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Abstract— Multi-robot systems researchers have been inves- are methods that work well in practice—both in simulations

tigating adaptive coordination methods for improving spaial
coordination in teams. Such methods adapt the coordination
method to the dynamic changes in density of the robots.
Unfortunately, while their empirical success is evident, nne
of these methods has been understood in the context of exisgi
formal work on multi-robot learning. This paper presents
a reinforcement-learning approach to coordination algorthm
selection, which is not only shown to work well in experimers,
but is also analytically grounded. We present a reward fundbn
(Effectiveness Index, El), that reduces time and resources spent
coordinating, and maximizes the time between conflicts that
require coordination. It does this by measuring the resource-
spending velocity. We empirically show its success in simulations
of multi-robot foraging. In addition, we analytically expl ore
the reasons that El works well. We show that under some
assumptions, spatial coordination opportunities can be maeled
as matrix games in which the payoffs are directly a function 6
El estimates. The use of reinforcement learning leads to rafits
maximizing their EI rewards in equilibrium. This work is a
step towards bridging the gap between the theoretical studypf
interactions, and their use in multi-robot coordination.

|I. INTRODUCTION

and with real robots—but the reasons for their success remai
elusive.

This paper presents a reinforcement-learning approach to
coordination algorithm selection, which is not only shown t
work well in experiments, but also explored analyticallizeT
reward function used as the basis for the learning is called
Effectiveness IndekEl). The key idea in El is to reduce
time and resources spent coordinating, and maximize the
time between conflicts that require coordination. It doés th
by measuringthe resource-spending velocifhe resource
"burn rate"). The use of reinforcement learning minimizes
this velocity.

We empirically and analytically evaluate the use of EI. We
empirically show that EI succeeds in improving multi-robot
coordination in simulated multi-robot foraging. We then
analytically explore the reasons and assumptions underlyi
this success. We formalize foraging as extensive-form game
We show that under some assumptions, these games can be
modeled as matrix games in which the payoffs to the robots
are unknown, but are directly a function of El estimates. The

Multi-robot systems researchers have been investigatinge of reinforcement learning leads to robots maximizing
distributed coordination methods for improving spatiat cotheir El rewards in equilibrium. We believe that this work
ordination in teams [7], [15], [14]. Such methods attemptepresents a step towards bridging the gap between the
to resolve spatial conflicts between team-members, e.gheoretical study of interactions (via game theory), ararth

by dynamic setting of right-of-way priorities [17], [20],

territorial separation [16], [5], [10], or role-based priees

[12]. It is accepted that no one method is always best [6],

use to explain and inform multi-robot coordination.

II. RELATED WORK

[14], and that all methods reach a point where adding robots Earlier work on adaptation based on coordination effort
to the group (i.e., increasing the density of the robots iis closely related. Vaughan et al. [17] presented a method

space) reduces overall productivity [16], [15].

called aggressionfor dynamic coordination. When robots

There is thus growing interest in adaptive coordinatiogome too close to each other, each of the robots chooses an
approaches, in which each robot adapts the coordinati@aggression level; the robot with the lower level concedes it
method to the dynamic changes in density. For instancpgsition, preventing a collision. Later, Zuluaga and Vaargh
Zuluaga and Vaughan adjust the right-away priorities basg@80] have shown that choosing aggression level proportiona
on the amount of local effort (or investment) by team+to the robot's task investment can further improve overall
members [20]. Rosenfeld et al. [14] advocated allowing eacdystem performance. In contrast to this work, our method is
robot to individually switch coordination methods to reduc based on measuring the robot’s investment in coordinaltion.
its own estimated resource costs. In general, these adaptaddition, we cast adaptive coordination as a reinforcement
methods have demonstrated much success in multiple dearning problem.

mains of interest.

