enable estimations and approx-

imations of utilities by individual players, to enable reinforcement learning. We

proposed a learning model and applied it to the theoretic model presented in the

previous chapter. However, we still do not assume speci�c operations or tasks; one

possible example for such task is, multi-swarm competitive foraging, presented in

the next chapters, and validates the proposed learning model.

39



Given that a robot i is about to interact with another player, the robot executes
the following procedure:

1. Identify the opponent robot and immediate surroundings and environment.

2. Choose action a to react the to collision, using Eq. (4.16).

3. Perform the action a to respond to the spatial con�ict, and obtain the
interaction time T (ai).

4. Return to program execution up until next collision.

5. When the robot is about to collide once again the robot:

(a) Obtains the program time T (pi).

(b) Calculates the reward approximation, using Eq. (5.4), and its param-
eters.

6. Update Q(a) using the rule in Eq. (4.15).

7. Return to step 1 until stop criterion has been reached.

8. Select the best evaluated policy, by selecting the actions with the maximal
value of Q(a) for each swarm identity.

Algorithm 1: MAB Learning Process using UCB

40



Chapter 5

Competitive Multi-Swarm Robot

Foraging

We apply the theoretical model presented in the previous chapters to robots. We

take foraging as a basis for a robot multi-swarm competition, and de�ne policies

and methods that are used by the swarms during the competition. Such com-

petition involves multiple swarms that compete over the same limited resources,

and the goal is to collect more than any other swarm. We examine both baseline

cases where no learning is applied, and cases where a learning process is performed

by robots, based on the model presented and discussed in the previous chapters,

including the assumption that individuals are aware of their swarm identities, and

those of others.

In Section 5.1 we present a 3D physics-based simulation environment in which

we apply the model robots. In Section 5.2 we apply the model to competitive

foraging task in robots, including speci�c actions, policies, and logic. As the true

utility cannot be directly calculated by any individual, we show in Section 5.3 how

robots should approximate and learn their individual actions, based on the limited

knowledge and on the models presented previously.

41



5.1 Simulated Robots and Competitive Foraging

Environment

We use a multi-robot simulator named ARGoS [41] for simulations experiments.

ARGoS is designed to simulate complex experiments involving large swarms of

robots of various types. The type of robot we use for the simulation experiments

is called Krembot, made by Robotican. The Krembot is a robot with relatively

limited sensing, processing and memory capabilities. It is a cylindrical-shaped

robot with height of 10.5 cm and diameter of 6.5 cm. Each robot has eight RGB

LEDs, eight pressure sensors, eight RGB and light sensors, and eight proximity

sensors. The robots cannot communicate with each other via WiFi or other digital

communications.

Figure 5.1: Simulated arena of two swarms of 25 robots each, marked with green
and red lights.

Each robot has a prede�ned swarm identity, which it is aware of, and is dis-

played through its LEDs' color. Therefore, a robot can identify whether another

42



robot belongs to its own swarm. The Krembots have no localization capabilities,

and are unable to map their environment, or plan paths.

Figure 5.1 shows an example of simulated arena with two swarms containing

25 robots each, marked with green or red lights, and their respective home bases

colored cyan and magenta. The black circles on the �oor are the puck distribution

stations, which have prede�ned supplies of pucks.

Using the ARGoS simulator, we are able to experiment with various simulation

parameters. These include types of run constraints (e.g. time or resource limits);

number of available resources such as total deposited pucks, supply stations and

home bases; con�ict identi�cation parameters (e.g. which sensor and what distance

are de�ning a spatial con�ict); interaction response parameters and strategy; and

global environment parameters such as size of arena, number of robots in each

swarm, number of swarms.

In most experiments, we simulated two di�erent swarms, where the swarms'

size is equal and varied from three to 25 robots per swarm, and is unknown to

the individual agent. In some other experiments we use three swarms or unequal

swarm sizes. The arena's size is 2x2 meters in all simulations, includes two supply

stations where the robots collect pucks from, and two home bases, one for each

swarm, where the loaded robots deposit their pucks. Every scenario was tested for

20 runs with di�erent random seeds. In each simulation run, we measure how many

pucks each swarm brought in total to its home base. In a puck-limited scenario,

the run ends when the total number of deposited pucks is 50. In a time-limited

scenario the run ends after 10 minutes. In scenarios where learning is involved,

the robots learn their optimal policy during a 50 minute game, and this learning

period is not measured towards the goal. The results are measured when each

robot uses the best policy it evaluated during the learning process.

5.2 Robots Carrying Out Competitive Foraging

To test the proposed models and algorithms, we use a variant of multi-robot for-

aging, where each swarm has its own home base which is marked by its color.

At any time, every robot can be in either the state of program execution (P), or

the state of con�ict resolution (A), where the robot selects between actions based

43



on its (�xed or learned) policy.

Figure 5.2: Competitive Foraging States Overview

The robots control process is overviewed in Figure 5.2. When not having a

puck, the robot randomly wanders, looking for a puck in the arena. If a puck was

found, the robot searches and moves towards its home base using its RGB sensors,

to put down the puck. In both states, if a robot recognizes another robot from a

distance smaller or equal to a prede�ned value from its front sensors, it responds

to the spatial con�ict with a chosen action. It may use di�erent actions depending

on both robots' swarm identities.

Therefore, during the foraging wander state the robots randomly searching for

a station. During the return to home base state, the robots are searching their

home base direction using their RGB sensors.

When responding to a spatial con�ict or collision when it is detected, we de�ne

a set of two possible actions, and name them �ght and �ight.

� In the �ight method, the robot change its direction to the most vacant di-

rection for a per-determined amount of time, to resolve the spatial con�ict

as quickly as possible.

44



� In the �ght method, the robot drives towards the other robot for a given

amount of time, in order to interfere with the other robot's operation.

Figure 5.3 shows an illustration of an interaction between two robots from di�erent

swarms, as marked by their LED's colors. The illustration the detection of a spatial

con�ict (Fig. 5.3a), the �ght and �ight methods (Fig. 5.3b), and the resolution of

the con�ict (Fig. 5.3c). Note that if both robots would have chosen to �ght with

each other, there would have been a spatial collision between them.

(a) Both robots moves towards
each other and detect a spatial
con�ict from their front sen-
sors.

(b) Green (left) robot choose to �ght
and drives toward the right robot,
red (right) robot choose to �ight, and
turns to most vacant direction.

(c) The con�ict is resolved, red
robot wanders towards a vacant di-
rection, green robot wanders in the
same direction.

Figure 5.3: Illustration of an example of �ght and �ight methods.

According to the di�erent methods we de�ne several robots' policies.

� The Avoid policy, always avoids collisions, i.e., use the �ight method when

colliding with a robot, regardless of its swarm identity.

� The Attack policy, always use the �ght method in inter-swarm collision, and

always use the �ight method in intra-swarm collision.

45



� The Aggressive policy, always use the �ght method when colliding with a

robot, regardless of its swarm identity.

� We call a robot that learns the best policy in a given environment a Learner.

We use the �ight method for intra-swarm interactions since this was the preferred

action for intra-swarm interaction, as shown in Subsection 6.2.3.

Since communication between individual robots is forbidden, each robot can

only learn based on its own knowledge of the environment and its own history

of collisions and choices. Therefore, both a swarm where all agents use the At-

tack policy, and swarm where all of agents use the Avoid policy are homogeneous

swarms. However, a swarm where all agents learn their own best policy could

become a heterogeneous swarm at the end of the learning process, as described in

the previous chapter.

5.3 Learning in Swarm Robots

The reward function is used by an individual player to estimate its actions based

solely on the parameters that are known to it, as described in a previous chapter.

This requires estimating several unknowns. In order to approximate the reward

function, the individual robot should estimate over time, the contribution of both

executing its foraging task, and interacting with others.

In the previous chapter we denoted the contribution of the program execution

time, T (p) for individual player's reward function as β ·T (p), and the contribution

of the collision duration T (a), as α(a, s) · T (a), which depends on the swarm

identity of the colliding robot, s, and the action taken, a (either �ght or �ight).

Based on Eq. (4.14) we discriminated between α, β of a player i, its opponent j

and a member of its team, l , as αi, αj, αl, βi, βj, βl respectively.

Using the assumption of previous work [18], that the whole system enters

con�ict-resolution state at the same time (i.e., collisions are mutual to all), we

can write:T (p) = T (pi) = T (pm) = T (pk)

T (a) = T (ai) = T (am) = T (ak)

46



Under this assumption, the terms from Eq. 4.6 can be rewritten as follows:
βm · T (pm) = 1

nm
·
∑nm

j=1
j∈Sm

βj · T (pj) = T (p) ·
(

1
nm

·
∑nm

j=1
j∈Sm

βj

)
= βm · T (p)

αm · T (am) = 1
nm

·
∑nm

j=1
j∈Sm

αj · T (aj) = T (a) ·
(

1
nm

·
∑nm

j=1
j∈Sm

αj

)
= αm · T (a)

By assigning the above equations to Eq. (4.14), we get the WLU value for player

i ∈ Sk:

W
USk
i = (nk · βi + 2 · nm · βi) · T (p)− (2 · nm · αi + nk · αi) · T (a)

− nk ·
(
αk · T (a) + βk · T (a)

)
− nm

(
2 · αm · T (a) + βm · T (a)− βm · T (p)

)
=
(
nk · βi + 2 · nm · βi − nm · βm

)
· T (p) +

(
nm · βm − nk · βk

)
· T (a)

+ (−2 · nm · αi − nk · αi − nk · αk + 2 · nm · αm) · T (a) (5.1)

We denote n = nk + nm, where nk is the number of players from swarm k, nm is

the number of players from swarm m, and n is their sum, which is the constant

total number of players, de�ned for each game.

Dividing by n, we get:

W
USk
i

n
=

(
βi · (nk + nm) + nm ·

(
βi − βm

))
n

· T (p) +
(
nm · βm − nk · βk

)
n

· T (a)

+
(2 · nm · αm − nk · αi − nk · αk − 2 · nm · αi)

n
· T (a)

=

(
βi +

nm ·
(
βi − βm

)
n

)
· T (p) (5.2)

+

((
nm · βm − nk · βk

)
n

+
(2 · nm · αm − nk · αi − nk · αk − 2 · nm · αi)

n

)
· T (a)

To simplify the notation, we de�ne two terms and rewrite Eq. (5.2):

W
USk
i

n
=

Γ(β, nk, nm)

n
· T (p) + ∆(α, β, nk, nm)

n
· T (a) (5.3)

47



Since robots in the arena have limited knowledge, they are not aware of the

exact values of the above parameters, excluding their own program and interaction

times, T (a) and T (p). From Prop. 14 and 16, one optional approximation for a

single robot should include a sign change depending on the interaction type and

action taken, and some estimate to the number of players from every swarm.

Therefore, based on Eq. (5.3), we use the following reward, R, which is the

approximated WLU of player i:

R =
W

USk
i

n
≈ Γ(β, n

′
i)

n′ · T (p) +
(
n

′
i

n′ · σi · |∆(α, β)|
)
· T (a) (5.4)

where σi, n′ and n
′
i are explained below.

The actual number of robots a�ected by a robot's action, which is marked

n, is unknown to the robot. In Eq. (5.4) we approximated n, nk and nm of Eq.

(5.3) by sensor-based estimations for the number of a�ected robots in the current

interaction, marked n′ and n
′
i. n

′ is the maximum number of surrounding robots

sensed, which for Krembot is eight, and n
′
i is the number of the robot's sensors

that are activated due to proximity of objects, which is the number of surrounding

robots.

The sign function σi(a, s),which depends on action and interaction type, re�ects

part of the in�uence of a speci�c action a, taken by robot i, on its surroundings. We

assume that the contribution on the reward, depends on the direction of movement.

When driving forward towards a friend robot, or backwards from a friend robot,

may have opposite signs. Similarly, when moving in the same directions towards a

friend or towards an opponent. The same should apply to other action types. We

therefore approximate σ as:

σi(a, s) = fi(s) · di(a) (5.5)

Where di(a) is the direction of driving in selected action a during interaction,

di(a) =

1 forward

−1 backward

and fi(s) is the interaction type, i.e, whether the interaction is inter- or intra-

48



swarm (friend or foe).

fi(s) =

1 inter − swarm collision

−1 intra− swarm collision

Note that for two collision with identical selected action type, the signs of σ

may be equal or opposite, based on the identity of the colliding robots.

