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Abstract

Fuzzy logic has been successfully applied in various fields. However, as fuzzy
controllers increase in size and complexity, the number of control rules increases
exponentially and real-time behavior becomes more difficult. This thesis intro-
duces an any-time fuzzy controller. Much work has been done to optimize and
speed up a controlling process, however none of the existing solutions provides
an any-time behavior. This study first introduces several constraints that should be
satisfied in order to guarantee an any-time behavior. These constraints are related
to aggregation and defuzzification phases of fuzzy control. Popular aggregation
and defuzzification methods (max-min, sum-product, MOM and COG) are first
shown to satisfy these constraints, and then three linearization methods are pre-
sented. Linearization methods are used to reorder fuzzy rules base such that a
reordered rule base would result in any-time behavior. Finally, several approxi-
mation methods are described, that do not break any-time behavior, while causing
the intermediate result of an any-time controller to come closer to the final (full
calculation) result in a shorter time. The exact influence and worthiness of ap-
proximation methods should be further researched.
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Chapter 1

Introduction

Fuzzy control is used in a wide variety of applications, ranging from controlling of
oxygen delivery [17] to robotic navigation while avoiding obstacles [24]. A fuzzy
controller relies on a set of conditional input-output rules, which are all fired in
parallel.

All rules whose left-hand-side condition matches the input (through a process
of fuzzification) are aggregated together and their collective right-hand-side deter-
mines the controller output (through a defuzzification process).

Many applications of fuzzy control can be sensitive to the time it takes for the
controller to return a result. In the case of an obstacle-avoiding navigation control,
for instance, a controller ideally has enough time to calculate the best way to avoid
an obstacle, but in practice this is not always possible. Sometimes, when the robot
moves too fast, there is not enough time to perform a full calculation. In such
cases, the controller may fail to provide its function.

Existing approaches to handling this challenge include specialized hardware
[7], [11], [16], [12] and [14], changing the environment to suit the controller speed
(i.e., slowing down the robot in our case), reducing the number of rules in the
controller (e.g., by re-designing the controller hierarchically [23]) and simplifying
membership function or fuzzy set shape. Such re-design is not always possible,
of course, and may degrade the performance of the controller. This is especially
true in cases where the controller is automatically generated (e.g., [4] and [26]),
or is optimized by learning (e.g. [8] and [17]).
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A different approach is proposed here to handle real-time requirements, which
is to change the controller such that it works in an any-time fashion. This means
that for any given amount of time of operation, the controller is (1) guaranteed to
provide a result, and (2) guaranteed to provide a monotonically-improving result
(compared to results obtained using less time). Put a different way, the results of
the controller improve monotonically with time.

In robot navigation the advantage of using an any-time controller is clear. For
example, consider situation where there is insufficient time for performing a full
calculation because of close obstacle. In that case any fast decision (even not an
optimal one) that causes individuals to avoid an obstacle, is better then waiting for
an optimal solution that may come too late.

Fuzzy control has three main phases: Fuzzification, implication with aggre-
gation and defuzzification. Work described in this thesis addresses the two last
phases — aggregation and defuzzification. In particular, this study presents a
way to reorder and restructure fuzzy-control rule-bases such that these two steps
result in an any-time fuzzy controller (FC), under the assumption of negligible
fuzzification time. The re-structuring of the rule-base must take into account both
defuzzification and aggregation. The thesis proposal provided results for max-min
aggregation with center-of-gravity (COG) defuzzification, and proposed creating
similar methods for popular alternatives: Sum-product aggregation and mean-of-
maxima (MOM ) defuzzification.
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Chapter 2

Background and Motivation

2.1 Background

Fuzzy Set Theory is a popular extension of regular set theory [31]. In classical set
theory an element X is or is not a member of a set. In fuzzy set theory, an element
has graded membership. The element may partially belong to the set, where the
degree of membership is determined by a real number, typically in the range [0, 1];
0 denotes no membership in the set, while 1 denotes full membership.

For example, we may define the fuzzy set cold as follows: 0C◦ and less with
a membership of 1; 50C◦ with a membership of 0; and for t ∈ (0C◦, 50C◦),
membership µ(t) defined by the function µ = 1 − t/50. Now, what can be said
about 20C◦? One can assert that the membership degree of cold of 20C◦, is 0.6.
See figure 2.1.

Fuzzy control [15] is a control methodology based on fuzzy set theory. It

Figure 2.1: Graded membership example: The fuzzy set cold.
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Figure 2.2: Fuzzy set example

is composed of three stages that rely on a set of control rules, stored in a rule-
base. Each such rule tests an input for its membership degree in a set of fuzzy
sets (the left-hand-side, or LHS), and associates with the result fuzzy sets that are
defined on the output value (the right-hand-side, or RHS). All rules in the rule-
base are matched in parallel, and their collective RHS is used to compute the final
controller value. The process is then repeated for new inputs.

A short overview of fuzzy set theory and fuzzy control is going to be provided.
Additional details can be found in [15] and in [1, 29, 30].

2.1.1 Fuzzy set

A fuzzy set A is given by a membership function µ(x) from universe of discourse
U which is a non fuzzy set to the range [0, 1]

A = {(x, µA(x))|x ∈ U}

where µA(x) is a membership function, which defines a membership degree of
value x. See sample fuzzy sets in figure 2.2.

The Height of fuzzy set A is

h = {max
X

(µA(x))|x ∈ X}

The height of sets A and B in figure 2.2 is 1, and height of set C is 0.5.
Like mentioned above fuzzy control has three main phases: Fuzzification, im-

plication with aggregation and defuzzification.
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Figure 2.3: Fuzzification example

Figure 2.4: Implication example

2.1.2 Fuzzification

Fuzzification is a first phase in control sequence. At this phase crisp values from
universe of discourse U are translated to values in range [0, 1] that fuzzy controller
can handle. That is done by looking up a membership value in the set. For example
see figure 2.3. Here crisp value a is translated to 0.7.

2.1.3 Implication

At this phase result of each individual rule is determined. Assuming next example
rule: If C is c, Then D is d (see figure 2.4). Assuming input crisp value v, α is a
result of fuzzification. Output of fuzzification is used to tweak an RHS set of the
rule. Output of the rule is a set represented by filled area in figure 2.4 and defined
by:

µA′ = min
A

(µA(x), α)

In this example C is an input variable and D is an output variable.
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Figure 2.5: Max-min example

2.1.4 Aggregation

Aggregation is a phase where tweaked RHS output sets from various rules are
combined for each output variable. Two aggregation methods are addressed in this
thesis: Max-min (max — aggregation and min — implication) and sum-product
(sum — aggregation and product — implication).

Max-min

In max-min aggregation, union of implication results is calculated. For example
of max-min aggregation see figure 2.5. Formally according to [15], max-min
aggregation method is defined by:

µA′(x) =

aggregation︷︸︸︷
max

k
min
Ak

(αk, µAk
(y))︸ ︷︷ ︸

implication

This aggregation method is relatively simple for implementation, but in contrast,
it looses information in intersections of fuzzy sets because of nature of union.

Sum-product

In contrast to max-min aggregation, sum-product does not lose information. It is
implemented by summation of fuzzy sets instead of union. Sum-product aggrega-
tion is defined by:

µA′(y) =
∑

k

αkµAk
(y)

For example of sum-product aggregation see figure 2.6.
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Figure 2.6: Sum-product example

2.1.5 Defuzzification

Defuzzification is a last phase of fuzzy control. In this phase, a crisp value for each
output variable is calculated. Input of this phase is an output of aggregation. Two
defuzzification methods are addressed in this thesis: mean-of-maxima (MOM)
and center-of-gravity (COG).

Mean-of-maxima

MOM of set A′ is a value, which is a mean of all values, where membership
function µA′(yi) (i = 1, 2, ..., N) reaches its global maximum. MOM is defined
by:

MOM(A) =

∑N
1 yi

N

MOM is influenced by relatively small (usually one) fuzzy set.

Center-of-gravity

COG calculates a value which is a center of gravity of fuzzy sets. In case of two-
dimensional fuzzy sets (our case) COG is equivalent to center-of-area. COG is
defined by:

COGµ(x) =

∫
x
xµ(x)dx∫

x
µ(x)dx

13



2.2 Motivation

In the theoretical model of fuzzy controller all rules are handled simultaneously
and the final result is calculated. In practice, actually, rules are handled by small
number of processors — usually one, as a result fuzzy rules are handled sequen-
tially. To provide parallel processing of fuzzy rules, a processor for each fuzzy
rule or specialized hardware should be supplied [14] that is capable of handling
rules simultaneously.

The calculation time in sequential processing depends on the size of the fuzzy
rules database and the amount of available resources. Thus a big rule base and
lack of resources can cause a (relatively) long calculation time.

