
Bar-Ilan University

Department of Computer Science

SYMBOLIC BEHAVIOR RECOGNITION

by

Dorit Avrahami

Submitted in partial fulfillment of the requirements for the Master’s degree

in the department of Computer Science

Ramat-Gan, Israel

September 2004

This work was carried out under the supervision of

Dr. Gal A. Kaminka

Department of Computer Science, Bar-Ilan University.

Abstract

It is important for robots to model other robots’ unobserved plans, goals and

behaviors, based on their observable actions. This process of modeling others

based on observations is known as behavior- or plan-recognition. Behavior-recognition

algorithms work by first matching observed actions to a template model (called

the plan- or behavior-library), and then propagating the implications of match-

ing actions to determine possible hypotheses that explain the observed behavior.

However, classic plan recognition algorithms are ill-suited to modeling robots in

state-of-the-art applications: (i) they assume that only a single atomic feature (i.e.,

the action of the observed robot) is observable at any given point; and (ii) they as-

sume that all such actions are always observable (i.e., the observer never loses

an observation). As a result, existing behavior-recognition algorithms are often

inefficient, and may fail catastrophically in face of lossy observation streams.

This thesis presents a set of behavior-recognition algorithms that are specif-

ically suited for modeling behavior-based robots. First, the algorithms use a

decision-tree structure to efficiently match complex (multi-feature) observations

to behaviors, reducing the run-time complexity of the observation-matching phase

from O(FL) to O(F + L) in the worst case. Second, the algorithms are able

to handle lossy observations gracefully. The algorithms are correct (in that all

matching hypotheses are produced), and symbolic (in that they do not provide an

ordering over hypotheses). The algorithms’ run-time is linear in the size of the

behavior-library. We provide an extensive empirical evaluation of the algorithms

in scaled-up simulation experiments.

Acknowledgments

I would like to express my deep gratitude to Dr. Gal A. Kaminka for his support

and understanding during the course of research. For believing in me right from

the first beginning of the research. This work would not have established without

him.

Special gratitude to Maverick group for their support and encouragement.

Further, I wish to express my gratitude to my husband Nadav and to my family,

for standing by me throughout the whole way, my parents, Magid and Gila, my

sister Ronit and my brother Tomer.

Finally, I want to express my gratitude to Batya and Menahem Zilberbrand for

their support.

Contents

Acknowledges 1

1 Introduction 7

2 Background and Related work 10

3 Representation 17

4 Matching Observations to Behaviors 21

5 Queries 29

5.1 Current State Query . 29

5.2 History of States Query . 34

6 Lossy Observations 39

7 Experiments 42

7.1 Experiment Set-Up . 42

7.2 Matching Observations To Behaviors 45

7.2.1 Matching Runtime . 45

7.2.2 FDT Build time . 48

7.3 Current State Query . 50

7.3.1 Accuracy . 51

7.3.2 Runtime . 53

7.4 History of States Query . 54

7.4.1 Generating behavior-history hypotheses 55

2

CONTENTS 3

7.4.2 Runtime . 59

8 Conclusion and Future Work 62

List of Figures

3.1 Example behavior graph. 19

4.1 simple example for FDT . 26

4.2 Example FDT with behavior tree. 27

5.1 Example of the propagating process. 31

5.2 An example extracting graphG′. 37

6.1 An example Lossy Feature decision Tree (LFDT). 40

7.1 Sequential Links types. Partial A and Partial B are not shown, as

they are non-deterministic, and may take different forms. 44

7.2 Average matching runtime of FDT and RESL, as a function off

for varying depth and top level roots 46

7.3 Average matching run-time of FDT and RESL, worst-case (for

FDT), as library increases in size. 47

7.4 Matching Experiment: Number of matching behaviors 48

7.5 Matching Experiment2: Average runtime of buildingFDT 49

7.6 Average FDT construction runtime 50

7.7 Average number of hypotheses after propagation, RESL vs. SBR. 52

7.8 Average number of hypotheses after propagation, RESL vs. SBR,

with different sequential-edge types. 53

7.9 Average runtime of propagating Resl versus SBR 54

7.10 Number hypotheses over history for each sequential edge type, 5

top level behaviors . 56

4

LIST OF FIGURES 5

7.11 Number hypotheses over history for each sequential edge type, 10

top level behaviors . 57

7.12 Number hypotheses over history for each sequential edge type, 50

top level behaviors . 58

7.13 Matching, Propagating, and Extracting Average runtime 60

7.14 Extracting average Runtime . 61

List of Tables

4.1 Example training set, generated from behaviors 23

7.1 Average number of hypotheses after propagation, RESL vs. SBR. 51

7.2 Number of Hypotheses over history 57

6

Chapter 1

Introduction

It is important for agents to be able to reason about other agents’ internal state,

such as their selected behaviors, plans, intentions, and goals. A model of other

agents is important, for instance, in assisting other agents [22], countering their

adversarial actions [38], imitating them [2] and detecting failures in multi-agents

environments [19, 18]. Since it is often impractical for a agent to rely on its peers

to continuously transmit their internal unobservable state to it, an agent modeling

its peers must often rely on inferring its peers’ unobservable state based on their

observable actions.

The problem of inferring another agent’s intentions based on set of obser-

vations is often calledplan recognition. Plan recognition is useful in many ar-

eas, some applications are natural language question answering systems and story

understanding (e.g.,[1, 25, 39]), intelligent user interfaces (e.g.,[12]), automated

description of image sequences [31], and multi agent coordination (e.g.,[16, 15,

17, 19, 18]). Although much research has dealt with plan recognition, there are

number of problems when dealing with large scale of behaviors and real world

applications [4].

Most plan recognition methods are ill-suited to modeling modern robots. First,

plan recognition typically assumes that observed actions are atomic and instanta-

neous. However, robots often take continuous actions that have duration, and are

complex (multi-featured), as they affect several actuators at once (e.g., maintain

velocity and direction over a period of time). Second, plan recognition focuses

7

CHAPTER 1. INTRODUCTION 8

on observed actions, and ignores how world state may affect the observed robot’s

state (e.g., a robotic soccer player’s internal decision making will be affected by

its position on the field, or its uniform number). Third, the representation un-

derlying plan-recognition is based on STRIPS-like operators, a representation not

commonly used in generating reactive behavior in robots. A plan-based model of

a robot’s interaction with the environment would not capture the reactive compo-

nents of its behavior. Fourth, plan-recognition typically focus on small class of

agent behaviors (plan-based), as seen in static, single agent domains.

There have been attempts at addressing these challenges (see Section 2 for de-

tails). RESC [38] and RESL [19] use a behavior-based representation to infer the

current behaviors selected by observed agents. However, they do not take a history

of observations into account, and assume that agents do not change states (behav-

iors) unobservably. Other methods are often able to take a history of observations

into account, but assume all relevant features (e.g., actions of the robot) will al-

ways be observable (e.g., [16, 30, 13]). Moreover, these methods require a trans-

lation of the observed robots behavior-based control structure into a form suitable

for the probabilistic recognition algorithms used in these approaches. Also, none

of the approaches discussed above can utilize negative evidence, i.e., inference

from a lack of an observation [11].

This thesis focuses on a set of comprehensive mechanisms forbehavior recog-

nition, the task of recognizing the unobservable behavior-based state of an agent,

given observations of its interaction with its environment. We examine the key

behavior recognition queries that may be asked of a behavior recognition sys-

tem, and provide algorithms to infer the answers to these queries, building on a a

representation of hierarchical behavior that is general and compatible with many

existing behavior-based control methodologies. We analyze the complexity of

the algorithms, and show that they are efficient, even when handling loss of ob-

servations, and negative evidence. The algorithms are all symbolic, in that they

produce all possible hypotheses that are consistent with the observations, but do

not provide a probability distribution over the hypotheses space. However, their

efficiency makes them suitable as a basis for additional probabilistic reasoning.

In addition, we address the efficiency of matching observations to behaviors,

a key basic step common to all behavior recognition algorithms. Previous work

CHAPTER 1. INTRODUCTION 9

has assumed observed actions are atomic (have a single observable feature), and

scaled up linearly in the size of the library. Instead, we develop a method for au-

tomatically generating a decision-tree that efficiently matches observations, based

on the values of observed features, to appropriate behaviors. This method reduces

the complexity of matching fromO(FL), whereF is the number of observable

features, andL the size of the behavior library, toO(F + L) in the worst case.

In addition to the development and analysis of these algorithms, we present

an extensive empirical investigation of the performance of the behavior recogni-

tion mechanisms on simulated data. The experiments show the efficacy of the

proposed techniques, as well as the scope of their strengths and weaknesses.

Chapter 2

Background and Related work

Plan recognition is the task of inferring the intentions, plans, and/or goals of an

agent based on observations of its actions. To demonstrate it, lets take a simple

example, where we observe a person leaving her house. There are number of

possibilities as to her intentions: going to work, taking out the garbage, going to

the fitness club, walking with the dog and so on. Suppose that some time before,

we saw her taking the car keys and her work bag. Now, we can disqualify a

lot of hypotheses as to her intentions and infer that she is going to work. A lot

of research has been done in the plan recognition area, [33] made psychological

research that support evidence that humans infer the plans of other agents, and

therefore engage in plan recognition. Behavior recognition is a specialized form

of plan recognition. Here the task focuses on inferring the internally-selected

behavior-based control module of another agent from a set of observations of its

actions.

The recognition system can be characterized by the following properties:

1. Keyholeandintendedrecognition are two types that were identified by [7].

In keyhole recognition, the observed agent does not impact on the recog-

nition process, whereas in intended recognition, the observed agent does

deliberate actions to help the recognition. Another class was identified by

[9], adversarial recognition, where the observed agent is hostile (e.g, net-

work security) and takes steps to confuse the observer. Most of previous

work investigated keyhole recognition (e.g,[21, 6, 19, 38]). We would also

10

CHAPTER 2. BACKGROUND AND RELATED WORK 11

focus on the keyhole recognition, where the observed agent does not impact

the recognition process.

2. The recognition system needs to represent its hypotheses in some fashion. It

typically holds a structure, which defines the expected relationships among

goals, behaviors, plans and primitive actions that possible in the specific

domain. This is often referred to as the representation of the plan-library

(and in our case, behavior library), which bounds the expected behavioral

repertoire of the observed agent.

Many different representations have been proposed in previous work: Ac-

tion taxonomies [21], hierarchical task network (HTN) [23], Bayesian networks[6],

behavior-based control methodologies (e.g., [8, 29, 28, 26, 3]) and many

others. In our work we utilize a hierarchical behavior-based recognition

representation which serves as the basis for representing the modeled be-

haviors of the observed agent. The representation is generic, and be used to

represent behavior-based controllers of various forms. We follow the bulk

of earlier work in assuming the library is correct and complete with respect

to the actual behaviors used by the observed agent.