We will distinguish between two cases. The �rst case is where all swarms act

identically during the program execution time, i.e, foraging state. This case is

formulated and evaluated empirically in Chapter 6. The second case is where one

swarm has some advantage over the others in its program execution. This case is

formulated in and evaluated in Chapter 7.

49



Chapter 6

Competitive Foraging with

Symmetric Swarms

In this chapter, we concentrate on the case of competing swarms consist of robots

with identical behavior during the program execution state (but not necessarily

during con�ict resolution), the robots behave exactly the same when searching for

pucks and moving to their respective homebases. We thus explore the behavior

during interaction, which may be either �xed or learned. In the next chapter,

we further elaborate on the cases of non-identical program executing behavior for

di�erent swarms, and in particular when one of the swarm has some advantage

over the other, and even a case of three-swarms competition.

In Section 6.1, we speci�cally present the reward function used for the cases

of identical competing swarms. In Section 6.2 we show the experiment results of

baseline cases using the proposed models, both for �xed and learned policies. In

Section 6.3 we explore the performance of the learning model in di�erent environ-

ments and hyper parameters, thus experimentally justify assumptions made as a

basis for the learning model.

50



6.1 The Reward Function for the Case of Iden-

tical Swarms

The �rst scenario we analyze is the case where both swarms execute identically

during program time. Since the behavior is identical, we assume the contribution

of the program execution time for each robot, regardless of its swarm, is also

identical. Therefore, we can assign

βi = βj = βk = βm = β

into Eq. (5.2), to get the reward of player i during a collision:

W
USk
i

n
=

(
(nk + nm)

n
· β
)
· T (p) +

(
(nm − nk)

n
· β
)
· T (a)

+

(
2 · nm · αm − nk · αk − (2 · nm + nk) · αi

n

)
· T (a)

=β · T (p) +
(
(nm − nk) · β

n
+

2 · nm · (αm − αi)− nk · (αk + αi)

n

)
· T (a)

(6.1)

From the above formula, one can observe that the program time T (p) is multi-

plied by β, a positive parameter, which is the contribution of the program execution

time, and the collision time T (a) is multiplied by a term which might be either

positive or negative. From Eq. (6.1) we can observe that the sign depends on the

di�erent α values, which are unknown to the participating players.

Therefore we can rewrite Eq. (5.4), using Eq. (6.1), to get the approximated

reward for the identical competing swarms case:

R =
W

USk
i

n
≈ β · T (p) +

(
n′
i

n′ · σi · |∆(α, β)|
)
· T (a) (6.2)

Since β is a positive constant, we can normalize the above equation, dividing

by β. We use this normalized reward in the learning process of the experiments

in the rest of this chapter, where di�erent values are assigned to ∆(α, β), and the

e�ect on the results is demonstrated and discussed.

51



6.2 Baseline Cases

The following experiments are used as a baseline for the rest of this chapter.

They �rst examine the case where all swarms have a �xed, prede�ned policy used

by each of them during competition. We then experiment the baseline case of

applying learning for inter-swarm interactions, when competing a non-learning

swarm that uses a �xed prede�ned policy. Finally, we apply learning for intra-

swarm interaction during competition, and applied simultaneous learning for both

inter- and intra-swarm interaction during multi-swarm competition.

A description of the simulation environment and details for the multiple runs

in various densities are detailed in Section 5.1.

6.2.1 Experiments with Fixed-Policy Competition

Each �gure below summarizes a set of runs for a speci�c scenario. The horizontal

axis shows the total number of robots in the arena, from both equally sized swarms.

The vertical axis shows the number of pucks deposited to homebases, sometimes

referred to as the score, or number of collected pucks. Swarm S1 is marked in

a green dashed line and un�lled circles. Swarm S2 is marked in red dashed line

and �lled circles. The results can be grouped based on the stop condition for the

experiment, either time-limited or puck-limited.

Figure 6.1 shows simulation results of two swarms in time-limited experiments

of 10 minutes, when all swarms use �xed prede�ned policies and no learning is

applied. The robots are tested in a �xed size arena. The number of robots in each

swarm is varied from three to 25 robots, and is unknown to the swarm members.

In Figure 6.1a, both swarms use Avoid policy: use �ight method in every

interaction, meaning similar actions to all robots, regardless of swarm identities.

Therefore, there is no actual competition. The scores are similar as expected, and

the total number of pucks is directly in�uenced by the robot density in the arena.

In low densities, the collected number of pucks is increasing when the swarms' size

is increased, due to a better coverage of the �eld, but still small number of spatial

interactions between robots. In high densities, the number of collected pucks is

decreasing when the swarms' size is increased, due to a higher rate of interactions

52



between robots. These results of Figure 6.1a, are consistent with previous work

[18], since all robots can be considered as a single swarm.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Avoid Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

(a) Pucks collected when both S1, S2 avoid collisions.

6 10 16 20 26 30 36 40 46 50
robots

−5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Attack Policy

Total pucks
S1 pucks
S2 pucks

(b) Pucks collected when both S1, S2 attack.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Avoid Policy  S2: Attack Policy
Total pucks
S1 pucks
S2 pucks

(c) Pucks collected when S1 avoids and S2 attacks .

Figure 6.1: Pucks collected by two competitive swarms in a 10 minutes limited
game with di�erent densities and �xed swarms-policies.

53



Figure 6.1b shows the results of two swarms use Attack policy: use �ght method

in inter-swarm interactions, and use �ight method in intra-swarm interactions. The

score resulted from these runs are extremely low compared to all other cases. In

this case, all robots are typically occupied continuously with repeated interactions

with opponent robots, and are less available to collect pucks.

Figure 6.1c shows the �rst case of two competitive swarms with di�erent in-

teraction policies: swarm S1 uses Avoid policy, and swarm S2 uses Attack policy.

Score results are better for Avoid policy in low densities, and for Attack policy in

high densities. Notice that competition seems to contributes to increase the total

number of pucks collected by all swarms, when compared to 6.1a.

To continue the exploration of the baseline, we repeat the last case shown in

Fig. 6.1c, but this time, shown in Fig. 6.2, the runs where limited by the total

number of pucks collected. The same insights seen before are re�ected in the

current case.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65

pu
ck

s

S1: Avoid Policy  S2: Attack Policy
Total pucks
S1 pucks
S2 pucks

Figure 6.2: Number of pucks collected by two competitive swarms in a 50 pucks
limited game, S1, green, uses Avoid policy, S2, red, uses Attack policy.

54



The results shown in Figures 6.1c and 6.2 comply with the initial intuition for

lower densities. That is since if more time is invested in foraging rather than in

interaction with the opponent, more pucks are likely to be collected for the swarm.

However, the results at higher densities are quite surprising, since although most

of the time for attacking swarm is devoted to interaction with the opponents, the

attacking swarm still collect more pucks than the avoiding swarm.

366 4010 4616 5020 26 30
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

co
lli
si
on

 p
re
ce
nt

S1: Avoid Policy  S2: Attack Policy
total-collision%
S1: total-collision%
S1: enemy-collision%
S1: team-collision%
S2: total-collision%
S2: team-collision%
S2: enemy-collision%

Figure 6.3: Percentage of inter-, intra-, and total-collision time for both swarms of
experiment shown in Fig. 6.2.

55



To examine the partition of the time invested between interaction and program

execution (foraging), as noted by the robots, Fig. 6.3 shows the partition of the

total time T (a)
T (a)+T (p)

, as a function of the robot densities in the arena, for the

experiment shown in Fig. 6.2. The blue dashed line represents the total percentage

of interaction time, T (a)
T (a)+T (p)

, for swarm S2, which uses attack policy. The red line

represents the total percentage of interaction time, for swarm S1, which uses avoid

policy. It is evident that S1 spends less time in interaction.

For swarm S2, the green and black lines represent the percentage of inter-

swarm and intra-swarm interaction times, respectively. Similarly, for swarm S1,

the magenta and cyan lines represent the percentage of inter-swarm and intra-

swarm interaction times, respectively.

It is evident that the swarm used the attack policy, invests larger portion of

its time in interacting rather than collecting pucks. Most of its interaction time

is devoted to the other swarm rather than its own. This may justify that the

local reward calculation by a robot during the learning process, should take both

T (a) and T (p) into account. Even though swarm S2 invest less time to collect

pucks, as seen in Fig. 6.3, it still collects more pucks in high densities, as shown

in Fig. 6.2. Unlike in a cooperative game of previous works, in a competitive

game, it may be bene�cial to invest time in interfering the opponents, rather then

executing the main task of collecting pucks, which is re�ected in the proposed

theory and the reward function. Thus it might be bene�cial to reward di�erently

inter- and intra-swarm interactions, as their di�erent contribution to the swarm's

performance.

6.2.2 Experiments with Inter-swarm Learning

We now turn to experiments which involve learning. In the following scenarios,

swarm S1 executes a �xed, prede�ned policy, and swarm S2 learns a preferred

policy for inter-swarm interactions. The learning period lasts 50 minutes, and the

learned policy is used during the measured game period which lasts 10 minutes.

The results shown in the �gures are of the measured time only, after the learning

process had been completed.

56



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

S1: Avoid Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(a) Green swarm S1 uses avoid policy, red swarm S2 learns policy.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(b) Green swarm S1 uses attack policy, red swarm S2 learns policy.

Figure 6.4: Number of pucks collected by two competitive swarms in a 10 minutes
limited game, with learning involved.

57



Figures 6.4a and 6.4b, show results of applying the proposed learning model, in

time-limited runs. To better analyze the results, Table 6.1 shows the distribution

of learned policies within the learning swarm, S2, by the end of the learning pro-

cess. Note that since there are only two policies to learn from in this scenario, as

described in subsection 5.2, the percentage of the avoid policy is the complement

of the shown percentage of the attack policy. The columns of Table 6.1 relate to

the scenarios of Figures 6.4a and 6.4b respectively.

In Figure 6.4a, S1 uses Avoid policy, and S2 learns the best policy based on the

proposed model. As seen in the �rst column of Table 6.1, relates to the results of

Fig. 6.4a, and similar to the results in Figures 6.1a and 6.1c, the learning process

converges distinctly to avoid collisions in low densities, and converges distinctly

to attack policy in in high densities, resulted with homogeneous swarm. In inter-

mediate densities, the learning swarm is heterogeneous at the end of the learning

process. As can be seen, the learning swarm, is always equal or better in scores.

Number of
players in
game

Players
learned to
Attack in
the experi-
ment of

Fig. (6.4a)

Players
learned to
Attack in
the experi-
ment of

Fig. (6.4b)

6 1.6% 1.6%
10 2% 0%
16 2.5% 1.2%
20 7.5% 0%
26 31.9% 3%
30 61% 7.3%
36 97.7% 26.3%
40 99.7% 55.5%
46 100% 65.2%
50 100% 75.6%

Table 6.1: Percentage of players from swarm S2 learned to use Attack policy.

In Figure 6.4b, S1 uses Attack policy, and S2 learns individually the best policy

based on the proposed model. It is clearly seen from the �gure that the learning

swarm consistently outperforms the other swarm for any given density. At �rst it

58



might be surprising that in high densities the score gap is so signi�cant, based on

fact that if both attack (Figure 6.1b), both swarms score low, and if one swarm

use attack policy and the other use avoid policy, the attacking swarm scores better

(Figure 6.1c).

The explanation to the result can be found the second column of Table 6.1. The

learning swarm becomes heterogeneous under those conditions, since the robots

of S1 are occupied in interfering some robots in S2, which mainly learn to employ

Attack policy, due to high interaction rate and density. Thus, make room to

remaining S2 robots, which therefore sense a low-density environment, learn to

use Avoid policy, and collect pucks in the remaining, more vacant area. Here

again as in Fig. 6.4, the results support the use of the proposed learning model.

The two �gure in 6.5 show the results of the two scenarios described in Fig.

6.4, but are puck-limited rather than time-limited.

59



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65

pu
ck

s

S1: Avoid Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(a) S1 uses Avoid policy, S2 learned individual best policy using the proposed
model. Score results are either tie or win for S2.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65

pu
ck

s

S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(b) S1 uses Attack policy, S2 learned individual best policy using the proposed
model. Score results are always win for S2.

Figure 6.5: Number of pucks collected by two competitive swarms in a 50-puck
limited game.

