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Abstract— Multi-robot systems researchers have been inves-
tigating adaptive coordination methods for improving spatial
coordination in teams. Such methods adapt the coordination
method to the dynamic changes in density of the robots.
Unfortunately, while their empirical success is evident, none
of these methods has been understood in the context of existing
formal work on multi-robot learning. This paper presents
a reinforcement-learning approach to coordination algorithm
selection, which is not only shown to work well in experiments,
but is also analytically grounded. We present a reward function
(Effectiveness Index, EI), that reduces time and resources spent
coordinating, and maximizes the time between conflicts that
require coordination. It does this by measuring the resource-
spending velocity. We empirically show its success in simulations
of multi-robot foraging. In addition, we analytically expl ore
the reasons that EI works well. We show that under some
assumptions, spatial coordination opportunities can be modeled
as matrix games in which the payoffs are directly a function of
EI estimates. The use of reinforcement learning leads to robots
maximizing their EI rewards in equilibrium. This work is a
step towards bridging the gap between the theoretical studyof
interactions, and their use in multi-robot coordination.

I. I NTRODUCTION

Multi-robot systems researchers have been investigating
distributed coordination methods for improving spatial co-
ordination in teams [7], [15], [14]. Such methods attempt
to resolve spatial conflicts between team-members, e.g.,
by dynamic setting of right-of-way priorities [17], [20],
territorial separation [16], [5], [10], or role-based priorities
[12]. It is accepted that no one method is always best [6],
[14], and that all methods reach a point where adding robots
to the group (i.e., increasing the density of the robots in
space) reduces overall productivity [16], [15].

There is thus growing interest in adaptive coordination
approaches, in which each robot adapts the coordination
method to the dynamic changes in density. For instance,
Zuluaga and Vaughan adjust the right-away priorities based
on the amount of local effort (or investment) by team-
members [20]. Rosenfeld et al. [14] advocated allowing each
robot to individually switch coordination methods to reduce
its own estimated resource costs. In general, these adaptive
methods have demonstrated much success in multiple do-
mains of interest.

Unfortunately, while their empirical success is evident,
none of these methods have ever been analytically proven
to work, nor understood in the context of existing formal
work on multi-robot learning and adaptation. As a result,
their optimality and the appropriate conditions for their use
remain open questions. Put simply, they pose a puzzle: These

are methods that work well in practice—both in simulations
and with real robots—but the reasons for their success remain
elusive.

This paper presents a reinforcement-learning approach to
coordination algorithm selection, which is not only shown to
work well in experiments, but also explored analytically. The
reward function used as the basis for the learning is called
Effectiveness Index(EI). The key idea in EI is to reduce
time and resources spent coordinating, and maximize the
time between conflicts that require coordination. It does this
by measuringthe resource-spending velocity(the resource
"burn rate"). The use of reinforcement learning minimizes
this velocity.

We empirically and analytically evaluate the use of EI. We
empirically show that EI succeeds in improving multi-robot
coordination in simulated multi-robot foraging. We then
analytically explore the reasons and assumptions underlying
this success. We formalize foraging as extensive-form games.
We show that under some assumptions, these games can be
modeled as matrix games in which the payoffs to the robots
are unknown, but are directly a function of EI estimates. The
use of reinforcement learning leads to robots maximizing
their EI rewards in equilibrium. We believe that this work
represents a step towards bridging the gap between the
theoretical study of interactions (via game theory), and their
use to explain and inform multi-robot coordination.

II. RELATED WORK

Earlier work on adaptation based on coordination effort
is closely related. Vaughan et al. [17] presented a method
called aggressionfor dynamic coordination. When robots
come too close to each other, each of the robots chooses an
aggression level; the robot with the lower level concedes its
position, preventing a collision. Later, Zuluaga and Vaughan
[20] have shown that choosing aggression level proportional
to the robot’s task investment can further improve overall
system performance. In contrast to this work, our method is
based on measuring the robot’s investment in coordination.In
addition, we cast adaptive coordination as a reinforcement-
learning problem.