It is this process of matching the rules and aggregating the results that is ad-
dressed in this thesis. In general, the controller’s operating speed is governed by
the time it takes to match all rules, compute their individual RHS and then com-
pute a final controller output. If insufficient time is given to the controller, the
process will stop in the middle and an incorrect output value may result.

Example 1:
If in the next environment there are:

• Two output variables P1, P2

• Three rules R1, R2 and R3 that modify these variables

• Three fuzzy values of each variable: for P1 - V11, V12 and V13, for P2 - V21,
V22 and V23, such that Vij < Vi,j+1 for all 1 ≤ i, j ≤ 3

The rules are as follows:

• R1: If A then P1 is V11 and P2 is V22

• R2: If B then P1 is V12 and P2 is V23

• R3: If C then P1 is V13 and P2 is V21

Suppose, for a lack of time, that the controller is prevented from going over
all the rules in this example, then only a subset of the rules would have been
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computed. Would the partial result approximate the final result? Unfortunately,
the answer, generally speaking, is no. In this example, in any order rules are
fired the output values of both variables will not be monotonous (increasing or
decreasing) with respect to the final result.

Suppose, for example, rules R1, R2 and then R3 are fired. This will incremen-
tally assign the values V11, V12 and V13 to P1 affording P1 an increasing order of
values. As for P2, the order of values is V22, V23 and then V21. Here the monotony
is broken by V21 (V22 < V23 but V22 > V21). In this example there is no possible
order of rules R1, R2 and R3 such that values of both P1 and P2 would be fired
monotonously.

Any-time algorithms address such difficulties because the quality of their out-
put improves gradually as computation time increases. Term any-time algorithm
was coined by T. L. Dean in the late 1980’s. Anytime algorithms offer a tradeoff
between solution quality and computation time. An algorithm is called anytime if
(1) it can be stopped at any time to provide a valid result of some quality, and (2)
it is guaranteed that this quality monotonically increases if more time is given.
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Chapter 3

Related Work

Considerable work has been done to optimize and speed-up controllers in general,
and fuzzy controllers in particular. Overall, several approaches have been taken:

• Specialized hardware [7, 11, 16, 12, 14] was developed to speed up the
processing of fuzzy control rules, for common fuzzy sets and aggrega-
tion/defuzzification methods. However, specialized hardware minimizes the
time it takes to compute controller output—it does not address the inherent
non-anytime performance of such a controller.

• There have been several explorations examining ways to reorder or decom-
pose rules of controllers (and expert systems), in order to improve their
performance [10, 28, 9, 32]. None of these have examined anytime perfor-
mance in fuzzy control systems.

• Finally, there exist algorithms (such as the RETE matching algorithm) which
are specifically geared towards efficient selection of the rules that should be
recomputed when new inputs come in. Again, there is no guarantee of any-
time performance.

These are described below in detail, in separate sections. In addition, other
methods exist that are described in Sections 3.4, 3.5.
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3.1 Specialized hardware

[12] describes a hardware design that performs fast inference of trapezoid-shaped
membership functions, using the fact that membership functions have a known
shape, and the shape is a set of linear functions. Analysis was performed of all
possible intersections between two fuzzy sets. Based on cited points, an inference
processor was designed, which, combined with pipelining the processor, achieves
high computation speed. Two major disadvantages of this processor are the lim-
ited granularity of the degrees of membership — there are only 16 possible mem-
bership degrees — and the shape of membership functions — a trapezoid. Smooth
functions are not available.

[14] describes a parallel fuzzy controller. It handles up to four input vari-
ables and one output variable with precision of eight bits. The number of fuzzy
sets is limited to seven for each variable. The number of overlaps between fuzzy
sets is up to two. All the limitations mentioned are related to certain applications
described in the paper. It is possible to implement a controller with expanded
capabilities, but limitations will remain. Implementing a chip with (almost) un-
limited capabilities e.g. hundreds or thousands of variables, tens of overlaps and
high granularity, significantly increases its complexity and cost.

In contrast to complete hardware fuzzy controllers there are programmable
embedded micro-controllers. Such controllers are characterized in [16]. Em-
bedded controllers are programmed using standard languages, so they may be
programmed to do just about anything regular software controller does. Since the
memory of such a controller is limited, many vendors restrict both the number and
the shape of the permissible fuzzy sets for both inputs and outputs. The common
shape of a membership function is a triangle. As defuzzification is a relatively
complex task, singletons are often used to simplify calculations.

Hardware controllers are usually very fast, since hardware designed for certain
purposes is faster then generic CPU that is capable of handling any problem. In
addition, vendors usually limit inputs for their hardware: The number of fuzzy
sets, fuzzy rules, membership function shape etc. All these cause the hardware
controller be fast, but possible environments for using such controllers are also
limited. Thus, the hardware controller with a limited number of fuzzy rules or
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fuzzy sets is usually not usable in environments where fuzzy rules are generated
as a result of learning because such controllers have limited scalability, especially
when the learning process updates the fuzzy rules database online. The size the
fuzzy rules database will reach remains, in this case, unknown.

To satisfy a scalability constraint hardware might be used that is designed to
perform a certain step of fuzzy control for a single rule. This solution is not lim-
ited to a number of rules on the one hand and shortens calculation time on the
other hand. An example for such hardware is described in [21]. A solution por-
trayed there is an algorithm that approximates centroid (COG). The algorithm is
characterized by short calculation time, low approximation error and same static,
dynamic and statistical properties like COG. The algorithm is called DECADE
— Decreased Effort Centroid Approximation DEfuzzification. It may be imple-
mented both in hardware and software, significantly reducing calculation time.
Such a speedup algorithm may successfully be combined with any-time behavior
of the controller described in this thesis.

Assuming a certain hardware fuzzy controller can handle the necessary num-
ber of fuzzy rules and fuzzy sets, even a fast hardware fuzzy controller may take
a long time, when the necessary number of calculations is big, till all outputs are
calculated. In such a situation the any-time controller may be suitable to guaran-
tee that no matter how long calculations take, the controller’s client will have its
output from the fuzzy controller when needed.

3.2 Rule reordering and restructuring

Hicks [10] examines rule-ordering in non-fuzzy rule-bases and discusses its im-
pact on accuracy and efficiency. He shows that in some cases, efficiency comes at
the cost of accuracy. He proposes prioritizing fuzzy rules according to fuzzy rule
type and environment. Hicks also mentions the fact that an increasing number of
input variables in fuzzy rules may cause slow-down because of waiting for input
(input/output is usually much slower then the calculation process). Mostly, a re-
ordering according to fuzzy rule type and environment will prevent the fuzzy con-
troller from being an any-time controller. Nevertheless, combining the reordering
proposed in [10] with methods described in this thesis may cause a controller to
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be any-time with a certain degree of granularity. It is possible to combine rules
to units such that the intermediate results of units cause any-time behavior, while
the intermediate result of fuzzy rules in the same unit do not have a monotonic
character.

Another approach to fuzzy rules ordering is described in [28], where decom-
posing a monolithic fuzzy rules database to behaviors is suggested. The final con-
troller is a hierarchy of behaviors, as a result of which a behavior-based controller
is obtained. Each behavior in the controller can be seen as a stand-alone fuzzy
sub-controller. This approach can easily be combined with the any-time approach
by converting each behavior to an any-time sub-controller. The way such behav-
iors may be coordinated is also described in [28] while additional approaches for
monitoring and coordinating any-time algorithms (sub-controllers) are described
in [9, 32].

3.3 RETE and large-scale rule bases

A key step in activating rules involves the process of going through all rules in the
rule-base, and matching each one against the inputs to the system. For each rule,
we check its activation (in the non-fuzzy case) or degree of activation (defined by
the fuzzification value in the fuzzy case). For small rule bases (say, a few dozen
rules), a naive linear matching process is sufficient (checks all rules in each step).

However, when the number of rules is scaled up, it becomes computationally
burdensome to go through all rules in each step. The RETE algorithm [6] is used
to solve this problem. It remembers previous activations for each rule. As a result,
only rules whose activation is affected by new inputs is fired (recomputed). Thus,
the RETE algorithm significantly reduces number of rules that should be handled
each time. The algorithm uses a data structure called the RETE network, Where
each path in the network represents a left-hand-side of rule.

RETE has been adapted for use in fuzzy controllers [19]. This work presents a
RETE network that consists of a cascade of three networks: The pattern network,
the join network, and the evidence aggregation network. The first two layers are
modifications of the regular RETE network. The third layer is a new concept.

RETE network addresses an inference, and aggregation steps of fuzzy control
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and defuzzification have to be done afterwards. The main aim of this thesis is
to order fuzzy rules such that the intermediate results will be monotonic. In the
case of a RETE network it is hard to influence an order of rules firing, so detailed
research is necessary to find the best way to integrate any-time behavior in a fuzzy
controller based on RETE network. Nevertheless, a simple solution is possible and
is detailed in section 9.2.3.