To conclude, �rst, learning swarms always performs equally or better than non-

learning swarms (Figures 6.4a, 6.4b, 6.5a and 6.5b). Second, competitive behavior

increases the total collected pucks, cumulative of all swarms (Figure 6.1). Third,

60



after a learning process, a swarm may be either homogeneous or heterogeneous.

Furthermore, in low-density environments, a robot better concentrate on its major

goal, to collect pucks (Avoid policy); unlike in high density environments, where

some robots better concentrate in interfering the other swarm (Attack policy), and

potentially make room for its own swarm's other members to collect pucks (Figure

6.1c). The last point shows the strength of the proposed model. This is mainly

since although a robot which is occupied in attacking other robots, cannot directly

ful�ll the goal of collecting pucks, it still optimizes the overall performance of its

own swarm to score better that the other swarms.

Since the results in both limiting conditions, of time and puck limit, provide

the same insights, from this point forward we show the results of time-limited runs

only.

6.2.3 Adding Intra-swarm Learning

We now show that the learning process works also within the swarm as well,

i.e., intra-swarm interactions. We performed intra-swarm learning versus a non-

learning swarm, as shown in Figures 6.7, 6.6 and 6.8. The expectation is to see a

convergence of the learning robots to avoid collisions with robots from their own

swarm, at every density tested. The learning period lasts 50 minutes, and the

learned policy is used during the measured game period which lasts 10 minutes.

61



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: intra-flight inter-fight  S2: intra-learn inter-flight
Total pucks
S1 pucks
S2 pucks

Figure 6.6: Number of pucks collected by two competitive swarms, where swarm
S2 Learns in intra-swarm and Avoids in inter-swarm, while swarm S1 Attack in
inter-swarm.

In Fig. 6.6, swarm S2 learns how to act in intra-swarm collisions, and avoids

inter-swarm collisions. It competes swarm S1, a non-learning swarm, which always

avoids collisions inside its swarm, and attacks in inter-swarm collisions.

In Fig. 6.7 the learning swarm, S2, learns how to act with robots within its

swarm (intra-swarm collisions), and always avoids collisions with robots from the

other swarm (inter-swarm collisions). It competes with a non-learning swarm, S1,

which always avoids collisions, both inter- and intra-swarm.

62



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: intra-flight inter-flight  S2: intra-learn inter-flight
Total pucks
S1 pucks
S2 pucks

Figure 6.7: Number of pucks collected by two competitive swarms, where swarm
S2 Learns in intra-swarm and Avoids in inter-swarm, while swarm S1 Avoids in all
cases.

In both experiments, shown in Figures 6.7 and 6.6, more than 99% of all

robots learned to avoid collision within the swarm. Thus, the results shown in

these �gures, are similar to the results of the corresponding experiments, shown

in Figures 6.1c and 6.1a, where the intra-swarm policy was �xed to be avoid.

In the last �gure, Fig. 6.8, the robots used double learning, both for inter-

and intra-swarm collisions. Note that the two learning processes are completely

separated, thanks to the fact that robots can distinguish the type of robot next to

them. The learning swarm, S2, competes a non-learning swarm, S1, that always

avoids collisions. As can be seen, the learning swarm, is always equal or better in

scores.

63



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: intra-flight inter-flight  S2: intra-learn inter-learn
Total pucks
S1 pucks
S2 pucks

Figure 6.8: Number of pucks collected by two competitive swarms, where swarm
S2 learns both for inter- and intra-swarm, while S1 avoids collisions.

Table 6.2 shows the distribution of the actions chosen at the end of the learning

process, for the experiment shown in Fig. 6.8. The table shows percentage of

learned policies for players from the learning swarm, S2, at the the end of the

learning period, as a function of the player density in the arena. The right column

shows the percentage of players learned to avoid intra-swarm collisions. As seen,

more than 99% of all robots learned to avoid collision within the swarm, regardless

of the player density. The middle column shows the percentage of players learned

to attack in inter-swarm collisions. Its complement to 100% chose to avoid for

inter-swarm collisions, and is strongly depends on the density, which matches inter-

swarm learning in the previous subsection.

64



Number of
players in
game

Percentage of players
learned to Attack in
inter-swarm collisions

Percentage of players
learned to Avoid

intra-swarm collisions

6 0% 100%
10 1% 100%
16 1.8% 100%
20 1.5% 100%
26 15.7% 100%
30 37.6% 100%
36 56.9% 99.7%
40 71.25% 99.7%
46 75.4% 99.8%
50 77.8% 99.4%

Table 6.2: Percentage of policies learned by players from swarm S2 in the experi-
ment of Fig. 6.8.

The results described in this subsection, show that intra-swarm interaction

always choose the �ight method, which matches the negative marginal reward

associated with intra-swarm interactions.

To conclude this section, we examined baseline cases of prede�ned policies,

and performed inter- and intra-swarm learning. We supported that investing more

time in interaction may sometimes be more bene�cial than program time in inter-

swarm interaction, and as a side e�ect increased the total number obtained by all

swarms.

6.3 Additional Cases

In the previous subsection we have simulated baseline scenarios, where a learning

swarm was competing a non-learning swarm under the proposed model, with no

changes. In this subsection, we explore the performance of the learning swarm,

where some changes to the above model were applied. More speci�cally, we ex-

plore changes in the approximated reward and selection methods used during the

learning process (subsections 6.3.1, 6.3.2 and 6.3.4), changes in the experiments'

environment (subsection 6.3.3). In addition we explore the case of learning in a

single swarm (subsection 6.3.5).

65



6.3.1 The Use of WLU Based Reward

In order to justify our use of the WLU function, described and calculated in pre-

vious chapters, in player's rewards during the learning process, we also examined

learning based solely on the individual utility function Ui. Since the WLU function

of each player takes into account both its own utility and its impact on the other

players, we expected di�erences in the learning process results, and therefore in

the total reward at the end of the game. As shown later in this subsection, the

swarm which performed learning that takes into account only its players' own util-

ity without considering its impact on the environment, i.e. the swarm that studied

without WLU function, got similar or lower results than those of the swarm learn-

ing using the WLU function. The individual utility function (non-WLU) based

learning got even lower in some cases than the swarms performing �xed actions

without learning. This experiment illustrates the bene�t of adding the players'

impact on their environment in addition to its own individual utility, namely the

WLU.

In the case where player i in swarm k, i.e., i ∈ Sk, using Eq. (4.7), and the

assumptions used in Section (5.3), the utility is:

Ui = uki + umi

=nk · (βi · T (p)− αi · T (a)) + nm ·
(
(βi · T (p)− αi · T (a))−

(
βm · T (p)− αm · T (a)

))
=
(
nk · βi + nm · βi − nm · βm

)
· T (p) + (nm · αm − nm · αi − nk · αi) · T (a)

As before, in this experiment we consider all players to have the same capabilities

during their program execution, therefore their probability of �nding a puck at a

certain time is equal, and we can write βi = βj = β. As in for the reward function

using WLU, Eq. 5.4, we can write:

Ui

n
=
nk · β
n

· T (pi) +
(nm · (αj − αi)− nk · αi)

n
· T (ai)

ri ≈
nk

n
· β · T (pi)−

nk

n
·∆(α) · T (ai) (6.3)

66



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Learn Policy without WLU
Total pucks
S1 pucks
S2 pucks

Figure 6.9: Pucks collected by non-WLU based learning swarm S2, and attack non-

learning swarm S1.

Fig. 6.9 shows the results achieved by two competing swarms, where the red

swarm, learned using individual utility (non-WLU) as the reward, using Eq. (6.3),

and the green opponent swarm has attacking players. It is evident that the learning

process still contributes to better or equal results when compared to non-learners.

Fig. 6.10a compares the Swarm Utility Di�erence (SUD), which is the di�erence

between the total utility got by the swarms, of two di�erent experiments. The SUD

of the experiment shown in Fig. 6.9 (namely the di�erence between the red and the

green lines) is shown in Fig. 6.10a in cyan. The SUD marked in magenta dashed-

line in Figure 6.10a is the SUD got by a WLU-based learning swarm from the

experiment shown in Fig. 6.5b. Comparing the results in Fig. 6.10a demonstrates

the advantage of learning using WLU function rather than ignoring the in�uence

of the individual player on its environment. In other words, the magenta WLU-

based SUD is always equal or higher than the cyan non-WLU-based SUD, which

justi�es WLU-based learning.

67



6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Sw
ar

m
-U

til
iy

 o
f s

w
ar

m
 S

2

S1: Attack Policy  S2: Learn Policy with\out WLU
S2 Learns without WLU
S2 Learns with WLU

(a) The SUD of two di�erent learning-swarms got by playing versus an enemy-
attackers swarm.

6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Sw
ar

m
-U

til
iy

 o
f s

w
ar

m
 S

2

S1: Avoid Policy  S2: Learn Policy with\out WLU
S2 Learns without WLU
S2 Learns with WLU

(b) The SUD of two di�erent learning-swarms got by playing versus a swarm that
avoids collisions.

Figure 6.10: A comparison of the Swarm Utility Di�erence (SUD), US2 , of di�erent
learning-swarms S2 competing with a swarm of a non-learning swarm S1. The
SUD of the swarm that learns non-WLU-based reward is marked in cyan and the
swarm learns with WLU-based reward is marked in magenta. WLU-based reward
is always equal or better.

68



A comparison of the non-WLU learning and WLU-based learning SUD is shown

in Fig. 6.10b, where in these cases the learning swarms competes a swarm that

uses avoid policy. The magenta dashed line, marked with �lled circles, is for the

WLU-based learning swarm, and cyan dashed line, marked with un�lled circles, is

for the non-WLU learning swarm. In this case, where the original gain of learning

was small, the results with non-WLU function were still similar. As a reminder,

since we deal with zero-sum games, the other SUD, USm is not shown in the �gure,

but is known to be the negative of USk
.

To summarize, in this subsection we demonstrated that learning base on WLU-

function performs equally or better than learning based of individual utility. In

the next subsection we explore the approximation of the reward, based on the

proposed model's WLU function.

6.3.2 Rewards Comparison

In this subsection we explore di�erent approximation parameters for the calcula-

tion of the individual robot's reward. So far, in this chapter we assume identical

behavior during foraging program execution time, and therefore the contribution

of program time is identical for all robots, regardless of their swarm identities.

We do not assume identical contribution during the interaction time, therefore we

explore the in�uence of the di�erent α values for di�erent players.

Since a robot cannot be aware of the contribution of collision time to its own

and to its surroundings rewards, we used an approximation in Eq. (5.4). To

verify the in�uence of the speci�c value of ∆(α) we tested a variety of values and

examined their e�ect on game results, i.e. on the number of pucks collected during

the game. In particular, we examined the e�ect of the α, the multiplier of T (a),

values on the SUD, which is the di�erence between the number of pucks collected

by the learning swarm S2 versus the number of pucks collected by the non-learning

swarm S1. We concentrated on the attack policy swarm, as the opponent, where

the resulted swarm utility values were signi�cantly better for learning swarms.

69



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(a) Pucks collected by a learning swarm S2, us-

ing a reward where ∆(α)=0.25, and attack non-

learning swarm S1.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(b) Pucks collected by a learning swarm S2, us-

ing a reward where ∆(α)=0.2, and attack non-

learning swarm S1.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(c) Pucks collected by a learning swarm S2, us-

ing a reward where ∆(α)=0.08, and attack non-

learning swarm S1.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(d) Pucks collected by a learning swarm S2, us-

ing a reward where ∆(α)=0.02, and attack non-

learning swarm S1.

Figure 6.11: Number of pucks collected by two competitive swarms in a 10 minutes
limited game, after 50 minutes of learning, using di�erent learning rewards.

Figure 6.11 shows the number of pucks collected versus robot densities, for com-

petitions between a non-learning attacking swarm (green), and a learning swarm

(red). The learning swarm used the approximation of Eq. (5.4) with the parame-

ter ∆(α) of 0.25, 0.2, 0.08 and 0.02, instead of 0.125 used in other sections and in

the baseline cases. It is evident that changing this parameter, in�uences the SUD

70



results. Therefore, we compared a range of ∆(α) values in Fig. 6.12.