3. There are various assumptions that can be made as to what the observation

should include. Most Recognition systems (e.g, [21, 38, 6]) take into ac-

count just the actions taken by the agent, they do not refer to the changes

in the state of the world, beliefs of the agent, and many other features that

can influence on the recognition process. Moreover, many approaches as-

sume that the sequence of observations is fully-observable, meaning all

actions done by the agent can be observed, with no gaps in the sequence

(e.g,[21, 19, 6, 31, 38]). However, in real world applications this is not al-

ways the case, some actions may be intermittently unobservable, e.g., due

to hardware failures. In our work we consider complex observations, that

consist of a tuple of observed features, including states of the world, actions

taken by the agents, and execution conditions maintained by the agent. See

chapter 4 for more details.

4. Taking in to account an ordered history of observations of the agent also

CHAPTER 2. BACKGROUND AND RELATED WORK 12

need to be considered when characterizing recognition systems. There are

approaches that do not consider at all the history of observations (e.g, [38,

19]), whereas most approaches consider the history of observations (e.g,

[5, 6, 9]). In our work we are utilize the history of observations to disqualify

hypotheses.

5. There are approaches that do not consider the possible order between be-

haviors of agents (e.g, [38, 19, 6]), whereas approaches that do take into

account the ordering constrains between behaviors (e.g,[9]). Our work uses

temporal constraints to disambiguate hypotheses.

6. A plan- or behavior-recognition system may answer several different queries:

(i) current state query—what is the current behavior the agent has selected

now? (ii) history states query—what is the sequence of behaviors the agent

has selected over time? (iii) future states query—what is the next behavior

to be selected by the agent? etc. Most approaches can give an answer just to

the current state query, some of them gives the answer without history con-

sideration (e.g, [38, 19]), and others take into account the history (e.g, [9]).

As to our knowledge, none of the approaches give answer to the history

state query. We provide algorithms for both of these queries.

7. Correctness and completeness.It is likely, in realistic settings, that more

than one behavior will match a set of observations, and this may result in

multiple hypotheses as to the internal state of the observed agent (or se-

quence of internal states). Recognition algorithms are calledcompleteif

they return all hypotheses that match the observations, andcorrect if they

return only hypotheses that match the observations. Symbolic approaches

(such as ours) may be characterized based on their correctness and com-

pleteness [21, 19]. Probabilistic approaches provide a ranking of hypothe-

ses to indicate likely useful hypotheses. Some approaches provide multiple

hypotheses (with or without ranking), while others commit to a single hy-

potheses [38]. We choose to deal with the symbolic approach for number of

reasons: First, symbolic computations are sufficient for specific tasks (such

as failure detection [19]). Second, they are generally much more efficient

CHAPTER 2. BACKGROUND AND RELATED WORK 13

than probabilistic approaches, and can thus serve as a useful pre-processing

step to such approaches, to limit their run-time in practice.

8. The recognition process, in most applications, is done online (in real time),

and therefore the recognition algorithms must be efficient. Most algorithms

in the plan recognition area use small domains, with few number of plans

and goals. The problem of scalability and complexity was mentioned as

problem from the early work of plan recognition [20]. Here in our work,

we present algorithms that are efficient: linear in the size of the behavior

tree, and can deal with large number of behavior and hypotheses to answer

queries.

9. Negative evidence.Exploiting new events to disambiguate previous hy-

potheses that were considered as true. Few works has addressed to this

property (e.g,[11]).

The well-known work of Kautz [21] provided a formal theory of plan recog-

nition. In this work the problem is viewed as a deductive inference, and relies on

a representation calledaction taxonomy, where every observed action is a part of

one or more "top level plans". The task of the plan recognition is to find minimal

set of top plans that explain the observations. Kautz’s work handled many difficult

cases, such as allowing for observations to come in at any order.

However, this approach faces inherent difficulties when applied to the com-

plex, dynamic settings in which agents are typically deployed. First, agents may

take continuous (servo) actions, intended to maintain some interaction with their

environment (e.g., velocity or heading). The actions in this case are not discrete

and instantaneous, but instead are composed of multiple continuous changes to

approximate some target function [29]. Modeling such actions using discrete op-

erators is difficult at best. Second, since the input to classic plan recognition al-

gorithms is a stream of actions, it is difficult to incorporate additional context that

may be observable, and may be affecting the internal decision-making of the ob-

served robot. For instance, a robotic soccer player knows its own uniform number,

which can be also observable to the modeling robot. Its uniform number affects

its unobservable state but knowledge of the uniform number is not utilized by plan

CHAPTER 2. BACKGROUND AND RELATED WORK 14

recognition techniques. Third, agents that operate in complex, dynamic settings,

may interrupt planned action sequences in order to react to unexpected situations.

To do this, many robots utilize a behavior-based control approach, which executes

multiple control modules (called behaviors) so as to produce the desired behavior,

while still maintaining the ability to react to unexpected situations [26, 29, 3, 24].

An ideal behavior recognition system would be able to address the deficiencies

above, while taking into account a history of observations to infer answers for

several types of recognition queries

There have been several relevant previous investigations. RESC [38] uses a

hierarchical behavior-based representation to infer the current behaviors selected

by observed robots. In each run-time cycle, RESC maintains only a single hy-

pothesis as to the current state of the observed robot. RESL [19] is similar, but

maintains multiple hypotheses as to the current state. Both algorithms essentially

reset with every new observation, and do not take a history of observations into

account. Thus they cannot provide hypotheses as to the sequence of unobservable

states that the observed agents has gone through, nor can they provide predictions

as to the next possible state. Finally, RESC and RESL assume that any change in

the internal state will have some observable evidence.

Other alternatives to classic plan recognition are also relevant. Many of these

are probabilistic in nature, and also are able to take a history of observations into

account (though they often ignore the history of internal states).

[5, 6] constructed the first Bayesian plan inference system. Their system

first retrieve candidate explanations, then these explanations were inserted to the

Bayesian network. In the Bayesian network, the random variables (nodes) repre-

sented propositions, the root nodes represented hypotheses about an agent’s plan.

Each node’s probability, represents the likelihood of the proposition given the

evidence provided by its parents and its children. As new evidence is added to

the network, the probabilities at each node are recomputed, by propagating the

evidence through the nodes. This approach has number deficiencies: First, this

approach requires a large number of prior and conditional probabilities, that not

always available. Second, there is no distinction between plans and actions, there

is no consideration on other features, such as state of the world. Third, it is not

sensitive to the order of the plans. The complexity of reasoning using this rep-

CHAPTER 2. BACKGROUND AND RELATED WORK 16

be applied to real time dynamic domains with unobservable actions, it assumes

that the initial state of the world before each observation is known, can not do

predictions, and finally it can not utilize the negative evidence property.

Chapter 3

Representation

Many state-of-the-art robotic controllers employ hierarchical behavior-based con-

trol methodologies (e.g., [8, 29, 28, 26, 3]). A behavior is a controller for reaching

and/or maintaining a particular goal (see, for instance, [26]). For example in the

robot domain,following is a controller that keep the robot moving within a fixed

region behind another moving agent. Often, behaviors are applied in parallel,

in a hierarchical fashion. In addition, behaviors may be connected via edges, to

constrain the sequence of their execution (see, for instance, [3]).

We utilize a behavior-based recognition representation which serves as the

basis for representing the modeled behaviors of the observed robot. In choos-

ing a representation for recognition, we are fortunately not constrained by a spe-

cific behavior-based control methodology—since the representation does not ex-

press executable controllers—but instead can focus on common features to these

methodologies. As a result, the representation is generic, and be used to represent

controllers of various forms.

We follow previous work in representations for monitoring [37], and represent

the behavior-based controllers of an observed robot as a directed acyclic con-

nected graph, where vertices denote behaviors, and edges can be of two types:

vertical edges that decompose top behaviors into sub-behaviors, and sequential

edges that specify the expected temporal order of execution. Temporal edges may

form cycles, but decomposition edges may not: A behavior cannot be its own par-

ent, but may be selected again after it has already been selected and terminated.

17

CHAPTER 3. REPRESENTATION 18

Each behavior has associated with it a set of conditions on observable features

of the robot or world that specify the settings under which observations are said

to match the behavior. The behavior may also have associated preconditions and

termination conditions that may be observable, and may thus be used to include or

exclude it from an hypothesis. For example, lets take the existing robotic soccer

teams [34], the kick-to-goal behavior has the following preconditions: The ball

must be visible, the distance to the ball is within a given range, and the opponent

goal is visible within shooting distance. If all the above conditions are satisfied,

the behavior is applicable.

A behavior graph which includes all possible behaviors that the observed agent

may execute (its complete behavioral repertoire) is called thebehavior library.

Typically, a behavior library has a single dummy root node. At any given time,

the observed robot is assumed to be controlled by abehavior-path, a root-to-leaf

path of behaviors that follows decomposition edges. Figure 3.1 shows an example

portion of a behavior graph, inspired by the behavior hierarchies of the robotic

soccer teams (e.g., [34]). The figure shows decomposition edges (solid arrows)

and sequential edges (dashed arrows). For presentation clarity, we show the de-

composition edges only to the first (in temporal order) child behaviors.

Given a set of observations as to the state of the world and the agent within

it, the behavior recognizer’s task is to determine which of the behavior paths in

the behavior library match the observations. For example, based on this behavior

library (Figure 3.1), the behavior pathroot → defend → turn → with ball can

be an hypothesis as to the current internal state of an observed robot. A set of such

behavior paths would constitute a set of hypotheses.

An observed agent may change its internal state in two ways. First, it may fol-

low the sequential edges, such that when no further sequential links are available,

control goes back to the parent (which then continues using its own sequential

edges, if they exist). Second, control may be interrupted at any time to respond

reactively to the environment, and a new (first) behavior may be selected.

For instance, suppose a robot was executingroot → defend → turn →
with ball, and then interrupted this behavior. It may now chooseroot → attack →
pass, but notroot → attack → turn. The figure does not show the observation

conditions associated with behaviors. For instance, suppose we there is a feature

CHAPTER 3. REPRESENTATION 19

root

attackdefend score

position

clear

turn

Approach
ball

position

without
ball

position turn pass position turn kick

with
ball

without
ball

With
ball

with
ball

without
ball

Figure 3.1: Example behavior graph.

have_ball whose value is true whenever the ball is observed to be in close proxim-

ity to the observed robotic soccer player. The behaviorkick may have a condition

that specifieshave_ball = true, while the behaviorapproach_ball would test for

have_ball = false. Given appropriate observations, this behavior may be tagged

as matching.

We assume that each behavior has self cycle, to allow for the duration of be-

havior execution. The behavior can be executed for several time-stamps. For

example the duration of the approach ball behavior depends on the distance of the

agent from the ball. If the robot is near the ball it can take one unit of time, and if

the robot is far it can take 3 units. The same goes for behaviors in higher levels.

For example, the score behavior can be executed several times, after the agent

executed the attack behavior, the agent can execute several behaviors under the

score behavior. For example, after executingroot → attack → pass, the robot

can choose theroot → score → position, and afterwardroot → score → kick.