3.4 Learning methods

Fuzzy systems are generated using either expert or machine learning. Various au-
tomatic learning techniques pay attention to different aspects of the fuzzy system.
Thus [26] and [27] present a technique that uses a genetic algorithm with a min-
imal fuzzy rules database. By reducing the database size this technique reduces
calculation time. An Adaboost algorithm may be used to learn a fuzzy rule base
described in [4].

[26] and [27] use a genetic algorithm combined with ’entropy’ optimization
to generate a fuzzy system. All membership functions generated by the genetic
algorithm have the same general linearly approximated (by six line segments)
form and Gaussian probability distribution function. The line approximation is
used to speed up evaluation. Membership functions may be symmetric (same
standard deviation on left and right sides) or asymmetric (various σright and σleft).
Entropy is used to obtain a minimal fuzzy rule base. All the results in a fuzzy rule
base are described above and maximally suit an original domain while using the
minimal number of fuzzy rules. Such fuzzy systems are comparable to systems
designed by an expert but with a better I/O behavior.

Another approach to genetic algorithms for generating a fuzzy controller is
proposed in [5]. The general idea of building (optimal) fuzzy expert system as
presented there is to use clustering algorithms to divide an entire pattern space to
subspaces. The center of each cluster is then mapped for a fuzzy rule. A problem
represented that way is actually a search problem — finding the best represen-
tation of space by fuzzy rules. The way proposed to solve the search problem
is a genetic algorithm. After representation of the fuzzy system is defined, the
next question to be handled is the probabilities of crossover and mutation opera-
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tors. Although these probabilities are often held constant or changed linearly for
the entire run of a genetic algorithm, such an approach will not produce optimal
results in many cases. Based on the experience of researchers, fuzzy rules for
controlling probabilities of crossover and mutation operators are used.

Evolutionary fuzzy expert systems discussed in that paper evolve using a GA,
membership function shapes, number of rules and other parameters. Genetic pa-
rameters of the evolutionary algorithm are adapted via the fuzzy expert system.
The entire approach is scalable and can handle large and complex environments.

An Adaboost algorithm, and connections between it and iterative learning al-
gorithms are described and analyzed in [4]. In contrast to iterative learning that
removes correctly classified examples from training sets, Adaboost reduces the
weight of such examples. Therefore, Adaboost always take into account all ex-
amples, preventing it from generating conflicting rules that are removed during a
post-processing stage in a regular iterative learning algorithm. Experiments per-
formed to compare Adaboost to other learning techniques show that Adaboost
demands significantly less time to learn an environment. On the other hand,
weighted fuzzy rules generated by Adaboost are less comprehensive and inter-
pretable. Certain weighted fuzzy rule bases generated by Adaboost may be un-
suitable for an any-time fuzzy controller because low-weighted rules may be han-
dled before high-weighted ones. This may cause undesired behavior, where the
first intermediate results of any-time algorithms are significantly far from the full
calculation result (result that takes all fuzzy rules into account).

Modern learning methods return an optimal fuzzy system in terms of fuzzy
rule base size, and complex environments still demand large fuzzy rule bases.
Nevertheless, increasing the number of rules learned for the controller combined
with any-time property may significantly improve the quality and usability of a
fuzzy controller and its output, increasing the range of applications where such a
controller may be integrated.

3.5 Non-fuzzy systems

Similar to the trade-off between accuracy and efficiency described in [10], another
kind of trade-off is described in [3] between efficiency and generalization as a way
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to combine two problem solvers. The first one is interpreted and uses a general
knowledge representation, enabling the system to learn general rules. The second
is compiled and uses specialized knowledge representation enabling the system to
solve problems rapidly. A second solver decides when learning should occur.

Several mechanisms are used to speed up rules such as reordering rule con-
ditions and deleting some useless conditions of the learned rules. These mecha-
nisms do not modify learning. On the contrary, mechanisms that modify learning
use cuts in the unification graph, specialization of multi-attributes predicates and
compilation of the learned rules into C++ programs. The combination of two
problem solvers, where each has its ways for speed-up, and the results of its ap-
plication to Go game are shown in the paper.

In [13] there is a description of an algorithm that optimizes rules in rule-based
systems that are utilize the RETE matching algorithm. There exist few major
heuristics for optimizing rules but unfortunately they are conflicting, thus there is
no guarantee that a particular heuristic always leads to optimization. To find the
best optimization, all optimizations are applied and the best is chosen. Certain
constraints are applied in order to reduce the number of checks performed by an
algorithm. Optimization also takes into account a set of previous runs and the
relevant statistics because the same set of rules in different domains may have dif-
ferent efficiency. This happens because heuristics conflict with each other. Thus
rules used more often should be better optimized. Certain evaluation shows a
reduction to a third in inter-condition tests and to half in CPU time.
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Chapter 4

Monotony Background

As mentioned above, an any-time algorithm is an algorithm whose intermediate
result improves with time, tending to a real result that demands full calculation
time. It will be shown here that all intermediate results, including a final result,
are monotonic. Such a monotony gives an any-time behavior. This thesis deals
with two phases of fuzzy control: Aggregation and defuzzification. The aggre-
gation methods addressed are max-min and sum-product, and the defuzzification
methods are: MOM (mean-of-maxima) and COG (center-of-gravity).

This thesis will deal with all combinations of mentioned aggregation and de-
fuzzification methods, i.e., any-time behavior will be proven for each combina-
tion:

• Max-min with MOM .

• Sum-product with MOM .

• Max-min with COG.

• Sum-product with COG.

Although this study describes only four pairs of aggregation and defuzzification,
the main claim about monotony and any-time behavior is wider. In fact, the de-
fuzzification method is the one that determines whether a certain fuzzy controller
has any-time property or not. For this reason, fuzzy controllers that use other de-
fuzzification methods, that can guarantee a monotony, may easily be converted to
any-time controllers.
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This thesis will prove that the defuzzifying output sets of a certain variable in a
certain order (the increasing order of a set’s own COG), will change a total COG

of the output variable monotonically. This thesis further proves that the claim is
also valid for MOM , COG (as defuzzification) and max-min, sum-product (as
aggregation).

24



Chapter 5

Any-time in MOM and COG
Defuzzification

An any-time algorithm is an algorithm whose intermediate results are monotonous.
Therefore, in order to prove that a fuzzy controller based on MOM or COG can
be converted to an any-time fuzzy controller, we are going to prove that both de-
fuzzification methods combined with either max-min of sum-product aggregation
methods can return monotonous intermediate results.

5.1 MOM

MOM(A) =

∑N
1 yi

N

where membership function µA′(yi) (i = 1, 2, ..., N) reaches its global maximum.

5.1.1 Max-min

Monotony for MOM in case of max-min is based on the following claim:

Claim 1: For any two fuzzy sets S1 and S2, such that height(S2) ≥ height(S1):

MOM(S2) ≥MOM(S1)⇔MOM(S1 ∪ S2) ≥MOM(S1)
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Note: height(S2) ≥ height(S1) is a reasonable assumption, because oth-
erwise height(S2) < height(S1) does not influence on MOM(S1 ∪ S2) and
MOM(S1 ∪ S2) = MOM(S1), which is a particular case of the claim.

General formulation of Claim 1 Let MOMA be mean-of-maxima of A, MOMB

be mean-of-maxima of B and MOMAB be mean-of-maxima of A ∪ B, where
height(B) ≥ height(A), then

MOM(B) ≥MOM(A)⇔MOM(A ∪B) ≥MOM(A)

Proof
Definition:
The next two cases can be discussed for any two fuzzy sets (A) and (B) where

height(B) ≥ height(A):

1. height(B) > height(A)

2. height(B) = height(A)

In the first case MOM(A ∪B) is MOM(B) and MOM(B) ≥MOM(A)⇔

MOM(A ∪B) ≥MOM(A)

In the second case MOM(A ∪ B) is a value between MOM(A) and MOM(B)

as it is known that MOM(B) ≥MOM(A)⇔

MOM(A ∪B) ≥MOM(A)

5.1.2 Sum-product

When aggregating fuzzy rules by sum-product, output sets are aggregated by sum-
mation (and not by taking max like in max-min). Summation of two sets may real-
ize result values greater than 1, and does not conform to fuzzy set theory. Because
of defuzzification, this is, however, a minor problem from the practical point of
view. Monotony for MOM in case of sum-product is based on the next claim
(that is similar to the previous one):
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Figure 5.1: Fuzzy set ranges

Claim 2: For any two fuzzy sets A and B:

MOM(B) ≥MOM(A)⇔MOM(A ]B) ≥MOM(A)

where ] is a sum-product aggregation of A and B.