Rosenfeld et al. [14] presented the Combined Coordination
Cost (CCC) method that adapts the selection of coordination
methods by robots; however, it ignores the gains accumulated
from long periods of no coordination needs, in contrast to our
work. Similarly to our work, the adaptation is stateless, i.e.,
has no mapping from world state to actions/methods. Instead,
the CCC is estimated at any given point, and once it passes



pre-learned (learned offline) thresholds, it causes dynamic
re-selection of the coordination methods by each individual
robot, attempting to minimize the CCC. In contrast, all our
learning and adaption is done on-line.

Most investigations of reinforcement learning in multi-
robot settings have focused on improving the learning mech-
anisms (e.g., modifying the basic Q-learning algorithm), and
utilized task-specific reward functions. We briefly discuss
these below. Two recent surveys are provided in [19], [8].

Mataríc [11] discusses several techniques for using re-
wards in multi-robot Q-learning: A local performance-based
reward, a global performance-based reward, and a heuristic
strategy referred to as shaped reinforcement; it combines
rewards based on local rewards, global rewards and coordi-
nation interference of the robots. Balch [2] reports on using
reinforcement learning in individual robot behavior selection.
The rewards for the selection were carefully selected for each
domain and application, in contrast to our work. In contrast
to these investigations, we explore a domain-independent
reward function, based on minimizing resource use, and use
them in selecting between coordination methods, rather than
task behaviors.

Wolpert et al. [18] developed the COIN reinforcement-
learning framework. Each agent’s reward function is based
on wonderful life utility, the difference between the group
utility with the agent, and without it. Similarly to these
our study focuses on the reward function, rather than the
learning algorithm; and similarly, we focus on functions
that are aligned with global group utility. However, our
work differs in several ways. First, we distinguish utility
due to coordination, from utility due to task execution.
Second, our reward function distinguishes also the time spent
coordinating and time spent executing the task.

III. L IMITING RESOURCESPENDING

We first cast the problem of selecting coordination algo-
rithms as a reinforcement learning problem (Section III-A).
We then introduce the effective index (EI) reward function
in Section III-B.

A. Coordination Algorithm Selection

Multilateral coordination prevents and resolves conflicts
among robots in a multi-robot system (MRS). Such conflicts
can emerge as results for shared resource (e.g., space), or
as a result of violation of joint decisions by team-members.
Many distributed coordination algorithms (protocols) have
been proposed and explored by MRS researchers [5], [12],
[16], [17]. Not one method is good for all cases and group
sizes [14]. However, deciding on a coordination method for
use is not a trivial task, as the effectiveness of coordination
methods in a given context is not known in advance.

We focus here on loosely-coupled application scenarios
where coordination is triggered by conflict situations, iden-
tified through some mechanism (we assume that such a
mechanism exists, though it may differ between domains;
most researchers simply use a pending collision as a trigger).
Thus the normal routine of a robot’s operation is to carry

out its primary task, until it is interrupted by an occurring
or potentially-occurring conflict with another robot, which
must be resolved by a coordination algorithm. Each such
interruption is calleda conflict event. The event triggers
a coordination algorithm to handle the conflict. Once it
successfully finishes, the robots involved go back to their
primary task.

There are common themes that run through all these
tasks: (i) loose coordination between the robots (i.e., only
occasional need for spatial or temporal coordination); (ii) a
cooperative task (the robots seek to maximize group utility);
and (iii) the task is bound in time. We refer to these tasks as
LCT tasks(Loose-coordination, Cooperative, Timed tasks).

Example LCT tasks include multi-robot foraging, search
and exploration, and making deliveries. For instance, in
multi-robot foraging, robots execute their individual roles
(seeking pucks and retrieving them) without any a-priori
coordination. When they become too close to each other,
they need to spatially coordinate. The robot all contributeto
the team goal, of maximizing the number of pucks retrieved.
Moreover, they have limited time to do this. In multi-
robot exploration, execution follows a similar pattern: robots
spread around, avoiding each other or coordinating as needed
(e.g., to decide who is to explore a newly-discovered area);
they have the goal of completely exploring a new area as
quickly as possible.

