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Abstract 
 
Area coverage is an important task which can be found in many essential 

applications. For these applications utilizing a large number of identical and 

inexpensive robotic platforms, which are able to perform area coverage, may 

provide an appropriate solution. For example, security tasks in pubic or 

government buildings, usually involve human patrol, using a multi-robot system 

would have been good.  

     Much work has been done in the area of multi robot coverage. Many of the 

existing algorithms rely on communication and advanced sensors used for maps 

creation and localization but problems such as communication loss, localization 

problems due to sensors inaccuracy and many other problems which could 

occur in the real world are not fully addressed. 

     We present a new robust online algorithm for multi-robot coverage which 

behaves as a black box designed to work with single-robot coverage existing 

algorithms. Our algorithm maximizes the area coverage and minimizes the 

standard deviation over multiple operations for these algorithms. Our algorithm 

does not perform any localization and therefore requires only few common 

sensors which can be found in many of today's robotic platforms, this means no 

hardware modifications to the robots are required in order to support our 

algorithm. Our algorithm does not rely on communication protocols between the 

robots and is therefore not sensitive to any communication losses. We perform 

extensive experiments for our algorithm which includes different environments, 

different number of robots, simulated errors which might occur in the real world 

etc. We show that real robotic platforms can benefit from using our algorithm.         
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1 Introduction 

Area coverage is an important task which can be found in many essential 

applications such as land mine deployment [1], ship hull cleaning [2], planetary 

surface exploration [3], [4], [5], floor cleaning [6], de-mining [7] and more.  

In these applications the robot is placed in a bounded work area, most likely to 

contain obstacles, and equipped with some kind of a tool (for example a robotic 

vacuum cleaner will probably be equipped with a suction nozzle) that must visit 

every point inside the work area. 

     Area coverage appears to be a task perfectly matched for a multi robot 

approach in the following aspects:  

� The target area might be very complex for robots. 

Robots may encounter many types of obstacles from all kinds, and the 

possibility of a robot getting stuck does exist. The use of multiple robots 

allows the mission to be performed by the remaining robots.  

� Many separated areas must be dealt with. The use of many robots allows 

these areas to be covered in parallel, rather than one at a time. 

We would like our multi-robot algorithms to be complete (complete coverage 

guarantees that the robots pass over all reachable points in the target 

environment), efficient (efficiency is evaluated in terms of area coverage over 

time) and robust, in the way that most of the robot failures along the way can be 

overcome. 

     We present a comparative evaluation of well known single-robot algorithms 

(Parallel, Random and Spiral) and show that they suffer from significant 

weaknesses when applied. We then present a new online algorithm which is 

actually a kind of a black box designed to work with any other existing 
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algorithms. It does not use any localization or maps, only limited communication 

between robots. We add our algorithm to the previously tested algorithms, 

repeat the comparative evaluation and show that our algorithm improves the 

area coverage results by: 

� Maximizing the area coverage:                                                                     

We show that when our algorithm is being used, robots cover more area in 

less time. 

� Minimizing the standard deviation over multiple operations:                                                    

We show that using our algorithm leads to a significant reduction in the 

variance of area coverage, in repeated applications.      

We perform extensive experiments which include different environments with 

different number of obstacles. We vary the number of robots from 1 to 10. We 

simulated different errors which might occur in the real world such as odometer 

errors and test their influence on our algorithm's performance.  

 

 

 

 

 

 

 

 



 	

2 Background and Related work 

A lot of work has been performed in the area of single and multi robot coverage.  

A recent survey by Choset regarding area coverage algorithms can be found in 

[8]. There are two basic types of algorithm: online algorithms which are 

algorithms that do not need any prior knowledge of the work area, and offline 

algorithms that assume the robot has a prior knowledge of how the work area 

looks like which for some applications is unrealistic. Complete algorithms 

guarantees that the robot passes over all reachable points in the target 

environment. We will consider an algorithm to be robust if this algorithm is not 

affected by failures. For example in a robust algorithm, when one of the robots 

breaks down we expect that the other robots will cover for him and take over his 

work.  

     Balch and Arkin used heuristic approaches for investigating multi robot 

coverage tasks [10, 11], and one of the heuristics they used, repulsion from 

other robots ensured that robots spread out over the environment resulting a 

better area coverage. In our algorithm, the repulsion is not from other robots but 

from cells which are already handled by other robots.      

     In [12] Warner et al. presents a cellular decomposition algorithm for a group 

of robots which uses chemical traces which evaporate with time to communicate 

between the robots. In our algorithm we also divide the work area into cells and 

each robot communicates by picking up the IR transmissions of other robots, 

unlike the chemical traces the IR signal does not stay, it gives a real time 

indication of robots in the same cell.      
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     In [13] M. Jager and B. Nebel present a robust algorithm for multiple robots 

cleaning. They divide the room into polygons, and then the robots allocate and 

clean these polygons. To allocate a polygon means that a robot intends to clean 

the polygon and announce this. It is not assumed that the robots are always 

able to communicate with each other. Our algorithm does not require any 

communication between the robots and therefore more robust since it can not 

be influenced by communication problems. 

     In [14] Spires and Goldsmith shows an off-line multi-robots algorithm based 

on cellular decomposition. This algorithm guarantees a robust coverage but 

unfortunately, it works only in obstacle-free work-areas. Our algorithm can 

handle obstacles. Spires and Goldsmith show that the initial positions of the 

robots within the work-area affects the coverage time. Our algorithm's area 

coverage results are not affected by the initial location of the robots. 

     In [15] Kurbayashi et al. introduce an off-line multi-robot coverage algorithm. 

This algorithm is based on a cellular decomposition. However, no guarantees on 

robustness are provided. Our algorithm is also based on cellular decomposition 

but provides complete robustness. 

     Hazon and Kaminka [17] and later Agmon, Hazon, and Kaminka [16], and 

Hazon, Mielli and Kaminka [18] present a family of algorithms for multi-robot 

coverage, based on spanning trees that cover an approximately cell-

decomposed area.  These algorithms guarantee complete, efficient coverage, 

and are robust to catastrophic failures of robots: As long as one robot is alive, 

the coverage will complete.  However, their algorithms all rely on precise 

positioning within a grid decomposition of the work area, and reliable, unlimited 

communications about locations and covered areas.  In contrast, our work 
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focuses on a heuristic approach which is not guaranteed to succeed in covering 

the target area, but makes no assumptions as to localization, and utilizes 

simpler communications (only robot IDs). 
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3 Comparative evaluation of coverage algorithms  

In this chapter we present a comparative evaluation of three well known single-

robot algorithms: parallel, random and spiral. This comparative evaluation is 

actually a preparation for the next stage where we add our algorithm to each 

one of these three algorithms and show that an improvement has been 

achieved in the coverage performance for each one of the algorithms. 

Comparing between these three algorithms is interesting also because it has 

never been done before.  

     The experiments (Section 5.2) show that there is no statistical significant 

indication that the random performance is better than the spiral or vice versa, 

but there is a statistical significant indication that both random and spiral are 

better than the parallel. 

