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Abstract

To accomplish in their tasks, agents need to build mod-
els of other agents from observations. In open or adver-
sarial settings, the observer agent does not know the full
behavior repertoire of observed agents, and must learn a
model of the other agents from its observations of their ac-
tions. This paper focuses on learning models of sequen-
tial behavior based on observed execution traces. It em-
pirically compares sequence recognition approaches, and
shows that they suffer from common deficiencies, includ-
ing length-biases and inability to generalize discovered pat-
terns. We present bias-removing and clustering methods to
address these challenges, and evaluate them using synthetic
and real-world data. The results show significant improve-
ments in all the learning algorithms tested.

1. Introduction
To accomplish in their tasks, agents need to build mod-

els of other agents from observations. In open or adversar-
ial settings, the observer agent does not know the full behav-
ior repertoire of observed agents, and must learn a model of
the other agents from its observations of their actions. Ex-
amples of such settings include monitored human-computer
interactions [2], or coaching a robotic soccer team, a task
where a synthetic coach must determine tactics to counter
opponent teams [7].

We focus in this paper on learning a model of the se-
quential behavior of agents by analyzing their observed ac-
tions, without supervision. Two general approaches to this
task are frequency-based methods [1, 12], and statistical de-
pendence methods [5, 6]. However, to the best of our knowl-
edge, their relative strengths with respect to sequence learn-
ing have not been evaluated. Furthermore, common chal-
lenges or merits have not been identified.

Our first contribution is in carrying out a comparative
evaluation of the above methods. Based on a unifying un-
derlying representation using an augmented suffix trie [9],
we apply these methods in several domains, and com-
pare their performance. The results show that statistical
dependence techniques typically fare significantly better

than frequency-based ones. However, more importantly, the
comparison uncovers several common deficiencies to the
methods we tested. In particular, we show that they are (i)
biased in preferring sequences based on their length; and
(ii) may incorrectly differentiate between similar sequences
that reflect the same general pattern.

The paper tackles these deficiencies. First, we show that
a length normalization method leads in fact to significant
improvements in all learning methods (up to 42%). We
then show how to use clustering to group together simi-
lar sequences. We show that previously distinguished sub-
patterns are now correctly treated as instances of the same
general pattern. This results in additional significant pre-
cision improvements. We extensively evaluate these tech-
niques using synthetic data and on two real data sets. The
experiments show that the techniques are generic, in that
they significantly improve all of the methods initially tested.

2. Background: Sequence Recognition
The literature reports on several alternative unsuper-

vised sequence learning techniques. Frequency based al-
gorithms pick the patterns whose frequency in the seg-
ments passes a user-specified threshold—called minimal
support—specified as percentage of the input segments [1].
Unfortunately, support-based methods face difficulty ignor-
ing patterns that are due to chance—patterns that emerge
from the likely frequent co-occurrence of a frequent suf-
fix and a frequent prefix. To address this difficulty, support-
based recognition is usually coupled with another tech-
nique, confidence, which measures the predictability of a
pattern suffix given its prefix. In such combinations, the ex-
tracted patterns are those that are more frequent than the
user-specified support, and more predictive than the user-
specified confidence.

Even taking confidence into account, support-based
methods still provide misleading results [11] and can-
not recognize highly predictive yet rare patterns[7]. For
example, in UNIX command-line sequences, the pat-
tern edit → make → a.out (implying a programmer’s
EDIT-COMPILE-DEBUG cycle) is likely to be more fre-
quent than expected, given the individual frequency of its
constituent events.
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Table 1: A statistical contingency table for sequential pattern p,
composed of a prefix pr = α1, α2, . . . , αk−1 and suffix αk.