The next sections will address key algorithms in using such a behavior library

to recognize the internal choices made by behavior-based agents, given multi-

CHAPTER 3. REPRESENTATION 20

feature observations of their interaction with the world. Chapter 4 presents an

efficient method for matching observed features against behaviors, and tagging

those that match. Chapter 5 presents algorithms that propagate such tags to make

inferences of complete paths, in order to answer behavior recognition queries.

Chapter 4

Matching Observations to Behaviors

We begin by examining the first phase of behavior recognition, in which the obser-

vations made by the observing agent are matched against behaviors in the behavior

library. The next chapter will address inference based on these matched behaviors.

In contrast with previous work, we consider complex observations, that consist

of a tuple of observed features, including states of the world (e.g.,an observed

soccer-playing robot’s uniform number), actions taken by the robots (e.g.,kick,

turn), and execution conditions maintained by the robot (e.g.,speed = 200).

It is likely, in realistic settings, that more than one behavior will match a set of

observations, and this may result in multiple hypotheses as to the internal state of

the observed robot.

Matching observations to behaviors can be expensive, if we go over all be-

haviors and for each behavior check all observed features. This, in fact, is what

previous work essentially proposes. For instance, RESL goes over all behaviors,

and for each, compares all observations against the expected observations given

for these behaviors [19]. Since not all behaviors utilize all observed features in

their associated observation conditions (see previous section), much of this effort

may be wasted. Given the total number of featuresF , and the behavior graph of

sizeL, RESL’s worst-case matching run time will beO(FL). In the best-case,

where at most a single feature is associated with each behavior, its execution time

will be O(L).

To speed this process, we augment the behavior graph with a novel data-

21

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 22

structure, aFeature Decision Tree(FDT), which allows efficient mapping from

observations to behaviors that may match them. An FDT works similarly to a

machine-learning decision tree [27, 32], and is constructed similarly, but with im-

portant differences.

Each node in an FDT corresponds to an observation feature (e.g., velocity,

heading, etc.). Each branch descending from a node, represents one of the possible

values of this feature. Unlike traditional decision trees, each node also has pointers

that point to the behaviors that test for the feature represented by the node. In this

way, each node in the FDT divides a set of behaviors to subsets according to values

of one feature. Thus determining the behaviors that match a set of observations

features is efficiently achieved by traversing the FDT top-down, taking branches

that correspond to the observed values of features, until a leaf node is reached. The

behaviors a leaf points to are those that match the conjunctive set of observations.

An FDT can be built automatically. Unlike machine-learning decision trees,

that are built based on examples of the target data, here we base the construction

of the decision tree on the behavior graph which is given to us by the designer of

the behavior recognition system. This behavior graph contains all the behaviors

executable in principle by an observed robot. There is no uncertainty in determin-

ing which behaviors match a set of observations, and no need to prune nodes to

prevent over-fitting ([27]). However, more than one behavior may match a set of

observations. In case some behaviors do not test a feature, they are simply passed

in the construction phase to all children FDT nodes, as they are consistent with

all values of the features they do not test. Behaviors which have no associated

observable features are excluded from this process, since they will appear in all

nodes. Instead, these behaviors are handled in the propagating phase (section 5.1).

To generate the FDT, we first need to translate the behavior tree to set of in-

stances, called training set. Each behavior in the behavior tree will represent one

instance in the training set. An instance is a fixed set of values of features (e.g,

velocity) and the class of the instance, in our case the class is the behavior itself.

Note that each Behavior will appear just once in the training set, since the same

behavior has the same features. In case that a behavior do not test a feature we

put a question mark to denote missing values for that feature, otherwise we put

the value of the feature. For example, let us consider three behaviors:B1, B2, B3

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 23

classes�features a1 a2 a3
b1 T ? T
b2 ? F ?
b3 T T T

Table 4.1: Example training set, generated from behaviors

and three boolean features:a1, a2, a3. Suppose the following conditions on the

behaviors:B1 is possible ifa1 ∧ a3, B2 if ¬a2, andB3 if a1 ∧ a2 ∧ a3. The

resulting training set shown in table 4.1.

After generating the training set, the construction of the FDT is done similar

to that of a decision tree with missing values [32]. Similarly to a decision tree, the

construction of the FDT can use information gain to determine the most important

features to test first, thus hopefully testing fewer features. We briefly review this

well-known process here. The reader is referred to [27, 32] for details.

The FDT construction algorithm is presented below (Algorithm 1). First, we

check if the instances can not be divided, meaning that a node points at only a

single behavior, or there are no more features that can differentiate between the

behaviors associated with the instances. In this case we create a leaf (lines 1–2).

Otherwise, we create a node, and associates it with the feature that provides the

greatest information gain (lines 3–4) (intuitively, that divides behaviors that test

it as uniformly as possible). We then create children FDT nodes for each of its

values (lines 5–9), and recursively repeat the process of selecting a feature that

best divides the behaviors associated with the node. The children constructed as

follows: for each possible value of the selected feature, we select all instances

that correspond to this value or have missing value. For each selected instance,

we update its weight in the following manner: if there is a missing value, then

we divide its weight in the number of the values of this feature, otherwise the

weight remains the same. We also update thetestedFeatures set with the new

tested feature. Then we recursively repeat on this process of selecting a feature

that best divides the behaviors associated with the node with the new instances,

new weights and the new tested features, and dividing accordingly.

To understand the selection of the best feature (line 3 of Algorithm 1 we need

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 24

Algorithm 1 formTree(Instances, weights, TestedFeatures)
1: if (there are no features to test)∨ (single behavior)then
2: returncreateLeaf(Instances)
3: bestFeature ← best feature that was not tested
4: createNode(bestFeature)
5: for all possible valuesv of best feature6= missing valuedo
6: newInstances ← all instances with valuev
7: newWeights ← calculate weights ofnewInstances
8: newTestedFeatures ← TestedFeatures ∪ bestFeature
9: formTree(newInstances, newWeights, newTestedFeatures)

to understand the calculation of the information gain. There are some notations

that accepted in the literature. we denote the training set with T. Suppose we have

n possible values for the featurex, we divide the training set according to these

values: T1, T2, ..., Tn. We denote the number of cases in T that belong to class

Ci with freq(Ci, T), and the total classes with k. We will also use the standard

notation in which| T | denotes the number of cases in set T. And we useF

to denote the fraction of known values for featurex in the training set. Now,

to compute the gain of feature x, we will use the three following equations as

explained in [32]:

gainx = F ∗ (info(T)− infox(T)) (4.1)

info(T) = −
k∑

j=1

freq(Cj, T)

| T | × log2(
freq(Cj, T)

| T |) (4.2)

infox(T) = −
n∑

i=1

| Ti |
| T | × info(Ti) (4.3)

However, in our casefreq(Ci, T) is equal to one, since we have just one case

for each class (each class is one behavior, that appear just once in the training

set). And the number of elements in T, are the same as the number of classes in

T, in our notationsk =| T | (because each class appear just once in T). So we can

simplify equation number (2), and write it as follows:

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 25

info(T) = −
k∑

j=1

1

| T | × log2(
1

| T |) = log2(
1

| T |) (4.4)

Note thatinfo(T) andinfox(T) are calculated only with the cases with known

values for featurex. To illustrate this, we will go back to the previous example

and compute the gain of the features a1,a2 and a3. Sincea1 is a boolean feature,

we will have two subsets of T: the first is T1, which contains all instances that the

value of a1 is equal to one. And T2 will contain all instances that the value of a1

is equal to zero. SoT1 = {b1, b3}, andT2 = ∅ . Theinfoa1(T) is as follows:

infoa1(T) = −2

2
× (log2(

1

2
)) = 1 (4.5)

info(T) = − log2(
1

4
) = 2 (4.6)

So the gain is:

gaina1 =
2

3
× (2− 1) = 0.66 (4.7)

To compute the gain of a2, we will do the same. T is divided into:T1 = {b3} and

T2 = {b2}.
Now, we computeinfoa2(T):

infoa2(T) =
1

2
× (log2(1)) +

1

2
× (log2(1)) = 0 (4.8)

gaina2 =
2

3
× (2− 0) = 1.33 (4.9)

The gain ofa3 is equal to the gain ofa1. So, the best attribute in this case will

bea2. And the FDT of this example illustrated in figure 4.1. Note that just on the

leafs there are pointers in the FDT, and not as in figure 4.1.

Figure 4.2, shows the connection between the FDT and the behavior graph. It

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 26

a2 b1, b2, b3

½ b1, b3 a1

½ b1 b2

a2=1

½ b1, b2

a2=0

a1=1 a1=0

Figure 4.1: simple example for FDT

shows a portion of an FDT using features associated with behaviors in Figure 3.1.

Each behavior executed by the robot, can be identified according to observed fea-

tures, such as: Distance from other players,have_ball, opponent goal visibility,

uniform number of agent. The FDT separates the behaviors according to the val-

ues of these features. To determine matching behaviors, the matching algorithm

first checks thehave_ball feature. Based on its value, it continues the appropriate

branch to test in sequence other features, until it finally reaches a leaf node. This

leaf node will have pointers to all instances of the behaviors associated with it in

the behavior graph. For instance the leaf-node forposition will have four separate

pointers into the behavior graph in Figure 3.1. Note that since the behaviorturn

is applicable regardless of whetherhave_ball is true or false, a node associated

with it will appear in both left and right subtrees of thehave_ball root node.

The Matching algorithm (Algorithm 2) matches the observations to the be-

haviors in the behavior tree using a FDT. The Match algorithm operates as follow:

when observation is made about an agent we traverse on the FDT according to the

values of the observed features until we get to a leaf (lines 2–4). Then, after get-

ting to the appropriate node in the FDT, we have pointers to the relevant behaviors

in the behavior tree. So, we return these pointers that match this node (line 5).

Thus every feature is tested at most once (according to how we built the FDT),

and from this go to the relevant behaviors in the behavior tree.

Matching behaviors to observations is efficiently done using an FDT, by fol-

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 27

attack

position turn pass

without ball

Have ball ?

Opp-Goal Visible?

destination
from players

Uniform number

yes no

3
21

yes no

Very
far

far
near

Kick,
pass

pass

position

Without
ball

With ball

with ball

Figure 4.2: Example FDT with behavior tree.

Algorithm 2 Matching(ObservationsF , Timestampt, Behavior graphbG, Fea-
ture Treefdt)

1: v ← root(fdt)
2: while v is not a leafdo
3: i ← featureIndex(fdt, v)
4: v ← child(fdt, v, F [i])
5: return all behaviors inbG that match behavior inv

CHAPTER 4. MATCHING OBSERVATIONS TO BEHAVIORS 28

lowing a root-to-leaf path along the height of the tree. The height of an FDT is

(in the worst case)O(F) whereF is the number of the features. This would be

true only if a behavior test all available features, an unrealistic case. We believe

that in realistic settings, the height of the tree would be closer to the best case

of O(logF). This result should be contrasted with previous algorithms such as

RESC or RESL. In these algorithms, the matching step goes over all behaviors,

and for each behavior tests all features, therefore the time complexity of these two

algorithm for the matching step isO(FL), whereL is the number of vertices in

the behavior graph.