 

3.1 Parallel algorithm 

The first algorithm we chose is the parallel algorithm (Algorithm 1) which is used 

for applications such as lawn mowing. It is used both in exact and approximate 

cell decomposition and in the FriendlyVac vacuum-cleaning robot by Friendly 

Robotics, Ltd. The algorithm accepts as input a parameter determining the 

distance between adjacent parallel legs. Typically, this is set to the width of the 

robot's tool. 
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Figure 3.1: Parallel coverage 

 

_______________________________________________________________                                

Algorithm 1 Parallel coverage _______________________________________ 

1:   Let Advancement_Distance # The robot's advancement distance between 

      every two parallel legs (in our case this distance will be in the size of the  

      tool our robot is carrying) 

2:   while barrier is not reached do 

           Perform a forward leg called leg1  

3:   Perform a 90º turn to the left 

4:   while Advancement_Distance is not reached do 

           Move forward 

5:   Perform a 90º turn to the left 

6:   while barrier is not reached do  

           Perform a forward leg called leg2 which is parallel to leg1  

7:   Perform a 90º turn to the right 

8:   while Advancement_Distance is not reached do  

           Move forward  

9:   Perform a 90º turn to the right 

10: Goto 2 

_______________________________________________________________ 

 

3.2 Random algorithm 
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The second algorithm we chose is the random algorithm (Algorithm 2). This 

algorithm works as follows. An arbitrary direction is picked, and then forward 

motion is initiated until the robot is blocked. Then, a new direction is selected, 

and the process is repeated. 

 

  random angle

 

Figure 3.2: Random coverage 

 

_______________________________________________________________ 

Algorithm 2 Random coverage______________________________________ 

1:   while barrier is not reached do  

           Perform a forward leg 

2:   Perform a turn to a random direction 

3:   Goto 1 

______________________________________________________________ 

 

3.3 Spiral algorithm 

The third algorithm we chose is the spiral algorithm (Algorithm 3). This scan is 

actually a combination of random scan and spiral behavior. The spiral behavior 

will only be triggered in open areas after a long leg is detected since it is not 
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effective in small areas. A variation of this algorithm is used in iRobot's Roomba 

vacuum-cleaning robot. 

 

  random angle

leg > certain distance

 

Figure 3.3: Spiral coverage 

 

_______________________________________________________________ 

Algorithm 3 Spiral coverage_ _______________________________________ 

1:   while leg distance does not exceed a certain distance do  

           Perform random algorithm 

2:   while barrier is not reached do 

           Perform spiral movement with overlapping circle movements  

3:   Goto 1 

_____________________________________________________________ 

 

 

3.4 Results 

The results show that the single-coverage algorithms, when used in multi-robot 

settings, have a large variance. The next chapter addresses this, and shows 

how to improve these results. 
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4 Our Algorithm 

There were many criterions we had to consider while developing our algorithm. 

Cost efficiency is a key element especially when dealing with multi robot 

systems. In some application, large number of simple cheap robots may be the 

answer while in others the right solution may be much smaller number of robots 

with higher sensors, effectors, processing and communication capabilities. As 

technology continues to evolve we can see that the growing diversity of sensors 

and effectors technologies results a growing demand for integrating "off the 

shelf" sensors into robots. When possible, it will pay to "piggy back" on systems 

previously developed for other applications, or on mass market items which 

have been developed and cost-optimized for other purposes.  

     We decided to embrace the "piggy back" method and develop an algorithm 

that could be integrated into many of the robotic platforms that can be found in 

today's market, platforms which have already been cost-optimized. We created 

an algorithm which can operate by solely using common sensors which is 

actually a kind of a black box designed to work with any other existing online 

coverage algorithm. Here, online means coverage is performed without using 

any map of the environment which makes it more robust and suitable for real 

world applications. 

     We believe that in order to achieve good coverage as a team, robots must 

spread out over the environment, otherwise their coverage areas overlap, 

hurting overall performance. Our algorithm assumes that the work area is 

divided into cells, and uses heuristics to decide in real time how many robots 

are required in a cell, how long should a robot work in a cell before moving to 
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the next one, etc, to spread the robots over the entire work area and improves 

the coverage performance.  

 

4.1 Sensors 

We would like our algorithm to be able to function solely by using the most 

common sensors which can be found in many of today's robotic platforms. The 

reason we are motivated to do so is to create an algorithm that will allow 

converting these robots from a single robot application to a multi robot 

application solely by changing the robot's software and without performing any 

hardware changes (or performing only minor insignificant hardware changes).    

The decision to use only common sensors makes this research a lot more 

challenging since we only use the resources provided by the existing robotic 

platforms designed for single robot applications to support multi robot 

applications.  

 

4.1.1 Sensors considerations 

When designing a multi robot system, choosing the sensors is one of the most 

important tasks. There is no doubt that in an ideal world we would want our 

robots to know every possible thing about each other and the world, since better 

decisions can be made if every robot has an accurate map of the area it is 

supposed to cover, knowledge of its current location and where it has been, and 

unlimited communication with the other robots so that every robot will know all 

the above about all the other robots.  

     Theoretically, if we could have this kind of multi robot system we could reach 

optimal area coverage results. However, when we examine many of today's 
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robotic platforms we see that none of them relies on the need to know their 

exact location and none uses an offline algorithm which requires a map of the 

work area. The reason for this is because achieving these capabilities is just too 

expensive. We should keep in mind that systems developed for mass-

production are a lot more tighter in budget than specially designed systems 

which are usually designed to forefeel the needs of a specific customer such as 

military systems for example where money is not always such an issue, and 

since we want our algorithm to be relevant for mass-marketed robots we have to 

rely on the most common sensors found in these kind of robotic platforms.  

 

4.1.2 Sensors requirements 

Our algorithm requires a few essential sensors capabilities: 

 

Virtual borders 

We need the ability to create virtual borders in order to detect transitions 

between different areas (cells, as we call them). For example if we are planning 

to cover an entire hotel floor, we should have the ability to detect whenever we 

enter or leave a room. Many of today's robotic platforms come with virtual 

border capability in order to allow the user to prevent the robot from accessing 

certain areas. 

 

Robots ID 

Our algorithm assigns each robot with an ID number which rises from 1 to n 

(where n is the total number or robots). Robots should have the ability to 

transmit their ID and receive others. We want robots that work in the same cell 
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to detect each others ID as fast as possible because the faster they will be 

aware of one another the better results our algorithm will produce. We examined 

two optional ways for assembling the ID transmitter (Figure 4.1). In the first 

option the transmitter is aimed towards the side of the robot and in the second it 

is aimed towards the front of the robot.   