6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Sw
ar
m
-U

til
iy
 o
f s

w
ar
m
 S
2

S1: Attack Policy  S2: Learn Policy
Learn 0.02
Learn 0.04
Learn 0.06
Learn 0.08
Learn 0.1
Learn 0.125
Learn 0.145
Learn 0.165
Learn 0.185
Learn 0.2
Learn 0.225
Learn 0.25
Random

Figure 6.12: The SUD US2 , of learning-swarm S2 using di�erent ∆(α) values in
reward, the plays versus faster swarm S1, that attack all players in swarm S2.

Figure 6.12 shows a comparison of the swarm-utilities of the learning swarm

when competing a non-learning, attacking swarm, in di�erent robot densities in the

arena. Each dashed line in the �gure marks the SUD achieved using a di�erent

∆(α) value in the reward of Eq. 6.1. Where the values were ranging between

0.02 to 0.25. It is evident from the �gure that as the robots density in the arena

increases, the spread of the resulted SUD also spreads. For low densities, all

tested cases gave similar results. One can explain that the learning process a�ects

behavior during con�ict resolution times, and since there are fewer collisions in

lower densities, the di�erences are minor. Low values of ∆(α) provide some lower

71



bound on the possible performance, which leads to very poor performance at high

densities, resulted swarm-utilities of zero or negative. Upper ∆(α) tend to form

an upper bound on performance, with di�erent values taking the maximum results

for speci�c robot densities. It is interesting to say the the random action selection

gives performance between the lower bound and the upper bound for all densities.

Another observation that is clearly seen in the �gure, is that as ∆(α) increases,

the separation from the lower bound occurs at lower densities.

In most of this work, we have used the value ∆(α) = 0.125, due to a number

of reasons. First, for highest densities this parameter provides the best SUD

values, under the de�ned environment. One should bare in mind that the �gure

shows results of a speci�c opponent swarm type, total of two swarms in the arena,

and speci�c arena. Since this work examines various cases with di�erent hyper

parameters used in this subsection, this value was selected to avoid over-�tting.

Future work may explore the use of di�erent ∆(α) values as a function of the

robots densities and other environmental parameters.

Number of

players in

game

Percent of

players

learned to

Attack with

reward

R0.02

Percent of

players

learned to

Attack with

reward

R0.08

Percent of

players

learned to

Attack with

reward

R0.125

Percent of

players

learned to

Attack with

reward R0.2

Percent of

players

learned to

Attack with

reward

R0.25

6 0% 0% 1.6% 1.6% 8.3%

10 0% 0% 1% 12% 18%

16 0% 0% 2.5% 26.8% 29.3%

20 0% 0.5% 2% 34.5% 35.5%

26 0% 0.8% 11.5% 46.9% 47.6%

30 0% 1.6% 33.3% 57.3% 57.6%

36 0% 2.2% 51.1% 62.7% 65%

40 0% 4.25% 49.25% 63.5% 64%

46 0% 17.6% 58.2% 69.1% 72.6%

50 0% 32.6% 56.4% 76.8% 78.4%

Table 6.3: Percentage of players from swarm S2 learned to use Attack policy in
the experiment of Fig. (6.12).

72



Table 6.3 shows the percent of robots chose the Attack policy rather than

Avoid policy at the end of the learning process. One can observe that in this

tested scenario, the percentage of players who choose to Attack is larger as the

reward parameter is larger, but this percentage is blocked at a certain density. The

distribution of the players' decisions a�ects the total number of pucks collected by

the entire swarm as can be seen in the Fig. 6.12. It makes sense that the di�erence

between the ∆(α) parameters of the reward a�ects the degree of aggressiveness

of the players, since the α parameter represents the contribution of the collision

time on the player's utility. In other words, a player who bene�ts from longer

interaction learns to attack more, and a player who bene�ts from concentrating on

the game rather than colliding learn to avoid collisions to maximize its program

execution time.

6.3.3 Robustness to Initial Conditions

As described in Section 5.1, the standard experiments assumed �xed locations of

home bases and pucks, and were symmetric in location. However, since initial

position of the robots was random, there could still be an unintentional advantage

to one of the swarms. Therefore, the following experiments tested 200 runs in 200

di�erent initial puck locations, which resulted with behavior similar to previous

experiments. Figures 6.13a, 6.13b, 6.13c and 6.13d should be contrasted with

Figures 6.1c, 6.1a, 6.4b and 6.4a respectively.

73



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Random Pucks, S1: Avoid Policy  S2: Attack Policy
Total pucks
S1 pucks
S2 pucks

(a) Swarm S2 use Attack policy, while swarm S1 use
Avoid policy.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Random Pucks, S1: Avoid Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

(b) Both swarms use Avoid policy.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

Random Pucks, S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(c) Swarm S2 Learns policy, while swarm S1 use At-
tack policy.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s
Random Pucks, S1: Avoid Policy  S2: Learn Policy

Total pucks
S1 pucks
S2 pucks

(d) Swarm S2 Learns policy, while swarm S1 use
Avoid policy.

Figure 6.13: Number of pucks collected by two competitive swarms in a 10 minutes
limited game, after 50 minutes of learning.

For the non-learning scenarios, �gures 6.13a and 6.13b, we achieved the exact

closely matching results to our standard experiment con�guration. In the other two

scenarios there were minor di�erences, which still kept the same general behavior

we saw in the standard experiments. However, those relatively small di�erences,

gave the idea to also check what happens when one of the swarms has intentionally

some kind of advantage over the other. In subsection 7.5 we locate the pucks closer

74



to the non-learning swarm and check if the learning swarm could overcome this

disadvantage.

To conclude, the results of examining the learning process in di�erent environ-

ments, were independent of initial puck location. We can therefore assume, that

the standard experiment con�guration is general enough and the learning process

behaves similarly both in symmetric and asymmetric initial puck location.

6.3.4 Comparing Di�erent Exploration and Selection Meth-

ods

As discussed in previous chapters, during learning, a player selects actions to

perform based on a select method, then performs the selected action, then measures

the reward, and updates the estimated values of the action. Furthermore, in this

work we use Upper Con�dence Bound (UCB) method as a selection method; Multi-

Armed Bandit (MAB) learning algorithm; and the reward based on zero-sum game,

player's utility and the mutual in�uence of the player on the other players and

vice versa, using the Wonderful Life Utility (WLU) function. In this subsection,

we replaced the UCB with alternative methods detailed below, to demonstrate

the generality of use of the rest of the model. We therefore experimented the

same scenario, where the di�erence for the learning swarm was from the following

alternatives: Discounted UCB (DUCB) described in [21], a greedy method, and a

periodic random exploration using two di�erent parameters. All learning process

are used with the same WLU-based reward function.

The comparison shows that our WLU-based reward function is applicable not

only to the UCB selection method, but also to other known selection methods.

75



6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

Sw
ar
m
-U
til
iy
 o
f s
w
ar
m
 S
2

S1: Attack Policy  S2: Learn with different selection method
DUBC
UBC
Greedy
Explore 10%
Explore 5%

Figure 6.14: The Swarm Utility Di�erence (SUD) US2 , of learning-swarm S2 using
di�erent selection methods during the learning process. The reward function is
equal for all learning swarms.

Figure 6.14 compares the SUD values US2 , which is the di�erence between the

number of pucks collected by each swarm, when compete with a non-learning, at-

tacking swarm. Each curve shows the SUD for a set of runs, where the learning

swarm used di�erent method selection, while the calculation, learning reward and

action's value estimation are the identical to the standard scenario. It is evident

from the �gure that most of these alternative methods, as the one speci�cally

proposed earlier (UCB based), provides signi�cantly positive SUD values, mainly

in the higher densities. The results are surprising in two ways. First, the greedy

method outperforms UCB. Second, the Discounted UCB, which is intended for

distributed learning settings, is outperformed by all methods. One possible expla-

nation for the DUCB results is that the WLU-based reward function is already

considering the distributed learning environment, and the impact of the player's

actions to its surrounding.

76



6.3.5 Learning in a Single Swarm

This subsection deals with the single swarm scenario, and tries to assess the learn-

ing ability in the single-swarm case, thus be a generalization of earlier results. In

this case, four di�erent possible actions from two possible strategies were exper-

imented. In these experiments, the pucks were collected by a single swarm in a

standard time-limited, in a standard 10-minutes game. There were �ve scenar-

ios, four of �xed policies where no learning was performed, and all robots always

chose the same prede�ned action during interaction, and one scenario where each

robot learned a preferred action according to the proposed model. In the four

�xed actions, three actions are of �ight type, as described in subsection 5.2. As

a reminder, in this action the robot �nds the most vacant direction (less robots

detected), rotates towards this direction and drives forward for a predetermined

time. In this experiments the time durations were chosen to be 50, 500 and 1000

ms. In addition, a forth action that was allowed to the robots to learn was a �ght

action, in which the robot drives forward for a �xed duration of 1000 ms towards

the robot which it interacts with. In the �fth scenario, robots in the swarm learned

to choose one of the above four actions.

Adapting the utility of a single player to the single swarm case based on the

proposed theory, the reward used by the robots during learning, using Eq. (4.2),

(4.10) and (4.13):

WLUi = uki + ϕi
Sk

= nk · (β · T (p)− αi · T (a)) + ϵρSk
− ϵρSk

= nk · (β · T (p)− αi · T (a)) + nk · (β · T (p)− αk · T (a))− nk · β · (T (p) + T (a))

= nk · (β · T (p)− (αi + αk + β) · T (a))

Figure 6.15 shows the number of pucks collected by the swarm. Note that the

single swarm case, is not a zero-sum game, and the SUD becomes the number of

pucks collected. It can be seen from the �gure that the di�erent actions perform

di�erently. The worse action of �ght (black) results from the swarm being occupied

with interactions. The cyan, magenta and yellow lines are for the three �ight

methods. The learning swarm achieved exactly the highest possible score when

77



compered to all other actions (the two curves, yellow of �ight with duration of 50

ms, and blue of learn are overlapping). The swarm has learned almost universally

to use the most e�ective action for a game without opponents, which is the action

that avoids collision in the fastest time, and thus, the robots can return to collect

pucks.

12 20 32 40 52 60 72 80 92 100
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

Single Swarm: Fixed and Learned Policies
Learn
flight-50
flight-500
flight-1000
fight-1000

Figure 6.15: Number of pucks collected by a single swarm using di�erent collision
actions and during intra-swarm learning. The learned result (yellow) overlaps the
best non-learned results (blue).

The experiment shows that the learning method which is suitable for two

swarms is also suitable in the case of one and only swarm, and examines a case

similar to the one tested in previous works of [18, 43].

78



Chapter 7

Asymmetric Competition

In the previous chapter we concentrated on the case of identical competing swarms,

i.e, during the program execution state (not during con�ict resolution), the robots

behave exactly the same when searching for pucks and moving to their respective

homebases. In this chapter, we now elaborate on the case of non-identical program

executing behavior for di�erent swarms, and in particular when one of the swarms

has some kind of advantage over the other, and even a case of three swarms

competition. We explore the case of competing a faster swarm, an uneven number

of robots in the swarms, and a case of advantaged location of homebase in the

arena. When in disadvantage, being equal to the opponent is insu�cient to win,

and the learning swarm needs to overcome the opponent's advantage gap.

Section 7.1 applies the asymmetric conditions to reward function, for the fol-

lowing sections of this chapter. Section 7.2 analyze the case where the learning

swarm is slower than the other during the program execution time. Section 7.3

demonstrates the case of three-swarm competition, where the learning swarm is

slower than the others. Section 7.4 shows the case where the learning swarm is

disadvantaged by having less players in the swarm than the other. Section 7.5

shows a case of a learning swarm with disadvantaged location of homebase in the

arena.

79



7.1 The Reward Function for Asymmetric Swarm

As a reminder, Chapter 4 de�ned the parameters α and β as the contribution of

the interaction and program execution times, respectively to the utility. In the

previous chapter, we assumed that there is no inherent advantage to any of the

swarms or robots, therefore, their β parameters were equal. In this chapter, we

give the non-learning swarm an advantage, and therefore its chance to get more

pucks in a given time interval is higher.

We now relate to the case where the non-learning swarm has an advantage over

the learning swarm, which is demonstrated in the rest of this chapter. The advan-

tage is related to the program execution, foraging, rather than during interactions.

Such advantage could be created through higher speed, better homebase location,

bigger swarm, etc. Therefore, it would probably in�uence the β parameters rather

than the α parameters. In all experiments we kept the advantage ratio to be 7
6

as detailed in the next sections. Our goal now is to re�ects this disadvantage

of the learning swarm into the learning process by a�ecting the reward function

parameters.