The number of behaviors pointed to by an FDT leaf isO(L) in the worst-case,

whereL is the number of nodes in the behavior graph.O(L) is an unrealistic worst

case, since it implies a case where a set of observations matches all behaviors in

the library—thus recognition is futile.

Overall, the run time complexity of the process in the worst case isO(F + L),

andO(logF) in the best-case.

The output of the matching phase is all behaviors that do not contradict the

observations. Therefore, behaviors that were not included in the output, are defi-

nitely not matching (except those with empty features). The matching behaviors

are given in Breadth-first search (BFS) order. i.e., parents will appear before their

children. This fact does not influence on the matching process, but helps in the

propagating process (discussed in the next chapter)

Chapter 5

Queries

We now turn to presenting symbolic behavior recognition (SBR) algorithms, that

utilize the representation above. These algorithms answer two types of queries:

(i) What are the possible current states of the observed robot (Section 5.1); and (ii)

What are the possible sequences of states of robot, given the observation history

(Section 5.2).

5.1 Current State Query

This query answer the question: what are the possible paths in the behavior graph,

that the robot is currently executes? or in other words what are the hypotheses

regarding the current state of the robot. The answer that the algorithms give is

complete, but not accurate, i.e, the answer will include the correct hypothesis,

but can include other hypotheses beside the correct one (hypotheses that based on

given observations, could not been disqualified by the algorithm). The algorithms

we present here are more accurate and more efficient than previous algorithms

(e.g., RESL [19]). Unlike previous symbolic algorithms, SBR algorithms take

into account previous observations in addition to the current observation, without

any additional space or runtime overhead. The algorithms execute in two phases:

(i) matching phase; (ii) tagging and propagating phase. The matching phase has

been described previously. The propagation phase is described below.

Once matching behaviors are found, they are tagged by the time-stamp of

29

CHAPTER 5. QUERIES 30

the observation. These tags are then propagated up the behavior graphs, so that

complete behavior-paths (root to leaf) are tagged to indicate they constitute hy-

potheses as to the internal state of the observed robot when the observations were

made. However, the propagation is not a simple matter of following child and

parent edges.

One complication in tagging is that a behavior may match the observations

(and is therefore tagged), and yet it cannot be a part of a valid hypothesis, when

a history of observations is considered, i.e., it istemporally inconsistent. For in-

stance, suppose that the first set of observations match theturn behavior (Figure

5.1). The FDT would point the propagation algorithm to the three instances of

turn, underdefend, attack, andscore. However, only the behavior instance un-

der score is valid, since it is the only instance in whichturn could have been

selected without first going throughposition. Since this is the first set of ob-

servations, and assuming no observations were lost (an assumption we address

in Section 8), it is impossible for the two otherturn instances to be valid, since

they strictly follow aposition behavior, which was not previously matched. This

reasoning about hypothesis consistency over time is a key novelty compared to

previous symbolic behavior recognition algorithms (e.g., RESC and RESL [38]).

Another complication in tagging is that a behavior may match the observa-

tions, but its parent will not match the observation, Or in the opposite way, the

behavior will match, but none of the children under this behavior will match .In

both cases the behavior should be disqualified, since the matching phase should

have returned all possible matching behaviors. For example, suppose, we got from

the matching phase the following behaviors:attack, withoutball andposition

(Figure 5.1). Thewithoutball behavior should be disqualified, since the features

of the turn behavior failed to match the observation. The only path that should

be tagged is this stage:root → attack → position.

The propagating process is formalized in the Propagate algorithm (Algorithm

3). The propagate algorithm contains two parts: (i)Propagate up—tagging and

propagating up time-stamps of the matching behaviors, according to time-stamp

constrains (Algorithm 4); (ii)Eliminate—eliminating disqualified behaviors, i.e.,

erase tags from behaviors that were tagged on thePropagateUp process, but none

of their children were tagged. The propagate algorithm operates as follows: Lines

CHAPTER 5. QUERIES 31

root

attackdefend score

position

clear

turn

Approach
ball

position

without
ball

position turn pass position turn kick

with
ball

without
ball

With
ball

with
ball

without
ball

2

1

3

1

1 1 2

2

2

22

2

222

2

2

31 1

Figure 5.1: Example of the propagating process.

1–3 for each matching behavior it calls to thePropagatingUp algorithm (Algo-

rithm 4). If thePropagateUp did not succeed in propagating up the time-stamp,

then all tagged behaviors in this iteration will be erased (Lines 4–5). Otherwise,

we will move on to the next matching behavior. After going over on all matching

results, we will start theEliminate process(Lines 6), which erase tags from all

disqualified behaviors, i.e., behaviors that match but their children do not match

(5).

Algorithm 3 Propagate(Matching ResultsmatchRes, Behavior Graphg, Time-
stampt)

1: for all v ∈ matchRes do
2: Tagged ← ∅
3: if ¬propagateUp(v, t, Tagged) then
4: for all a ∈ Tagged do
5: delete_tag(a, t)
6: Eliminate(matchRes)

The Propagate upalgorithm (Algorithm 4), which is called for each of the

behaviors that match the observations, takes a pointer to a matching behavior, and

CHAPTER 5. QUERIES 32

tags behaviors using time-stamps to keep track of the order in which the hypothe-

ses are formed. It exploits the sequential edges and the time-stamps to disqualify

hypotheses that are inconsistent givena historyof observations. It also disquali-

fies behaviors that were matched, but their parents were not tagged. To do so, it

relies on the fact that the matching phase returns the matching behaviors in BFS

order, therefore in the propagating up phase, first the father will be tagged and

afterward, its children. This fact enable us to disqualify inappropriate behaviors.

The propagateUp algorithm operates as follow: Lines 4–13 climb up the

graph, tagging the behavior-path towards the root. Propagation is determined us-

ing the conditions (lines 5–6, Algorithm 4. These conditions are the key to the

temporal validity of the hypothesis. First, the propagate algorithm check the par-

ent validity: parent is tagged with time-stampt or contains empty features (Line

5). Second, it checks the node in question, there are three cases: (a) the node in

question tagged at timet − 1; or (b) the node follows a sequential edge from a

behavior that was successfully tagged at timet− 1; or (c) the node is a first child

(there is no sequential edge leading into it). A first child may be selected at any

time (for instance, if another behavior was interrupted). If neither of these cases

is applicable, then the node is not part of a temporally-consistent hypothesis, and

its tag should be deleted, along with all tags that it has caused in climbing up the

graph (line 6 3).

TheEliminatealgorithm (Algorithm 5), is called after we tagged with current

time-stamp all matching behaviors, and propagated up these tags. In this stage,

we erase tags from behaviors that are tagged, but none of their children were

tagged. The algorithm operates as follows: line 1 go over on all matching behav-

iors, and for each matching behavior checks if the behavior tagged and if exists

at least one child that is tagged with current time-stamp (line 2). If all children

were not tagged with current time-stamp, it erase the current time-stamp from the

questioned behavior(line 3), and goes up to check the parent (line 4).

Figure 5.1 shows the process in action (the circled numbers in the figure denote

the time-stamps). Assume that the matching algorithm matches at timet = 1 the

multiple instances of theposition behavior. At timet = 1, Propagate (Algorithm

3) begins with the fourposition instances. It immediately fails to tag the instance

that followsclear andapproachball, since these were not tagged att = 0. The

CHAPTER 5. QUERIES 33

Algorithm 4 PropagateUp(Nodev, Behavior Graphg, Time-stampt)
1: T ← ∅
2: propagateUpSuccess ← true
3: v ← w
4: while v 6= root(g) ∧ propagateUpSuccess ∧ ¬tagged(v, t) do
5: if tagged(parent(v), t) ∨ features(parent(v)) = ∅ then
6: if tagged(v, t − 1) ∨ ∃PreviousSeqEdgeTaggedWith(v, t − 1) ∨

NoSeqEdges(v) then
7: tag(v, t)
8: Tagged ← tagged ∪ {v}
9: v ← parent(v)

10: propagateUpSuccess ← true
11: else
12: propagateUpSuccess ← false
13: else
14: propagateUpSuccess ← false
15: return(propagateUpSuccess)

Algorithm 5 Eliminate(Matching ResultsmatchRes, Behavior Graphg, Time-
stampt)

1: for all v ∈ matchRes do
2: while tagged(v, t) ∧ ¬∃ChildTagged(t) do
3: delete_tag(v, t)
4: v ← parent(v)

CHAPTER 5. QUERIES 34

position instance underscore is initially tagged, but in propagating the tag up,

the parentscore fails, because it followsattack, andattack is not taggedt = 0.

Therefore, all tagst = 1 will be removed fromscore and its childposition.

The two remaining instances successfully tag up and down, and result in possible

hypothesesroot → defend → position androot → attack → position.

At time t = 2, suppose the observations match theturn behavior (three in-

stances). The tagt = 2 propagates successfully up and down in the behavior tree,

for all instances. Now, there are six possible hypotheses (we omit the common

root prefix): defend → turn → without ball, defend → turn → with ball,

attack → turn → without ball, attack → turn → with ball, score → turn →
without ball, score → turn → without ball. Now, we can not decide which of

the three main behaviors took place:defend, attack or score. However, getting

the next observation can disambiguate the hypotheses. If we will next observe a

clear or approach ball, then it would be clear that the observed robot is executing

the defend hypothesis. Otherwise, we can eliminate this hypothesis. In other

words, we can exploit negative evidence to disambiguate the hypotheses space.

This process is tightly coupled to the hypothesis generation phase, described next.

Complexity Analysis. For each behavior instance that matches the observations,

the entire propagation traverses the height of the behavior graph, and may thus

takeO(L) in a theoretical worst case in which the behaviors form a degenerate

hierarchy. Realistically, we believe the height of the graph tree will often be closer

to O(logL).

This complexity is the same for previous algorithms (e.g., RESC [38]), despite

the fact that they do not consider a history of observations, admit temporally-

inconsistent hypotheses, and cannot answer queries as to hypothesized sequence

of states.

5.2 History of States Query

This query answer the question: what were all possible sequences of behaviors

that the robot executed from timet = 0 until the current timet + k, k > 0? Like

the answer of thecurrent state query, the SBR response to this query is complete,

but not accurate. However, the answer become more accurate than incurrent state

CHAPTER 5. QUERIES 35

query , as we exploitnegative evidenceto disambiguate the hypotheses space.

Previous algorithms (e.g., [10, 19]) can not answer this type of queries. Here we

present an algorithm, that answer this type of queries in efficient way.

We begin by definingnegative evidence[10], as an observation at timet,

whose occurrence at this time contradicts hypotheses based on observations made

up until timet − k, k > 0. For example, let us take behaviorsA,B, C, D with

temporal constrains:A → B → C or A → B → D. If we observedA at

t = 0, B, t = 1, andD, t = 2, thenD serves as negative evidence with respect

to hypothesisA → B → C. It is the lack of observationof C that rules out the

hypothesis.