 

 

Figure 4.1: Optional ID transmitter assembling 

       

We decide to go with the first option because as we can see in Figure 4.1, the 

area covered by the transmitter in option 1 is bigger than the one in option 2, 

therefore using a side transmitter will allow robot to detect each other more 

quickly. 
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4.2 Behaviors 

Our algorithm is based on four behaviors: Count Off, Scan, Introduction and 

Search. The high level of our algorithm which is responsible for deciding what 

behavior should be performed and when will look as followed: 

 

_______________________________________________________________ 

Algorithm 4 High level ___________________________________________ 

1:   Perform the Count-Off algorithm // Algorithm no. 5 

2:   Perform the Scan algorithm // Algorithm no. 6 

3:   Perform the Search algorithm // Algorithm no. 10 

4:   Goto 2  

_______________________________________________________________ 

 

4.2.1 Count-Off behavior                                                                   

The Count-Off behavior’s goal is to find the total number of robots in the group. 

This behavior is performed only once at the beginning of the operation when we 

can still rely on the fact that all robots are grouped together.  

 

The following figure (Figure 4.2) illustrates the Count-Off behavior for a group of 

6 robots: 
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step 1

step 2

step 3

111111

123456

6 5 4 3 2 1

 

Figure 4.2: Count-Off behavior 

� Step 1: In this step we see a group of robots in their initial state which is 

aligned in a straight line facing the wall with an ID of 1. Each robot detects 

the ID transmission of the robot on the side and follows the next rule: The 

personal ID of a robot will be equal to the received ID from the robot on the 

right (which is the only robot detected at this step) incremented by 1.  

� Step 2: In this step we see that after following the rule described in step 1 we 

actually ensure that after a period of a few seconds (which is more than 

enough for each robot to receive its neighbor’s transmission), all robots will 
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have a unique ID which starts from 1 for the robot on the right side and 

increases up to 6 for the robot on the left side.    

� Step 3: In this step each robots performs a 180° turn which brings us to a 

situation where each robot detects the ID transmission of the robot on the 

other side from the one detected in step 1. After the turn is completed each 

robot will follow the next rule: A robot will transmit the maximal ID between 

its own personal ID and the received ID from his neighbor’s transmission, 

and will save this maximal ID as the total number of robots in the group. 

Following this rule will ensure that after a period of a few seconds all the 

robots in the group will have the required information of the total number of 

robots. 

 

_______________________________________________________________ 

Algorithm 5 Count-Off behavior______________________________________ 

1:   Let Personal_ID # The robot's personal ID 

2:   Let Received_ID # The received ID from some other robot transmission 

3:   Let Total_Num_Of_Robots # The total number of robots in the group 

4:   Let Reception_Time # Time it takes for each robot to receive its neighbor’s  

                                              transmission 

5:   Personal_ID # 1 
6:   while 5 seconds did not elapse do 

7:        Transmit the Personal_ID value 

8:        if Personal_ID < (Received_ID+1) then 

9:             Personal_ID # (Received_ID+1) 

10:   Perform a 180° turn 

11:  while Reception_Time seconds did not elapse do 

12:       Transmit the Total_Num_Of_Robots value 
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13:       Total_Num_Of_Robots # Maximum(Personal_ID , Received_ID) 

14:  Stop 

_______________________________________________________________ 

  

4.2.2 Scan behavior                                                                   

The Scan behavior is responsible for the local area coverage inside the cells.  

During this behavior the robot will constantly transmit its ID. Any type of 

coverage algorithm can be used at this stage. This is shown in the Experiments 

chapter (Chapter 5) where we test our algorithm using other algorithms such as 

parallel, random and spiral. The fact that we allow any type of algorithm to be 

used for the local cell area coverage makes our algorithm relevant for a wider 

range of robotic applications which currently use a specific algorithm and act as 

a single robot application and can be easily transformed into multi robot 

application by using our algorithm.   

 

________________________________________________________ 

Algorithm 6 Scan behavior_________________________________________ 

1:   Let Personal_ID # The robot's personal ID 

2:   Let Received_ID # The received ID from some other robot transmission 

3:   Let Required_Work_Time # The required time robot should work in the cell  

4:   Let Cell_Coverage_Algorithm # Any type of coverage algorithm which can 

       be used for cell area coverage (parallel, random, spiral etc…) 

5:   Let Cells_Exist # An indication if there are cells in the current work area 

6:   Personal_ID # 1 

7:   while Cell_Coverage_Algorithm is performed do 

8:        if Cells_Exist =True then 

9:             Transmit the Personal_ID value 

10:      if an ID transmission is received then 
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11:           Perform the Robot ID algorithm // Algorithm no. 7 

12:           if Personal_ID = Received_ID or a new Received_ID is detected then  

13:                Perform Introduction behavior 

14:           if Required_Work_Time is reached and Cells_Exist =True then  

15:                Goto 16 // End of Scan beahvior 

16:  Stop      

_______________________________________________________________ 

 

Our algorithm requires that each robot will collect certain information about the 

other robots and the environment. This information is essential for our algorithm 

functionality and will contain the following data: 

 

Robots ID  

When the Scan behavior starts each robot will be assigned with an initial ID 

equal to 1. When a robot detects some other robot's transmission with the same 

ID it will immediately increment its own ID by 1, this technique will ensure that 

each robot will have a unique ID over time.  

 

The following figure (Figure 4.3) illustrates the Robot’s ID mechanism: 

Step 1 Step 2 Step 3

1

1

1

1

2

1

 

Figure 4.3: Robot ID mechanism 
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� Step 1: In this step we see two robots with the same ID 1 driving towards 

each other. 

� Step 2: In this step we see that the left robot detects the ID transmission of 

the right robot (which is the same ID as its own) 

� Step 3: In this step we see that the left robot reacts to this detection by 

increasing its ID to 2. 

 

_______________________________________________________________ 

Algorithm 7 Robot ID _____________________________________________ 

1:   Let Personal_ID # The robot's personal ID 

2:   Let Received_ID # The received ID from some other robot transmission 

3:   if an ID transmission is received then 

4:        if Personal_ID = Received_ID then  

5:             Personal_ID # (Personal_ID+1)  

6:   Stop   

_______________________________________________________________ 

 

Number of robots in the current cell  

The Introduction behavior (Section 4.2.3) ensures that each robot will be 

assigned with a unique ID over time. This fact allows each robot to find the 

number of robots that are working in the same cell by following a simple rule: 

whenever a robot detects an ID transmission it will save the maximum between 

its personal ID and the received ID as the number of robots in the current cell.  

 

_______________________________________________________________ 

Algorithm 8 Number of robots in the current cell________________________ 
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1:   Let Personal_ID # The robot's personal ID 

2:   Let Received_ID # The received ID from some other robot transmission 

3:   Let Num_Of_Robots_In_Cur_Cell # The number of robots in the current cell 

4:   if an ID transmission is received then 
5:        Num_Of_Robots_In_Cur_Cell # Maximum(Personal_ID,Received_ID)    

6:   Stop  

_______________________________________________________________ 

 

Required work time 

By analyzing the cell’s size and the number of robots that are working in the cell 

our algorithm estimate how much work time a robot should spend in the current 

cell. It's impossible to find one formula that will successfully estimate the 

required work time we have to spend in a cell in order to cover it for all the 

optional area coverage algorithms since every algorithm has its own special 

behaviors, and the estimation formula can not be successfully developed unless 

we know what these behaviors are up front. Therefore our black box will not try 

to achieve this information by itself but will be given this information as an input. 