Rosenfeld et al. [14] presented the Combined Coordination

Unfortunately, while their empirical success is evidentCost (CCC) method that adapts the selection of coordination
none of these methods have ever been analytically provemethods by robots; however, it ignores the gains accunuilate
to work, nor understood in the context of existing formafrom long periods of no coordination needs, in contrast to ou
work on multi-robot learning and adaptation. As a resultwork. Similarly to our work, the adaptation is stateless,,i.
their optimality and the appropriate conditions for thedleu has no mapping from world state to actions/methods. Instead
remain open questions. Put simply, they pose a puzzle: Thebe CCC is estimated at any given point, and once it passes



pre-learned (learned offline) thresholds, it causes dyoambut its primary task, until it is interrupted by an occurring
re-selection of the coordination methods by each indiMiduar potentially-occurring conflict with another robot, whic
robot, attempting to minimize the CCC. In contrast, all oumust be resolved by a coordination algorithm. Each such
learning and adaption is done on-line. interruption is calleda conflict event The event triggers

Most investigations of reinforcement learning in multi-a coordination algorithm to handle the conflict. Once it
robot settings have focused on improving the learning meckuccessfully finishes, the robots involved go back to their
anisms (e.g., modifying the basic Q-learning algorithmy a primary task.
utilized task-specific reward functions. We briefly discuss There are common themes that run through all these
these below. Two recent surveys are provided in [19], [8]. tasks: (i) loose coordination between the robots (i.e.y onl

Mataric [11] discusses several techniques for using resccasional need for spatial or temporal coordination);ii
wards in multi-robot Q-learning: A local performance-kdse cooperative task (the robots seek to maximize group utility
reward, a global performance-based reward, and a heuriséiod (iii) the task is bound in time. We refer to these tasks as
strategy referred to as shaped reinforcement; it combineé€T tasks(Loose-coordination, Cooperative, Timed tasks).
rewards based on local rewards, global rewards and coordi-Example LCT tasks include multi-robot foraging, search
nation interference of the robots. Balch [2] reports on gsinand exploration, and making deliveries. For instance, in
reinforcement learning in individual robot behavior séilee.  multi-robot foraging, robots execute their individual esl
The rewards for the selection were carefully selected fohea (seeking pucks and retrieving them) without any a-priori
domain and application, in contrast to our work. In contrastoordination. When they become too close to each other,
to these investigations, we explore a domain-independethiey need to spatially coordinate. The robot all contritiote
reward function, based on minimizing resource use, and ufiee team goal, of maximizing the number of pucks retrieved.
them in selecting between coordination methods, rather thdoreover, they have limited time to do this. In multi-
task behaviors. robot exploration, execution follows a similar patternbots

Wolpert et al. [18] developed the COIN reinforcementspread around, avoiding each other or coordinating as deede
learning framework. Each agent's reward function is base@.g., to decide who is to explore a newly-discovered area);
on wonderful life utility the difference between the groupthey have the goal of completely exploring a new area as
utility with the agent, and without it. Similarly to these quickly as possible.
our study focuses on the reward function, rather than theLetA=1{...,a;,...},1 <14 < N be a group ofV robots,
learning algorithm; and similarly, we focus on functionscooperating on a group task that started at tinferbitrarily)
that are aligned with global group utility. However, our lasts up-to timel' (A starts working and stops working on
work differs in several ways. First, we distinguish utilitythe task together). We denote Gy = {c¢; ;},0 < j < K;
due to coordination, from utility due to task executionthe set of conflict events for robet wherec; ; marks the
Second, our reward function distinguishes also the timatspetime of the beginning of each conflict.
coordinating and time spent executing the task. The time between the beginning of a conflict evgnand
up until the next event, the intervad] ; = [¢; j, ¢ j+1), can
be broken into two conceptual periods: Taetive interval

We first cast the problem of selecting coordination algo#?; = [c; ;,t: ;) (for somec; ; < t;; < ¢; 1) in which the
rithms as a reinforcement learning problem (Section lll-A)robot was actively investing resources in coordinatiord an
We then introduce the effective index (EI) reward functiorthe passiveinterval I ; = [t; ;, ¢; j+1) in which the robot no
in Section 11-B. longer requires investing in coordination; from its perdpe

o ] ] the conflict event has been successfully handled, and it is
A. Coordination Algorithm Selection back to carrying out its task. By definitiah ; = I¢; + I7 .

Multilateral coordination prevents and resolves conflict$Ve define theotal active timeas/® =}, >, I}, and the
among robots in a multi-robot system (MRS). Such conflicttotal passive timas? =}, Zj I;.‘fj.
can emerge as results for shared resource (e.g., space), odDur research focuses on a case where the robot has a
as a result of violation of joint decisions by team-membersionempty setM of coordination algorithms to select from.
Many distributed coordination algorithms (protocols) @éav The choice of a specific coordination methad= M for a
been proposed and explored by MRS researchers [5], [12]iven conflict event; ; may effect the active and passive
[16], [17]. Not one method is good for all cases and groumtervals I;fj,lfjj (and possibly, other conflicts; see next
sizes [14]. However, deciding on a coordination method fasection). To denote this dependency we digg(a), I ;(a)
use is not a trivial task, as the effectiveness of coordimati as active and passive intervals (respectively), due togusin
methods in a given context is not known in advance. coordination methodv. Figure 1 illustrates this notation.