Proof
Definitions:
Let A and B be two fuzzy sets such that MOM(B) ≥ MOM(A). Let f and

g be functions that define sets A and B respectively, i.e. sets A and B are areas
between functions f and g, respectively, and axis OX. Let RA and RB be ranges
on which sets A and B are defined. Three ranges RA1 , RA2 and RA3 (see figure
5.1) are assumed such that:

• RA1 , RA2 , RA3 ⊆ RA

• RA1 < RA2 < RA3

• f ′
RA1

> 0

• f ′
RA2

= 0

• f ′
RA3

< 0

Note: Each one among RA1 , RA2 and RA3 may be a single point.
The same is assumed for RB1 , RB2 , RB3 and RB.
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Figure 5.2: Claim 2, MOM(A) /∈ RB2 , MOM(A) ∈ RB1

Figure 5.3: Claim 2, MOM(A) /∈ RB2 , MOM(A) /∈ RB1

Let h = f + g. Let h′ be the derivative of h. MOM of h should reach its
maximum when h′ is 0 (or h′ changes its sign from positive to negative), i.e. f ′

+ g′ = 0. It is assumed that f and g have only one maximum which is a global
maximum. The maximum may be either a single point or a range.

There are two major cases: MOM(A) ∈ RB2 and MOM(A) /∈ RB2 .

1. MOM(A) /∈ RB2: MOM(A) /∈ RB2 ⇔MOM(A) < RB2 . See figure 5.2
If MOM(A) ∈ RB1 then f ′(MOM(A)) = 0 because (MOM(A) ∈ RA2)

and g′(MOM(A)) > 0 because (MOM(A) ∈ RB1). That is why h′(MOM(A)) >

0⇔ h(RB2) > h(MOM(A))⇔MOM(A ]B) ≥MOM(A).
If MOM(A) /∈ RB1 then ∀x < MOM(A) it is true that h(x) ≤ h(MOM(A))

and ∀x > MOM(A) it is true that h(x) ≥ f(MOM(A)) ⇔ MOM(A ] B) ≥
MOM(A).

2. MOM(A) ∈ RB2: Here we have two possibilities: MOM(B) ∈ RA2 and
MOM(B) /∈ RA2 .
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Figure 5.4: Claim 2, MOM(A) ∈ RB2 , MOM(B) ∈ RA2

Figure 5.5: Claim 2, MOM(A) ∈ RB2 , MOM(B) ∈ RA3

If MOM(B) ∈ RA2 then h′(MOM(B)) = 0 because f ′(MOM(B)) = 0

and g′(MOM(B)) = 0⇒

MOM(A ]B) = MOM(B)

When MOM(B) /∈ RA2 , MOM(B) ∈ RA3 . In that case h′(MOM(A)) = 0

and h′(MOM(B)) < 0⇒

MOM(A ]B) = MOM(A)

This proves that

MOM(B) ≥MOM(A)⇔MOM(A ]B) ≥MOM(A)
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Figure 5.6: Pair of two-dimensional areas for COG monotony claim

5.2 COG

The monotony of COG is based on the claim described below. The claim deals
with pair of two-dimensional areas A and B. Each of the areas is limited by func-
tions uA() and uB() on the top and vA() and vB() on the bottom. In the case of
fuzzy sets ∀x : vA(x) = vB(x) = 0. Functions uA() and vA() are defined on
the range [A1, A2] and uB() and vB() are defined on the range [B1, B2] (see figure
5.6).

Claim 3 Let A and B be two areas in a two-dimensional space. Each of the
areas is limited by functions uA() and uB() on the top and vA() and vB() on the
bottom. Functions uA() and vA() are defined on the range [A1, A2] and uB() and
vB() are defined on the range [B1, B2]. We assume that pairs of functions uA, vA

and uB, vB have no intersection points, but there may be intersection points at
(A1, y0), (A2, y1), (B1, y2) and (B2, y3) respectively.

Let COGA be the center-of-gravity of A, COGB be the center-of-gravity of
B and COGAB be the center-of-gravity of A ∪B, then

COGB ≥ COGA ⇔ COGAB ≥ COGA

Proof
Definition:

COGf(x) =

∫
x
xf(x)dx∫

x
f(x)dx
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In this case

COGA =

∫
x(uA(x)− vA(x))dx∫
(uA(x)− vA(x))dx

,

COGB =

∫
x(uB(x)− vB(x))dx∫
(uB(x)− vB(x))dx

and

COGAB =

∫
x(uA(x)− vA(x))dx +

∫
x(uB(x)− vB(x))dx∫

(uA(x)− vA(x))dx +
∫

(uB(x)− vB(x))dx
⇔

∫
xuA(x)dx−

∫
xvA(x)dx +

∫
xuB(x)dx−

∫
xvB(x)dx∫

uA(x)dx−
∫

vA(x)dx +
∫

uB(x)dx−
∫

vB(x)dx
⇔

We wish to prove that
COGAB ≥ COGA

then∫
xuA(x)dx−

∫
xvA(x)dx +

∫
xuB(x)dx−

∫
xvB(x)dx∫

uA(x)dx−
∫

vA(x)dx +
∫

uB(x)dx−
∫

vB(x)dx
≥

∫
xuA(x)dx−

∫
xvA(x)dx∫

uA(x)dx−
∫

vA(x)dx
⇔

(

∫
xuA(x)dx−

∫
xvA(x)dx +

∫
xuB(x)dx−

∫
xvB(x)dx)∗(

∫
uA(x)dx−

∫
vA(x)dx) ≥

(

∫
uA(x)dx−

∫
vA(x)dx +

∫
uB(x)dx−

∫
vB(x)dx)∗(

∫
xuA(x)dx−

∫
xvA(x)dx)⇔

∫
xuA(x)dx

∫
uA(x)dx−

∫
xvA(x)dx

∫
uA(x)dx +

∫
xuB(x)dx

∫
uA(x)dx

−
∫

xvB(x)dx

∫
uA(x)dx−

∫
xuA(x)dx

∫
vA(x)dx+

∫
xvA(x)dx

∫
vA(x)dx

−
∫

xuB(x)dx

∫
vA(x)dx +

∫
xvB(x)dx

∫
vA(x)dx ≥∫

uA(x)dx

∫
xuA(x)dx−

∫
vA(x)dx

∫
xuA(x)dx +

∫
uB(x)dx

∫
xuA(x)dx

−
∫

vB(x)dx

∫
xuA(x)dx−

∫
uA(x)dx

∫
xvA(x)dx+

∫
vA(x)dx

∫
xvA(x)dx
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−
∫

uB(x)dx

∫
xvA(x)dx +

∫
vB(x)dx

∫
xvA(x)dx⇔

∫
xuB(x)dx

∫
uA(x)dx−

∫
xvB(x)dx

∫
uA(x)dx

−
∫

xuB(x)dx

∫
vA(x)dx +

∫
xvB(x)dx

∫
vA(x)dx ≥∫

uB(x)dx

∫
xuA(x)dx−

∫
vB(x)dx

∫
xuA(x)dx

−
∫

uB(x)dx

∫
xvA(x)dx +

∫
vB(x)dx

∫
xvA(x)dx⇔

(

∫
xuB(x)dx−

∫
xvB(x)dx)

∫
uA(x)dx−(

∫
xuB(x)dx−

∫
xvB(x)dx)

∫
vA(x)dx ≥

(

∫
xuA(x)dx−

∫
xvA(x)dx)

∫
uB(x)dx−(

∫
xuA(x)dx−

∫
xvA(x)dx)

∫
vB(x)dx⇔

(

∫
xuB(x)dx−

∫
xvB(x)dx)(

∫
uA(x)dx−

∫
vA(x)dx) ≥

(

∫
xuA(x)dx−

∫
xvA(x)dx)(

∫
uB(x)dx−

∫
vB(x)dx)⇔

∫
xuB(x)dx−

∫
xvB(x)dx∫

uB(x)dx−
∫

vB(x)dx
≥

∫
xuA(x)dx−

∫
xvA(x)dx∫

uA(x)dx−
∫

vA(x)dx
⇔

COGB ≥ COGA

Q.E.D.
When COG is used as a defuzzificator the same claim and the same proof can

be used for max-min and for sum-product, because COG of the set is not affected
by functions added to u() and v() — top and bottom borders of the set.
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5.3 Monotony Summary

Three claims have been shown above that prove monotony of defuzzification for
two fuzzy sets. These claims will now be used to prove monotony for an arbitrary
number of fuzzy sets.