This will require from whoever is integrating our black box with another 

algorithm to implement an estimation formula for the required work time. In 

order to understand this issue a bit better we will now show how we estimate the 

required work time for the parallel, random and spiral coverage algorithms. 

 

During the operation we save the following information: 

� Average_Leg_Dist - Average leg distance in cm 

� Average_Velocity – Average robot velocity in cm/sec 
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� Tool_Size – The size of the tool our robot is carrying in cm 

 

This following cell area estimation will give the best results when the shape of 

the cell is square which was good enough for us since many of the indoor areas 

which use robotic applications are types of rooms which in most cases are 

square. We calculate the cell area by using the following estimation formula:  

Cell_Area = (Average_Leg_Dist)² 

We calculate the required work time by using the following estimation formula: 

sInCurCellNumOfRobot
ToolSizeocityAverageVel

CellArea

TimequiredWork
��
�

�
��
�

�

�
�Re  

We did not settle for theoretical assumptions, and performed a sequence of 

tests to confirm our estimation formulas accuracy (Section 5.3). 

     In the real world the robot can encounter different obstacles and different cell 

shapes that can increase the cell complexity, and therefore influence the 

required work time. Here are some of the things that can influence the cell 

complexity: 

� The number of obstacles we encounter 

If we take two identical cells and fill one of them with obstacles, it will take 

more time to cover the cell with the obstacles as we can see in the following 

figure (Figure 4.4): 
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ObstacleObstacleObstacle

Cell Without Obstacles Cell With Obstacles
Figure 4.4 

 

� The number of right turns during the Search behavior in case wall following 

algorithm is used can also provide an indication about the complexity of the 

cell. Normal cell with a square shape will give us no right turn at all, the more 

right turns we detect the more complex the cell is as we can see in the 

following figure (Figure 4.5): 

Cell without right turns Cell with right turns
Figure 4.5 

 

Using this information can help us receive a better estimation formula for the 

required work time. But we should remember that the estimation formulas we 
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presented are just a suggestion and there could probably be many other 

estimation formulas that will do the job nicely, so every algorithm that will use 

our black box will have to come up with its own estimation formulas.   

 

4.2.3 Introduction behavior                                                                   

The Introduction behavior’s goal is to make sure that each robot is assigned 

with a unique ID over time (when n robots are deployed in a cell their IDs will 

range from 1 to n over time) and to decrease the time it takes for robots that 

work in the same cell to be aware of one another existence, because the sooner 

robots will detect each other, the sooner the unnecessary robots will leave the 

cell and therefore save valuable work time. During this behavior the robot will 

constantly transmit its ID. 

     We should not assume that the ID transmitter transmits in a 360º sector, on 

the contrary, if we want to rely solely on common sensors we have to assume 

our transmitter only works in line of sight. Therefore, when a certain robot 

detects another one, it does not necessarily mean the opposite. To decrease 

the probability of a scenario where two robots are in the same area but only one 

of them detects the other from happening we created the Introduction behavior. 

When a robot performs the Introduction behavior it actually ensures that all 

robots within its radius and the range of its transmitter will detect its ID. 

Therefore, theoretically there will not be a scenario where one robot is aware of 

another robot's existence without the opposite. While robot is performing the 

Scan behavior it monitors all the other robots ID transmissions in the cell. When 

the received ID is identical to the robot's personal ID or when the received ID is 

a new one which hasn't been detected before, an Introduction behavior is 
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triggered.  

 

The following figure (Figure 4.6) illustrates the Introduction behavior: 

Step 1 Step 2

1

1

1
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Step 3

1

Step 4

1
2 2

 

Figure 4.6: Introduction behavior 

� Step 1: In this step we see two robots both with the same ID 1 driving 

towards each other. 

� Step 2: In this step we see that the left robot detects the ID transmission of 

the right robot and since the ID of the detected robot is the same as its own, 

it immediately increments it's ID by 1 (from 1 to 2) and starts the Introduction 

behavior.   

� Step 3: In this step we see that the left robot starts performing a 360º turn. 
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� Step 4: In this step we see that the left robot transmission has reached one 

of the right robot's ID receivers and now both robots had finished Introducing 

themselves. 

 

_______________________________________________________________ 

Algorithm 9 Introduction behavior___________________________________ 

1:   Let Personal_ID # The robot's personal ID 

2:   Let Received_ID # The received ID from some other robot transmission 

3:   if Personal_ID = Received_ID then 

4:        Personal_ID # (Personal_ID+1) 

5:   Perform a 360º turn 

6:   Stop  

_______________________________________________________________ 

 

4.2.4 Search behavior                                                                   

The Search behavior’s goal is to bring us from the current cell to a new one.  

Once a robot decides it’s time to leave the current cell or in other words when 

the Scan behavior ends, the Search behavior is triggered. During this behavior 

the robot will disable its ID transmission since it is no longer an active 

participator in the area coverage of the cell. Any type of search algorithm can be 

used at this stage. The fact that we allow any type of search algorithm to be 

used makes our algorithm relevant for a wider range of robotic applications 

which currently use a specific algorithm and act as a single robot application 

and can be easily transformed into multi robot application by using our 

algorithm.  
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The following figure (Figure 4.7) illustrates a Search Behavior which uses a wall 

following algorithm as the search algorithm: 

Cell 1 Cell 2
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Figure 4.7 
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� Step 1: In this step we see a group of three robots performing the Scan 

Behavior inside Cell 1. There is one robot with ID 1 and another two robots 

with the same ID 2.  

� Step 2: In this step we see that one of the robots with the ID 2 detects the 

other one with the same ID and increments its ID to 3.    

� Step 3: In this step we see that the robot with ID 3 detects there are too 

many robots in the current cell and decides to trigger the Search Behavior in 

order to leave the current cell. It turns off its ID transmission and starts 

performing the wall following behavior in order to search for a cell passage. 

� Step 4: In this step we see that the robot with ID 3 detects cell passage no. 1 

which leads to cell 3 but decides to skip it. This is an example of how a robot 

should behave during the Search Behavior when a cell passage which was 

already used is detected. And in this example this robot had already passed 

through cell passage no. 1 which means that it had already covered cell 3, 

therefore it will keep on searching for a new cell passage which hasn’t been 

used. 

� Step 5: In this step we see that the robot with ID 3 detects cell passage no 2 

which in this example is a new cell passage which hasn’t been used by this 

robot, and therefore it decides to pass through it. 

� Step 6: In this step we see the robot in the new cell.  