We estimate the reward for the scenario where the program execution is not

identical, i.e βi ̸= βj. Since the advantage ratio of the swarms is 7
6
, we assign

βj = βm =
7

6
· βi =

7

6
· βk

into Eq. (5.2), to get the WLU of player i, in order to estimate the reward:

W
USk
i

n
=

((
nk +

5
6
· nm

n

)
· βi
)
· T (p) +

(( 7
6
· nm − nk

n

)
· βi
)
· T (a)

+

(
2 · nm · αm − nk · αi − nk · αk − 2 · nm · αi

n

)
· T (a) (7.1)

Therefore we can rewrite Eq. (5.4), using Eq. (7.1), to get the approximated

reward for the disadvantaged learning swarm case:

80



R =
W

USk
i

n
≈ 11

12
· β · T (p) +

(
n′
i

n′ · σi · |∆(α, β)|
)
· T (a) (7.2)

We use this reward in the learning process of the experiments detailed in the

next sections, where di�erent values are assigned to ∆(α, β), and the e�ect on the

results is demonstrated and discussed.

7.2 Competing a Faster Swarm

In this subsection we analyze the case where the robots on the arena are not

homogeneous during the program execution. We assume the scenario where the

robots in swarm S1 are faster than the robots in swarm S2. In other words,

swarm S2 has initial disadvantage when competing swarm S1.

We �rst illustrate the advantage of S1 with non-learning S2. We then follow with

faster swarm S1 and learning swarm S2 with a goal to defeat S1. In this section

we gave swarm S1 speed of 70 , and swarm S2 the speed of 60 cm/m.

7.2.1 Baseline: Two Non-learning Swarms with Speed Dif-

ference

In order to explore the bene�t of learning, we would like to give the �xed

behavior swarm an advantage. In the baseline one swarm has inherent greater

speed during the program execution time, and therefore has an advantage over

the other in collecting pucks. We started the sequence of experiments in this

subsection with an experiment that veri�es that swarm S1 indeed has collected

more pucks in the game since it is faster when this is the only di�erence between

the swarms.

81



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Faster S1: Avoid Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

Figure 7.1: Swarm S1 is faster than swarm S2, both always avoid collisions. The
advantage of swarm S1 is consistent for all densities.

As shown in Figure 7.1, the faster swarm collects more pucks in every density.

In order to compare the results of experiments that involve a learning process with

di�erent speeds, we ran two more experiments without learning. The experiment

shown in Figure 7.2a, where swarm S1 is faster than swarm S2. The faster swarm

S1, uses �ght method robots against the opponent swarm, i.e. attacks opponents

(while avoiding collisions within its swarm). The slower swarm S2, always uses

�ight method, i.e., avoids collisions. As shown in the �gure, S2 loses in almost all

densities, get similar results in higher densities, and wins only in the most crowded

game settings.

In the next experiment, shown in Figure 7.2b, swarm S1, is still faster than

swarm S2, but the faster swarm S1, uses �ight method and the slower swarm S2,

uses �ght method. As shown in the �gure, S2 wins in low densities, and loses in

high densities.

82



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Faster S1: Avoid Policy  S2: Attack Policy
Total pucks
S1 pucks
S2 pucks

(a) Pucks collected when faster swarm S1 Avoids, slower swarm
S2 swarm Attacks.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Faster S1: Attack Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

(b) Pucks collected when faster swarm S1 Attacks, slower swarm
S2 swarm Avoids.

Figure 7.2: Number of pucks collected by two competitive swarms in a 10 minutes
limited game with di�erent densities, where the swarms has di�erent driving speeds
of 60 and 70.

In the previous chapter, we saw that for identical swarms during program

execution time, (Fig. 6.2) the �ight method wins at lower densities, while the

�ght wins in higher densities, where the equal score was achieved for density of

36 robots on the arena (Fig. 6.1c). In the current runs, we see that the faster

83



speed in�uences this �tie� point: S1 wins from lower density till density of 46

when it uses �ight method, (Fig 7.2) and S1 wins from density 26.

In the next sections we apply learning in order to successfully overcome the

learning-swarm's disadvantage. We test our learning model against four non-

learning advantaged swarms.

7.2.2 Learning Swarm vs. a Faster Attacking-Swarm

We now apply learning in order to successfully overcome the learning-swarm's

disadvantage of speed as described earlier in this section. The policy of the non-

learning faster swarm is Attack, i.e, �ght in inter-swarm collisions and �ight in

intra-swarm collisions. Fig. 7.3 provides the result of one of the examples men-

tioned in subsection 7.1, using reward of R0.145, where ∆(α, β) = 0.145 in Eq.

(7.2).

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Faster S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

Figure 7.3: Swarm S1 moves in 70 speed always attacks enemies, swarm S2 move
in 60 speed and learns how to act in collisions, using reward R0.145.

Figure 7.4 compares the three examples of rewards mentioned in Subsection

7.1. As usual in this work, the x-axis represents the total number of robots on

84



the �eld both swarms, i.e. the density. The y-axis represents the SUD received by

the learning swarm, as de�ned in de�nition 4, i.e., the number of pucks collected

by swarm S2 minus the number of pucks collected by S1. In order to simplify the

comparison between the di�erent rewards, we compare the swarm utilities, rather

than the pucks collected for each swarm. The SUD of the experiment shown in

Fig. 7.3 is represented by the yellow line in Fig. 7.4.

Each graph in the �gures shows the results of an experiment run with a dif-

ferent reward function, from the rewards suggested above. The cyan graph repre-

sents the learning outcomes with reward R0.1, where ∆(α, β) = 0.1 in Eq. (7.2).

The magenta graph represents the learning outcomes with reward R0.125, where

∆(α, β) = 0.125, and the yellow graph represents the learning outcomes with re-

ward R0.145, where ∆(α, β) = 0.145. The black graph is the results got by swarm

S2 when learning was not involved.

85



6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Sw
ar

m
-U

til
iy

 o
f s

w
ar

m
 S

2

Faster S1: Attack Policy  S2: Learn Policy
S2 Learn 0.1
S2 Learn 0.125
S2 Learn 0.145
Avoid

Figure 7.4: The SUD US2 , of learning-swarm S2, the plays versus faster, attacking
swarm S1.

In Figure 7.4, the learning swarm S2, is the slower swarm, which moves at a

speed of 60. The faster swarm S1, which moves at a speed of 70, does not learn.

The robots in this swarm always avoid colliding inside the swarm and attack robots

that are not from their swarm. It can be seen that all the rewards tested overcome

the non-learning swarm, as the SUD is greater than or equal to zero. In addition,

the learning swarms get signi�cantly better results than the non-learning swarm.

At low densities all types of rewards achieved close results, while the learning with

reward R0.145 achieving the best results. It should be noted that reward R0.1 at the

lowest density (6 robots from both swarms in the �eld), achieved a swarm-reward

86



of 0, i.e. did not defeat the previous swarm on average, but achieved the same

result on average. At medium densities, (26 and 30 robots in the �eld), it can be

seen that there is a very large gap between the types of learning. Learning with

reward R0.1 achieves signi�cantly lower results from the other rewards, although it

still defeats the second swarm. At high densities the various rewards again achieve

relatively close results, where at any density it can be seen that there is di�erent

reward that achieves a higher result.

The results shown in the �gure can be explained according to the Table 7.1.

Each column refers to the percentage of player learned the attack policy, where

its complement to 100% learned the avoid policy. The results are obtained us-

ing di�erent ∆(α, β) values of the reward function in Eq. (7.2), and their SUD

comparison is shown in Fig. (7.4).

Number of

players in

game

Percentage

of players

learned to

Attack with

reward R0.1

Percentage

of players

learned to

Attack with

reward

R0.125

Percentage

of players

learned to

Attack with

reward

R0.145

6 0% 0% 3%

10 1% 2% 3%

16 3.125% 5% 15%

20 3.5% 10% 25.5%

26 5.3% 30% 43.8%

30 12.33% 45.66% 53.66%

36 38.88% 60.55% 61.66%

40 53% 60.75% 62%

46 67.82% 60% 66%

50 66.4% 71.8% 71.2%

Table 7.1: Percentage of players from swarm S2 learned to use Attack policy, in
the experiment of Fig. (7.4).

When comparing the distribution of actions chosen by the robots at the end

of the learning process, one can identify reasons for some of the di�erences or

87



similarities in the SUD results obtained from the various rewards. At densities of

6 and 10 robots on the �eld, when the distribution of choices after the learning

process is very close and low, it can be seen that the results are similar. Between

densities of 16 to 26 robots on the �eld, higher results can be seen for a swarm

with reward of R0.145. It can be seen in the table that at these densities, the

learning with this reward causes more robots to choose to attack opponents, and

at these densities it allows better results. The largest di�erence in results between

the tested rewards is for a density of 30 robots in the �eld. At this density, similar

percentages (53% and 45%) of robots that learn to attack using rewards of R0.125

and R0.145, compared to only 12% of robots in the swarm that learn with reward

R0.1. The swarms that studied with a reward R0.125 and R0.145 received an average

swarm-reward of 27, compared to the swarm that studied with a reward of R0.1

that received an average of only 13. Therefore, it can be said that at this density

when half of the swarm is attacking, the result is twice as good than the case

where only a minority learns to attack. In the high densities it can be seen that

the percentages are closer and so are the results.

7.2.3 Learning Swarm vs. a Faster Avoiding-Swarm

We now apply learning in order to successfully overcome the learning-swarm's

disadvantage of speed as described earlier in this section. The policy of the non-

learning faster swarm is Avoid, i.e, �ight from all robots of both swarms. Fig.

7.3 provides the result of one of the examples mentioned in Subsection 7.1, using

reward of R0.145.

88



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Faster S1: Avoid Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

Figure 7.5: Swarm S1 moves in 70 speed always avoids collisions, swarm S2 move
in 60 speed and learns how to act in collisions, using reward of R0.145 .

Figure 7.6 shows the results of the experiments run with the four types of

rewards suggested above. The learning swarm is the slower swarm, which moves

at a speed of 60. The fast swarm, which moves at a speed of 70, does not learn.

The robots in this swarm always avoid collisions with all types of robots. The

SUD of the experiment shown in Fig. 7.3 is represented by the yellow line in Fig.

7.4.

89



6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5
0
5
10
15
20
25
30

Sw
ar
m
-U
til
iy
 o
f s

w
ar
m
 S
2

Faster S1: Avoid Policy  S2: Learn Policy
S2 Learn 0.1
S2 Learn 0.125
S2 Learn 0.145
Avoid
Attack

Figure 7.6: The SUD US2 , of learning-swarm S2, that competes a faster swarm S1,
that avoids collisions.

The blue and the black lines represents the non-learning behavior which pre-

sented here as a reference. Although the di�erences of the swarm-utilities got by

the di�erent rewards were very minor, one can observe that the learners' swarm-

utilities in all learning cases, follow the black line for lower densities, where it

holds the advantage, and follow the blue line in higher densities, where it holds

the advantage. There is no learning that achieves signi�cantly better results. In

this case, there are some densities where the learning does not seem to achieve bet-

ter results than in a �xed policy, even though there are some densities where the

learning policy gets higher results. Our assumption is that the competing swarm

is a very strong swarm; it has a speed advantage over the learning swarm, and it

always avoids collisions and concentrates on collecting pucks. As long as it has the

90



speed advantage, we could not �nd a competing swarm that could beat it. From

these conclusions we thought test learning against another swarm when there is a

speed advantage, which is easier to compete with, than the one described in this

subsection, the mixed-swarm of the next subsection.

7.2.4 Learning Swarm vs. a Faster Mixed-Swarm

The avoiding swarm is really hard to defeat when having speed advantage in low

densities. We wanted to compete against another faster, non-learning swarm, that

would be at competent level between the attacking and avoiding swarms, so that

we could test our learning model. We created a faster mixed-swarm, where half of

the robots use �ght method in any interaction; Aggressive policy, and the other

half uses �ight method in any interaction; Avoid policy.

4 6 8 10 12 14 16 18 20 22 24
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

Faster S1: Half Aggressive Policy - Half Avoid Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

(a) Swarm S2 moves in 60 speed and always avoids
collisions.