We focus here on loosely-coupled application scenarios We define the problem of decentralized coordination al-
where coordination is triggered by conflict situations,nide gorithm selection in terms of reinforcement learning. We
tified through some mechanism (we assume that suchaasume each robot tries to maximize its own reward by
mechanism exists, though it may differ between domainsglecting a coordination methad Typically, reward func-
most researchers simply use a pending collision as a tiggetions are given, and indeed most previous work focuses
Thus the normal routine of a robot’s operation is to carrpn learning algorithms that use the reward functions as

IIl. LIMITING RESOURCESPENDING
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Time
Coordihat\on Coordihéiion
T [1I-B.3 The frequency of coordinating. If there are frequent
Fig. 1. lllustration of task time-line, from the robots’ geective. Task interruptions to the robot's task in order to coordinatesrev
execution is occasionally interrupted by the requiremergpend resources if short-lived and inexpensive this would delay the robot
on coordination. ' L
We assume (and the results show) that good coordination
efficiently as possible. Instead, we assume a very simpr%ec's'gntS l_ﬁ?d t? Ion?hdufratlons of n]?n—lntg_r ruE[)_ted Wo,ék zy
Q-Learning variant, and instead focus on defining a rewa € robot. Therelore, the frequency ot coordination mesoc
: use is not less important than the time spent on conflict
function (see below). . .
resolving. Thus, largef;; is better.
We thus want to balance the total active coordination cost
- ACC = Zj ACC; ; against the frequency of coordination.
We call the proposed general reward for coordinatiogve want to balance short-lived, infrequent calls to an expen
Effectiveness IndefEl). Its domain independence is basedsive coordination method against somewhat more frequent
on its using three intrinsic (rather than extrinsic) fastor  calls to a cheaper coordination method.
its computation; these factors depend only on internal com- we therefore define the Effectiveness Index of rohot
putation or measurement, rather than environment responsgf conflict 4, due to using coordination methad € M as
follows:

B. Effectiveness Index

IlI-B.1 The cost of coordinating. The first factor we
consider is the cost of internal resources (other than time)
used by the chosen method. This is especially important in ii(@)
physical robots, where battery life and power are a concern.

We denote byCC the total cost of coordination, of robat ' at is, the effectiveness index (EI) of a coordination
It can be broken into the costs spent on resolving all coeflicfethoda during this event is the velocity by which it spends

cC = >, CZC Czcj is similar to other measures suggested©SOUrces d_urmg its execution, amoruzed by how_qug a
previously, but excludes the cost of time and resourcestspdtfiod in which no conflict occurs. Since greater El signifies
before the conflict (unlike [14]), and is limited to only 9réater costs, we typically put a negation sign in front of
considering individual intrinsic resources (unlike [20]) the El, to signify that greater velocity is worse; we seek to

Let us use a cost functionost;(«,t) to represent the m||n|mr:_ze resource spenglng_ vellocn_y. | | . |
costs due to using coordination methad € M at any n this paper we use the simple single-state Q-learning al-

time ¢ during the lifetime of the robot. The function is nOtgorithm to estimate the El values from the robot’s individua
' perspective. The learning algorithm we use is stateless:

ACCi () Ifj(a) +Cf(a)
Igj(oz)—i-lfjj(oz) Igj(oz)—i—ffjj(oz)

®3)

necessarily known to us a-priori (and indeed, in this redgar

is noF). _ _ Qt(a) = Qi—1(a) + p(Ri(a) — vQ¢-1(a))
Using the functioncost;(a,t) we define theCy; of a . . .
particular event of robot at time¢; ;: ’ where p is the learning speed factory is a factor of

discounting, and3 is an exploration rate.
CC(a) = fct” costi(a,t) dt + [ cost;(a,t) dt
5]

W i tiss IV. EXPERIMENTS INMULTI-ROBOT FORAGING
= [ " costi(a,t) dt
7,7

( We now turn to briefly survey a subset of experiment

Igesults, in simulated foraging, supporting the use of El in
multi-robot team tasks. Due to lack of space, we only provide
representative results.