 

_______________________________________________________________ 

Algorithm 10 Search behavior_______________________________________ 

1:   Let Search_Algorithm # Any type of search algorithm which can be used  

      for new cell search (wall following, etc…) 

2:   while Search_Algorithm is performed do 
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3:        Disable ID transmission  

4:        if Cell passage is detected then 

5:             Perform the new cell detection algorithm // Algorithm no. 11 

6:             if New cell is detected then     

7:                  Stop      

_______________________________________________________________ 

 

New cell detection  

Our algorithm uses the robot's odometers to create a 2 dimensional grid, 

therefore every location has an [X,Y] representation. The cell passages size is a 

known value and will be determined by the maximal size of the cell passages 

that can be found in the work area and the odometers accuracy. For example if 

the work environment is an indoor terrain such as an office building, the cells 

are the offices and the cell passages are the doors to the offices then the cell 

passages size will probably be somewhere around 80 cm which is the size of a 

standard office door. Let's call the cell passages size Cell_Passage_Size. Every 

time a new cell passages is detected we will save its location. A cell passage is 

declared as new if the following exists: During the Search behavior when a cell 

passage is detected the robot will save its current location as [Xrobot,Yrobot] 

and compare it with all the other saved cell passages locations, if the distance 

between the robot's location and the location of all the other cell passages 

exceeds Cell_Passage_Size then it means that the current detected passage is 

a new one. For example lets assume that a certain robot has just detected a cell 

passage and its current location is [Xrobot,Yrobot], and until that point it has 

detected N number of new cell passages with the locations                                 

[X1,Y1], [X2,Y2], …, [Xn,Yn]. Let’s look at distance Dist which is the formula for 

the distance between two points: 
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For every i=1…n if Dist(i) is bigger then Cell_Passage_Size, then the current 

location [Xrobot,Yrobot] is a new cell passage location.  

     To prevent the scenario where a robot is performing an endless search for a 

new cell passage that does not exist because all the cell passages in the cell 

has been used before, we will follow the next rule: If a certain cell passage is 

detected for the second time during the Search behavior it means we are in an 

endless loop and there are no new cell passages in the current cell, in this case 

we should delete all the cell passages information of the current cell. 

     To prevent the scenario where a robot is performing an endless search for a 

new cell passage that does not exist because the current work area does not 

have any cells, we will follow the next rule: If we do not detect any cell passages 

during the Search behavior it means we are working in an area with no cells and 

therefore we should disable the Search behavior until a cell passage is detected 

during the Scan behavior, we should also stop transmitting the ID. Stopping the 

ID transmission is done in order to prevent other robots from detecting it, 

starting the Search Behavior and wasting valuable work time, and disabling the 

Search behavior is also done in order to save work time. The motivation for this 

improvement in the Search behavior is to make sure that when there are no 

cells in the work area, we will not damage the coverage performance by looking 

for cells that do not exist. 

 

_______________________________________________________________ 

Algorithm 11 New cell detection_____________________________________ 

1:   Let New_Cell_Detect # The return value for this algorithm which indicates 
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      if the current detected cell passage is a new one. Return True if a new cell  

      is detected or False otherwise    

2:   Let Num_Of_Cell_Passages # Number of new cell passages detected so far  

3:   Let [Xn,Yn] # Location of the n'th cell passage 

      (n ranges from 0 … Num_Of_Cell_Passages) 

4:   Let [Xrobot,Yrobot] # Current location of the robot 

5:   Let Dist(n) # Distance between [Xn,Yn] and [Xrobot,Yrobot]   

      (n ranges from 0 … Num_Of_Cell_Passages) 

6:   Let Detect_Num(n) # The number of times that the n'th cell passage is  

      detected during the current Search behavior.  

      (n ranges from 0 … Num_Of_Cell_Passages) 

7:   Let Cell_Passage_Size # Cell passages size 

8:   New_Cell_Detect # True 

9:   for i # 0 to Num_Of_Cell_Passages do  

10:       if Detect_Num(i) $ 2 then  

11:            Delete all the cell passages information of the current cell  

12:            Goto 16  

13:       if Dist(i) < Cell_Passage_Size then  

14:            New_Cell_Detect # False 

15:            Goto 16 

16:  if New_Cell_Detect = True then 

17:       Save [Xrobot,Yrobot] as a new cell passage 

18:  return New_Cell_Detect 

    

_______________________________________________________________ 
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4.3 Communication    

When dealing with multi robot systems the need for communication between 

robots often emerges. We are looking for type of communication methods that 

should be suitable for systems containing an arbitrary number of robots.   

     Our algorithm requires that each robot should have the ability to transmit Its 

ID and receive others, which means that we need to have some kind of way for 

robots to communicate, but the question we are facing is how to accomplish this 

with the common resources that today's robotic platforms have to offer?  

     We came to the conclusion that an IR (Infrared) communication will be the 

best solution for the following reasons: 

� Many of today's robotic platforms have an IR remote control, meaning that IR 

capabilities already exist and no additional hardware is required. 

� Our algorithm relies on the fact that a robot will communicate only with the 

other robots that are in the same cell, meaning that we do not want the ID 

transmission of a certain robot in certain cell to be picked up by another 

robot in another cell. Since IR energy can not break through walls and firm 

objects, we are actually promised that a robot transmitting its IR energy in 

one cell will not be detected by another robot working in some other cell, 

which is exactly what we wished for. 
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5 Experiments 

To evaluate our algorithm I used a multi robot simulator that we specially 

developed for this purpose. When we test a certain algorithm we actually 

perform a sequence of tests where each one is done using different number of 

robots (starting from 1 robot and rising up to 10). Each test includes 50 runs, 

and each run is completed when either the robot covers over 95% of the work 

area or 90 simulated minutes elapse. The main goal of the tests is to confirm 

our assumption that when our algorithm is planted into any one of the tested 

algorithms the area coverage performance is improved by: 

� Maximizing the area coverage:                                                                     

We show that when our algorithm is being used, robots cover more area in 

less time. 

� Minimizing the standard deviation over multiple operations:                                                    

We show that when we use a certain algorithm on a certain environment 

over and over again, the area coverage results are much more different from 

one operation to the other than when our algorithm is being used. 

     Minimizing the standard deviation is a very important goal, to understand 

why it is easier to look at the following example: let’s take for example the 

vacuum cleaning application and assume that our task is to clean an entire 

hotel floor. If we offer the hotel a solution that will be satisfying only in 90% of 

the time then it is not good enough because this means that in the other 10% 

of the time the hotel guests might not be satisfied with the cleaning. We need 
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the ability to provide some kind of consistency in the coverage time because 

many applications require consistent performance.     

To test the hypotheses examined in the various experiments, we use a t-Test. 

We will use a one-tailed test when our hypothesis is that the mean of sample 1 

is either higher or lower than the mean of sample 2 or a two-tailed test when our 

hypothesis is that the means of the two samples differ, no matter which one is 

higher and which is lower. We will consider the results to be statistically 

significant if the one-tailed probability is lower than 0.05, which is the 

conventional value.                                                                                                

 

5.1 Simulator 

We developed a multi robot simulator using Visual C++ to support this research. 