Generating hypotheses about the current selected state (behavior path) is de-

scribed in the previous section: Given the latest timet0, we traverse the behavior-

graph, identifying complete behavior paths that are taggedt = t0. The set of these

behavior paths constitutes the response to this type of query.

However, generating hypotheses as to thesequenceof states that was selected

over time is not a simple matter of enumerating combinations of the above queries

for times t = 0, t = 1 . . . , t = t0. The reason for this is that new hypotheses,

generated at some timet0, may serve to rule out hypotheses that successfully

matched at timet < t0, by exploiting failures to observe expected behaviors, i.e.,

negative evidence as defined above.

Before discussing the hypotheses generation method, it would be useful to see

an example of how reasoning about a sequence of behavior paths can lead to using

negative evidence. Suppose that after having made the observations at timest = 1

andt = 2 in the example of the previous section, we now make observations at

time t = 3 that matchkick. Thescore behavior is the only behavior consistent

with t = 3, though bothdefend and attack are tagged for timest = [1, 2].

However, after having made the observation att = 3, we can safely rule out

the possibility thatdefend was ever selected by the robot, becausescore can

only follow attack, and the lack of evidence for eitherclear or approach ball

at timet = 3 (which would have madedefend a possibility at this time) can be

used to rule it out. Thus we infer that the sequence of behavior paths that was

selected by the robot isattack → position (at t = 1), attack → turn at t = 2

(though we cannot be sure which one ofturn’s children was selected), and finally

CHAPTER 5. QUERIES 36

score → kick.

We now turn to the hypothesis generation method. Extracting all paths is not

trivial (since as we saw, some successful tags at timet < t0 are invalid att =

t0. Here we present an incrementally-maintained structure that holds hypotheses

according to time stamps. One advantage is that with every time stampt, we

can use the structure to eliminate hypotheses that were tagged at timet − 1, that

have become invalid. Another advantage is that the algorithm is flexible, it is

not necessary to call it after each matching-propagating steps, but according to

queries.

We use a connected graphG′, calledHypotheses Graph, whose vertices corre-

spond to successfully-tagged behavior paths in the behavior graph (i.e., hypothe-

ses). Edges inG′ connect hypothesis vertices tagged with time stampt to hypoth-

esis vertices tagged with time stampt + 1. G′ is therefore built in levels, where

each level represents hypotheses that hold in each time stamp. For each set of

observations made at timet0, we add toG′ a levelt0 all possible hypotheses that

were taggedt = t0 and propagated successfully in the behavior graph. We then

create edges between verticesx1, . . . , xn in level t to verticesy1, . . . , ym in level

t − 1 in the following manner: Ifxi is not part of a sequence (i.e., it is a first

child), then we connectxi to each vertexyj (j=1...m); otherwise, ifxi is part of

a sequence, we connectxi to yj (j=1...m) if any of the behaviors inyj has a se-

quential edge to any behavior inxi. If xi is equal toyj, we connect them, since

we assume that we have durations.

The hypotheses graph is built based on the propagated time-stamps in the be-

havior library (Section 5.1). This fact, make our approach different and more ef-

ficient, from other graph-based approaches in behavior recognition (for example

[14]). First, the hypotheses graph utilizes the negative evidence property. Sec-

ond, it can be built in any stage, according to the query i.e, it can be built after

each observation at timet, or as needed, since all the relevant data is saved in the

behavior library’s time-stamps. Third, not all the levels need to be built, we can

generate the graph in timet, with k previous levels (it may be less accurate, but

still complete). The only algorithm of which we are aware that utilizes negative

evidence do not have these capabilities.

To generate all sequences of behavior paths that are consistent with the obser-

CHAPTER 5. QUERIES 37

1

2

3

defend-position
attack-position

defend-turn-
without ball

defend-turn-
with ball

attack-turn-
without ball

score-turn-
without ball

attack-turn-
with ball

score-turn-
with ball

score-kick

Time
stamps

Figure 5.2: An example extracting graphG′.

vations, we traverseG′ from level to level, keeping track of allG′ paths that take

us from the last level (the most recent observation) to the first level. This can be

done incrementally, after each observation is made, or it can be made only when

needed.

For example, based on the behavior tree in Figure 3.1, we constructG′ (Figure

5.2). In the first level, we put all paths in the behavior tree that were tagged with

time-stamp 1, in the next level we put all paths that were tagged with time-stamp

2. Now, from each node in time-stamp 2, we check which nodes can be appro-

priate in time-stamp 1. Thet = 1 nodedefend → position can be connected

to thet = 2 nodesdefend → turn → without ball anddefend → turn →
with ball, because there exist sequential edges in the behavior graphs that con-

nectposition to turn underdefend. Similarly, attack → position has edges

to score → turn → without ball andscore → turn → with ball. Once we

add the observations fort = 3, the variousdefend hypotheses have no link to

time t = 3. If we now go back to asking what hypotheses exist for the current

behavior paths at timet = 2, we will get attack → turn → without ball and

attack → turn → with ball. Here we can see the advantage of usingG′: Out of

six hypotheses that matched the observations until time-stamp 2, four hypotheses

are eliminated once we incorporate the evidence in time-stamp 3.

Complexity Analysis. The worst-case runtime complexity of constructingG′

CHAPTER 5. QUERIES 38

overN observation time steps isO(NL2), where andL is the worst-case number

of behaviors that the matching algorithm had returned given a single observation.

For each node inG′ with time stampt (of which there could be at mostO(L)),

we check all nodes in time stampt− 1 (again,O(L)), thus a factor ofL2 for each

step of adding another level. However, Note that theL component is a purely the-

oretical worst-case, as it corresponds to a recognition system that simply returns

all behaviors in the behavior graph.

Chapter 6

Lossy Observations

Real-world applications sometimes violate assumptions that are made in recogni-

tion systems. One common violation of assumption involve intermittent observa-

tion failures. This section addresses this challenge.

In Chapter 4, we showed how to efficiently determine which behaviors match

a set of observations. An implicit assumption was made (present also in most

related work) that all relevant features were in fact observables. However, in re-

alistic settings, some features may be intermittently unobservable, e.g., due to

hardware failures, communication errors, etc. Observations that are lost would

fail the conditions associated with behavior, and thus the matching phase will fail.

We propose to use an augmented FDT, called LFDT (Lossy Feature Decision

Tree), which has all the properties of FDT, but deals with lossy observations (fig-

ure 6.1). The LFDT representation is the same as FDT, except that for each node,

we add an extra branch that represents amissing value. During construction of

the LFDT, all behaviors that are consistent with the node (and which are divided

based on the value of the feature associated with the node) would be passed as-is

to the missing value branch. When the LFDT is traversed, if a feature is temporar-

ily unobservable, we will follow the missing value branch instead of one of the

normal branches.

To construct the LFDT, we need a preprocessing phase, which generate train-

ing set according to the given behaviors in the behavior graph. This preprocessing

is exactly the same as done for the FDT, and was demonstrated in section 4. The

39

CHAPTER 6. LOSSY OBSERVATIONS 40

Miss

Have ball ?

Opp-Goal Visible?

destination
from players

yes
no

yes
no

very farfarnear

kick

pass

Uniform-
number

Miss

32
1

turn

Miss

Miss

Figure 6.1: An example Lossy Feature decision Tree (LFDT).

construction of the LFDT, is also done similarly to the FDT construction.

The LFDT construction algorithm is presented below (Algorithm 6). This al-

gorithm is a little bit different from the algorithm of the FDT (Algorithm 6). The

change is in lines 5–8. The different is caused by the fact that here we add an

extra branch which denotemissing value. For this branch the instances remain

as its parent (line 7), and the weights also remain the same (line 8). This child

is different from his parent , only by the best features that it can select (line 12).

Although, this node did not really divided the instances according to the best fea-

ture, we refer it as the best feature was already tested. Note that the computation

of the information gain also remain the same for the LFDT.

The Matching algorithm also similar to that presented for the FDT (Algorithm

2). The LFDT Match algorithm operates as follow: when observation is made

about an agent we traverse on the LFDT according to the values of the observed

features, if we do not have the observed feature value, or the value is unreasonable,

we turn to themissing valuebranch. This process is done until we get to a leaf.

CHAPTER 6. LOSSY OBSERVATIONS 41

Algorithm 6 formTree(Instances, weights, TestedFeatures)
1: if (there are no features to test)∨ (single behavior)then
2: returncreateLeaf(Instances)
3: bestFeature ← best feature that was not tested
4: createNode(bestFeature)
5: for all possible valuesv of best featuredo
6: if v = missing valuethen
7: newInstances ← Instances
8: newWeights ← Weights
9: else

10: newInstances ← all instances with valuev
11: newWeights ← calculate weights ofnewInstances
12: newTestedFeatures ← TestedFeatures ∪ bestFeature
13: formTree(newInstances, newWeights, newTestedFeatures)

Then, after getting to the appropriate node in the LFDT, we have pointers to the

relevant behaviors in the behavior tree, the same as we have in the FDT. So, we

return these pointers that match this node. Thus, every feature is still tested at

most once, and from this go to the relevant behaviors in the behavior tree.

Complexity Analysis. The runtime complexity of LFDT is the same as FDT

(Section 4), though the size of the LFDT would be greater: (a) it will have more

branches than FDT (extra branch for each feature); (b) its height may be deeper

than FDT (because of the need to handle missing features at the leaves). However,

the complexity will be stillO(F). To lower the size of the LFDT we can add an

extra branch just to lossy features, i.e., not all features, but the ones we know we

can lose. The space complexity of the LFDT is obviously greater then of the FDT,

since we have an extra branch. However, it is almost the same as having more

values to each feature.

Chapter 7

Experiments

To empirically evaluate the performance of the algorithms, we conducted an ex-

tensive set of experiments, varying a number of parameters that affect their per-

formance. In particular, the performance of algorithms depends very much on

the structure and size of the behavior library, as well as the set of observations

presented to the behavior-recognition system.

We first describe the experimental setup and the parameters defining the scope

of the experiments (Section 7.1). We then turn to presenting the results of the

algorithms presented above; first, the efficient matching (Section 7.2), and then

generating and extracting hypotheses (Sections 7.3 and 7.4).

7.1 Experiment Set-Up

To systematically evaluate the performance of the algorithms given the variety of

possible behavior libraries, we built aBehavior Tree Generatorwhich generates

behavior-libraries (based on given parameters—see below), and anObservation

Generatorwhich generates sequences of legal observations, given a behavior li-

brary. All algorithms were implemented in C++ and tested them on Pentium 4

processor with 1GB of RAM and 2.40GHz CPU, in Linux.

The Behavior Tree Generatorgenerates random behavior libraries that con-

form to the following parameters:

Top Level Branching Factor. The branching factor of the root node (number of

42

CHAPTER 7. EXPERIMENTS 43

children for the root node). This corresponds to the number of different

independent high-level behaviors in the library, referred to as number of

roots in [10].