Foraging is a canonical task in multi-robot systems re-
search. Here, robots locate target items (pucks) within the
[1I-B.2 The time spent coordinating. The main goal of work area, and deliver them to a goal region. As was the
a coordination algorithm is to reach a (joint) decision thatase in Rosenfeld et al.'s work [14], we used the TeamBots
allows all involved robots to continue their primary adiyvi simulator [1] to run experiments. Teambots simulated the
Therefore, the sooner the robot returns to its main task, tleetivity of groups of Nomad N150 robots in a foraging
less time is spent on coordination, and likely, the robot caarea that measured approximately 5 by 5 meters. We used
finish its task more quickly. Thus, smalléf is better. Note a total of 40 target pucks, 20 of which were stationary
that this is true regardless of the use of other resourceisiwh within the search area, and 20 moved randomly. For each
are measured by’“). Even if somehow other resourcesgroup, we measured how many pucks were delivered to the
were free, effective coordination would minimize conflict-goal region by groups of 3,5,15,25,35,39 robots within 10
resolution time. and 20 minutes. We averaged the results of 16—30 trials in

We thus define théctive Coordination CosfACC) func- each group-size configuration with the robots being plated a
tion for roboti and methody at timeg; ;, that considers the random initial positions for each run. Thus, each experimen

CZCJ is defined as the cost of applying the coordinatio
algorithm during the active intervid; ;,¢; ;) and the passive
interval[¢; ;, c; j+1). However, the coordination costs during
the passive interval are zero by definition.



simulated for each method a total of about 100 trials of 18. LCT Tasks as Extensive-Form Games
and 20 minute intervals.
We compare the ElI method with random coordinatio

algolr |th'£\nCIslalect|%r_1 ﬁRND)’ a?f(lj_ to tlhe ”_‘ethof 40f RI’Eosinfefl s task execution is occasionally interrupted, requirihg
teh al. ( | t') (w I(;h léses IO tmi tearnmg{h[ ])t. ac fo application of some coordination method in order to resolve
e€se selection methods selects between three types o cq rspatial conflict, to get back to task execution. Assume for

dination methodsd), described also in [14]: Noise (which simplicity of the discussion that we limit ourselves to two

essentially allows the robots to collide, but increasesr therobots, and that whenever they are in conflict, they are both

motion uncertainty to try to escape collisions), AQQressio,  are of it, and they both enter the conflict at the same time.

[17] (where one robot backs away, while the other MOVEPhis is a strong assumption, as in actuality, most often LCT

fqrward), and R_epel, |_n Whlch robot_s _move away (Va”abl?asks often involve more than two robots. We address this
distance) to avoid an impending collision.

. h b ; | I th assumption later in this section.
Figures 2(a)-2(c) show a subset of results. In all, the X At first glance, it may seem possible to model LCT tasks

axis marks the group size, and the Y axis marks the numbgg a series of single-shot games (i.e., repeating gamesjewh

of pucks collected. Figure 2(a) shows that given no resource - ; :
L ) each game the actions available to each robot consiseof th
limitations, the ElI method is as good as ACIM (and Repe& g I vel !

“coordination methods available to it. The joint selectidn o

Whi(.:h provid_es th? best results, though it has not used P'flethods by the two robots creates a combination of methods
off-line learning. Figure 2(b) shows the advantage of Elrov hich solves the conflict (at least temporarily). The pagoff

ACIM when resource costs apply. Here, when ACIM take%r the two robots include the pucks collected in the time

fuetl (.:tOStS |r]1to accoun.t, I perflormsowell.h BUtth]Vhe'; I ger etween games, minus the cost of resources (including time)
not, 1S performance 1S very fow. ©n the othér hand, pent making and executing the selected methods. The fact

with fuel costs and without perform well. Finally, FIgUre yhat there exists a time limit to the LCT task in guestion can
2(c) shows how ACIM and EI respond to unknown COStSy o modeled as a given finite horizon