4 6 8 10 12 14 16 18 20 22 24
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck

s

Faster S1: Half Aggressive Policy - Half Avoid Policy  S2: Attack Policy
Total pucks
S1 pucks
S2 pucks

(b) Swarm S2 moves in 60 speed and always attacks
swarm S1.

Figure 7.7: Number of pucks collected by two competitive swarms, in a 10 minutes
limited game. S1 is faster, half of its players attacks all players, and the other half
avoids all players.

Fig. 7.7 shows the baseline, where no swarm is learning. In both �gures 7.7a

and 7.7b, swarm S1 which is marked green, is faster and is mixed; half of the

swarm uses �ight method for all collisions, and the other half uses �ght method

for all collisions, as described above. Fig. 7.7a shows the case where the slower

91



swarm S2, marked red, uses �ight method for all collisions, and Fig. 7.7b shows

the case where swarm S2 uses �ight method for intra-swarm collisions and �ght

method for inter-swarm collisions. It is evident from the �gure that a non-learning

avoid policy is always better than the faster mixed-swarm, and the attack policy is

always worse. Note that the number of pucks collected by the faster mixed-swarm,

marked in green, which does not change policy between those two experiments,

still has signi�cant di�erence in performance, due to the behavior of the other

swarm.

4 6 8 10 12 14 16 18 20 22 24
robots

−20
−15
−10
−5
0
5

10
15
20
25
30
35
40
45
50

Sw
ar
m
-U

til
iy
 o
f s

w
ar
m
 S
2

Faster S1: Half Aggressive Policy - Half Avoid Policy  S2: Learn Policy
S2 Learn 0.02
S2 Learn 0.1
S2 Learn 0.125
S2 Learn 0.145
Avoid

Figure 7.8: The SUD US2 , of learning-swarm S2, using di�erent rewards, that
competing with a faster mixed-swarm S1.

Fig. 7.8 shows the swarm-utilities of the learning swarm S2, when compet-

ing against a faster mixed-swarm, S1, using di�erent rewards parameter, ∆(α).

The black line represents the baseline of non-learning avoiding swarm shown in

Fig. 7.7a. The colored lines represents learning with di�erent rewards. One can

observe that the learning did not achieve any signi�cant advantage over the non-

learning case. The only consistent small advantage was with the reward of R0.02,

that represents slow learning and have not shown any advantage in previous ex-

92



periments. Therefore we can assume that the learning parameters may not �t this

scenario. We hypothesize that learning during a competition with a mixed-swarm

may bene�t from treating the mixed-swarm as two di�erent swarms. This hy-

pothesis is examined in the next section, and shows signi�cantly improved results.

Unlike in this subsection, where the best learning could compare to a non-learning

�xed policy baseline, learning while distinguishing between the di�erent opponent

swarms provided a higher score than any other case.

7.3 Three Swarms Competition: Learning with

Speed Disadvantage

In the previous chapter we found that learning against a faster mixed-swarm,

showed no better results than using a �xed policy. We hypothesize that learning

during a competition with a mixed-swarm may bene�t from treating the mixed-

swarm as two di�erent swarms. Therefore, we divided the faster mixed-swarm

into two faster homogeneous di�erent swarms with the same behavior described

in the previous section. The major di�erence to all previous experiments, is the

fact that when competing two swarms, each robot needs to learn a policy suitable

for each competing swarm. Therefore, at the end of the learning process, each

learning robot, will have a learned policy for each swarm-ID. To make the results

comparable to previous experiments, the number of robots in the learning swarm

is equal to the total number of robots in the two other faster non-learning swarms.

Figure 7.9 shows an example of an arena with robots from the three swarms.

Each swarm was given its own ID and color so that all robots could be distin-

guished. The learning swarm is marked in red LEDs, the attacking swarm in yel-

low, and the avoiding swarm in green. The total amount of non learning robots,

i.e. yellow and green robots is equal to the number of learning robot, i.e. red

robots, as explained above.

93



Figure 7.9: Three swarms on the �eld, swarm-ID is visible with red, green and
yellow LEDs.

We examine two di�erent cases. We �rst let the red swarm learn with the

same reward function and parameters for both swarms, and the learning process

is separated for each swarm. It means that at the end of the learning period,

each learning robot can learn a di�erent policy for each competing swarm. The

results of this case are shown in Fig. 7.10. We compare the SUD of the learning

swarm S2, which is de�ned in Eq. 3.7. Since we measure in the experiments the

pucks collected by each swarm, the SUD measured in this �gure is the total pucks

collected by swarm S2, minus the total pucks collected by swarm S1 and S3. We

got way better results than the results of the learning process shown in Fig. 7.8.

Furthermore, unlike the previous subsection, we also achieved signi�cantly better

results the �xed-policy non-learning case marked in black. The results got after

a learning process are always equal or better than the results of a �xed-policy of

Avoid, marked in black. The reason is obvious, each competing swarm a�ects the

learning swarm di�erently, and therefore the learning process ends with di�erent

policies when it is split.

94



4 6 8 10 12 14 16 18 20 22 24
robots

−10
−5

0
5

10
15
20
25
30
35
40

Sw
ar

m
-U

til
iy

 o
f s

w
ar

m
 S

2
Faster S1: Aggressive Policy  Faster S3: Avoid Policy  S2: Learn Policy with same paramas

S2 Learn 0.1
S2 Learn 0.125
S2 Learn 0.145
Avoid

Figure 7.10: The SUD US2 , of learning-swarm S2, that competes faster swarms S1

and S3, using equal reward parameters.

We further let our swarm learn with di�erent reward for each swarm. Since

the α parameter quanti�es the collision time with an opponent, we chose to use

di�erent α values during interactions with the di�erent swarms. Unlike Fig. 7.8

where we used the same value of parameter α for both opponent swarms, we gave

a �xed value for learning with swarm S3, which uses �ght policy in all interactions,

and gave di�erent values for reward of when interacting with swarm S1, which uses

�ight method in all interactions.

The results of this case are shown in Fig. 7.11 and are better than any other

run.

95



4 6 8 10 12 14 16 18 20 22 24
robots

−10
−5

0
5

10
15
20
25
30
35
40

Sw
ar

m
-U

til
iy

 o
f s

w
ar

m
 S

2
Faster S1: Aggressive Policy  Faster S3: Avoid Policy  S2: Learn Policy with diff paramas

S2 Learn 0.1
S2 Learn 0.125
S2 Learn 0.145
Avoid

Figure 7.11: The SUD US2 , of learning-swarm S2, that competes faster swarms S1

and S3, using di�erent reward parameters.

The conclusions from this section are follows. First, distinguishing between

swarms with di�erent behaviors, rather than treat them all as the same mixed-

swarm is bene�cial and brings signi�cantly better results. During the learning

phase each robot should maintain di�erent learning processes, one for each swarm.

This results with a separate policy for each swarm. Second, it is even better to

use separate reward parameters for each swarm, to account for the di�erent value

gained by a robot by interacting with di�erent types of opponents.

Now the question arises, are there optimal reward parameter values suitable

for each type of swarm, and can it be learned by the individual learning robots

during a competition. But this is left as future work.

7.4 Learning to Compete with a Larger Swarm

Another case of advantage to the non-learning swarm could be in the swarm size,

since more players of the swarm could collect more pucks, or occupy the opponent

96



swarm, and then clear the way for the rest of their swarm. To allow fair comparison

with previous cases of swarm's advantage or disadvantage, we maintained the ratio

of 6:7, used earlier. Figure 7.12 provides the baseline case where both swarm use

the �xed policy of Avoid. We see a similar advantage in the resulted number of

collected pucks as in previous cases. In this case, the total number of robots in the

�eld (the horizontal axis), di�ers from other experiments, since the swarm sizes

are unequal. So for 13 robots there were 7 robots for S1 and 6 robots for S2, and

for 26, 39 and 52, there were double, triple and quadruple these numbers.

13 26 39 52
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Larger S1: Avoid Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

Figure 7.12: Swarm S1, (marked in green) is larger than swarm S2 (red), in ratio
of 7:6.

Fig. 7.13 shows the case where the larger swarm S1 uses the Attack policy.

In Fig. 7.13a, the smaller swarm S2 uses Avoid policy, and in Figure 7.13b, it

learns the best policy. As expected, the non-learning larger swarm get equal or

better scores when competing the smaller avoiding swarm. However, when learning

is applied, the learning swarm defeats the attackers with signi�cant gap, for all

densities.

97



1 2 3 4
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Larger S1: Attack Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

(a) Pucks collected when larger swarm S1 Attacks, smaller swarmS2 swarm Avoids.

13 26 39 52
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Larger S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(b) Pucks collected when larger swarm S1 Attacks, smaller swarm S2 learns best
policies.

Figure 7.13: Number of pucks collected by two competitive swarms in a 10 minutes
limited game with di�erent densities, where swarm S1 is larger than swarm S2 in
ration of 7:6.

98



To conclude, we showed another case where learning enables compensation of

the disadvantaged swarm.

7.5 Learning to Compete in a Disadvantaged Arena

Another type of advantage to the non-learning swarm may be a shorter distance

between the puck location and the homebase. Since the pucks distribution location

and the homebase location is are unknown to the robots, but once a robot found a

puck due to its random wandering in the arena, it �nds the homebase by searching

for its color. Therefore, decreasing the distance between the two, increases the

probability to �nd the homebase earlier and therefore increase the expected value

of the number of pucks in a given time. In the previous cases where the distance

was equal, the beta of the two swarms, which is the contributor of the program

time the robot's utility, were equal. In our case, since the distance is shorter,

the same amount of time-unit of foraging, would contribute more on the expected

value for bringing a puck to the homebase. Therefore we assume the beta values

are di�erent, with β1 > β2, where the larger β belongs to the swarm with the

advantage.

In Figure 7.14, the top puck location is 16 cm closer to the green swarm's

homebase, marked in cyan, than to the red swarm's homebase, marked in magenta.

In order to make the results in this subsection comparable with the previous results

in this chapter, the distance ratio of the locations of the upper puck from the two

homebases, is 7:6. Therefore, the ratio used for reward calculation during the

learning process was β1 : β2 = 7 : 6.

99



Figure 7.14: Upper puck is 16cm closer to S1's homebase, marked in cyan, than
to the S2's homebase, marked in magenta.

The next two subsections examine the cases of competing with such advantaged

swarm as described above. The �rst case is where the non-learning advantaged

swarm uses avoid policy, and the second where the non-learning advantaged swarm

uses attack policy.

7.5.1 Learning Swarm Competing with an Arena-Advantaged

Avoiding-Swarm

In Figure 7.15 both swarms avoid collisions, and swarm S1 has advantaged home-

base location. It can be seen that the green swarm, S1 has a consistent advantage

over the red swarm, S2, due to its homebase location advantage. We use this exper-

iment as a baseline to compare with the in�uence of learning in such asymmetric

environment.

100



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Advantaged S1: Avoid Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

Figure 7.15: Swarm S1 has an advantaged homebase location. Both swarms avoid
collisions.

The following Figure 7.16 shows the results of learning with homebase location

advantage, with two di�erent rewards. The �rst learning process, shown in Figure

7.16a uses a reward an equal value of β parameters to both swarms. In other

words, this reward does not take into account that for the same playing time, two

players from two di�erent swarms are likely to get a di�erent score. The second

�gure, 7.16a, shows learning using a reward where the β parameter values are

di�erent, due to the advantage in the homebase location.

101



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Advantaged S1: Avoid Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(a) Swarm S1 has an advantaged homebase location.
S1 avoid collisions, S2 learn how to act during colli-
sions with reward based on β1 = β2.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Advantaged S1: Avoid Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(b) Swarm S1 has an advantaged homebase location.
S1 avoid collisions, S2 learn how to act during collisions
with reward based on β1 : β2 = 7 : 6.

Figure 7.16: Number of pucks collected by two competitive swarms, in a 10 minutes
limited game. S1 has an advantaged homebase location.

The results shown in the �gures above show that learning with equal beta values

during the reward calculation, improves the non-learning case for higher densities.

In this case the score is tied for densities of 36 and 40 robots, and it wins for

46 and 50 robots. After applying learning with two di�erent betas in the reward

calculation of the learning swarm, we see that it is tied on density of 30 robots,

and wins for densities of 36 and above. In other words, using two di�erent betas in

the case of disadvantaged homebase location, improves the results of the learning

swarm. Table 7.2 may explain the improvement when using di�erent betas in the

reward. Considering that the other swarm bene�ts more from program execution

time unit, the learning swarm has higher incentive to interfere with the other

swarm's robots rather than search for pucks. This is evident by the higher ratio of

attack policy learned by robots in the learning swarm at the end of the learning

process, when the reward is based on di�erent beta values.