Depth. The depth of the behavior library, from the root.

Branching Factor. The branching factor of all nodes (other than root).

Sequential edges type.Following [10], we vary the ordering constraints between

nodes in the library, using different sequential edges between nodes. There

are six types (Figure 7.1):

Totaly ordered. All children with the same parent node, are connected

with single sequential edges, i,e., siblings form a single chain.

First. First node will have ordering constraint (sequential edge) to all other

nodes under its parent.

Last. All nodes will have single ordering constraint to the last node.

Partial A. Each node will have random number of ordering constraint, the

number of constraints will be between zero to number of brothers of

this node. Cycles will be prevented at generation.

Partial B. Each node will have zero or one sequential edge to its brothers.

Unordered. No ordering constraints between nodes.

One exception is that top-level behaviors (children of the root node) are

always unordered.

Number of possible features.Sets the number of observable features (overall).

Number of features in each node.Sets the complexity of observations associ-

ated with each node, i.e., the number of features associated with a single

observations.

Duplication. The fraction of top-level behaviors that are duplicated in order to

generate ambiguous paths. To make sure some differences between dupli-

cated still exist, the last leaf behavior in duplicated top-level behaviors is

CHAPTER 7. EXPERIMENTS 44

Totally
Ordered One Last Unordered

Figure 7.1: Sequential Links types. Partial A and Partial B are not shown, as they
are non-deterministic, and may take different forms.

made different. For instance, a fraction of 0.4 means that 40% of the top-

level behaviors are duplicates of others (i.e., approximately 80% of top-level

behaviors are not unique—except for their last leaf).

The size of the behavior hierarchy is affected by the top-level branching fac-

tor, the normal-node branching factor, and by the depth. For the purposes of the

experiments, we have fixed the normal-node branching factor at 3, and only varied

the top-level branching factor and the depth.

Each behavior in the tree is uniquely identified, but may have the same set

of associated features as other behaviors, in which case they will be considered

equal—and will both match given the same set of observations. The inherent

ambiguity of the behavior-hierarchy (how many different hypotheses are valid

given a sequence of observations) is goverend by the duplication parameter (larger

means more ambiguity), by the number of overall features (more overall features

enable in principle greater differentiation between behaviors), and the number

of features observable per behavior node (smaller number will cause less variety

in behaviors, and thus increased ambiguity). In the experiments reported below,

we chose values that are conservative for the techniques we developed, and thus

represent worst-case scenarios: The number of overall features (which increases

FDT size) was set at 10, creating the largest FDT to fit in the computer memory.

The duplication fraction was set at 0.4. The number of features per behavior was

set at 1, which essentially treats features as atomic, and thus lessens the expected

effect of using the FDT.

CHAPTER 7. EXPERIMENTS 45

TheObservation Generatorgenerates legal sequences of observations accord-

ing to a given generated behavior library. To generate legal observation, it simu-

lated execution and selection of behaviors. It randomly chooses a path in the be-

havior library and uses all the features in this path to generate observation. Then,

according to the sequential edges, the Observation Generator chooses another path

in the tree. The selection is done in the following manner: It first finishes all chil-

dren under the parent, then if there is a sequential edge, it prefers to follow the se-

quential edge,otherwise it goes up to choose other child. Behavior will be selected

again, until we visited all sequential edges from this behavior, and all children of

the behavior.

7.2 Matching Observations To Behaviors

The first set of experiments tests the run-time of the observation matching phase,

using an FDT (Section 7.2.1). It then explores the computational cost associated

with FDT in terms of building run-time (Section 7.2.2).

7.2.1 Matching Runtime

We investigate how the run-time of the matching phase scales with the size of the

behavior-hierarchy. The run-time using an FDT is contrasted with the matching

run-time of the RESL algorithm [19], the most relevant of related works.

Three parameters affect the matching time:L, the size of the behavior library

(which affects how many behaviors there are to match against),F , the number of

overall features, andf , the number of features associated with each behaviors (of

course,f ≤ F).

As reported in Chapter 4, RESL’s worst-case run-time in theory isO(FL),

and its best-case run-time isO(fL). The FDT’s worst-case run-time isO(F +L),

and its best-case isO(log f).

In the following experiments, we variedL by varying the number of top-level

behaviors (5,50,100) and the depth of the behavior library (3–5).F was fixed at

10, andf was varied between 1,3,5,7. For each of these values, we generated 180

random observations sets based on the given behavior-libraries, and averaged the

CHAPTER 7. EXPERIMENTS 46

1 3 5 7
0

2

4

6
x 10

−4

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec
Depth 3

1 3 5 7
0

0.5

1

1.5
x 10

−3

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

Depth 4

1 3 5 7
0

1

2

3

4
x 10

−3

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

Depth 5

1 3 5 7
0

2

4

6
x 10

−3

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

1 3 5 7
0

0.005

0.01

0.015

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

1 3 5 7
0

0.01

0.02

0.03

0.04

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

1 3 5 7
0

0.005

0.01

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

1 3 5 7
0

0.01

0.02

0.03

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

1 3 5 7
0

0.02

0.04

0.06

0.08

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

Figure 7.2: Average matching runtime of FDT and RESL, as a function off for
varying depth and top level roots

run-time for matching these using RESL and using a generated FDT.

The average runtime of the matching algorithms are shown in figure 7.2.1. The

horizontal (X) axis shows the number of features associated with each behavior

(f). The vertical axis shows the average matching time in seconds. First line is

for 5 top-level behaviors, second line is for 50 top-level behaviors and third line is

for 100 top-level behaviors. The columns represent varying depth of the behavior

library (3–5). For example, top left figure the depth of the behavior library is fixed

at 3, and the top-level behavior branching factor was fixed at 5. For each value of

the number of features per behavior, we repeated the experiment 180 times.

Clearly, the use of the FDT leads to very significant improvements in the

matching time, compared to RESL. Furthermore, its growth curve (with respect

to the number of features associated with each behavior) indicates that its benefits

scale up well as the observed behavior increases in complexity.

CHAPTER 7. EXPERIMENTS 47

10 50 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Top Level Branching Factor

A
ve

ra
ge

 R
un

tim
e

is
 s

ec

RESL
SBR

Figure 7.3: Average matching run-time of FDT and RESL, worst-case (for FDT),
as library increases in size.

We now turn to the question of how this performance varies with the size

of the behavior hierarchy. We focus on the worst-case scenario of the FDT in

comparison with RESL, where the number of features per behavior isf = 1. We

then variedL by varying the number of top-level behaviors (10,50,100) and the

depth of the behavior library (3–6). Again,F was fixed at 10. For each of these

values, we generated 720 random observations sets based on the given behavior-

libraries, and averaged the run-time for matching these using RESL and using a

generated FDT.

The results in figure 7.2.1 show that the FDT-based matching algorithm is

significantly faster than the RESL algorithm, and the runtime gap grows with the

size of the library. This result is expected, given the complexity analysis of RESL

vs. the FDT-based matching.

Since, the action DB is fixed here to 10, naturally, the number of matching

CHAPTER 7. EXPERIMENTS 48

10 50 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Top Level Branching Factor

N
um

be
r

of
 M

at
ch

in
g

B
eh

av
io

rs

Depth 3
Depth 4
Depth 5
Depth 6

Figure 7.4: Matching Experiment: Number of matching behaviors

behaviors is also increase with the size of the tree (figure 7.4). This fact cause

overhead that should be considered when exploring the matching runtime and the

buildingFDT runtime.

7.2.2 FDT Build time

The use of the FDT leads to very significant savings in matching run-time. How-

ever, it does necessitates carry a one-time cost of building the FDT for usage. This

section evaluates the this cost to argue that it is feasible.

We first explore how the FDT construction runtime changes as the number of

features per behavior is varied. Figure 7.5 shows the average runtime for building

theFDT as number of features per behavior varies between 1,3,5,7. The left figure

is for top-level behaviors fixed to 50 and the right figure is for top-level behaviors

fixed to 100. The depth of the behavior library (3–6). For each of these values,

we generated 30 random observations sets based on the given behavior-libraries.

CHAPTER 7. EXPERIMENTS 49

1 3 5 7
0

2

4

6

8

10

12

14

16

18

20

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

Depth 3
Depth 4
Depth 5
Depth 6

1 3 5 7
0

5

10

15

20

25

30

35

40

45

Number of actions in each node

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

Depth 3
Depth 4
Depth 5
Depth 6

Figure 7.5: Matching Experiment2: Average runtime of buildingFDT

The average time for building the FDT decreases as the number of features in

each behavior increases. The reason for this is that behaviors that do not test a

feature simply pass down (in the construction phase) to all children FDT nodes,

as they are consistent with all values of the features they do not test (as explained

in Section 4).

We again focus on the worst-case scenario; here, the construction run-time

when only a single feature is associated with each behavior. Figure 7.2.2 shows

the average runtime for building the FDT for a behavior libraries of various sizes.

The horizontal axis shows the depth of the library (3–6), while the different graphs

correspond to the 10,50 and 100 top level behaviors. For each of these values, we

generated 48 random observations sets based on the given behavior-libraries.The

vertical (Y) axis shows the average run-time in seconds. While the graphs hint that

the construction time may be exponential in the size of the hierarchy, we remind

the reader that building the FDT is a one-time offline cost, while matching takes

CHAPTER 7. EXPERIMENTS 50

3 4 5 6
0

5

10

15

20

25

30

35

40

45

Depth of the behavior tree

A
ve

ra
ge

 R
un

tim
e

in
 s

ec
10 top roots
50 top roots
100 to roots

Figure 7.6: Average FDT construction runtime

place many time in realistic settings.

7.3 Current State Query

We now turn to evaluate ourSBRalgorithms with respect to their ability to answer

the current-state query. We tested the SBR propagation algorithm (the key algo-

rithm used in answering this query, once matching is done), in terms of scalability

(efficiency) and accuracy. We contrast these results with the RESL algorithm [19].

CHAPTER 7. EXPERIMENTS 51

10 roots 50 roots 100 roots
Number Hypotheses SBR 5.47 12.39 20.93
Number Hypotheses RESL 9.75 29.17 53.37

Table 7.1: Average number of hypotheses after propagation, RESL vs. SBR.

7.3.1 Accuracy

A key advantage of SBR over RESL is its ability to use the history of observa-

tions, together with the sequential edges, to rule out certain hypotheses that match

current observations, but are not feasible given the history of observations. Thus

given a valid sequence of observations, and depending on the existence of se-

quential edges in the behavior library, we expect to see fewer hypotheses as to the

current state of the observed robot, in comparison with RESL’s output.

We fixed the number of features per behavior isf = 1 (since it does not affect

directly on the propagating). We then variedL by varying the number of top-level

behaviors (10,50,100) and the depth of the behavior library (3–6). Again,F was

fixed at 10. For each of these values, we generated 720 random observations sets

based on the given behavior-libraries.