The simulator models a 2-dimensional environment, supports the creation of 

any number of robots, supports the creation of any type of environment and 

obstacles, supports the common sensors our algorithm uses, provides the ability 

to enter random odometer errors during forward and turn movements and 

provides a variety of analysis information such as coverage percent, how many 

times the robot ran over the same spots and a simulated thermo map which 

shows if the robot spent more time in some areas than in other. 
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Figure 5.1: A screenshot of the simulator 

 

The following figure (Figure 5.2) shows a test area we used in our experiments 

which actually simulates an office floor in size of 2500m².  
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Figure 5.2 

 

The simulator models the entire set of sensors our algorithm uses and allows 

the user to configure the location and range of the sensors. We will now 

describe the variety of sensors we use in our simulator which represent the 

common sensors which can be found in many of today's robotic platforms. To 

be more realistic we simulated a specific robotic platform called the FriendlyVac 

which is a robotic vacuum cleaner manufactured by Friendly Robotics [9]. 
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Figure 5.3: The FriendlyVac 

 

Ultrasound sensors 

There are 8 ultrasound sensors looking forward and 2 looking aside. 

 

Stairs sensors 

There are 2 IR sensors located in front of the drive wheels, facing down to 

detect stairs.  

 

Bumper sensor 

There are 2 analog sensors reading the bumper movements. 

 

Virtual borders  

The door sensor will give us the virtual borders capability and allow us to detect 

cell passages. It is actually an IR receiver and transmitter capable of detecting a 

special type of sticker which can be placed above doors. We can see that by 

using the current available robot's sensors we are able to achieve the ability to 

bound certain areas, turning them into cells and detecting them whenever we 

move from one cell to another. 

 

IR sensors 

There are 5 IR receivers capable of analyzing an IR transmission scattered 

around the robots body. These receivers will be used for detecting the 

transmission of other robots ID. 
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Odometers sensors 

Odometer sensor for each drive wheel is used for measuring the speed and 

accumulated distance for each wheel. 

 

The following figure (Figure 5.4) shows an overview of the entire FriendlyVac 

sensors deployment  

Left drive wheel   Right drive wheel

   Rear drive wheel

  Right IR
stairs sensor

Left IR
stairs sensor

Bumper sensor

IR receiver  

Figure 5.4 

 

The hardware modifications that should be made to the FriendlyVac platform 

are minor. An IR transmitter with the ability to transmit n-Bit words (to support 

n2  number of robots) should be assembled on the robot and wired into the MCU 

(Microcontroller unit) to give the robot the ability to transmit ID's ranging from 0 

to n2 .  

     We would like to note that the FriendlyVac, like many robotic platforms, 

comes with an IR remote control which can be used for the ID transmission and 

save the expense of another IR transmitter. 
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5.2 Comparative evaluation of coverage algorithms 

Here we present the results received from comparative evaluation we performed 

on the parallel, random and spiral coverage algorithms. The tests are performed 

on the office floor map (Figure 5.2).  

 

The following figure (Figure 5.5) shows the area coverage results. 
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Figure 5.5 

 

A two-tailed t-test between the random and the spiral area coverage results 

shows only a moderated statistical significant indication that one of them is 

better than the other (the result is 0.06).   
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A one-tailed t-Test between the random and the parallel area coverage results 

shows that there is a statistical significant indication that the random is better 

than the parallel (the result is 2.94E-05). 

A one-tailed t-test between the spiral and the parallel area coverage results 

shows that there is a statistical significant indication that the spiral is better than 

the parallel (the result is 0.006). 

 

The following figure (Figure 5.6) shows the standard deviation results. 
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Figure 5.6 

 

A two-tailed t-test between the random and the spiral standard deviation results 

shows that there is no statistical significant indication that one of them is better 

than the other (the result is 0.72).   
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A one-tailed t-test between the random and the parallel standard deviation 

results shows that there is a statistical significant indication that the random is 

better than the parallel (the result is 8.46E-05). 

A one-tailed t-test between the spiral and the parallel standard deviation results 

shows that there is a statistical significant indication that the spiral is better than 

the parallel (the result is 1.56E-05). 

 

5.3 Estimation formulas 

Our algorithm uses different estimation formulas (Section 4.2.2) such as the cell 

size estimation and the required work time estimation. In order to confirm our 

estimation formulas accuracy we performed a sequence of tests on various 

types of cells. We will now present the results for one of the tested cells (Figure 

5.7) which is actually a square shape with size of 100m². 

 

10 m
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Figure 5.7 
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We performed 100 simulation runs on this cell and received the following 

results:  

� The average of the estimated cell size is 98.4m² and the standard deviation 

is 1.1   

� Using our required work time estimation we receive the following area 

coverage results: The average of the coverage percent is 98.58% and the 

standard deviation is 1.07 

Our experiments show that the received estimation formulas accuracy is good 

enough. 

 

5.4 Our algorithm 

The section is a continuation to the comparative evaluation of coverage 

algorithms we performed before because here we add our algorithm to each 

one of these three algorithms and show that an improvement has been 

achieved in the coverage performance for each one of the algorithms. 

 

The following figure (Figure 5.8) shows the area coverage results for the parallel 

algorithm.  
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Figure 5.8 

 

A one-tailed t-test performed on the area coverage results for the parallel 

algorithm shows there is a statistical significant indication that our algorithm 

improves the area coverage (the result is 4.64E-08). 

 

The following figure (Figure 5.9) shows the standard deviation results for the 

parallel algorithm.  
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Figure 5.9 

 

A one-tailed t-test performed on the standard deviation results for the parallel 

algorithm shows there is a statistical significant indication that our algorithm 

improves the standard deviation (the result is 5.19E-06). 

 

The following figure (Figure 5.10) shows the area coverage results for the 

random algorithm.  
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Figure 5.10 

 

A one-tailed t-test performed on the area coverage results for the random 

algorithm shows there is a statistical significant indication that our algorithm 

improves the area coverage (the result is 0.0002). 

 

The following figure (Figure 5.11) shows the standard deviation results for the 

random algorithm.  
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Figure 5.11 

 

A one-tailed t-test performed on the standard deviation results for the random 

algorithm shows there is a statistical significant indication that our algorithm 

improves the standard deviation (the result is 0.004). 

 

The following figure (Figure 5.12) shows the area coverage results for the spiral 

algorithm.  
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Figure 5.12 

 

A one-tailed t-test performed on the area coverage results for the spiral 

algorithm shows there is a statistical significant indication that our algorithm 

improves the area coverage (the result is 9.72E-05). 

 

The following figure (Figure 5.13) shows the standard deviation results for the 

spiral algorithm.  



 ��

Spiral

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Number Of Robots

S
ta

nd
ar

d 
D

ev
ia

tio
n

Original
New

 

Figure 5.13 

 

A one-tailed t-test performed on the standard deviation results for the spiral 

algorithm shows there is a statistical significant indication that our algorithm 

improves the standard deviation (the result is 0.002). 

 

As we can see the results are very satisfying and they verify our assumptions 

about our algorithm since they show that there is a statistically significant 

improvement in both the area coverage and the standard deviation of all the 

algorithms we tested. 
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5.5 Obstacles influence 

In this section we would like to test how obstacles influence our algorithm. We 

intend to test the office floor with obstacles scattered on 5%, 10% and 20% of 

the work area. 