102



Number of

players in

game

Percentage

of players

learned to

Attack with

reward

based on

β1 = β2

Percentage

of players

learned to

Attack with

reward

based on

β1 : β2 =
7 : 6

6 1.66% 13.3%

10 1% 21%

16 1.8% 30%
20 3.5% 39.5%

26 13.4% 50%

30 25.6% 58.66%

36 53.8% 65.5%

40 53% 64.5%

46 61% 72%

50 67% 78.6%

Table 7.2: Percentage of players from swarm S2 learned to use Attack policy, in
the experiment of Fig. 7.4.

7.5.2 Learning Swarm vs. an Arena-Advantaged Attacking-

Swarm

In this subsection, the non-learning advantaged swarm S1 uses attack policy, i.e.,

uses �ght method in inter-swarm interactions, and �ight method in intra-swarm

interactions. As a baseline shown in Figure 7.17, swarm S2 uses avoid policy in all

interactions, i.e, both swarms use �xed policies and do not learn. The results in

the �gure show that using these policies, swarm S2 (red) collects more pucks in low

densities even though it is in disadvantage, collects less pucks in higher densities.

103



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Advantaged S1: Attack Policy  S2: Avoid Policy
Total pucks
S1 pucks
S2 pucks

Figure 7.17: Swarm S1 has an advantaged homebase location. Swarm S1 attack
enemies, swarm S2 avoid collisions.

Similar to the previous subsection, the following Figure 7.18 shows the results

of learning with homebase location advantage, with two di�erent rewards. The

�rst learning process, shown in Figure 7.18a uses a reward an equal value of β

parameters to both swarms. In other words, this reward does not take into account

that for the same playing time, two players from two di�erent swarms are likely

to get a di�erent score. The second �gure, 7.18b, shows learning using a reward

where the β parameter values are di�erent, due to the advantage in the homebase

location.

104



6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Advantaged S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(a) Swarm S1 has an advantaged homebase location.
S1 attack enemies, S2 learn how to act during colli-
sions without considering the di�erence in β values.

6 10 16 20 26 30 36 40 46 50
robots

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

pu
ck
s

Advantaged S1: Attack Policy  S2: Learn Policy
Total pucks
S1 pucks
S2 pucks

(b) Swarm S1 has an advantaged homebase location.
S1 attack enemies, S2 learn how to act during collisions
considering the di�erence in β values.

Figure 7.18: Number of pucks collected by two competitive swarms, in a 10 minutes
limited game. S1 is faster, half of its players attacks all players, and the other half
avoids all players.

The results got by the swarm which applied learning based on β1 : β2 = 7 : 6

performed better when compared to the swarm which applied learning based on

β1 = β2. The SUD (di�erence of pucks collected by the swarms) of the learning

swarms with both equal and di�erent beta values, is shown in Figure 7.19, and

compared to the non-learning case of the �xed avoid policy. The cyan, magenta

and black lines represent the swarm-utilities of the experiments shown in Fig.

7.18b, 7.18a and 7.17 respectively. As in the previous subsection, we assume that

the improvement is a result of a more incentive to the learning swarm to interfere

with the other swarm's robots rather than search for pucks. It can be seen that

although the change in the β parameter is 6:7 which changes the program time

in�uence in 11:12, there is still some consistent advantage of changing the β.

105



6 10 16 20 26 30 36 40 46 50
robots

−30
−25
−20
−15
−10
−5

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Sw
ar

m
-U

til
iy

 o
f s

w
ar

m
 S

2
Advantaged S1: Attack Policy  S2: Learn Policy

S2 learns with diff betta
S2 learns with same beta
S2 Avoids

Figure 7.19: The SUD of swarm S2 in both learning processes, where Swarm S1

has an advantaged homebase location and uses attack policy. The magenta SUD
represents the equal beta case, and the cyan represents the di�erent beta case.

To conclude, in this chapter we examined di�erent cases where the learning

swarm had to overcome a disadvantage when compared to its competitor swarm.

We showed cases of disadvantage in speed, number of robots per swarm, and

in homebase location in the arena. In all cases, we found a potential way to

quantify the advantage of the other swarm into the reward function during learning,

and showed a clear improvement as a result of the learning with these reward

functions. We additionally showed the case of three swarm competition where the

two other faster non-learning swarms di�erent policies. In this case, we showed

that the learning swarm should maintain two di�erent learning processes, one for

each swarm, where every process has its own alpha and beta parameters, based on

the policies of the speci�c opponent swarm.

106



Chapter 8

Discussion

In this chapter, we discuss some of the gaps between the theory and its application,

some potential ideas that have not been fully proofed in this work, and future

proposed work.

Our model suggests that the global density of each swarm in�uences the indi-

vidual and swarm utilities, and therefore should be taken into consideration in the

reward calculation. However, since the robots' sensing and communication capa-

bilities are local, and there is no global knowledge, the robots cannot be directly

aware of the total amount of players, or the actual density in the arena. Therefore,

in the reward approximation in Chapter 5, we use the local density rather than

the global density as an estimator. The local density is limited by the number of

sensors on a robot, and thus, is a�ected only by its immediate surroundings. This

change is supported by the experiments' results, but is not theoretically explained.

The theoretical model, and its estimations and approximations, presented in

Chapters 3 and 4 were related to a general case of multi-swarm competitions.

Therefore, both the individual and the swarm utilities were dependent on the

program execution and interaction times, T (p), T (a). When applying the model

to the more speci�c task of foraging, the intuitive utility measure would be the

number of pucks collected rather than some functions of times, as presented in the

�gures. However, the individual robot has used the time related utility as the basis

of its learning process, which still resulted in increasing the number of collected

pucks for the learning swarm. The relation between time related swarm utility and

107



number of pucks collected has not been fully theoretically proven. Even if such

relation exists, it would �t a speci�c system design, and not the general problem.

Another potential gap in the simulation used in this work is the de�nition of

spatial interaction by an individual robot. In this work only if the front sensor

identi�es another player in a predetermined distance, the robot enters an inter-

action state. Therefore, there might be cases where robots are not aware when

being interrupted, e.g., when hit from the side. Our reward approximation tries to

compensate for this gap by counting the number of immediate surrounding robots

during interactions. This might be a possible explanation to the fact that in Fig-

ure 6.3 the attacking swarm counted its time of inter-swarm interaction almost

doubled the amount of time counted by the avoiding swarm.

When trying to estimate the individual's e�ect on its surrounding, we assumed

in Subsection 4.1.2 that in the absence of player i, if there was no con�ict between

the players, player j would be in Program-Time instead of in Action Time. There-

fore, it should get the utility accordingly. This assumption has not been proved or

tested. A possible way to explore this assumption is to run simulations without a

single player and compare the di�erences in the action and program times of the

other players, and on the scores got by each swarm.

An unsolved question arises from some of the experiments, namely, is there an

optimal value of the model parameters α and β, depending on the density and

the type of the opponent. A clue could be found in Figure 6.12 where better

results happened for di�erent densities for di�erent values of α. Another example

is the di�erence in the results between Figures 7.10 and 7.11 in a three swarm

competition. In the �rst experiment, the learning parameters were two learning

process occurred with identical parameters for each opponent swarm. The second

experiment suggested di�erent α parameters for each swarm, and got better results.

Therefore, the it might be assumed that the model parameters may be dependent

on both the density and the type of the opponent. Moreover, even though we

have demonstrated advantage of speci�c parameter values for a given scenario, we

did not look for the optimal value will provide the best results. We leave such

exploration for future work, and propose to let the individual robots learn those

values during the learning process.

Although the game-theoretical model is generic, our experiments concentrated

108



on learning to resolve spatial interaction in a way that would maximize the Swarm

Utility Di�erence (SUD). In chapter 7, when exploring cases of learning with dis-

advantage, we have encountered some cases where there is no action policy in

interaction time, that would be able to compensate for the disadvantage during

program time. Speci�cally, when the advantaged non-learning swarm uses Avoid

policy, there is no possibility for the learning swarm to interfere strongly enough

to win the game.

We propose for future work to examine the applicability of the theoretical

model to tasks other than foraging which was used in this work, to validate the

generalization of the proposed model.

109



Chapter 9

Conclusion

In this work we developed a general game-theoretic model for multiple competitive

swarms. We formulated the individual and global utilities for K -swarms compe-

tition, with a single assumption of zero-sum game between two individual players

from di�erent swarms. We de�ned the term Swarm Utility Di�erence (SUD),

which is a measure of scoring the game results for multiple swarms. We showed

that the game between two swarms is always a zero-sum game, and showed possible

extension to zero-sum game for the K -swarm case. We calculated the in�uence of

individual players on all swarms-utilities, by considering the e�ect of their presence

and absence.

We then applied the theory into the �eld of competitive robot swarms. We

de�ned the global and individual utilities as a function of time for a generic multi-

swarm competition, by estimating the individual player's utility and the e�ect on

its surroundings, based on WLU function. One nontrivial observation from the

model, is that a robot can increase its SUD not only by performing its original

task, but also by interfere its opponents in performing their tasks.

We also proposed a learning process of each individual robot in multi-swarm

competition, by calculating its own reward, and providing a general way for eval-

uation and selection of its possible actions. To �nd such interaction policies, we

apply reinforcement learning methods to train robots individually. The robots

cannot communicate with each other. Thus, global information such as the collec-

tive score of a swarm or the total number of members in each swarm, is unknown

110



to any of its member agents. The proposed learning model tries to overcome the

gap due to this partial information known to each robot, by considering the swarm

identity of the other robots during each interaction, and approximating di�erences

between the swarms.

As an example, we then applied the general model for the more speci�c case

of multi-swarm competitive foraging. We also de�ned relevant action sets and

policies, and proposed an experimental environment and settings. We examined

the model on the challenging problem of how robots in a competitive multi-swarm

environment should interact during spatial con�icts, in order to outperform the

other swarms.

We have ran an extensive series of simulated experiments, and validated the

proposed model. The experiments mainly concentrate on competitive multi-swarm

cases, but also generalized for the single swarm case, to compare with previous

works and show applicability. We checked the e�ect of learning on symmetric two

swarm competition, where all players perform identically during their main task

execution, but may act di�erently during interacting with other robots. We showed

that the learning swarms performed equally or better than a non-learning swarms,

which uses a prede�ned policy. We explored the performance of the learning model

in di�erent environments and hyper parameters.

We then expanded the simulation for cases of a learning swarm with initial

disadvantage. We explored the cases of competing a faster swarm, an uneven

number of robots in the swarms, and a case of advantaged location of homebase

in the arena. When in disadvantage, being equal to the opponent is insu�cient to

win, and the learning swarm needs to overcome the opponent's advantage gap. To

do so, we modi�ed the reward function from the symmetric case to the asymmetric

case, to re�ect the overcome the disadvantages. We also explored the case of three

swarms competition and showed generalization. All results support e�cacy with

the proposed model.

111



Bibliography

[1] Noa Agmon, Sarit Kraus, and Gal A Kaminka. Multi-robot perimeter patrol

in adversarial settings. In IEEE International Conference on Robotics and

Automation, pages 2339�2345. IEEE, 2008.

[2] Gürdal Arslan, Jason R Marden, and Je� S Shamma. Autonomous vehicle-

target assignment: A game-theoretical formulation. ASME, 2007.

[3] Ioannis Arvanitakis and Anthony Tzes. Collaborative mapping and navigation

for a mobile robot swarm. In 25th Mediterranean Conference on Control and

Automation (MED), pages 696�700. IEEE, 2017.

[4] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The

nonstochastic multiarmed bandit problem. SIAM journal on computing,

32(1):48�77, 2002.

[5] Levent Bay�nd�r. A review of swarm robotics tasks. Neurocomputing, 172:292�

321, 2016.

[6] Gerardo Beni. From swarm intelligence to swarm robotics. In International

Workshop on Swarm Robotics, pages 1�9. Springer, 2004.

[7] Gerardo Beni. Swarm intelligence. Complex Social and Behavioral Systems:

Game Theory and Agent-Based Models, pages 791�818, 2020.

[8] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.