5.3.1 General formulation

Each of claims described above deals with a different aggregation method com-
bined with a different defuzzification method. Generally, these claims may be
combined into next lemma:

General pair-sets lemma. Let aggregation methods be max-min or sum-product.
Let DEF be one of defuzzification methods COG or MOM . For S set of fuzzy
sets, let DEF (S) be the result of the calculation of certain defuzzification meth-
ods on S. For any two fuzzy sets A and B

DEF (B) � DEF (A)⇔ DEF (AB) � DEF (A)

5.3.2 Main lemma

After a lemma for monotony of defuzzification for two fuzzy sets has been for-
mulated, it may be extended to a general case with an arbitrary number of fuzzy
sets.

Let S = {S1, S2, ..., Sn} be fuzzy sets in certain order (increasing or de-
creasing) of self defuzzification values, i.e. DEF (S1) � DEF (S2) � ... �
DEF (Sn). Let Sk = {S1, S2, ..., Sk} for any 1 ≤ k ≤ n.

Calculating a defuzzification value of S iteratively: An intermediate result
DEF (Si−1) at iteration i is obtained of previous iteration and is extended to take
Si into account.

33



Lemma.
Intermediate results of iterations described above

DEF (S1), DEF (S2), ..., DEF (Sn)

are monotonic.

Proof
In order to prove this lemma the following claim will be used:

Claim 4:
Let S = {S1, S2, ..., Sn} be fuzzy sets in certain order (increasing or decreas-

ing) of self defuzzification values, i.e. DEF (S1) � DEF (S2) � ... � DEF (Sn).
Let Sk = {S1, S2, ..., Sk} for any 1 ≤ k ≤ n, then

∀0 ≤ k ≤ n, DEF (S1) � DEF (Sk) � DEF (Sk)

Proof
Proof by induction.
The lemma is correct for one set, i.e. DEF (S1) � DEF (S1) � DEF (S1).
The lemma is correct for two sets according to a general lemma for pair of

fuzzy sets: DEF (S1) � DEF (S2) � DEF (S2)

Assumption: It is assumed that the lemma is correct for k = i, i.e.

DEF (S1) � DEF (Si) � DEF (Si)

We would like to prove it is correct for k = i + 1, i.e.

DEF (S1) � DEF (Si+1) � DEF (Si+1)

Let us focus on Si and Si+1. According to assumption above, DEF (Si) �
DEF (Si)⇒

DEF (Si) � DEF (Si) � DEF (Si+1)⇒

DEF (Si) � DEF (Si+1)
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By definition DEF (Si, Si+1) = DEF (Si+1). According to a general lemma for
pair of fuzzy sets (Si, Si+1)

DEF (Si) � DEF (Si+1) � DEF (Si+1)⇒

DEF (S1) � DEF (Si) � DEF (Si+1) � DEF (Si+1)⇒

DEF (S1) � DEF (Si+1) � DEF (Si+1)

Q.E.D.

Lemma proof. Continuation: The proof will be by induction.
The lemma is correct for one set, i.e. DEF (S1) is always monotonic.
The lemma is correct for two sets according to a general lemma for pair of

fuzzy sets described above: DEF (S1) � DEF (S2)

Assumption: The lemma is assumed to be correct for i-th step, i.e.

DEF (S1) � DEF (S2) � ... � DEF (Si)

It is necessary to prove the lemma is correct for (i + 1)-th step, i.e.

DEF (S1) � DEF (S2) � ... � DEF (Si) � DEF (Si+1)

It is known that DEF (Si) � DEF (Si+1). On the other hand, according to
Claim 4, DEF (Si) � DEF (Si)⇒

DEF (Si) � DEF (Si+1)

By general lemma for two fuzzy sets (Si, Si+1)

DEF (Si) � DEF (Si+1) � DEF (Si+1)⇒

DEF (Si) � DEF (Si+1)
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Combining this with the assumption of induction:

DEF (S1) � DEF (S2) � ... � DEF (Si) � DEF (Si+1)

Q.E.D.

5.3.3 Summary

It has been proven in this section that the intermediate results of the defuzzification
of any set of fuzzy sets are monotonic constraints:

• Using any of max-min and sum-product as aggregation

• Using any of MOM and COG as defuzzification

This proof may be extended to other defuzzification methods that meet conditions
of the general lemma for pair of fuzzy sets, i.e., for the S set of fuzzy sets, let
DEF (S) be result of calculation of a certain defuzzification method on S, then
for any two fuzzy sets A and B

DEFB � DEFA ⇔ DEFAB � DEFA

There are defuzzification methods that do not fulfill a general lemma for a pair
of fuzzy sets, and so monotony may not be proven for them. An example for such a
defuzzification method is ArbitraryMax. Unlike MOM , in this defuzzification
method we return an arbitrary X-axis value among all values for which height is
maximal. (see figure 5.7).

For a fuzzy set in figure 5.7, ArbitraryMax will return any point in range
[A, B]. Hence, in the example below (see figure 5.8) monotony may not be guar-
anteed. Three fuzzy sets — A, B and C — exist. Each set is defined on a different
range, but range [x1, x2], is common for all three. In this example, a triplet of
points a, b, c (a possible result of ArbitraryMax) for any order of set A, B, C
exists that breaks a monotony. Nevertheless, monotonic order may be found and
assured when ArbitraryMax is used, if fuzzy sets do not intersect (trivial case).
In that case each set may be treated as if MOM was used as the defuzzification
method. The order of the set will be found accordingly.
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Figure 5.7: Arbitrary max fuzzy set

Figure 5.8: Arbitrary max example
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Chapter 6

Any-Time Defuzzification in
Practice

6.1 Overview

Till now the discussion has been of one output variable and a few fuzzy rules
that modify it. This thesis addresses fuzzy controllers that return more than one
variable hence a general controller with several output variables will now be dis-
cussed.

The thesis proposal pertains to a controller that uses max-min as the aggre-
gation method and COG as defuzzification. That controller kept increasing the
order of self COG for fuzzy sets of each output variable. Particularly, the con-
troller used topological sorting for all fuzzy sets (each fuzzy set associated with
fuzzy rule) in order to solve conflicts. For which reason that controller was actu-
ally an any-time controller.

It has been shown previously that keeping a certain (increasing/decreasing) or-
der of self COG/MOM of fuzzy sets guaranties a monotonic intermediate result
for each output variable. Thus the entire controller becomes an any-time con-
troller for any aggregation-defuzzification pair among max-min, sum-product and
MOM , COG.

Each fuzzy set is modified by a certain fuzzy rule. Interest is actually directed
to the order in which fuzzy rules should be fired in order to obtain the desired
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order of output of fuzzy sets. Some fuzzy rules modify fuzzy sets for more then
one output variable. This may cause a conflict with monotony as in the example
described above that entailed:

Example (reminder):

• Two output variables P1, P2

• Three rules R1, R2 and R3 that modify these variables

• Three fuzzy values of each variable: for P1 - V11, V12 and V13, for P2 - V21,
V22 and V23, such that Vij < Vi,j+1 for all 1 ≤ i, j ≤ 3

The rules are as follows:

• R1: If A then P1 is V11 and P2 is V22

• R2: If B then P1 is V12 and P2 is V23

• R3: If C then P1 is V13 and P2 is V21

If the controller is stopped, for lack of time, from going over all the rules in
this example, the partial result will not approximate the final result. To solve this
problem a fuzzy rules database should be altered so that an order of the resultant
fuzzy rules would exist in any-time fuzzy controller.

In the example above rule R3 should be split:

If C then P1 is V13 and P2 is V21

into two sub-rules R31 , R32

• R31: If C then P1 is V13

• R32: If C then P2 is V21

As a result rule R32 will be fired first, followed by R1, R2 and R31 . This offers
a monotonic increasing order of intermediate results, and a fuzzy controller that
handles rules in that order is an any-time fuzzy controller.

To determine a general order in which fuzzy sets will be handled, one of lin-
earization methods described below should be used. If the rules are seen to be
returned in the order that the linearization method returned them, an any-time
behavior controller will be guaranteed.
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6.2 Improvements to general defuzzification

Improvements described below may optionally be implemented in a fuzzy con-
troller. They do not change a main property of a fuzzy controller described in this
thesis — any-time. Further research is necessary to explore the exact influence of
these improvements on the overall calculation time.

6.2.1 Reverse order

The following example demonstrates improvement:
Example 2

Fuzzy sets: S1, S2, S3 and S4.
Two fuzzy parameters P1 and P2. {P1 : S1, S2} such that S1 < S2. {P2 :

S3, S4} such that S3 < S4.
Fuzzy rules R1 and R2 that modify fuzzy sets: {R1 : S1, S4}. {R3 : S2, S3}.
Here is a conflict situation of two parameters and two rules if an attempt is

made to keep increasing the order of fuzzy sets. To solve the situation set S4 can
be delayed by splitting R1 into two rules, and the final result then is handling
fuzzy sets in the next order:
(S1), (S2, S3), (S4).
Sometimes such a situation may be resolved without delaying sets. Sequence
(S1, S3), (S2, S4)

is a legal, non-conflictual sequence in which sets of parameter P2 are performed
in reverse order. It is still any-time because COG of P2 is changed monotonically
although it is in reverse order.