Dependency-detection algorithms can recognize statisti-
cally significant patterns ([5, 6]). These test for the statis-
tical dependence of a suffix on its prefix, taking into ac-
count the frequency of other prefixes and suffixes. To cal-
culate the rank of a given pattern p, a 2× 2 contingency ta-
ble is built for its prefix pr and suffix αk (Table 1). In the
top row, n1 is the number of times that we saw the pat-
tern p (pr followed by αk), and is simply freq(p). n2 is the
number of times we saw a different suffix to the same pre-
fix, i.e.,

∑
αi 6=αk

freq(prαi). In the second row, n3 is the
number of patterns in which αk followed a different prefix
than pr (

∑
pm 6=pr

freq(pmαk)). n4 is the number of pat-
terns in which a different prefix was followed by a differ-
ent suffix (

∑
pm 6=pr

∑
αi 6=αk

freq(pmαi)). The table mar-
gins are the sums of their respective rows or columns. A
chi-square or G test [5] is then run on the contingency ta-
ble to calculate the dependence of αk on pr.

3. Recognition: A Comparison
To the best of our knowledge, a comparison contrast-

ing the relative performance of the different approaches
discussed above has not been done. To carry out such a
comparison, we use a representation which stores all sub-
sequences in such a manner that allows calculating their
ranks via different methods.

Our representation is composed of two data structures
[7]. The first is an augmented suffix trie [9], a tree-like data
structure in which each node represents an event, and its
children represent events that have immediately followed it.
A sequence is represented by a path from the trie’s root to
the node that contains the last event of the sequence. Each
sequence is inserted to the trie together with all its suffixes.
Each node in the trie keeps track of the number of times it
has been passed through. Contingency table calculation re-
quires an additional data structure, which maintains sum-
mary information per each level in the trie. For each level
l, and event e, we maintain (i) ecount(e, l), the number of
times event e was inserted at level l; and (ii) lcount(l), the
number of all sequences of length l. Using this information
we can calculate support, confidence and dependency ranks
for of all the sequences in the database. It is then straight-
forward to extract the top subsequences according to each
method, by finding the k best nodes.

We conducted extensive recognition experiments us-
ing synthetic data, comparing support, confidence, sup-
port/confidence and dependency-detection (hereinafter,

marked DD). In each run, the techniques above were to rec-
ognize five different re-occurring true patterns, uni-
formly distributed within a file of 5000 segments. We refer
to the percentage of these segments that contain actual pat-
terns as pattern rate. Such segments may include additional
random events before or after the true pattern. We also con-
trolled intra-pattern noise rate: the probability of having
noise events within a pattern.

In each experiment, each technique reported its best 10
pattern candidates, and those were compared to the five
true patterns. The results were measured as the percent-
age of true patterns that were correctly detected. The sup-
port/confidence technique requires setting manual thresh-
olds. To allow this method to compete, we set its thresh-
olds such that no true pattern would be pruned prematurely.
We refer to this technique as “Support/Confidence Opti-
mal”. We have also tested a more realistic version of the
algorithm, using fixed minimal confidence of 20% (“Sup-
port/Confidence”).

For three different values of alphabet size T (5, 10 and
26) and three ranges of true-pattern sizes (2–3, 3–5, 4–7)
we have generated data sets of sequences with increment-
ing pattern rates. Intra-pattern-noise was fixed at 0%. For
each pattern rate we have conducted 50 different tests. Over-
all, we ran a total of 4500 tests, each using different 5000
sequences and a different set of 5 true patterns.

The results are depicted in Figure 1. In the figure, the
x-axis measures the pattern rate from 0.2% to 100%. The
y-axis measures the average accuracy of the different tech-
niques over the various combinations of T and pattern size.
The figure shows that dependency-detection (DD) outper-
formed other methods for low and medium values of pat-
tern rate. The optimal support/confidence algorithm usu-
ally came second, outperforming DD at higher pattern rates.
However, the standard support/confidence, as well as the
simplistic support technique, have provided poor results.

Figure 2 shows the results for the same experiment, fo-
cusing on pattern rates lower than 5%. As can be clearly
seen, DD quickly achieves relatively high accuracy, signifi-
cantly higher than the support/confidence method.
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Figure 1: Precision of Sequence Recognition.