Let A = {. . . , ai, . . .}, 1 ≤ i ≤ N be a group ofN robots,
cooperating on a group task that started at time0 (arbitrarily)
lasts up-to timeT (A starts working and stops working on
the task together). We denote byTi = {ci,j}, 0 ≤ j ≤ Ki

the set of conflict events for roboti, whereci,j marks the
time of the beginning of each conflict.

The time between the beginning of a conflict eventj, and
up until the next event, the intervalIi,j = [ci,j , ci,j+1), can
be broken into two conceptual periods: Theactive interval
Ia
i,j = [ci,j , ti,j) (for someci,j < ti,j < ci,j+1) in which the

robot was actively investing resources in coordination, and
thepassiveintervalIp

i,j = [ti,j , ci,j+1) in which the robot no
longer requires investing in coordination; from its perspective
the conflict event has been successfully handled, and it is
back to carrying out its task. By definitionIi,j = Ia

i,j + I
p
i,j .

We define thetotal active timeas Ia =
∑

i

∑
j Ia

i,j and the
total passive timeasIp =

∑
i

∑
j I

p
i,j .

Our research focuses on a case where the robot has a
nonempty setM of coordination algorithms to select from.
The choice of a specific coordination methodα ∈ M for a
given conflict eventci,j may effect the active and passive
intervals Ia

i,j , I
p
i,j (and possibly, other conflicts; see next

section). To denote this dependency we useIa
i,j(α),Ip

i,j(α)
as active and passive intervals (respectively), due to using
coordination methodα. Figure 1 illustrates this notation.

We define the problem of decentralized coordination al-
gorithm selection in terms of reinforcement learning. We
assume each robot tries to maximize its own reward by
selecting a coordination methodα. Typically, reward func-
tions are given, and indeed most previous work focuses
on learning algorithms that use the reward functions as



Fig. 1. Illustration of task time-line, from the robots’ perspective. Task
execution is occasionally interrupted by the requirement to spend resources
on coordination.

efficiently as possible. Instead, we assume a very simple
Q-Learning variant, and instead focus on defining a reward
function (see below).

B. Effectiveness Index

We call the proposed general reward for coordination
Effectiveness Index(EI). Its domain independence is based
on its using three intrinsic (rather than extrinsic) factors in
its computation; these factors depend only on internal com-
putation or measurement, rather than environment responses.

III-B.1 The cost of coordinating. The first factor we
consider is the cost of internal resources (other than time)
used by the chosen method. This is especially important in
physical robots, where battery life and power are a concern.

We denote byCC
i the total cost of coordination, of roboti.

It can be broken into the costs spent on resolving all conflicts
CC

i =
∑

j CC
i,j . CC

i,j is similar to other measures suggested
previously, but excludes the cost of time and resources spent
before the conflict (unlike [14]), and is limited to only
considering individual intrinsic resources (unlike [20]).

Let us use a cost functioncosti(α, t) to represent the
costs due to using coordination methodα ∈ M at any
time t during the lifetime of the robot. The function is not
necessarily known to us a-priori (and indeed, in this research,
is not).

Using the functioncosti(α, t) we define theCC
i,j of a

particular event of roboti at timeci,j :

CC
i,j(α) =

∫ ti,j

ci,j
costi(α, t) dt +

∫ ci,j+1

ti,j
costi(α, t) dt

=
∫ ti,j

ci,j
costi(α, t) dt

(1)
CC

i,j is defined as the cost of applying the coordination
algorithm during the active interval[ci,j , ti,j) and the passive
interval [ti,j , ci,j+1). However, the coordination costs during
the passive interval are zero by definition.

III-B.2 The time spent coordinating. The main goal of
a coordination algorithm is to reach a (joint) decision that
allows all involved robots to continue their primary activity.
Therefore, the sooner the robot returns to its main task, the
less time is spent on coordination, and likely, the robot can
finish its task more quickly. Thus, smallerIa

i is better. Note
that this is true regardless of the use of other resources (which
are measured byCC

i ). Even if somehow other resources
were free, effective coordination would minimize conflict-
resolution time.