 

The following figure (Figure 5.14) shows an example of how the 5% obstacles 

are scattered in the work area. The small circles are the obstacles. 
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 Figure 5.14 

 

The following figure (figure 5.15) shows the area coverage results for the 

parallel algorithm.  
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Figure 5.15 

 

A one-tailed t-test performed on the area coverage results for the parallel 

algorithm shows there is a statistical significant indication that our algorithm 

improves the area coverage in the 5% (the result is 3.03E-07), 10% (the result is 

4.70E-08) and 20% (the result is 3.54E-07) obstacles tests. 

 

The following figure (Figure 5.16) shows the standard deviation results for the 

parallel algorithm.  
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Figure 5.16 

 

A one-tailed t-test performed on the standard deviation results for the parallel 

algorithm shows there is a statistical significant indication that our algorithm 

improves the standard deviation in the 5% (the result is 1.45E-07), 10% (the 

result is 1.98E-07) and 20% (the result is 5.60E-10) obstacles tests. 

 

The following figure (figure 5.17) shows the area coverage results for the 

random algorithm.  
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Figure 5.17 

 

A one-tailed t-test performed on the area coverage results for the random 

algorithm shows there is a statistical significant indication that our algorithm 

improves the area coverage in the 5% (the result is 5.02E-05), 10% (the result is 

5.33E-05) and 20% (the result is 8.97E-05) obstacles tests. 

 

The following figure (Figure 5.18) shows the standard deviation results for the 

random algorithm.  
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Figure 5.18 

 

A one-tailed t-test performed on the standard deviation results for the random 

algorithm shows there is a statistical significant indication that our algorithm 

improves the standard deviation in the 5% (the result is 1.76E-07), 10% (the 

result is 4.09E-08) and 20% (the result is 3.90E-07) obstacles tests. 

 

The following figure (figure 5.19) shows the area coverage results for the spiral 

algorithm.  
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Figure 5.19 

 

A one-tailed t-test performed on the area coverage results for the spiral 

algorithm shows there is a statistical significant indication that our algorithm 

improves the area coverage in the 5% (the result is 3.16E-06), 10% (the result is 

6.59E-08) and 20% (the result is 2.11E-06) obstacles tests. 

 

The following figure (Figure 5.20) shows the standard deviation results for the 

spiral algorithm.  
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Figure 5.20 

 

A one-tailed t-test performed on the standard deviation results for the spiral 

algorithm shows there is a statistical significant indication that our algorithm 

improves the standard deviation in the 5% (the result is 1.79E-05), 10% (the 

result is 5.17E-07) and 20% (the result is 4.03E-06) obstacles tests. 

 

As we can see our algorithm is not affected by multiple obstacles scattering 

since it maintained its better results over the original algorithms in both the area 

coverage and the standard deviation.   
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5.6 Cells free work areas 

In this section we would like to test how work areas with no cells influence our 

algorithm. This test should be interesting since when there are no cells our 

algorithms lose its advantages over the original ones. Using our simulator we 

created a cell free work area with size of 2500m². 

 

The following figure (Figure 5.21) shows the cells free work area: 

50 Meter

50 M
eter

 

Figure 5.21: Cell free work area 

 

The following figure (Figure 5.22) shows the area coverage results for all 

algorithms.  
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Figure 5.22 

 

A one-tailed t-test performed on the area coverage results shows that there is a 

statistical significant indication that our algorithm decreases the area coverage 

in the parallel (the result is 1.08E-05), random (the result is 8.29E-07) and spiral 

(the result is 2.27E-09) algorithms. 

 

The following figure (Figure 5.23) shows the standard deviation results for all 

algorithms.  
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Figure 5.23 

 

A one-tailed t-test performed on the standard deviation results shows that there 

is no statistical significant indication that our algorithm influences the standard 

deviation in the parallel (the result is 0.19), random (the result is 0.14) and spiral 

(the result is 0.45) algorithms. 

 

The results are quite interesting. There is no statistical significant indication that 

our algorithm influences the standard deviation which is what we expected since 

when we operate in an area with no cells, our algorithm looses its advantages 

over the original ones and there is no reason for the standard deviation results 

to be better. But the area coverage results shows a statistical significant 

indication that our algorithm damages the area coverage. This can be explained 
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by the fact that our algorithm spends valuable time in the Search behavior 

looking for cell passages that do not exist.  

     In order to solve this issue we decided to improve the Search behavior in the 

following way: If we do not detect any cell passages during the Search behavior 

it means we are working in an area with no cells and therefore we should 

disable the Search behavior until a cell passage is detected during the Scan 

behavior, we should also stop transmitting the ID (This change is farther 

explained in section 4.2.4). We will now repeat the cells free work area tests 

using our new improved algorithm in order to see the influence of the change we 

made.   

 

The following figure (Figure 5.24) shows the area coverage results for all 

algorithms.  
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Figure 5.24 

 

A one-tailed t-test performed on the area coverage results shows that there is a 

statistical significant indication that the improvement we made to our algorithm 

for supporting work areas without cells improves the area coverage in the 

parallel (the result is 9.75E-06), random (the result is 8.30E-05) and spiral (the 

result is 1.54E-06) algorithms. 

 

The following figure (Figure 5.25) shows the standard deviation results for all 

algorithms.  
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Figure 5.25 
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A one-tailed t-test performed on the standard deviation results shows that there 

is no statistical significant indication that our algorithm influences the standard 

deviation in the parallel (the result is 0.30), random (the result is 0.29) and spiral 

(the result is 0.35) algorithms, which is what we wanted to confirm here in order 

to make sure that the improvement we made to our algorithm for supporting 

work areas without cells didn’t damage the standard deviation results in any 

way. 

 

5.7 Odometry errors 

Our algorithm relies on marking the locations of cell passages in order to enable 

robots to decide during the Search behavior if a cell passage should be passed 

through or skipped. Marking the location can be achieved in different ways and 

it will be up to whoever is using our algorithm to use the available capabilities of 

the robotic platform he has in hand in order to get the best location accuracy 

that can be achieved. In our algorithm we used the robot odometers to create a 

2 dimensional grid for saving the [X,Y] location of cell passages. Monitoring the 

robot’s location by using the odometers is a common thing in robotic platforms 

and it usually does the job pretty nicely, but it has its weaknesses. For example 

if the drive wheels slips from time to time due to bad surface grip then 

accumulated odometer errors can result bad cell passages location calculations, 

meaning that if a robots cell passage location is saved at a certain time as 

],[ YX  then when the robot will reach this same cell passage after accumulating 

some odometer errors this same location will be )](),[( YX errorYerrorX ��  

where the size of Xerror  and Yerror  depends on the odometry accuracy. To 
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understand the meaning of odometer errors and the influence they can have on 

our algorithm we should look at the following example. 

 

The following figure (figure 5.26) illustrates how odometer errors can damage 

our algorithm performance. 
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[X2,Y2]
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Cell Passage 1Cell Passage 2
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Cell 1

Step 4

Cell 2Cell 3

 Figure 5.26 

� Step 1: In this step we see a robot during its Search behavior inside cell 2. It 

detects a new cell passage in location ]2,2[ YX  and decides to pass through 

it into cell 1.  

� Step 2: In this step we see the robot during its Scan behavior in cell 1.    