Figure 7.3.1 compares the average number of hypotheses after propagating

in SBR algorithm to the number of hypotheses after propagating in RESL algo-

rithm.The results are also shown in table 7.1. More than 50% of the hypotheses

we get in resl propagating algorithm, were ruled out by the SBR propagation al-

gorithm.

The ability of SBR propagation to use the history of observations relies on

the sequential edges to rule out hypotheses. Thus it makes sense to examine how

different structures, in terms of sequential edges, affect the number of hypotheses

generated by SBR.

Figure 7.8 shows the effect of various sequential edges types on the number

of hypotheses. There are four graphs, each for different depth varying between

3–6. For SBR, the number of hypotheses depends on the type of sequential edges

used in the behavior library. Totally-ordered behavior libraries allow SBR to max-

imally use past observations, and thus on average result in the fewest number of

hypotheses. In contrast, unordered behavior libraries have no sequential edges,

CHAPTER 7. EXPERIMENTS 52

10 50 100
5

10

15

20

25

30

35

40

45

50

55

Top Level Branching Factor

A
ve

ra
ge

 N
um

be
r

of
 H

yp
ot

he
se

s
af

te
r

pr
op

ag
at

in
g

RESL
SBR

Figure 7.7: Average number of hypotheses after propagation, RESL vs. SBR.

CHAPTER 7. EXPERIMENTS 53

10 50 100
0

5

10

15

20

25

Top Level Branching Factor

A
ve

ra
ge

 N
um

be
r

of
 H

yp
ot

he
se

s
af

te
r

pr
op

ag
at

in
g

Depth 4

RESL
Totaly
First
Last
PartialA
PartialB
Unordered

10 50 100
0

10

20

30

40

50

Top Level Branching Factor

A
ve

ra
ge

 N
um

be
r

of
 H

yp
ot

he
se

s
af

te
r

pr
op

ag
at

in
g

Depth 5

RESL
Totaly
First
Last
PartialA
PartialB
Unordered

10 50 100
0

20

40

60

80

100

120

140

Top Level Branching Factor

A
ve

ra
ge

 N
um

be
r

of
 H

yp
ot

he
se

s
af

te
r

pr
op

ag
at

in
g

Depth 6

RESL
Totaly
First
Last
PartialA
PartialB
Unordered

10 50 100
2

4

6

8

10

12

14

Top Level Branching Factor

A
ve

ra
ge

 N
um

be
r

of
 H

yp
ot

he
se

s
af

te
r

pr
op

ag
at

in
g

Depth 3

RESL
Totaly
First
Last
PartialA
PartialB
Unordered

Figure 7.8: Average number of hypotheses after propagation, RESL vs. SBR,
with different sequential-edge types.

and thus do not allow SBR to use a history of observations. Thus the number of

hypotheses generated in this case is exactly the same as generated by RESL. The

number of hypotheses in RESL algorithm is not affected by the type of sequential

edges, so only a single solid line shows the average results of running RESL.

7.3.2 Runtime

Given the significant improvement in accuracy, one may expect that there is an

associated significant computational cost to the use of the propagation algorithm.

Surprisingly, this is not the case. Figure 7.9 shows the average run-time of the

SBR propagation algorithm in the above experiments, in comparison to that of

RESL. The horizontal axis shows the top-level branching factor, while the vertical

CHAPTER 7. EXPERIMENTS 54

10 50 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Top Level Branching Factor

A
ve

ra
ge

 R
un

tim
e

is
 s

ec

RESL
SBR

Figure 7.9: Average runtime of propagating Resl versus SBR

axis shows the runtime in seconds. RESL is only slightly faster than SBR. A close

examination of the propagation algorithm shows that the only difference between

the two propagation algorithms is that in comparison to RESL, SBR carries out

a few additional checks (for incoming sequential edges) as its propagates time-

stamps up and down the behavior hierarchy. Thus the addition to runtime is minor.

7.4 History of States Query

As mentioned in Chapter 5, there are three phases to answer this query: (i) match-

ing; (ii) propagating; and (iii) generating hypotheses. The first two phases are

done also to answer theCurrent State Query, and therefore were analyzed in sec-

tion 7.3. In this section we will evaluate the third phase, generating hypothe-

ses, which allows answering queries as to the possible sequence of behaviors se-

CHAPTER 7. EXPERIMENTS 55

lected by the observed robot. This phase can be incremental to the previous two

stages,i.e, done after each propagating phase, or after any number of matching-

propagating iterations. Algorithms such as RESL do not have the ability to answer

theHistory of States Query.

7.4.1 Generating behavior-history hypotheses

The hypotheses graph is used to disqualify hypotheses which are ruled out by

negative evidence. Given an observation at timet, it is sometimes possible to rule

out the suitability of an hypothesis as to the selected behavior of the robot at time

t−1. Thus the hypotheses graph is has an important role in confirming and ruling

out hypotheses as to current state at a given time.

However, the hypotheses graph is also used to generate hypotheses as to the

sequence of behaviors selected by the observed robot over time (Section 5.2).

Here, we want not only to determine the possible current state of the robot, but

the possible sequence of states (leading to the current state). Given the sequential

edges in a behavior library, it should be possible to rule out hypotheses over time

(as we have seen), and thereby restrict the number of hypotheses as to the sequence

of behaviors. This of course depends on the structure of the sequential edges in

the behavior library.

Figures 7.10,7.11 and 7.12 show the number of possible behavior-history hy-

potheses evolving over time for 5,10,50 top-behaviors, for libraries with different

types of sequential edges. In all graphs, the vertical X axis shows the observations

from 1 to 10 (this is for observation sequences of length 10). The Y axis shows

the number of hypotheses. The results are averaged over 30 trials, depths of 3–6,

and over top-level branching factors of 5 7.10, 107.11, and 507.12. [Each point is

thus the average of 30 trials.]

For example, the upper left figure of 7.11 notes trees with depth fixed to 3

with different types of sequential edges, after the first observation there are on

average 2.4 possible hypotheses about the behaviors selected by the robots thus

far. After the second observation, there is a slight increase in the average number

of hypotheses, to 2.5 (i.e., there are—on average—between two and three possi-

ble sequences of behaviors that may have been selected by the robot leading to

CHAPTER 7. EXPERIMENTS 56

0 5 10
0

100

200

300

400

500

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 3

Totaly
First
Last
PartialA
PartialB
Unordered

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 4

Totaly
First
Last
PartialA
PartialB
Unordered

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 5

Totaly
First
Last
PartialA
PartialB
Unordered

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 6

Totaly
First
Last
PartialA
PartialB
Unordered

Figure 7.10: Number hypotheses over history for each sequential edge type, 5 top
level behaviors

its current hypothesized state). After the third observation, ambiguity is reduced

on average, as we have in average just 1.6 possible hypotheses. This is due to

the characteristics of the artificial duplication factor, where the last leaf (the third,

given the branching factor of 3) was artificially made different in otherwise dupli-

cate top-level behaviors. After 10 observations, only 6.8 hypotheses are possible

on average (the results are also displayed in Table 7.2).

In contrast, where there are no sequential edges (7.11), the ambiguity is very

large since all possible combinations of all current-state hypotheses over time

t = 1 . . . 10 are possible. In other words, if we mark asHt the number of current-

state hypotheses at timet, the number of unordered state history hypotheses is

H1 × H2 × . . . Ht. Thus after 10 observations, for instance, the number of state

history hypotheses in the unordered behavior library case is 13859 (compare to

6.8 for the totally ordered case).

CHAPTER 7. EXPERIMENTS 57

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 3

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 4

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 5

0 5 10
0

50

100

150

200

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 6

Totaly
First
Last
PartialA
PartialB
Unordered

Totaly
First
Last
PartialA
PartialB
Unordered

Totaly
First
Last
PartialA
PartialB
Unordered

Totaly
First
Last
PartialA
PartialB
Unordered

Figure 7.11: Number hypotheses over history for each sequential edge type, 10
top level behaviors

Totaly First Last PartialA PartialB Unordered
1 2.4 2.7 2.2 1.9 1.9333 2.7333
2 2.4667 2.3 2.7333 3.6333 3.2333 8.8333
3 1.6667 7.8667 8.2333 5.3333 4.5333 24.733
4 4.1 5.6333 14.633 14.467 10.567 60.867
5 4.3333 11.533 42.767 46.9 19.033 147.23
6 1.9 9.9 17.533 38.733 54.533 469.9
7 5.0333 26.5 44.467 108.03 109.2 1018.2
8 5.2333 24.033 36 52.5 130.07 2701.2
9 3.4 49.4 89.067 141.27 337.43 7805.3
10 6.8333 41.4 62.733 159.5 368.87 13859

Table 7.2: Number of Hypotheses over history

CHAPTER 7. EXPERIMENTS 58

0 5 10
0

1000

2000

3000

4000

5000

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 3

Totaly
First
Last
PartialA
PartialB
Unordered

0 5 10
0

500

1000

1500

2000

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 4

Totaly
First
Last
PartialA
PartialB
Unordered

0 5 10
0

500

1000

1500

2000

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 5

Totaly
First
Last
PartialA
PartialB
Unordered

0 5 10
0

500

1000

1500

2000

Observation Time Stamp

N
um

be
r

H
yp

ot
he

se
s

ov
er

 H
is

to
ry

Depth 6

Totaly
First
Last
PartialA
PartialB
Unordered

Figure 7.12: Number hypotheses over history for each sequential edge type, 50
top level behaviors

CHAPTER 7. EXPERIMENTS 59

7.4.2 Runtime

The Generating Hypotheses phase is not expensive in means of runtime, com-

pared to matching and propagating phase. Figure 7.13 compares the average run-

time of the three phases mentioned above, for the following conditions: number

of features per behavior isf = 1,L varying the number of top-level behaviors

(10,50,100) and the depth of the behavior library (3–6). The average runtime

shown Figure 7.13 represents the average runtime time to build the graph in each

step and also to extract all paths from time stamp t=0, until current time stamp,

where in each phase we use the results from the previous stage. Note that the

extraction does not enumerate the resulting hypotheses—otherwise its runtime

would grow combinatorically large—but simply marks them efficiently on the hy-

potheses graph.

An important feature of the SBR extraction phase is that it can take place at a

different time than propagation. Indeed, if there’s no need for answering state his-

tory query, the extracting phases is not needed at all (though the hypotheses graph

may still be useful) to maintain direct pointers to current state hypotheses. Al-

though we incrementally computed the hypotheses graph in the extraction phase,

the average runtime results in Figure 7.13 would be the same if the process was

instead carried out once, at the end of the sequence of observations.

Figure 7.14 differentiates the runtime involves in building and maintaining the

hypotheses graph, in contrast with the runtime spent marking possible hypotheses

from timet = 0 to the current time. The total runtime includes both of these com-

ponents. We used the same conditions as above (number of features per behavior

is f = 1,L varying the number of top-level behaviors (10,50,100) and the depth

of the behavior library (3–6)). Each data point represents 2880 observations.