0

20

40

60

80

100

0 1 2 3 4 5

Pattern Rate (%)

P
re

ci
si

on
 (%

)
Support

DD

Support/
Confidence

Support/
Confidence
Optimal

Confidence

Figure 2: Precision at Low Pattern Rates.

4. Improving Recognition
We analyze the failures and successes of the different

techniques. DD was better than support-confidence, but did
not necessarily fair well on an absolute scale. Support-based
methods did not appropriately handle low pattern rates. But
more importantly, we have found that all methods suffer
from common limitations.

4.1. Removing Length Bias
The first significant limitation of the approaches we de-

scribe above is their bias with respect to the length of gen-
erated patterns. Support-based methods are naturally biased
towards short sequences, which are much more frequent
than others. DD methods are also susceptible to this bias
since they take into account the absolute frequency involved
when assessing the significance of the result. Shorter se-
quences are more frequent and on an absolute scale typi-
cally receive more confident dependency results.

In order to overcome this obstacle, we normalize candi-
date pattern ranks based on their length. This method, used
in [3] for unsupervised segmentation of observation streams
based on statistical dependence tests, is also useful in sup-
port and confidence techniques.

The key to this method is to normalize all ranking based
on units of standard deviation, which can be computed for
all lengths. Given the rank distribution for all candidates of
length k, let R̄k be the average rank, and Ŝk be the standard
deviation. Then given a sequence of length k, with rank r,
the normalized rank will be r−R̄k

Ŝk
. This translates the rank

r into units of standard deviation, where positive values are
above average. Using the normalized rank, one can com-
pare pattern candidates of different lengths, since all nor-
malized ranks are in units of standard deviation.

4.2. Generalizing from Similar Patterns
A second limitation we have found in existing methods is

inability to generalize patterns, in the sense that minor vari-
ations on the same pattern would be treated as completely
different patterns by the learning methods. For instance, if a
patternABCD was ranked high, the algorithm was likely to
also rank high the shadow sub-patterns ABC,BC,BCD,
etc.

We focus on a clustering approach, in which we group
together pattern variations. We use a clustering algorithm

to group candidates that are within a user-specified thresh-
old of edit distance from each other. The procedure goes
through the list of candidates top-down. The first candidate
is selected as the representative of the first cluster. Each of
the following candidates is compared against the represen-
tatives of each of the existing groups. If the candidate is
within a user-provided edit-distance from a representative
of a cluster, it is inserted into the representative’s group.
Otherwise, a new group is created, and the candidate is cho-
sen as the group’s representative. The result set is composed
of all the group representatives.

Generally, the edit-distance between two sequences is
the minimal number of editing operations (insertion, dele-
tion or replacement of a single event) that should be ap-
plied on one sequence in order to turn it into the other.
For example, the editing distance between ABC and ACC
is 1, as is the editing distance between AC and ABC. A
well known method for calculating the edit distance be-
tween sequences is global alignment [10]. However, our
task requires some modifications to the general method. For
example, the sequence pairs {ABCDE,BCDEF} and
{ABCD,AEFD} have an edit-distance of 2, though the
former pair has a large overlapping subsequence (BCDE),
and the latter pair has much smaller (fragmented) overlap
A??D.

We use a combination of a modified (weighted) dis-
tance calculation, and heuristics which come to bear af-
ter the distance is computed. Our alignment method clas-
sifies each event (belonging to one sequence and/or the
other) as one of three types: appearing before an overlap
between the patterns, appearing within the overlap, or ap-
pearing after the overlap. It then assigns a weighted edit-
distance for the selected alignment, where the edit opera-
tions have weights that differ by the class of the events they
operate on. Edit operations within the overlap are given a
high weight (called mismatch weight). Edit operations on
events appearing before or after the overlap are given a low
weight (edge weight). In our experiments we have used an
infinite mismatch weight, meaning we did not allow any
mismatch within the overlapping segment. However, both
weight values are clearly domain-dependent.

In order to avoid false alignments where the overlapping
segment is not a significant part of the overall unification,
we set a minimal threshold upon the length of the overlap-
ping segment. This threshold is set both as an absolute value
and as a portion of the overall unification’s length.