6.2.2 Unclear Order

In certain cases an order of self values of the defuzzification function of two sets
depends on the height of these sets, for which reason the order needs to be de-
termined at the runtime. This happens when fuzzy sets overlap in a certain way.
Doing this may significantly slow down the controlling process. It also compli-
cates planning (creating a sequence of fuzzy rules in the order in which they are
supposed to be handled). Therefore, these sets should be handled as one unit in
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order to promise monotony. The internal order of these sets is not important in
most cases, particularly when COG is the issue.

6.2.3 Approximations

In basic any-time algorithms all fuzzy sets of each variable are supposed to be
defuzzified in a certain order. As a result, it may take a (relatively) long time till
the temporary result approximates the actual result. Several ways to reduce these
times are introduced in section 7 below.

6.3 Linearization methods

This section will discuss linearization methods. Linearization is necessary to gen-
erate a sequence of fuzzy rules in order for these rules to be handled. For each
output variable, a vector of fuzzy rules is created that modifies fuzzy sets of a
certain output variable. First the vector in a certain (increasing/decreasing) order
of self values of fuzzy sets’ defuzzification function (MOM /COG) is ordered.
These vectors are passed as input to linearization algorithm. In the previous sec-
tion several items were introduced, that come up when there is more then one
output variable, i.e., there are a few sequences of fuzzy rules (one for each output
variable), each with its own result.

Often, some rules present in more then one sequence, i.e., the same rule modi-
fies fuzzy sets of more then one output variable. This can cause conflict because of
inconsistency in the order of certain rules (fuzzy sets) in various output variables.
Two main approaches that can solve these conflicts are:

1. Using topological sorting and split fuzzy rules causing conflicts.

2. Split all rules to simple rules with one operand at the right hand side of the
rule.

Each of the suggested approaches has its advantages and disadvantages, the ad-
vantages of one approach being the disadvantages of another. Topological sorting
creates a database with relatively few rules, but the equal advance of intermediate
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results among various variables cannot be guaranteed. On the other hand, splitting
rules creates a big database, but the advance of the intermediate result may easily
be controlled, e.g., priorities among variables.

Linearization methods are used to generate a sequence of rules, in order, that
should be handled by a fuzzy controller.

6.3.1 Using topological sort

For a given database of fuzzy rules and output fuzzy sets, topological sort may be
used to sort output fuzzy sets. Topological sort returns a vector of rules. In the
case of this study, slight modification of topological sort is necessary. Modified
by the same fuzzy rule, output fuzzy sets should then be handled sequentially (if
possible). Thus there is no need to split a fuzzy rule. In contrast, output fuzzy sets
that are not handled sequentially cause splitting of a fuzzy rule to few fuzzy rules.
Each such split fuzzy rule modifies a subset (of output fuzzy sets) of the original
fuzzy rule.

The result of such sort is a sequence having two main properties:

1. Fuzzy rules that modify fuzzy sets of certain parameters keep the internal
order they had before topological sort.

2. Conflicts as in the example above are solved by splitting fuzzy rules to sub-
rules.

This gives us an order of fuzzy rules processing.
Modification of topological sort mentioned above does two things: It causes

the output of fuzzy sets that are modified by the same fuzzy rule to be sequential
(when possible) and unites such sequences of fuzzy sets to one unit. Such output
should be treated as a list of fuzzy rules in the order they should be handled by the
controller.

The number of items in the list is greater (or equal) than the number of original
rules and less (or equal) to the total number of output fuzzy sets at all output
variables. The size of the list depends on the amount of split rules and granularity
of the splits.
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The main advantage of using such sort is the relatively small number of fuzzy
rules that should be handled. There are environments for which more then one
valid output of the sort exists. Further work is necessary to find a best output of
the sort; for now, any valid output of the sort is used.

On the other hand, the disadvantage of this method is that rules that modify
fuzzy sets of several variables simultaneously define dependencies between the
variables. Such dependencies make it very hard, and sometimes impossible, to
control the promotion of the intermediate result of one output variable relative to
another.

6.3.2 Splitting to atomic rules

To avoid conflicts that arise when the same rule modifies fuzzy sets of more than
one variable, such rules can be split into atomic rules - rules that modify only one
output fuzzy set.

A database composed of atomic fuzzy rules gives maximum flexibility and
control over the intermediate results of each output variable, because there are no
dependencies between the output variables. Thus, it is easy to create a sequence of
fuzzy rules that gives priority to some variables over others. In contrast, it is pos-
sible to generate a sequence that keeps an equal relative promotion of intermediate
results for all variables.

The implementation of priorities is simple — rules that modify sets of vari-
ables with a higher priority must be handled before the others. Such rules will
then precede other rules in the sequence of rules.

Implementation of equal relative promotion of intermediate results (fairness)
is more complex hence a weighted round robin algorithm will be used. A weighted
round robin handles in each turn a ’number’ of rules for each variable, where

number =
max number of output fuzzy sets
min number of output fuzzy sets

This number is actually a weight of the output variable. Weights may be modified
in order to combine them with priorities.

The database of atomic fuzzy rules may have many more fuzzy rules than the
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original database, depending on how complex were the fuzzy rules in the original
DB. This is a value paid for flexibility in database of atomic fuzzy rules.

6.3.3 Hybrid algorithm and priority clusters

Topological sort and atomic rules have their advantages and disadvantages. Ad-
vantage can be taken in certain situations of both approaches, to which end they
will be combined. Although further work on the hybrid of topological sort and
atomic rules is necessary, some modifications are obvious.

Certain prioritization of output variables may be achieved by defining priority
clusters of output variables. Clusters are subsets of output variables. All variables
in the cluster have the same priority; any prioritization policy is possible between
clusters.

According to defined clusters, rules that define dependencies between output
variables in different clusters are split. New rules are not necessarily atomic rules.
All output variables are modified by a certain rule contained in the same priority
cluster. The fuzzy rules database obtained as a result of such modification consists
of more rules than were in the original database. Despite this, only a limited
number of necessary rules is split, thus the database size increases insignificantly.

Whenever priority clusters are defined, any prioritization policy is available.
The simplest policy is a strict priority: Handle rules that modify output variables
of certain priority clusters before others. It is possible to use a weighted round
robin to guarantee equal relative promotion of intermediate results between pri-
ority clusters, but it should be noted that there is no guarantee of promotion of
an intermediate result between output variables of the same priority cluster. A
weighted round robin may also be used here to give relative priority between pri-
ority clusters.

The combination of topological sort and split rules as described above enables
prioritizing algorithms without significantly increasing the fuzzy rules database.
This method is useful for large databases with many dependencies and relatively
few priority clusters. Otherwise, a database obtained as a result of clustering is
similar to database of atomic rules.
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6.3.4 Summary

Basic linearization methods described above are of the topological sort on the
one hand with rule-splitting on the other. According to certain environmental
constraints it is possible to choose a method that optimally appropriates. After
using a chosen method on a certain fuzzy rules database, a sequence on fuzzy
rules is obtained that should be used as input to the fuzzy controller. In order to
attain an any-time effect a controller should have the following properties:

• Process fuzzy rules in a defined order;

• Return a defuzzification value of all output variables at any moment during
processing (return an intermediate result);

• May be interrupted before all rules are processed.

The combination of linearization and fuzzy controller with these properties affords
an any-time fuzzy controller. Such a controller can be interrupted at any moment
and return a result of processing till interruption. It is guaranteed that increasing
calculation time causes the returned result to be closer to the optimal (real) result.

6.3.5 Complexity

In case of atomic rules only sort of output sets of each rule is necessary. Its
complexity is

O(|v||s| log |s|)

Where:

• |v| – number of output variables

• |s| – max number of fuzzy sets in each output variable

In case of topological sort, it is necessary to sort output sets of each vari-
able and then to perform a topological sort. The usual algorithms for topological
sorting have running time linear in the number of nodes plus the number of edges
O(|V |+|E|). In our case number of nodes is a number of output sets i.e. O(|v||s|).
Number of edges is a number rules (edges between variables) |r| and number of
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sets on each variable (edges from set to set of the same variable) |r||v||s|. As a
result complexity of linearization based on topological sort is

O(|v||s| log |s|+ |v||s|+ |r|+ |r||v||s|)

Where:

• |v| – number of output variables

• |s| – max number of fuzzy sets in each output variable

• |r| – max number of fuzzy sets in each rule
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Chapter 7

Extensions

An any-time controller should be used to solve a problem of a long calculation
time. An any-time controller facilitates obtaining a result that may not be perfect,
but is attained much faster then the result of a full controlling sequence.