Here, both El and ACIM take fuel costs into account, but the L. . .
However, finite-horizon repeating games are not a good

ggtrl]f:rlr:]lﬁcceofntihaerseegsrzzitﬁ;Si'ﬂg;ggii;g‘g'ggg;l;met model for ITCT task;. Iq pa_lrticular, the methods selected by
T ' the robots in one point in time affect the payoffs (and costs)

at a later point in time. First, the choice of coordination

V. WHY DOESEI WORK? methods at time affects the time of the next conflict. One

We now turn to discuss the use of El as a reward functio§oordination method may be very costly, yet reduce the
from an analytical perspective. We are interested in eiqgor likelihood that the robots get into conflict again; anothgr
the conditions under-which we expect El to be effectiveethod may be cheap, but cause the robots to come into
There are common themes that run through all the tasg@nflict often. Second, the robots change the environment in
in which EI has been successful: (i) loose coordinatioWhich they operate during the time they are carrying outthei
between the robots (i.e., only occasional need for spatif#sks, and thus change future payoffs. For instance, robots
coordination); (i) a cooperative task (the robots seek tgollect pucks during their task exgcutlon time, .and.often
maximize group utility); and (iii) the task is bound in time. collect those nearest the goal area first. Thu§ their payoff (
We refer to these tasks a<CT tasks(Loose-coordination, {€rms of pucks collected) from games later in the sequence
Cooperative, Timed tasks). is lower than from games earlier on.

For instance, in foraging, we see that robots execute their We thus utilize a model of LCT tasks as extensive-form
individual roles (seeking pucks and retrieving them) esse§@mes. The initial node of the game tree lies at the time of
tially without any a-priori coordination. When they becoméhe first conflict,c; 1, and the choices of the first robot at
too close to each other, they need to spatially coordinat@]'s time lead to ch|ldren.of this node. As the two robots act
The robot all contribute to the team goal, of maximizing théimultaneously, these children also occur at time. Also,
number of pucks retrieved. Moreover, they have limited tim80te that the selections of the robots are not observable to
to do this. Incidentally, they also have finite number of sjck €ach othel. The game tree is illustrated in in Figure 3.
which break some of the assumptions we make below. We Following each simultaneous choice of methods by the
shall come back to this. robots, the chosen combination of coordination methods is

Computing optimal plans of execution for tasks such agx€écuted (during coordination timigt;), and this is followed
foraging is purely a theoretical exercise in the currertessd Y @ period of task executioff ;. The game ends when total
the art. In practice, determining detailed trajectoriesnial-  ime 7' runs out. The payoffs to the robots are then given as
tiple robots in continuous space, with all of the unceriait the number of pucks ret_rleved, minus the cost of resources
involved (e.g., pucks slipping from robots’ grips, motianda spent on the task. Terminal nodes may appear anywhere in
sensing uncertainty), is infeasible. Much more so, when we
add the a-priori selection of coordination methods in défe 1T‘his is true in all communication-less coordination methodsed in
points in time. We therefore seek alternative models Witﬁrewous work [17], [14]. When used with communicationdxsoordina-

! . on method, this restriction may be removed. It might algopossible to
which to analytically explore LCT tasks. relax this restriction if robots could infer each othersbittes post-factum.

We turn to game theory to represent LCT tasks. As we
ave already noted, each individual robot’s perspectittegs
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Fig. 2. Results from the TeamBots foraging domain.

Robot 1 where they occur. In other words, we assume that the joint
(attime c, ) execution of a specific combination of selected coordimatio
methods will always cost the same (in time and resources),
regardless of the time in which the conflict occurred. More-
Robor2 over, the assumption also implies that we assume that the
(attime c, ) task-execution time (and associated gains)—which depends
on the methods selected—will also remain fixed. We state

this formally:

Assumption 1.Let o be a coordination method, selected by
roboti. We assume that for any < j, k < K;, these hold:

Robot 1
Selection

e Ii(a) = Iy(a), If(a) = If(a), CFj(a) = Ci(a)

]

This strong assumption achieves a key reduction in the

complexity of the model, but gets us farther from the reality
Sclctor of LCT multi-robot tasks. However, the resulting model
attime c,) provides an intuition as to why and when EI works. In

/i\ /\ Section V-D we examine the assumptions of the model and
S0 R their relation to the reality of the experiments.
The duration of coordination method executidif)( and

the duration of the subsequent conflict-free task-exenutio
Fig. 3. An illustration of the extensive-form game tree for l.CT task.  (I7'), are fixed; they now depend only on the method selected,
Conflict times are denoted in the nodes. Terminal nodesl (iote=17") are  rather than also on the time of the selection. Thus a path
dark. Note that the second confligt> may occur at different absolute times
depending on the choices of the fobots at tiee. through t_he game tree can now be compressed. Fo_r each

combination of selected coordination method, we can simply

the game tree, as some selections of the robots lead to Igs§tiply the costs and gains from using this combination, by
conflicts, and thus greater opportunity for task execution. the number of conflicts that will take place if it is selected.