We thus define theActive Coordination Cost(ACC) func-
tion for roboti and methodα at timeci,j , that considers the

active timein the calculation of coordination resources cost:

ACCi,j(α) ≡ Ia
i,j(α) + CC

i,j(α) (2)

III-B.3 The frequency of coordinating. If there are frequent
interruptions to the robot’s task in order to coordinate, even
if short-lived and inexpensive, this would delay the robot.
We assume (and the results show) that good coordination
decisions lead to long durations of non-interrupted work by
the robot. Therefore, the frequency of coordination method’s
use is not less important than the time spent on conflict
resolving. Thus, largerIp

i,j is better.
We thus want to balance the total active coordination cost

ACCi =
∑

j ACCi,j against the frequency of coordination.
We want to balance short-lived, infrequent calls to an expen-
sive coordination method against somewhat more frequent
calls to a cheaper coordination method.

We therefore define the Effectiveness Index of roboti,
of conflict j, due to using coordination methodα ∈ M as
follows:

EIi,j(α) ≡
ACCi,j(α)

Ia
i,j(α) + I

p
i,j(α)

=
Ia
i,j(α) + CC

i,j(α)

Ia
i,j(α) + I

p
i,j(α)

(3)

That is, the effectiveness index (EI) of a coordination
methodα during this event is the velocity by which it spends
resources during its execution, amortized by how long a
period in which no conflict occurs. Since greater EI signifies
greater costs, we typically put a negation sign in front of
the EI, to signify that greater velocity is worse; we seek to
minimize resource spending velocity.

In this paper we use the simple single-state Q-learning al-
gorithm to estimate the EI values from the robot’s individual
perspective. The learning algorithm we use is stateless:

Qt(a) = Qt−1(a) + ρ(Rt(a) − γQt−1(a))

where ρ is the learning speed factor,γ is a factor of
discounting, andβ is an exploration rate.

IV. EXPERIMENTS IN MULTI -ROBOT FORAGING

We now turn to briefly survey a subset of experiment
results, in simulated foraging, supporting the use of EI in
multi-robot team tasks. Due to lack of space, we only provide
representative results.

Foraging is a canonical task in multi-robot systems re-
search. Here, robots locate target items (pucks) within the
work area, and deliver them to a goal region. As was the
case in Rosenfeld et al.’s work [14], we used the TeamBots
simulator [1] to run experiments. Teambots simulated the
activity of groups of Nomad N150 robots in a foraging
area that measured approximately 5 by 5 meters. We used
a total of 40 target pucks, 20 of which were stationary
within the search area, and 20 moved randomly. For each
group, we measured how many pucks were delivered to the
goal region by groups of 3,5,15,25,35,39 robots within 10
and 20 minutes. We averaged the results of 16–30 trials in
each group-size configuration with the robots being placed at
random initial positions for each run. Thus, each experiment



simulated for each method a total of about 100 trials of 10
and 20 minute intervals.

We compare the EI method with random coordination
algorithm selection (RND), and to the method of Rosenfeld
et al. (ACIM) (which uses offline learning [14]). Each of
these selection methods selects between three types of coor-
dination methods (α), described also in [14]: Noise (which
essentially allows the robots to collide, but increases their
motion uncertainty to try to escape collisions), Aggression
[17] (where one robot backs away, while the other moves
forward), and Repel, in which robots move away (variable
distance) to avoid an impending collision.

Figures 2(a)–2(c) show a subset of results. In all, the X
axis marks the group size, and the Y axis marks the number
of pucks collected. Figure 2(a) shows that given no resource
limitations, the EI method is as good as ACIM (and Repel)
which provides the best results, though it has not used prior
off-line learning. Figure 2(b) shows the advantage of EI over
ACIM when resource costs apply. Here, when ACIM takes
fuel costs into account, it performs well. But when it does
not, its performance is very low. On the other hand, EI
with fuel costs and without perform well. Finally, Figure
2(c) shows how ACIM and EI respond to unknown costs.
Here, both EI and ACIM take fuel costs into account, but the
actual fuel costs are greater. EI provides significantly better
performance in these settings (1-tailed t-test,p = 0.0027).