� Step 3: In this step we see the robot during the Search behavior looking for a 

new cell passage. If there were no odometer errors the robot would have 

detected that cell passage 1 is not a new one, skip it and continue to cell 

passage 2. But since odometer errors have been accumulated the location 

]1,1[ YX  (which is the location the robot would have seen when detecting cell 

passage 1 if there were no odometer errors) now seems to the robot as 

)]1(),1[( YX errorYerrorX ��  and therefore when the robot uses the formula 

for deciding if cell passage 1 is a new one it will perform the following 

calculation:  

22 )2)1(()2)1(( YerrorYXerrorXDi YX ������   



 �


And if Xerror  and Yerror  are too big then the cell passage will be considered 

as a new one. 

� Step 4: In this step we see that because of the accumulated odometer errors 

the robot mistakenly interpreted cell passage 1 as a new cell passage and 

passed through it instead of skipping it. This will damage the algorithm 

performance since the robot will now spend valuable work time in cell 2 

which has already been covered instead of operating in a new cell.      

 

The following figure (Figure 5.27) shows a simulator run with and without 

odometer errors.  

 a b

 

Figure 5.27 

 

� Figure 5.27a: In this option we see the robot performing a straight leg when 

no odometer errors are inserted by the simulator. 
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� Figure5.27b: In this option we see the robot performing a straight leg when 

odometer errors are inserted by the simulator. 

In order to test the influence of odometer errors on our algorithm performance 

we used the simulator to insert random odometer errors. This cause the robot’s 

heading direction to deviate between 0.03°- 0.16° every 1 second. We repeated 

the tests performed on the office floor in order to compare the results.  

 

The following figure (Figure 5.28) shows the area coverage results for the 

parallel algorithm.  
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Figure 5.28 
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A one-tailed t-test performed on the area coverage results for the parallel 

algorithm shows that there is a statistical significant indication that odometer 

errors decrease the area coverage in our algorithm (the result is 2.11E-06). 

Another one-tailed t-Test performed on the area coverage results for the parallel 

algorithm shows there is a statistical significant indication that although the 

odometer errors damage our algorithm area coverage, our algorithm still 

maintains better area coverage results than the original algorithms (the result is 

5.85E-07). 

 

The following figure (Figure 5.29) shows the area coverage results for the 

random algorithm.  
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Figure 5.29 
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A one-tailed t-Test performed on the area coverage results for the random 

algorithm shows that there is a statistical significant indication that odometer 

errors damage the area coverage in our algorithm (the result is 4.68E-07). 

Another one-tailed t-Test performed on the area coverage results for the 

random algorithm shows there is a statistical significant indication that although 

the odometer errors damage our algorithm area coverage, our algorithm still 

maintains better area coverage results than the original algorithms (the result is 

0.006). 

 

The following figure (Figure 5.30) shows the area coverage results for the spiral 

algorithm.  
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Figure 5.30 
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A one-tailed t-test performed on the area coverage results for the spiral 

algorithm shows that there is a statistical significant indication that odometer 

errors damage the area coverage in our algorithm (the result is 1.04E-06). 

Another one-tailed t-Test performed on the area coverage results for the spiral 

algorithm shows there is a statistical significant indication that although the 

odometer errors damage our algorithm area coverage, our algorithm still 

maintains better area coverage results than the original algorithms (the result is 

0.003). 

 

The following figure (Figure 5.31) shows the standard deviation results for all 

algorithms.  
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A one-tailed t-test performed on the standard deviation results for all algorithms 

shows there is a statistical significant indication that despite the odometer errors 

our algorithm still maintains better standard deviation results than the original 

parallel (the result is 4.26E-06), random (the result is 6.05E-05) and spiral (the 

result is 8.81E-06) algorithms. 

 

As we can see the odometer errors do damage the performance of our 

algorithm, but even after entering significant random odometer errors our 

algorithm produced better results than the original ones. Anyone that will use 

our algorithm will have to perform real tests on the robotic platform which is 

used in order to decide if the odometry errors damage in the results is tolerable. 

Also there is always the option of using other type of technology which is not as 

sensitive as the odometry system. For example if the cell passages could be 

marked with some kind of bar-code stickers, then once a bar-code reader will be 

assembled on the robot we could distinguish between different cell passages 

without being influenced by the odometry inaccuracy.  

 

5.8 Transmitting cell passages locations 

In the previous section we discussed the option of using a more accurate 

system like the bar-code idea in order to mark the cell passages locations. If 

such a system is implemented there could be other parts in the algorithm we 

could improve. For example if the robotic platform which use our algorithm is 

equipped with RF (Radio frequency) communication or any other type which 

enables robots located in different cells to communicate, then we could improve 

our algorithm by creating a communication protocol where each robot transmits 
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the bar-code numbers of the cells it has been in, causing other robots to look for 

new cells that hadn’t been covered instead of covering the same cells over and 

over again, and therefore improving the area coverage performance. We 

decided to run a simulation to check how our algorithm performance is affected 

by such a change. We tested all algorithms on the office floor and added the 

following change to the algorithm: Every time a robot goes through a new cell 

passage in order to cover the cell it will transmit this cell passage bar-code 

number to all its other fellow robots in order to enounce this cell had been taken 

care off.  

 

The following figure (Figure 5.32) shows the area coverage results for all 

algorithms.  
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A one-tailed t-test performed on the area coverage results for all algorithms 

shows there is a statistical significant indication that cell passages transmission 

improves our algorithm area coverage (The result is parallel is 9.03E-05, the 

result in random is 4.70E-05 and the result in spiral is 0.0002). 

 

As we can see transmitting the cell passages locations improves our algorithm 

performance. 
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6 Conclusions and Future Work  

The work in this thesis is about a new algorithm which is a black box that can be 

integrated into many of today's robotic platforms without performing any far-

reaching hardware modifications. This will allow converting these robots from a 

single robot application to a multi robot application solely by changing the 

robot's software. Our algorithm uses special designed behaviors and information 

sharing in order to cause the robots to spread out over the environment to 

maximize coverage, and reduce the variance in repeated applications. 

     Experiments with different area coverage algorithms, different test areas, 

different number of robots and real world errors such as odometry errors were 

performed in order to test our algorithm's performance. Experiments were 

performed using a simulator that was specially developed.  

     Future work for continuing this research would be: 

� To test the algorithm on real physical environment using real robots. 

� To see if the results keeps improving as more and more robots are added. 

� Test our algorithm on more area coverage algorithms. 

� Test more types of maps: different shapes and sizes of obstacles, round 

cells, etc... 

� Test how different ID transmission range influences the results, and 

furthermore, test more types of communications technologies.   
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Appendix A: Glossary 

� Ultrasound: A procedure in which high-energy sound waves (ultrasound) 

are bounced off�some obstacle and make echoes 

� IR: Infrared. Invisible electromagnetic radiation used for many purposes, 

such as night vision and targeting advanced weapons. 

� RF: Radio frequency. frequency of the radio waves on which a transmission 

is broadcast. 

� MCU: Microcontroller Unit 

 

 
 
 
 
 
 