Under ideal—and purely theoretical—conditions the 1,5 we can reduce the game tree into a matrix game,
robots would know the payoffs awaiting them in each termiyhere i, | is the number of conflicts occurring within total

nal node, and would thus be able to, in principle, COMPUtme 7" that results from the first robot selecting, and the
a game-playing strategy that would maximize the team'secong robot selecting;. Us.; is the utility gained from this
utility. To do this, the robots would need to know the timeshpice. This utility is defined as:

spent resolving conflicts and executing the task, and would

also need to know (in advance) the gains achieved during U= [gain(IP () +gam([§?(aj))]

each task-execution period. Even ignoring the gains, and c c ‘

assuming that maximizing task-execution tifag >~ 17 is 1€ (i) + €5 (ay)] ()

sufficient, the robots would be required to know all conflicthere we use (for robot) the notationgain(I?(a;)) to

resolution times in advance. This is clearly impractical, ajenote the gains achieved by robduringthetasli execution

it requires predicting all possible conflicts (hundreds in &, (). Note that we treat these gains as being a

typical foraging task), their durations and effects. function of a time duration only, rather than the method

«, which only affect the time duration. Underlying this is

an assumption that the coordination method choice affect
We thus make a simplifying assumption, that all effects oftility (e.g., the pucks acquired) only indirectly, by affang

coordination method selections remain fixed, regardless tfe time available for task execution. We assume furthdr tha

B. Modeling LCT Tasks as a Matrix Game



gains monotonically increase with time. Maximizing thee&im individual El payoffs, and assuming that their equilibrium

available, maximizes the gains. is Hicks optimal (i.e., the sum of payoffs is maximal), then
Table | is an example matrix game for two robots, eackolving this game matrix is equivalent to maximizing group

selecting between two coordination methods. Note howevatility.

that in general, there at¥ robots andM | methods available

to each. ol %
, , ai | —EL(a1),—EL(a3) | —EL(a1),—EL(a3)
. ai Q) a3 | —EL(a3),—ElL(a}) | —EL(a3),—EI(a3)
g K1,1U1,1 Ki2Ui 2
. : TABLE Il
ay | Ko1Uz1 | KapUsp

LCT TASK AS AN El MATRIX GAME .
TABLE |

LCT TASK AS A MATRIX GAME , REDUCED FROM THELCT GAME TREE
BY ASSUMPTIONL. ENTRIES HOLD TEAM PAYOFFS C. Learning Payoffs in LCT Matrix Games

Unfortunately, when the robots first begin their task, they

Note that the robots do not have access to the selectiogs not know the payoffs, and thus rely on the reinforcement
of the other robots, and thus for them, the game matrix dogsarning framework to converge to appropriate El values. Of
not have a single common payoff, but individual payoffscourse, it is known that Q-learning does not, in the general
These are represented in each cell by rewrititig;U; ; as  case, converge to equilibrium in 2-player repeated ganjes [3
K; jui(oy), K; jui(aj), where [19], [8]. However, there are a number of features that hold

o c for the EI game matrixn the domains we studwhich makes
uk(ax) = gain(li(ar)) = Gy (o). the specific situation special.

This results in the revised matrix game (Table ). Most importantly, the games that take place hererare
) ) between two players. Rather, the process is more akin to
. . - . . >z , randomized anonymous matching in economics and evolu-
a | Kiaui(o), Kiau(ar) | Krsui(en), Kipuz(as) tionary game theory. In this process, pairs of players are
a3 | Kziua(a), K3qui(of) | Kaaus(az), K3 aus(a3) i ’
: 1222, : 122, randomly selected, and they do not know their opponents
TABLE I identity (and thus do not know whether they have met the
AN LCT TASK AS A MATRIX GAME , WITH INDIVIDUAL PAYOFFS. same Opponents before),