V. WHY DOESEI WORK?

We now turn to discuss the use of EI as a reward function,
from an analytical perspective. We are interested in exploring
the conditions under-which we expect EI to be effective.
There are common themes that run through all the tasks
in which EI has been successful: (i) loose coordination
between the robots (i.e., only occasional need for spatial
coordination); (ii) a cooperative task (the robots seek to
maximize group utility); and (iii) the task is bound in time.
We refer to these tasks asLCT tasks(Loose-coordination,
Cooperative, Timed tasks).

For instance, in foraging, we see that robots execute their
individual roles (seeking pucks and retrieving them) essen-
tially without any a-priori coordination. When they become
too close to each other, they need to spatially coordinate.
The robot all contribute to the team goal, of maximizing the
number of pucks retrieved. Moreover, they have limited time
to do this. Incidentally, they also have finite number of pucks,
which break some of the assumptions we make below. We
shall come back to this.

Computing optimal plans of execution for tasks such as
foraging is purely a theoretical exercise in the current state of
the art. In practice, determining detailed trajectories for mul-
tiple robots in continuous space, with all of the uncertainties
involved (e.g., pucks slipping from robots’ grips, motion and
sensing uncertainty), is infeasible. Much more so, when we
add the a-priori selection of coordination methods in different
points in time. We therefore seek alternative models with
which to analytically explore LCT tasks.

A. LCT Tasks as Extensive-Form Games

We turn to game theory to represent LCT tasks. As we
have already noted, each individual robot’s perspective isthat
its task execution is occasionally interrupted, requiringthe
application of some coordination method in order to resolve
a spatial conflict, to get back to task execution. Assume for
simplicity of the discussion that we limit ourselves to two
robots, and that whenever they are in conflict, they are both
aware of it, and they both enter the conflict at the same time.
This is a strong assumption, as in actuality, most often LCT
tasks often involve more than two robots. We address this
assumption later in this section.

At first glance, it may seem possible to model LCT tasks
as a series of single-shot games (i.e., repeating games), where
in each game the actions available to each robot consist of the
coordination methods available to it. The joint selection of
methods by the two robots creates a combination of methods
which solves the conflict (at least temporarily). The payoffs
for the two robots include the pucks collected in the time
between games, minus the cost of resources (including time)
spent making and executing the selected methods. The fact
that there exists a time limit to the LCT task in question can
be modeled as a given finite horizon.

However, finite-horizon repeating games are not a good
model for LCT tasks. In particular, the methods selected by
the robots in one point in time affect the payoffs (and costs)
at a later point in time. First, the choice of coordination
methods at timet affects the time of the next conflict. One
coordination method may be very costly, yet reduce the
likelihood that the robots get into conflict again; another
method may be cheap, but cause the robots to come into
conflict often. Second, the robots change the environment in
which they operate during the time they are carrying out their
tasks, and thus change future payoffs. For instance, robots
collect pucks during their task execution time, and often
collect those nearest the goal area first. Thus their payoff (in
terms of pucks collected) from games later in the sequence
is lower than from games earlier on.

We thus utilize a model of LCT tasks as extensive-form
games. The initial node of the game tree lies at the time of
the first conflict,ci,1, and the choices of the first robot at
this time lead to children of this node. As the two robots act
simultaneously, these children also occur at timeci,1. Also,
note that the selections of the robots are not observable to
each other1. The game tree is illustrated in in Figure 3.