Claims mentioned above discuss an order between two fuzzy sets, in which
these sets should be handled — increasing order of their own defuzzified value
MOM /COG. However, this order will not always provide satisfying calculation
times. Below, some methods will be presented that may significantly improve
the quality of the intermediate result obtained after certain calculation time. Al-
though improvements described below do ameliorate some aspects of an any-time
controller, the exact influence should be further researched.

7.1 Optimal sequence

In this paper, the optimal sequence is a sequence of output sets that considers all
output sets, but causes intermediate results to be as close as possible to the final
result, while taking into account for defuzzification the least possible number of
fuzzy sets.

The idea of an optimal sequence is next: Each step of defuzzification takes
into account a set that has a maximal influence on the result, but still does not
break a monotony.

47



MOM. Assume: Current intermediate result is MOM of set S whose height
is height(S) and MOM is MOM(S). To bring the next intermediate result as
close as possible to the final result, the next set to be taken into account should be
a set S ′ that satisfies one of the following two constraints:

• If height(S ′) = height(S) then for each set T , if height(T ) > height(S ′)

then MOM(S ′) ≤MOM(T )

• height(S ′) > height(S)

When there are no sets that satisfy these constraints a final result is received. Sets
previously skipped can now be handled, but it is not necessary since they do not
influence the final result.

COG. Like in MOM , each iteration should handle a set that has a maximal
influence on total COG, but still does not break a monotony.

Let S = {S1, ..., Sn} be sets for which COG is to be calculated. After i

iterations the intermediate result is COGi. A ⊆ S — sets for which COG has
been calculated already and B — sets in S that not in A. COGi is COG of sets
in A. W.l.o.g., assuming A = {S1, ..., Si} and COG(Si) ≤ COG(Si+1) ≤ ... ≤
COG(Sn).

A set Sk is to be picked from B, moved to A and COG of A ∪ Sk should be
calculated. Let COGASk

be COG(A ∪ Sk). We should now pick such Sk that
suits next condition:

∀COGASk
, COGASm ≤ COG(Si+1) : COGASk

≥ COGASm

7.2 Approximations

The optimal sequence presented above may indeed promise the fastest promotion
of the intermediate result when all fuzzy sets are taken into account, but it still
requires many calculations and possibly more calculations then the sub-optimal
sequence. For this reason it should not be used, but other ways should rather be
found to calculate good intermediate results. Possible ways to improve interme-
diate results are discussed below:
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1. Using a previous result;

2. Using a subset of all fuzzy sets to calculate an intermediate result;

3. Use maximal possible change of a certain fuzzy set.

Note: COG is influenced by all fuzzy sets. MOM is determined by a few maybe
even one fuzzy set. It can therefore be useful to find sets that do influence the final
result.

7.3 COG

7.3.1 Use the previous result

When a COG of set of fuzzy sets is to be calculated, one may determine that use
be made of a previous defuzzified value of these sets as an intermediate result
as long as COG of fuzzy sets that are already taken into account is less then the
previous defuzzified value (see algorithm below). pop_first() removes first
element from a list and returns it:

1. intr ← Previous defuzzified result

2. tmp_cog ← −∞
3. A ← all fuzzy sets

4. Sort A in increasing order of COG

5. B ← ∅
6. Loop while A 6= ∅
7. B ← B ∪ pop_first(A)
8. tmp_cog ← COG(B)

9. If tmp_cog > intr Then

10. intr ← tmp_cog

11. End of loop

12. intr ← tmp_cog

In this algorithm, intr holds an any-time result in each stage. At the begin-
ning it holds a previously defuzzified result. Later, when COG of new fuzzy sets
becomes higher then intr, it holds new COG. Monotony of intr is not broken
in any step, because it only grows up.
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It is possible that COG(A) is less then the previously defuzzified result. Line
12 of the algorithm covers this case: No matter what COG(B) is at the end of the
algorithm, it is used as an intermediate (final) result. Monotony is not broken here
either: There is only one intermediate result and one final result.

The main advantage of using a previously defuzzified result is the fact that
when changes in the fuzzy system between two following runs of the algorithm
are not significant, there is sometimes not enough time to get close to real COG

in certain iterations. An intermediate result does stays close to real COG.
On the other hand, the main disadvantage of using a previously defuzzified

result is the fact that when real COG becomes less and less each time defuzzifi-
cation is performed but there is not enough time to calculate it for the few times
defuzzification is performed and the intermediate result returned by the algorithm
becomes too unreal (retaining the same value, when real COG decreases each
time).

This problem may be solved by not using the previously defuzzified result as
is, but decreasing it each time the algorithm is started. In that case, after a few
algorithm runs, the intermediate beginning result will be decreased to a value that
can be reached while calculating COG of fuzzy sets with little self COG.

This solves a problem of a temporary result that totally differs from results
calculated by the defuzzificator. On the other hand, the results returned here may
be caused by fuzzy sets with little values of self COG, causing the defuzzification
result to (a) have relatively little value; (b) be unaffected by fuzzy sets with high
self COG.

7.3.2 Use subset of fuzzy sets

Another improvement suggested here for the first intermediate result is to calculate
COG of two or more fuzzy sets with more or less equally dispersed values of self
COG. Here fuzzy sets with both low and high self COG are used.

7.3.3 Use maximal possible change of a certain fuzzy set

Maximal possible change is not useful with COG because it only doubles or
triples calculation time without any real benefit.
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7.4 MOM

Using the previous result and a subset of fuzzy sets for MOM are similar to those
of COG, but it should be noted that these methods are not useful with MOM .
MOM , in contrast to COG, is a result of a small subset of sets, and usually only
one set. For this reason the previous results should not be used as was the case
with COG.

7.4.1 Use maximal possible change of a certain fuzzy set

Using the fact that only the small subset of all fuzzy sets participates in MOM ,
it does not have to be calculated for all sets, but only those that may influence
MOM .

To explore which fuzzy sets influence MOM the maximal possible change of
each fuzzy set height may be used (if possible), i.e., this information can be used
if a maximal and minimal value for the height of the fuzzy set can be used at the
next iteration. Notable in this regard is MOM of fuzzy sets whose maximal value
is lower then the minimal value of fuzzy sets that determined previous MOM

should not be calculated. Thus can the number of fuzzy sets for which MOM

should be calculated be significantly reduced.
If sequential heights of a certain fuzzy set are close, one can assume there is

a curve that determines these heights and try to predict next values in order to
determine whether the fuzzy set should be handled.

Let hi, hi+1, hi+2, hi+3 be sequential heights of certain fuzzy set. Let h′
i be

hi+1− hi, h′
i+1 = hi+2− hi+1 and h′′

i = h′
i+1− h′

i. If a constant second derivative
is assumed then:

h′
i+2 = h′′

i + h′
i+1

hi+3 = h′
i+2 + hi+2

hi+3 (an approximation) and one may assume that a real value of hi+3 is in range
[hi+3 − ε, hi+3 + ε].
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7.5 Summary

The approximation mentioned above may significantly reduce the time neces-
sary for the intermediate result to approach the real result. The actual influ-
ence of approximations should be researched further. Additional approximations
should be explored and examined. The necessary constraint for approximation is
a monotonous intermediate result in any possible scenario.
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Chapter 8

Experiments

Below results of experiments performed with any-time fuzzy controller are pre-
sented. Experiments were performed on simulation of robot moving in 2-dimensional
environment with a single obstacle to avoid (see figure 8.1).

Environment details are as follows:

• Robot initial location is (0, 1)

• Destination is (10, 0)

• Obstacle — a line segment between (5, 5) and (5, -5)

• Gray line is an intended robot path.

Fuzzy rule base properties are as follows:

1. Two output variables: direction (-90, 90), acceleration (-0.5, 0.5)

2. Input variables:

• Direction to destination

• Distance to left edge of obstacle

• Distance to right edge of obstacle

• Straight distance to obstacle

• Current speed
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Figure 8.1: Experiments environment

3. Total number of 36 fuzzy rules. A limitation of fuzzy controller used for
experiments in current thesis is the fact that all input variables have to be
explicitly teated by each rule. There actually were used two pseudo con-
trollers. Each pseudo controller for one output variable. Each input variable
has 3 fuzzy sets. One output variable is calculated based on 3 input vari-
ables, and another one based on 2 input variables. As a result there are 27
rules for one output variable, and 9 for another one.

A path that a robot walked on using full calculation (no any-time property) is
displayed in figure 8.2.

This fuzzy controller was used to perform two kinds of experiments:

• Proof of concept — show that sorting fuzzy rules in increasing (decreas-
ing) order of self defuzzification values results in a monotonic intermediate
results.