Swarm robotics: a review from the swarm engineering perspective. Swarm

Intelligence, 7(1):1�41, 2013.

112



[9] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive

survey of multiagent reinforcement learning. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 38(2):156�172,

2008.

[10] Lucian Bu³oniu, Robert Babu²ka, and Bart De Schutter. Multi-agent rein-

forcement learning: An overview. Innovations in multi-agent systems and

applications-1, pages 183�221, 2010.

[11] Yang Cai, Ozan Candogan, Constantinos Daskalakis, and Christos Papadim-

itriou. Zero-sum polymatrix games: A generalization of minmax. Mathematics

of Operations Research, 41(2):648�655, 2016.

[12] Mitch Campion, Prakash Ranganathan, and Saleh Faruque. A review and fu-

ture directions of uav swarm communication architectures. In 2018 IEEE in-

ternational conference on electro/information technology (EIT), pages 0903�

0908. IEEE, 2018.

[13] Eduardo Castello, Tomoyuki Yamamoto, Fabio Dalla Libera, Wenguo Liu,

Alan FTWin�eld, Yutaka Nakamura, and Hiroshi Ishiguro. Adaptive foraging

for simulated and real robotic swarms: the dynamical response threshold

approach. Swarm Intelligence, 10(1):1�31, 2016.

[14] Vishnu S Chipade and Dimitra Panagou. Multi-swarm herding: Protecting

against adversarial swarms. In 59th IEEE Conference on Decision and Control

(CDC), pages 5374�5379. IEEE, 2020.

[15] Timothy H Chung, Kevin D Jones, Michael A Day, Marianna Jones, and

Michael Clement. 50 vs. 50 by 2015: Swarm vs. swarm uav live-�y competition

at the naval postgraduate school. 2013.

[16] Alireza Dirafzoon and Edgar Lobaton. Topological mapping of unknown en-

vironments using an unlocalized robotic swarm. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 5545�5551. IEEE, 2013.

[17] Khiem N Doan, An T Le, Than D Le, and Nauth Peter. Swarm robots'

communication and cooperation in motion planning. In Mechatronics and

113



Robotics Engineering for Advanced and Intelligent Manufacturing, pages 191�

205. Springer, 2017.

[18] Yinon Douchan, Ran Wolf, and Gal A Kaminka. Swarms can be rational. In

AAMAS, pages 149�157, 2019.

[19] Yotam Elor and Alfred M Bruckstein. Autonomous multi-agent cycle based

patrolling. In International Conference on Swarm Intelligence, pages 119�130.

Springer, 2010.

[20] Kala Garapati, Juan Jesús Roldán, Mario Garzón, Jaime del Cerro, and Anto-

nio Barrientos. A game of drones: Game theoretic approaches for multi-robot

task allocation in security missions. In Iberian robotics conference, pages 855�

866. Springer, 2017.

[21] Aurélien Garivier and Eric Moulines. On upper-con�dence bound policies for

non-stationary bandit problems. arXiv preprint arXiv:0805.3415, 2008.

[22] Eden R. Hartman. Swarming bandits: A rational and practical model of

swarm robotic tasks. Master's thesis, Bar Ilan University, 2022.

[23] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz

de Cote. A survey of learning in multiagent environments: Dealing with

non-stationarity. arXiv preprint arXiv:1707.09183, 2017.

[24] Tien-Ruey Hsiang, Esther M Arkin, Michael A Bender, Sándor P Fekete,

and Joseph SB Mitchell. Algorithms for rapidly dispersing robot swarms in

unknown environments. In Algorithmic Foundations of Robotics V, pages

77�93. Springer, 2004.

[25] Jiangping Hu and Wei Xing Zheng. Emergent collective behaviors on coope-

tition networks. Physics Letters A, 378(26-27):1787�1796, 2014.

[26] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-

ment learning: A survey. Journal of arti�cial intelligence research, 4:237�285,

1996.

114



[27] Gal A Kaminka, Dan Erusalimchik, and Sarit Kraus. Adaptive multi-robot

coordination: A game-theoretic perspective. In IEEE International Confer-

ence on Robotics and Automation, pages 328�334. IEEE, 2010.

[28] Daniela Kengyel, Heiko Hamann, Payam Zahadat, Gerald Radspieler, Franz

Wotawa, and Thomas Schmickl. Potential of heterogeneity in collective be-

haviors: A case study on heterogeneous swarms. In International conference

on principles and practice of multi-agent systems, pages 201�217. Springer,

2015.

[29] James Kennedy. Swarm intelligence. In Handbook of nature-inspired and

innovative computing, pages 187�219. Springer, 2006.

[30] Jong-Hyun Lee, Chang Wook Ahn, and Jinung An. A honey bee swarm-

inspired cooperation algorithm for foraging swarm robots: An empirical analy-

sis. In IEEE/ASME International Conference on Advanced Intelligent Mecha-

tronics, pages 489�493. IEEE, 2013.

[31] Seoung Kyou Lee, Sándor P Fekete, and James McLurkin. Structured

triangulation in multi-robot systems: Coverage, patrolling, voronoi parti-

tions, and geodesic centers. The International Journal of Robotics Research,

35(10):1234�1260, 2016.

[32] Tao Li, Guanze Peng, Quanyan Zhu, and Tamer Ba³ar. The con�uence of

networks, games, and learning a game-theoretic framework for multiagent

decision making over networks. IEEE Control Systems Magazine, 42(4):35�

67, 2022.

[33] Michael L Littman. Friend-or-foe q-learning in general-sum games. In ICML,

pages 322�328, 2001.

[34] Qi Lu, G Matthew Fricke, John C Ericksen, and Melanie E Moses. Swarm

foraging review: Closing the gap between proof and practice. Current Robotics

Reports, pages 1�11, 2020.

[35] Jason R Marden and Adam Wierman. Overcoming limitations of game-

theoretic distributed control. In Proceedings of the 48h IEEE Conference

115



on Decision and Control (CDC) held jointly with 2009 28th Chinese Control

Conference, pages 6466�6471. IEEE, 2009.

[36] Dov Monderer and Lloyd S Shapley. Potential games. Games and economic

behavior, 14(1):124�143, 1996.

[37] Daniel Morgan, Soon-Jo Chung, and Fred Y Hadaegh. Model predictive con-

trol of swarms of spacecraft using sequential convex programming. Journal of

Guidance, Control, and Dynamics, 37(6):1725�1740, 2014.

[38] Jianjun Ni, Guangyi Tang, Zhengpei Mo, Weidong Cao, and Simon X Yang.

An improved potential game theory based method for multi-UAV cooperative

search. IEEE Access, 8:47787�47796, 2020.

[39] Ann Nowé, Peter Vrancx, and Yann-Michaël De Hauwere. Game theory and

multi-agent reinforcement learning. In Reinforcement Learning, pages 441�

470. Springer, 2012.

[40] John Oyekan and Huosheng Hu. Ant robotic swarm for visualizing invisible

hazardous substances. Robotics, 2(1):1�18, 2013.

[41] Carlo Pinciroli, Vito Trianni, Rehan O'Grady, Giovanni Pini, Arne Brutschy,

Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Fred-

erick Ducatelle, et al. Argos: a modular, parallel, multi-engine simulator for

multi-robot systems. Swarm intelligence, 6(4):271�295, 2012.

[42] Juan Jesús Roldán, Jaime Del Cerro, and Antonio Barrientos. Should we

compete or should we cooperate? applying game theory to task allocation in

drone swarms. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5366�5371, 2018.

[43] Avi Rosenfeld, Gal A Kaminka, Sarit Kraus, and Onn Shehory. A study of

mechanisms for improving robotic group performance. Arti�cial Intelligence,

172(6-7):633�655, 2008.

[44] Joseph A Rothermich, M �hsan Ecemi³, and Paolo Gaudiano. Distributed

localization and mapping with a robotic swarm. In International Workshop

on Swarm Robotics, pages 58�69. Springer, 2004.

116



[45] Samuel Rutishauser, Nikolaus Correll, and Alcherio Martinoli. Collabora-

tive coverage using a swarm of networked miniature robots. Robotics and

Autonomous Systems, 57(5):517�525, 2009.

[46] Erol �ahin. Swarm robotics: From sources of inspiration to domains of appli-

cation. In International workshop on swarm robotics, pages 10�20. Springer,

2004.

[47] Erol Sahin and Alan FT Win�eld. Special issue on swarm robotics. Swarm

Intell., 2(2-4):69�72, 2008.

[48] Moshe N Samson and Noa Agmon. Competitive coverage:(full) information as

a game changer. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 6633�6640. IEEE, 2020.

[49] Thomas Schmickl, Ronald Thenius, Christoph Moslinger, Jon Timmis, Andy

Tyrrell, Mark Read, James Hilder, Jose Halloy, Alexandre Campo, and Cesare

Stefanini. Cocoro�the self-aware underwater swarm. In IEEE Conference on

Self-Adaptive and Self-Organizing Systems Workshops, pages 120�126. IEEE,

2011.

[50] Hazim Shakhatreh, Abdallah Khreishah, Jacob Chakareski, Haythem Bany

Salameh, and Issa Khalil. On the continuous coverage problem for a swarm

of uavs. In IEEE 37th Sarno� Symposium, pages 130�135. IEEE, 2016.

[51] Dylan A Shell and Maja J Mataric. On foraging strategies for large-scale

multi-robot systems. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2717�2723. IEEE, 2006.

[52] Daigo Shishika, Katarina Sherman, and Derek A Paley. Competing swarms

of autonomous vehicles: Intruders versus guardians. In Dynamic Systems and

Control Conference, volume 58288, page V002T14A006. American Society of

Mechanical Engineers, 2017.

[53] Adam Slowik and Halina Kwasnicka. Nature inspired methods and their in-

dustry applications-swarm intelligence algorithms. IEEE Transactions on In-

dustrial Informatics, 14(3):1004�1015, 2017.

117



[54] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[55] Mohamed S Talamali, Thomas Bose, Matthew Haire, Xu Xu, James AR

Marshall, and Andreagiovanni Reina. Sophisticated collective foraging with

minimalist agents: a swarm robotics test. Swarm Intelligence, 14(1):25�56,

2020.

[56] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learn-

ing, pages 330�337, 1993.

[57] Ying Tan and Zhong-yang Zheng. Research advance in swarm robotics. De-

fence Technology, 9(1):18�39, 2013.

[58] Michael Ummels. Stochastic multiplayer games: Theory and algorithms. Am-

sterdam University Press, 2010.

[59] Janardan Kumar Verma and Virender Ranga. Multi-robot coordination anal-

ysis, taxonomy, challenges and future scope. Journal of Intelligent & Robotic

Systems, 102(1):1�36, 2021.

[60] Tamás Vicsek and Anna Zafeiris. Collective motion. Physics reports, 517(3-

4):71�140, 2012.

[61] Gerhard Weiss. Multiagent systems: a modern approach to distributed arti�-

cial intelligence. MIT press, 1999.

[62] Alan FT Win�eld. Foraging robots. 2009.

[63] David HWolpert and Kagan Tumer. An introduction to collective intelligence.

arXiv preprint cs/9908014, 1999.

[64] Erfu Yang and Dongbing Gu. Multiagent reinforcement learning for multi-

robot systems: A survey. In Technical report, University of Essex Technical

Report CSM-404, Department of Computer Science, 2004.

118



[65] Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement

learning from game theoretical perspective. arXiv preprint arXiv:2011.00583,

2020.

[66] Roi Yehoshua, Noa Agmon, and Gal A Kaminka. Robotic adversarial cover-

age of known environments. The International Journal of Robotics Research,

35(12):1419�1444, 2016.

[67] Ouarda Zedadra, Nicolas Jouandeau, Hamid Seridi, and Giancarlo Fortino.

Multi-agent foraging: state-of-the-art and research challenges. Complex Adap-

tive Systems Modeling, 5(1):1�24, 2017.

[68] Kaiqing Zhang, Zhuoran Yang, and Tamer Ba³ar. Multi-agent reinforcement

learning: A selective overview of theories and algorithms. Handbook of Rein-

forcement Learning and Control, pages 321�384, 2021.

[69] Haitao Zhao, Hai Liu, Yiu-Wing Leung, and Xiaowen Chu. Self-adaptive

collective motion of swarm robots. IEEE Transactions on Automation Science

and Engineering, 15(4):1533�1545, 2018.

119