Following each simultaneous choice of methods by the
robots, the chosen combination of coordination methods is
executed (during coordination timeIa

i,j ), and this is followed
by a period of task executionIp

i,j . The game ends when total
time T runs out. The payoffs to the robots are then given as
the number of pucks retrieved, minus the cost of resources
spent on the task. Terminal nodes may appear anywhere in

1This is true in all communication-less coordination methods, used in
previous work [17], [14]. When used with communication-based coordina-
tion method, this restriction may be removed. It might also be possible to
relax this restriction if robots could infer each others’ choices post-factum.



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40  45

re
tr

ie
ve

d 
pu

ck
s

group size

time limit: 20 min, resource limit: infinity

EI 20min
ACIM 20min
RND 20min
noise 20min
aggr 20min
repel 20min

(a) T = 20, no resource limits.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40  45

re
tr

ie
ve

d 
pu

ck
s

group size

time limit: 20 min, resource limit: 500 units

ACIM(t:1,f:0)
ACIM(t:.7,f:.3)

EI(no fuel)
EI(with fuel)

RND

(b) T = 20, severe fuel limits.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40  45

re
tr

ie
ve

d 
pu

ck
s

group size

time limit: 20 min, resource limit: 500 unit, 
 extra spending: aggr-0.5 unit per step

EI
ACIM

(c) T = 20, resource cost unknown.

Fig. 2. Results from the TeamBots foraging domain.

Fig. 3. An illustration of the extensive-form game tree for an LCT task.
Conflict times are denoted in the nodes. Terminal nodes (total time=T ) are
dark. Note that the second conflictci,2 may occur at different absolute times
depending on the choices of the robots at timeci,1.

the game tree, as some selections of the robots lead to less
conflicts, and thus greater opportunity for task execution.

Under ideal—and purely theoretical—conditions the
robots would know the payoffs awaiting them in each termi-
nal node, and would thus be able to, in principle, compute
a game-playing strategy that would maximize the team’s
utility. To do this, the robots would need to know the times
spent resolving conflicts and executing the task, and would
also need to know (in advance) the gains achieved during
each task-execution period. Even ignoring the gains, and
assuming that maximizing task-execution time

∑
i

∑
j I

p
i,j is

sufficient, the robots would be required to know all conflict
resolution times in advance. This is clearly impractical, as
it requires predicting all possible conflicts (hundreds in a
typical foraging task), their durations and effects.

B. Modeling LCT Tasks as a Matrix Game

We thus make a simplifying assumption, that all effects of
coordination method selections remain fixed, regardless of

where they occur. In other words, we assume that the joint
execution of a specific combination of selected coordination
methods will always cost the same (in time and resources),
regardless of the time in which the conflict occurred. More-
over, the assumption also implies that we assume that the
task-execution time (and associated gains)—which depends
on the methods selected—will also remain fixed. We state
this formally:

Assumption 1.Let α be a coordination method, selected by
robot i. We assume that for any0 ≤ j, k ≤ Ki, these hold:

Ia
i,j(α) = Ia

i,k(α), I
p
i,j(α) = I

p
i,k(α), CC

i,j(α) = CC
i,k(α)

This strong assumption achieves a key reduction in the
complexity of the model, but gets us farther from the reality
of LCT multi-robot tasks. However, the resulting model
provides an intuition as to why and when EI works. In
Section V-D we examine the assumptions of the model and
their relation to the reality of the experiments.

The duration of coordination method execution (Ia
i ), and

the duration of the subsequent conflict-free task-execution
(Ip

i ), are fixed; they now depend only on the method selected,
rather than also on the time of the selection. Thus a path
through the game tree can now be compressed. For each
combination of selected coordination method, we can simply
multiply the costs and gains from using this combination, by
the number of conflicts that will take place if it is selected.

Thus we can reduce the game tree into a matrix game,
whereKi,j is the number of conflicts occurring within total
time T that results from the first robot selectingαi, and the
second robot selectingαj . Ui,j is the utility gained from this
choice. This utility is defined as:

Ui,j ≡ [gain(Ip
i (αi) + gain(Ip

j (αj))]

− [CC
i (αi) + CC

j (αj)] (4)

where we use (for roboti) the notationgain(Ip
i (αi)) to

denote the gains achieved by roboti during the task execution
time I

p
i (αi). Note that we treat these gains as being a

function of a time duration only, rather than the method
α, which only affect the time duration. Underlying this is
an assumption that the coordination method choice affect
utility (e.g., the pucks acquired) only indirectly, by affecting
the time available for task execution. We assume further that



gains monotonically increase with time. Maximizing the time
available, maximizes the gains.