• Show that any-time fuzzy controller fulfill its purpose.
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Figure 8.2: Full calculation path

8.1 Proof of concept

In order to prove that intermediate results of controller described in this thesis
are monotonic, following measurements were performed at few arbitrary points
on path mentioned above. At each one of chosen points of the path, 1, 2, ... rules
were fired and intermediate results were recorded. Inputs and intermediate re-
sults are presented in tables in figure 8.3. Intermediate results were taken for all
combinations of COG, MOM and incrementing, decrementing order.

There are two tables at figure 8.3. Top table describes acceleration variable and
a bottom table describes a direction variable. Both tables have the same structure,
so following description is valid for both tables. There are intermediate results
for both defuzzification methods MOM and COG. Four rows for each. Each
defuzzification method was checked in both increasing and decreasing orders of
self defuzzification values: two rows for each. So, each combination of defuzzi-
fication method and firing order was recorded at two different points of the path.
In case of direction variables, one of points is a starting point (0, 1). This shows
us that for given defuzzification method, full calculation of both increasing and
decreasing orders result in the same value. Content of each row is as follows:

• First two columns are x and y coordinates of robot, where a measurement
was performed.
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Figure 8.3: Intermediate results

• Next 2-3 columns depends on table are the input values at particular loca-
tion.

• Following five columns are intermediate results, where first column is a
result of one rule, and last column is a result of full calculation — 5 fired
rules.

8.2 Any-time controller works

Let us call N a maximal number of fuzzy rules that fire for particular output
variable. For both output variables direction and acceleration, N is 5.

Following experiments were performed to check influence of any-time prop-
erty on controller’s performance:

1. Run a controller when rules are fired in increasing order of self COG of
fuzzy sets, and N −m rules are fired in each iteration. Where m < N .
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Figure 8.4: Experiment 1

2. Run a controller when rules are fired in increasing order of self COG of
fuzzy sets. Let k be a number such that at iteration k ∗ i where i ∈ 1, 2, 3, ...

full calculation is performed. At rest iterations less then N rules are fired.

In addition to experiments 1, 2 described above, similar experiments 3, 4 with
rules fired in decreasing order of self COG of fuzzy sets were performed.

Results

Experiment 1 — failed.

• Acceleration variable remains in unreasonable values.

• Direction variable does not reach high values. As a result it fails to avoid an
obstacle.

See figure 8.4.
Experiment 3 — succeeded.

• Acceleration variable returns reasonable results with even 1 rule fires each
time.

• Direction variable returns reasonable results for N−1 rules fired. For N−2

rules fired, rules that supposed to bring a robot to the goal do not fire, so
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(a) N − 1 rules fired (b) N − 2 rules fired

Figure 8.5: Experiment 2

robot avoids an obstacle and goes on to nowhere. On the other hand, firing
only 2 rules at every 7-th iteration, and performing a full calculation at rest
iterations brings a robot successfully to destination.

See figures 8.5 (a) and (b). It is seen on figure that when N − 1 rules were used,
a path is less accurate, then in case of full calculation.

Experiment 2 — succeeded.

• Acceleration variable returns reasonable results in all checked configura-
tions up to using only 1 rule, and once in 150 iterations calculate all rules
(see figure 8.6). Entire walk length is ≈ 60 iterations.

• Direction variable. Robot succeeded to avoid an obstacle only with N − 1

and k = 2, i.e. each second iteration full calculation is performed, and when
partial result is returned, it has to be based on 4 rules (see figures 8.7).

Experiment 4 — succeeded.

• Acceleration variable returns reasonable results in all checked configura-
tions up to using only 1 rule, and once in 150 iterations calculate all rules
(see figure 8.8). Entire walk length is ≈ 60 iterations.

• Direction variable. Robot succeeded to avoid an obstacle only with N − 4

and k = 3, i.e. at each third iteration full calculation is performed, and
when partial result is returned, 1 fired rule is enough (see figures 8.9).
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Figure 8.6: Experiment 2 acceleration variable. Once in 150 iterations use all
rules, in rest cases check only one rule.

(a) N − 1, k = 2 (b) N − 1, k = 3

(c) N − 2, k = 2

Figure 8.7: Experiment 3
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Figure 8.8: Experiment 4 acceleration variable. Once in 150 iterations use all
rules, in rest cases check only one rule.

(a) N − 4, k = 3 (b) N − 4, k = 4

Figure 8.9: Experiment 4
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8.3 Summary

In experiments performed on simulation of robot using any-time fuzzy controller,
it was figured out that is most situations it is possible to use an intermediate result
of any-time fuzzy controller as a final result. In most cases full calculation should
be performed to compensate a partial result calculated earlier.
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Chapter 9

Summary and Future Work

9.1 Summary

It has been shown and proven in this thesis that a general fuzzy controller may be
converted to an any-time fuzzy controller by ordering fuzzy rules in a certain or-
der of defuzzification values of output fuzzy sets. For this reason, defuzzification
is an only step of fuzzy control that determines whether a controller has an any-
time behavior. This makes it possible to add an any-time behavior to almost any
fuzzy controller architecture. Although, aggregation and defuzzification meth-
ods checked and proven in this thesis are only a few of the well-known methods
(max-min, sum-product, MOM and COG) it is shown that other combinations
are possible whenever a monotony of intermediate results is kept and may be
proven. Aggregation and defuzzification methods of certain cases analyzed in this
thesis were:

• max-min with MOM

• sum-product with MOM

• max-min with COG

• sum-product with COG

In order to add an any-time behavior to a fuzzy controller preprocessing should
be conducted. The preprocessing is a linearization. It may and should be done
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once off-line, so no slow-down is caused at the run time. Three linearization
techniques are introduced:

• Topological sort

• Atomic fuzzy rules

• Combination of previous two

Topological sort splits the minimal number of fuzzy rules — only rules that have
to be split are changed. So minimal modifications to rule base are performed and
the minimal possible size of rule base is maintained. Atomic fuzzy rules split
all rules and give maximum flexibility in fuzzy rules reordering. This enables
the use of any prioritizing algorithm to achieve various goals including priorities
and fairness. The combination of both linearization techniques offers a trade-off
between the advantages and disadvantages of both techniques.

Improvements described in this thesis give the best results in complex envi-
ronments with a large database of fuzzy rules, output fuzzy variables with many
fuzzy sets and complex dependencies between fuzzy rules. These properties are
common in automatically learned fuzzy controllers that are widely used to handle
complex environments.

9.2 Future Work

This is a first study on any-time fuzzy control that deals with major issues relating
the topic. There are still some issues that should be researched in order to im-
prove the quality of such controller’s output. Issues that seem to have a significant
influence are described below.

9.2.1 Unclear order

In certain cases an order of self values of the defuzzification function of two sets
depends on the height of these sets. In this current study, these sets are handled as
one unit. Actually, the internal order of these sets is not important in most cases
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when dealing with COG. Nevertheless, the existence of a simple (in complex-
ity terms) way to determine an order of such sets it should be investigated and
checked.

9.2.2 Linearization

Linearization methods described here are:

1. Topological sort

2. Splitting fuzzy rules with a round robin

3. Combination of the previous two

Splitting rules with a round robin is quite a simple method. Fuzzy rules are split
into atomic rules, and any variation of a round robin (or any other prioritizing
algorithm) is used to schedule the exact order of fuzzy rules examination. An
order and prioritizing algorithm depend on the desired result, e.g. priority, equal
promotion of the intermediate result or any combination of them. Topological sort
and its combination with a prioritizing algorithm need more research.

For certain given inputs topological sort has more then one output. Since topo-
logical sort is used to reduce fuzzy rules database size, the aim is for an output of
topological sort that causes the least number of fuzzy rule splits. Further research
is necessary to find out a way to obtain the optimal (or approximate) result of
topological sort.

For a given output of topological sort there are fuzzy rules that may be re-
ordered without any damage to any-time order. It is possible to use prioritizing
algorithms for such fuzzy rules. In addition, the number of fuzzy rules that may
be reordered depends on the output of the topological sort, thus in certain cases,
output with more split rules might be preferred if more prioritizing is possible and
necessary.

9.2.3 RETE networks

As mentioned in 3.3 it is hard, and perhaps even impossible, to influence rule’s fir-
ing order in RETE network. Generally, this makes any-time solution incompatible
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for the fuzzy controller base on RETE network. Nevertheless, a simple solution of
temporal disregard of fuzzy rules that break a monotony is possible. In that case
a desired order of fuzzy rules’ firing is defined. When rules are fired, rules that
all preceding rules have already fired according to predefined order, is taken into
consideration. In that case not all the existing information is used, but the optimal
is the aim. The number of rules that should fire before a first intermediate result
is returned cannot be guaranteed. In the worst case scenario, the first intermediate
result will be returned after all rules but one have been fired.

Further research is necessary to find out whether there is a better solution that
can guarantee an intermediate result after a short period of time.
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