5. Experiments
To evaluate the presented techniques, we conducted ex-

tensive experiments on synthetic and real data. We be-
gin with the synthetic data. We repeated our experiments
from Section 3, but this time with the modified techniques.
The results are shown in Figures 3 and 4. The figures
plot the precision achieved at different pattern rates, par-
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malized results contained various sequences that reflected
the same words (see Section 4.2), and were then signifi-
cantly improved by our clustering approach. Note also that
among the standard techniques, DD has once again outper-
formed the other methods.

We conducted additional experiments on UNIX com-
mand line sequences. In this case, we could not know in
advance what true patterns were included in the data, thus
quantitative accuracy comparison was not possible. How-
ever, we hoped to contrast the pattern candidates generated
by the different methods. We have analyzed 9 data sets of
UNIX command line history [4]. The data reflects command
histories of 8 different users at Purdue over the course of up
to 2 years. These tests have also suggested that DD was su-
perior to other techniques. While the results of support and
confidence methods consisted mainly of different variations
of ls, cd and vi, DD was the only algorithm to discover
obviously-sequential patterns (that were not frequent) such
as “g++ -g <file> a.out”, “| more”, “ls -al”, “ps -ef ”, “xlock
-mode”, “pgp -kvw”, and more.

The clustered normalized versions of both DD and sup-
port/confidence were able to detect complex user patterns,
such as:

1. ps -aux | grep <process>; kill -9—a user looking for a
certain process id to kill.

2. tar <3 args>; cd; uuencode <2 args> > <file>;
mailx—a user packaging a directory tree, encod-
ing it to a file, and sending it by mail.

3. compress <arg>; quota; compress <arg>; quota—a
user trying to overcome quota problems by compress-
ing files.

4. latex <arg>; dvips <arg>; ghostview—a latex
write→ compile→ view cycle.

5. vi <arg>; gcc <arg>; a.out; vi <arg>; gcc—an
edit→ compile→ run cycle.

6. Related Work
Section 2 has already introduced some of the key se-

quence recognition algorithms. Following its introduction
in [1], much effort has been devoted to improving the per-
formance of support-confidence for data mining, both in
terms of quality of results as well as the computational
complexity of the underlying algorithms (e.g., [12]). The
quality-enhancing methods we present are not necessarily
appropriate for very large databases, and thus their use in
data mining may be limited at this stage. Some methods for
improving quality in data mining rely on a domain expert
to provide target templates (e.g., [8]), which would be inap-
propriate given our emphasis on “hands-free” learning.

Clustering is used by Bauer [2] to learn users’ web-usage
plans. In our technique, we first extract common ordered se-
quential patterns, and then cluster them. Bauer’s technique
first clusters observed segments based on similarity, with no

regard for order. The clusters are used as classes for a super-
vised learning algorithm which attempts to extract the ac-
tions common to all streams within a cluster.

The augmented suffix-trie representation was used
in [7] for learning the sequential coordinated behav-
ior of RoboCup soccer teams from observations, by
applying both DD and support. However, no normaliza-
tion or clustering was used.
7. Conclusions and Future Work

This paper addresses learning of the sequential be-
havior of observed agents. First, it empirically com-
pares unsupervised sequence learning algorithms and
finds that dependency-detection methods outperform
frequency-based techniques. The results also show sev-
eral common deficiencies in all tested algorithms: All
are susceptible to a bias in preferring pattern candi-
dates based on length and all fail to generalize similar
results patterns.

We present a normalization method to effectively neu-
tralize the length bias, leading to precision improvements
by up to 42% in our experiments. We then present a cluster-
ing approach, based on a weighted edit-distance measure, to
group together all patterns that are closely related. The use
of clustering in addition to normalization had further im-
proved precision by up to 25%. Finally, the improved meth-
ods were shown to be robust to noise, and were success-
fully applied to real-world data sets: sequences from Or-
well’s 1984, and UNIX command-line data.
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