Table I is an example matrix game for two robots, each
selecting between two coordination methods. Note however
that in general, there areN robots and|M | methods available
to each.

α2

1 α2

2

α1

1 K1,1U1,1 K1,2U1,2

α1

2 K2,1U2,1 K2,2U2,2

TABLE I

LCT TASK AS A MATRIX GAME , REDUCED FROM THELCT GAME TREE

BY ASSUMPTION1. ENTRIES HOLD TEAM PAYOFFS.

Note that the robots do not have access to the selections
of the other robots, and thus for them, the game matrix does
not have a single common payoff, but individual payoffs.
These are represented in each cell by rewritingKi,jUi,j as
Ki,jui(αi), Ki,juj(αj), where

uk(αk) ≡ gain(Ip
k (αk)) − CC

k (αk).

This results in the revised matrix game (Table II).

α2

1 α2

2

α1

1 K1

1,1u1(α
1

1), K
2

1,1u1(α
2

1) K1

1,2u1(α
1

1), K
2

1,2u2(α
2

2)
α1

2 K1

2,1u2(α
1

2), K
2

2,1u1(α
2

1) K1

2,2u2(α
1

2), K
2

2,2u2(α
2

2)

TABLE II

AN LCT TASK AS A MATRIX GAME , WITH INDIVIDUAL PAYOFFS .

The number of conflictsKi,j is really the total timeT ,
divided by the duration of each conflict cycle, i.e.,Ia +
Ip. Thus the individual payoff entries for robotl selecting
methodk can be rewritten as T

Ia
l
(αk)+I

p

l
(αk)

ul.
Let us now consider these individual payoffs. The payoff

for an individual robotl which selectedα is:

T [gain(Ip
l (α)) − c(Ia

l (α))]

Ia
l (α) + I

p
l (α)

∝

I
p
l (α) − c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(5)

This step require some explanation. First, of course, since
for all entries in the matrixT is constant, dividing byT
maintains the proportionality. Furthermore, the proportion
will hold only under certain restrictions on the nature of the
function gain(), but we believe these restrictions hold for
many gain functions in practice. For instance, the step holds
whenevergain() is linear with a coefficient greater than 1.
Now:

I
p
l (α) − c(Ia

l (α))

Ia
l (α) + I

p
l (α)

=
I

p
l (α) + [Ia

l (α) − Ia
l (α)] − c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(6)

= 1 − EIl(α) (7)

∝ −EIl(α) (8)

Thus the game matrix above (Table II) is analytically
shown to be equivalent to the following matrix (Table III).
Here, each robot seeks to minimize its own individual EI
payoff (maximize its -EI payoff). If robots minimize their

individual EI payoffs, and assuming that their equilibrium
is Hicks optimal (i.e., the sum of payoffs is maximal), then
solving this game matrix is equivalent to maximizing group
utility.

α2

1 α2

2

α1

1 −EI1(α
1

1),−EI2(α
2

1) −EI1(α
1
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2

2)
α1

2 −EI1(α
1

2),−EI2(α
2

1) −EI2(α
1

2),−EI(α2

2)

TABLE III

LCT TASK AS AN EI MATRIX GAME .

C. Learning Payoffs in LCT Matrix Games

Unfortunately, when the robots first begin their task, they
do not know the payoffs, and thus rely on the reinforcement
learning framework to converge to appropriate EI values. Of
course, it is known that Q-learning does not, in the general
case, converge to equilibrium in 2-player repeated games [3],
[19], [8]. However, there are a number of features that hold
for the EI game matrixin the domains we study, which makes
the specific situation special.