Indeed, this last quality is crucial in understanding why
The number of conflictds; ; is really the total imel’, our use of EI works. It turns out that there exists work in
divided by the duration of each conflict cycle, i.€5 +  economics that shows that under such settings, using simple
I?. Thus the individual payoff entries for robétselecting reinforcement learning techniques (in our case, statéess

methodk can be rewritten a a(ak)flp(ak)ul. learning) causeshe populationto converge to Nash equi-
Let us now consider these'individual payoffs. The payoffibrium, even if mixed [9]. Thus rather than having any
for an individual robot which selectedx is: individual agent converge to the mixed Nash equilibrium,
Tlgain(IP(a)) — c(If(a))]  IF(a) — e(If () the population as a whole_qonve_rges_ to it, i.e._, the numb_er
I# (o) + I7(a) I# (o) + I'(a) ( of agents selecting a specific policy is proportional to rthei

) ) ) ) . target probabilities under the mixed Nash equilibrium.
This step require some explanation. First, of course, sinCe Thare remains the question of why do agents converge to

for all entries in the matrixI” is constant, dividing byl" e maximal payoff Nash equilibrium. We again turn to eco-
maintains the proportionality. Furthermore, the promoTti ,mics jiterature, which shows that for coordination games
will hold only under certain restrictions on the nature of th including even the difficult Prisoner's Dilemma game—

function gain(), but we believe these restrictions hold foragents in repeated randomized matching settings tend to
many gain functions in practice. For instance, the stepsholc&mverge to the Pareto-efficient solution [4], [13]. Howeve
whenevergain() is linear with a coefficient greater than 1.;nace works typically assume public knowledge of some
Now: kind, which is absent in our domain. Thus we leave this

as a conjecture.
17 (@) — c(If(e)) _ If(e) + [I(a) — TP ()] — eI (ev))

I7(a) + I7(a) = I7(a) + I7(a) D. Revisiting the El Experiments
(6) Armed with the analytically-motivated intuition as to why
=1-FEI(a) (7) El works, we now go back to re-examine the experiment

results. In general, there are of course differences betwee
the analytical intuitions and assumptions and the use ofi El i
Thus the game matrix above (Table II) is analyticallya reinforcement learning context: (i) the values learned ou
shown to be equivalent to the following matrix (Table IIl).approximations of the El values, which cannot be known
Here, each robot seeks to minimize its own individual EWwith certainty; (ii) the assumptions allowing reduction of
payoff (maximize its -El payoff). If robots minimize their the LCT extensive-form game tree to a game matrix do not

x —EI(«) (8)



hold in practice; and (iii) even the assumptions underlying[3]
the extensive-form game tree (e.g., that robots start their

conflict at the same time, or that their gains depend only on

time available for task execution) are incorrect. We examin [4]
specific lessons below.

We begin with the teambots simulation experiments, wher
El was highly successful, and was also demonstrated to be
robust to unknown costs. Despite the fact that the domaitf!
cannot be reduced to the matrix game form, it turns out thaﬁ]
some of the assumptions are approximately satisfied, whic
explain the success of El here.

First, the fact that about half the pucks moved randomly[g]
helped spread them around the arena even after many pucks
were collected. Thus the gains expected later in the task
were closer to the gains at the beginning to the task, than it
would have been had all pucks been immobile (in which case
pucks closer to base are collected first, resulting in highel°]
productivity in the beginning). [10]

Second, the size of the arena, compared to the size
of the robots, was such that the robots did not need {&1]
converge to one optimal combination of selection methodsg;y,
Different zones in the arena required different combirretio
In principle, this should have challenged the approacthas t[13l
stateless learning algorithm cannot reason about the sobot
being in different states (zones). However, as the robops]
moved between areas fairly slowly, they were able to adapt
to the conditions in new zones, essentially forgettingiearl 15
El values. This is a benefit of the stateless algorithm.

V1. SUMMARY

This paper examined in depth a novel reward functior[wle]
for cooperative settings, called Effectiveness Index.(El)
estimates the resource spending velocity of a robot, dus to '17]
efforts spent on coordination. By minimizing El, robots ded
cate more time to the task, and are thus capable of improving
their team utility. We used El as a reward function for[18
selecting between coordination methods, by reinforcement
learning. This technique was shown to work well in twol19]
foraging domains. The experiments explore the scope of the
technique, its successes and limitations. In addition, aeeh [20]
formally explored multi-robot tasks for which El is interdle
We have shown that under some assumptions, El emerges
analytically from a game-theoretic look at the coordinatio
in these tasks. We believe that this work represents a step
towards bridging the gap between theoretical investigatio
of interactions, and their use to inform real-world multi-
robot system design. Improved results can be achieved by
extending both the theory underlying the use of El, and the
learning algorithms in which it is used.
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