CHAPTER 7. EXPERIMENTS 60

10 50 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Top Level Branching Factor

A
ve

ra
ge

 R
un

tim
e

is
 s

ec

matching
propagating
extracting

Figure 7.13: Matching, Propagating, and Extracting Average runtime

CHAPTER 7. EXPERIMENTS 61

10 50 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Top Level Branching Factor

A
ve

ra
ge

 R
un

tim
e

is
 s

ec

Constructing Graph
Extracting Hypotheses
total

Figure 7.14: Extracting average Runtime

Chapter 8

Conclusion and Future Work

It is important for an agent to monitor other agents in order to carry out its tasks.

To do this, agents must often rely on their observations of others, to infer their

unobservable internal state, such as goals, plans, or selected behaviors. However,

plan-recognition approaches to this task are insufficient for modern agents appli-

cations, such as robotics.

This thesis addresses this challenge by defining a behavior-based recognition

representation and a comprehensive set of algorithms that can answer a variety of

recognition queries. The algorithms we propose are efficient, and can handle im-

portant real-world challenges to existing techniques, such as intermittent failures

in observations, behaviors with duration, etc. Surprisingly, we found that the bulk

of these new features can be achieved in the same run-time complexity of previous

algorithms—that lack these features.

In future work we intend to expand the algorithms we presented and test them

on real world applications. Here we suggest some of the areas that should be

explored:

Testing on dynamic, complex domains.In this thesis we explored and tested

our algorithms on synthetic data that we created. To understand our contri-

bution, we intend to test our algorithms on real world data taken from Mod-

Saf domain, which is a commercially-developed virtual environment with

synthetic helicopter pilot agents that carry out a variety of missions [35].

And on RoboCup, which is soccer simulation, with dynamic multi-agent

62

CHAPTER 8. CONCLUSION AND FUTURE WORK 63

environment which requires real-time teamwork and coordination [36].

Multi-agents Tracking. Here we presented tracking on single agent (although

the agent can be in dynamic multi agent environment). Tracking in multi-

agents environment is very challenging. First, we can utilize the information

from group of agents. Second, tracking multi-agents raises naturally more

hypotheses, and thus the observer needs to be selective.

Lossy observations.In Chapter , we suggested solution to the problem of lossy

observations. As mentioned before lossy observations are the case that some

features can not be seen in some point of time, for example due to hardware

failures. In the literature there is an hidden assumption that all features

can be observed. There are few works that tried to deal with the problem

(e.g,[9]), but even in these works, just limited cases can be dealt with, cases

that actions were observed without having seen previous actions that must

be preliminary, or state of the world has changed without seeing actions that

can explain these changes. Moreover, there is not any investigations on how

efficiently these methods work, and what is the accuracy when there are

missing observations. In future work we intend to implement the solution

we suggested on section , and to explore more deeply the lossy observa-

tions case. We also intend to test it both on synthetic data and on dynamic,

complex domains, such as ModSaf and RoboCup.

Probabilistic recognition. A limitation in our symbolic algorithms is that some-

times, more than one hypothesis is recognized, and we can not tell which

hypothesis is more probable. There are some cases that some behaviors are

more probable than others, for example when a person is going to the bank,

it is more probable that he is going to do actions in his account, and not

to rob the bank. There are behavior recognition systems that have the abil-

ity to rank hypotheses. However, these methods can not take into account

state of the world, ordering between behaviors, lossy observations and are

not capable of working with large number of behaviors, for more details see

section 2. In future work, we intend to investigate the possibility of incorpo-

rating probabilistic inferring and extend our algorithms to deal with ranking

CHAPTER 8. CONCLUSION AND FUTURE WORK 64

hypotheses, while keeping all the advantages in our model.

Interleaved behaviors. Another limitation in our model is that it is not capable

with copping with agent that pursuing multiple goals. In our model we

considered just the cases that the agent finishes series of behaviors in order

to finish one goal, and just then move on to pursuing another goal. In some

domains this is the case, but in others agent can start with one goal, then

move to another goal, and finally return to accomplish the first goal. To

our knowledge of the literature, just few works can deal with interleaved

behaviors [11].

Prediction. Currently we can answer to two key queries: (i) what does the agent

do now? and (ii) What did the agent do until now?. A query we have not yet

considered is the agent likely to do next, considering the states or actions it

executed up to now. While there exists much work on prediction (e.g., in

the context of unix command-line predictions), this work is not integrated

with plan-recognition work. Such integration would be interesting.

Suspicious behavior.We intend to apply our model to recognizing suspicious

behaviors, i.e., behaviors that are not recognized exactly by the behavior

library.

Bibliography

[1] J. F. Allen and C. R. Perrault. Analyzing intentions in utterances.Artificial

Intelligence, 15:81–115, 1980.

[2] P. Bakker and Y. Kuniyoshi. Robot see, robot do: an overview of robot imi-

tation. Inthe AISB Workshop on Learning in Robots and Animals, Brighton,

UK, 1996.

[3] T. Balch.Behavioral Diversity in Learning Robot Teams. PhD thesis, Geor-

gia Institute of Technology, 1998.

[4] S. Carrbery. Techniques for plan recognition.User Modeling and User-

Adapted Interaction, 11:31–48, 2001.

[5] E. Charniak and R. P. Goldman. A probabilistic model of plan recognition.

In AAAI-91, 1991.

[6] E. Charniak and R. P. Goldman. A Bayesian model of plan recognition.AIJ,

64(1):53–79, Nov. 1993.

[7] P. R. Cohen, C. R. Perrault, and J. F. Allen. Beyond question answering. In

W. G. Lehnert and M. H. Ringle, editors,Strategies for Natural Language

Processing, pages 245–274. Erlbaum, Hillsdale, NJ, 1982.

[8] R. J. Firby. An investigation into reactive planning in complex domains. In

AAAI-87, 1987.

[9] C. W. Geib and R. P. Goldman. Plan recognition in intrusion detection sys-

tems. InIn DARPA Information Survivability Conference and Exposition

(DISCEX), June 2001.

65

BIBLIOGRAPHY 66

[10] C. W. Geib and S. A. Harp. Empirical analysis of a probalistic task tracking

algorithm. InAAMAS workshop on Modeling Other agents from Observa-

tions (MOO-04), 2004.

[11] R. P. Goldman, C. W. Geib, and C. A. Miller. A new model of plan recogni-

tion. In UAI-1999, Stockholm, Sweden, July 1999.

[12] L. D. Goodman, B.A. On the interaction between plan recognition and intel-

ligent interfaces.User Modeling and User-Adapted Interaction, 2:83–115,

1992.

[13] K. Han and M. Veloso. Automated robot behavior recognition applied to

robotic soccer. InProceedings of the IJCAI-99 Workshop on Team Behav-

ior and Plan-Recognition, 1999. Also appears in Proceedings of the 9th

International Symposium of Robotics Research (ISSR-99).

[14] J. Hong. Goal recognition through goal graph analysis.JAIR, 15:1–30, 2001.

[15] M. J. Huber and E. H. Durfee. Deciding when to commit to action during

observation-based coordination. InICMAS-95, pages 163–170, 1995.

[16] M. J. Huber, E. H. Durfee, and M. P. Wellman. The automated mapping of

plans for plan recognition. InProceedings of UAI-94, 1994.

[17] G. A. Kaminka and M. Bowling. Robust teams with many agents. In

AAMAS-02, 2002.

[18] G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams by over-

hearing: A multi-agent plan recognition approach.Journal of Artificial In-

telligence Research, 17, 2002.

[19] G. A. Kaminka and M. Tambe. Robust agent teams via socially-attentive

monitoring.Journal of Artificial Intelligence Research, 12, 2000.

[20] H. A. Kautz. In P. Cohen, J. Morgan, and M. Pollack, editors,Intentions

in Communications, chapter A Circumscriptive Theory of Plan Recognition.

MIT Press, 1990.

BIBLIOGRAPHY 67

[21] H. A. Kautz and J. F. Allen. Generalized plan recognition. InAAAI-86,

pages 32–37. AAAI press, 1986.

[22] Y. Kuniyoshi, S. Rougeaux, M. Ishii, N. Kita, S. Sakane, and M. Kakikura.

Cooperation by observation—the framework and the basic task patterns. In

the IEEE International Conference on Robotics and Automation, pages 767–

773, San-Diego, CA, May 1994. IEEE Computer Society Press.

[23] E. Kutluhan, J. Hendler, and D. Nau. A sound and complete procedure for

hierarchical task network planning. 1994.

[24] S. Lenser, J. Bruce, and M. Veloso. CMPack: A complete software system

for autonomous legged soccer robots. InAgents-01, pages 204–211. ACM

Press, May 2001.

[25] J. F. Litman D., Allen. A plan recognition model for subdialogues in con-

versation.Cognitive Science, 11:163–200, 1987.

[26] M. J. Mataric. Interaction and Intelligent Behavior. PhD thesis, Mas-

sachusetts Institute of Technology, 1994.

[27] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[28] A. Newell. Unified Theories of Cognition. Harvard University Press, Cam-

bridge, Massachusetts, 1990.

[29] M. Nicolescu and M. J. Mataric. A hierarchical architecture for behavior-

based robots. InAAMAS-02, pages 227–233, Bologna, Italy, July 15–19

2002.

[30] D. V. Pynadath and M. P. Wellman. Probabilistic state-dependent grammars

for plan recognition. InUAI-2000, pages 507–514, 2000.

[31] G. Retz-Schmidt. Recognizing intentions, interactions, and causes of plan

failures.User Modeling and User-Adapted Interaction, 2:173–202, 1991.

[32] Q. J. Ross.C4.5 Programs for machine learning. Morgan Kaufmann Pub-

lishers,Inc, 1992.

BIBLIOGRAPHY 68

[33] C. Schmidt, N. Sridhan, and J. Goodson. The plan recognition problem: an

intersection of psychology and artificial intelligence.Artificial Intelligent,

11:45–83, 1978.

[34] M. Tambe, J. Adibi, Y. Al-Onaizan, A. Erdem, G. A. Kaminka, S. C.

Marsella, and I. Muslea. Building agent teams using an explicit teamwork

model and learning.AIJ, 111(1):215–239, 1999.

[35] M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom,

and K. Schwamb. Intelligent agents for interactive simulation environments.

AI Magazine, 16(1), Spring 1995.

[36] M. Tambe, G. A. Kaminka, S. C. Marsella, I. Muslea, and T. Raines. Two

fielded teams and two experts: A robocup challenge response from the

trenches. InIJCAI-99, volume 1, pages 276–281, August 1999.

[37] M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and G. A. Kaminka. Adap-

tive agent integration architectures for heterogeneous team members. In

ICMAS-00, pages 301–308, Boston, MA, 2000.

[38] M. Tambe and P. S. Rosenbloom. RESC: An approach to agent tracking in a

real-time, dynamic environment. InIJCAI-95, August 1995.

[39] G. Weiss, editor.Plan Recognition in Natural Language Dialogue. the MIT

Press, 1990.