Most importantly, the games that take place here arenot
between two players. Rather, the process is more akin to
randomized anonymous matching in economics and evolu-
tionary game theory. In this process, pairs of players are
randomly selected, and they do not know their opponents’
identity (and thus do not know whether they have met the
same opponents before).

Indeed, this last quality is crucial in understanding why
our use of EI works. It turns out that there exists work in
economics that shows that under such settings, using simple
reinforcement learning techniques (in our case, statelessQ-
learning) causesthe populationto converge to Nash equi-
librium, even if mixed [9]. Thus rather than having any
individual agent converge to the mixed Nash equilibrium,
the population as a whole converges to it, i.e., the number
of agents selecting a specific policy is proportional to their
target probabilities under the mixed Nash equilibrium.

There remains the question of why do agents converge to
the maximal payoff Nash equilibrium. We again turn to eco-
nomics literature, which shows that for coordination games—
including even the difficult Prisoner’s Dilemma game—
agents in repeated randomized matching settings tend to
converge to the Pareto-efficient solution [4], [13]. However,
these works typically assume public knowledge of some
kind, which is absent in our domain. Thus we leave this
as a conjecture.

D. Revisiting the EI Experiments

Armed with the analytically-motivated intuition as to why
EI works, we now go back to re-examine the experiment
results. In general, there are of course differences between
the analytical intuitions and assumptions and the use of EI in
a reinforcement learning context: (i) the values learned our
approximations of the EI values, which cannot be known
with certainty; (ii) the assumptions allowing reduction of
the LCT extensive-form game tree to a game matrix do not



hold in practice; and (iii) even the assumptions underlying
the extensive-form game tree (e.g., that robots start their
conflict at the same time, or that their gains depend only on
time available for task execution) are incorrect. We examine
specific lessons below.

We begin with the teambots simulation experiments, where
EI was highly successful, and was also demonstrated to be
robust to unknown costs. Despite the fact that the domain
cannot be reduced to the matrix game form, it turns out that
some of the assumptions are approximately satisfied, which
explain the success of EI here.

First, the fact that about half the pucks moved randomly
helped spread them around the arena even after many pucks
were collected. Thus the gains expected later in the task
were closer to the gains at the beginning to the task, than it
would have been had all pucks been immobile (in which case
pucks closer to base are collected first, resulting in higher
productivity in the beginning).

Second, the size of the arena, compared to the size
of the robots, was such that the robots did not need to
converge to one optimal combination of selection methods:
Different zones in the arena required different combinations.
In principle, this should have challenged the approach, as the
stateless learning algorithm cannot reason about the robots
being in different states (zones). However, as the robots
moved between areas fairly slowly, they were able to adapt
to the conditions in new zones, essentially forgetting earlier
EI values. This is a benefit of the stateless algorithm.

VI. SUMMARY

This paper examined in depth a novel reward function
for cooperative settings, called Effectiveness Index (EI). EI
estimates the resource spending velocity of a robot, due to its
efforts spent on coordination. By minimizing EI, robots dedi-
cate more time to the task, and are thus capable of improving
their team utility. We used EI as a reward function for
selecting between coordination methods, by reinforcement-
learning. This technique was shown to work well in two
foraging domains. The experiments explore the scope of the
technique, its successes and limitations. In addition, we have
formally explored multi-robot tasks for which EI is intended.
We have shown that under some assumptions, EI emerges
analytically from a game-theoretic look at the coordination
in these tasks. We believe that this work represents a step
towards bridging the gap between theoretical investigations
of interactions, and their use to inform real-world multi-
robot system design. Improved results can be achieved by
extending both the theory underlying the use of EI, and the
learning algorithms in which it is used.
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role of critical mass in adaptive task division. In P. Maes, M. Mataríc,
J.-A. Meyer, J. Pollack, and S. Wilson, editors,From Animals to
Animats IV, pages 553–561. MIT Press, 1996.

[17] R. Vaughan, K. Støy, G. Sukhatme, and M. Matarić. Go ahead,
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