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Abstract. There is a very rich variety of systems of autonomous agents, be it software or
robotic agents. In particular, multi-agent systems can include agents that may be part of a
team and need to coordinate their actions during their distributed task execution. This co-
ordination requires an agent to observe, i.e., to monitor, the other agents in order to detect
a possible coordination failure of the team. Several researchers have addressed the prob-
lem of monitoring for single or multiple agent systems and have contributed successful, but
mainly application-specific, approaches. In this paper, we aim at contributing a unifying,
domain-independent statement of the distributed multi-agent monitoring problem. We define
the problem in terms of a pre-defined desirable joint state and an observation-state mapping.
Given a concrete joint observation during execution, we show how an agent can detect a pos-
sible coordination failure by processing the observation-state mapping and the desirable joint
state. To illustrate the generality of our formalism, one of the main contributions of the paper,
we represent several previously studied examples within our formalism. We note that basic
failure detection algorithms can be computationally expensive. We further contribute an effi-
cient method for failure detection that builds upon an off-line compilation of the principled
relations introduced. We show empirical results that demonstrate this effectiveness.

1 Introduction

Agents in distributed systems may need to coordinate. In the absence of allowed
communication between the agents, coordination needs to be based on observa-
tions of the other agents. An agent therefore needs to monitor the other agents.
Observation-based coordination (OBC) is a key challenge to the multi-agent and
multi-robot systems. Increasingly, robots and synthetic agents are being deployed in
multi-agent virtual environments for training [1] and entertainment [2], robotic soc-
cer [3], hazardous cleanup tasks [4], formation-maintenance tasks [5,6], and more.
Many of these applications rely on agents to coordinate with one another based on
their observations of each other [7].

OBC is often a challenging process, mainly because it is computationally expen-
sive. In general, OBC requires an agent to observe its peers and infer their state. Typ-
ically, the actual state is hidden and it is only partially revealed through observations.
The agent must then decide what action it should take based on its own goals and in-
ternal state, and the observation-based inferred state of its peers. Specific examples
of this process include OBC in self-interested agents [2], observation-based team-
work [8]. The inference and decision process are often considered computationally



too intense for resource-limited robots. Indeed, there have been many investiga-
tions of ways to generate robust and predictable globally-coordinated behavior us-
ing agent-local control rules that shortcut the inference and decision processes, (e.g.
[6,5]). However, these approaches often require painstakingly hand-crafted control
rules and have been applied mostly in spatial coordination tasks (see Section 2 for
an in-depth exploration of OBC in the literature).

We focus in this paper on an important component of OBC: observation based
monitoring, which is used when agents use observations to verify that a group of ob-
served agents does not suffer from a coordination failure. We thus limit ourselves to
determining the existence of a coordination failure, and do not consider the actions
that the agent may take to respond to it (if detected).

We introduce a novel formalism for describing observation-based monitoring of
simultaneousactivities. This formalism can be used to describe a significant class of
coordination processes reported in the literature and commonly found in real-world
multi-agent systems. We use this formalism to describe on-line coordination, and
explore the complexity of this task. We then show how an off-line compilation pro-
cess emerges as a result from this description, essentially transferring the on-line
run-time complexity of the task off-line, allowing for quick execution. To evaluate
our work empirically, we examine several examples of OBC in the literature. We
present simulation results demonstrating the significant run-time computational re-
sources saved by the off-line computation process. This compilation process takes a
first step towards unifying the two themes of observation-based coordination.

This paper is organized as follows: Section 2 presents an overview of previ-
ous investigations into the OBC process. Section 3 presents a formalism describing
OBC. Section 4 how OBC can be compiled into reactive rules. Section 5 presents
an evaluation, and Section 6 concludes.

2 Observation-Based Coordination

Observation-based coordination (OBC) begins by each agent observing its fellow
agents. Observations can be as simple as relative distance, or location, or as complex
as intended goal, or plan. Based on these observations, each agent decides on what
actions it will perform so as to achieve its own goals. Note that we are using the
phrase coordination here in its broadest sense: We consider agents to be coordinating
when the actions of each agent are dependent on the state of the other agents. Thus,
both collaborative and adversarial settings are included in this definition.

Work on OBC has traditionally followed two parallel themes. The first such
approach, which we call state-based coordination (SBC), emphasizes coordination
at the level of internal states of agents, e.g., at the level of their selected plans,
goals, or behaviors. Thus, SBC requires that the (unobservable) internal state of
observed agents be known to the coordinating agent. The other approach, which
we call reactive coordination (RC), shortcuts this process by directly mapping from
observations of others to subsets of actions to be executed. It is distinct from SBC
in that it does not explicitly consider the internal state of the observed agents.



SBC uses explicit knowledge of the internal state of the observed agents. Un-
fortunately, this knowledge is typically inaccessible. The agent must therefore use
whatever observations it has of the other agents to infer the state of the other agents
from the observations. Based on this inferred state, the coordinating agent selects its
own internal state and actions. A key benefit of state-based coordination is that the
designer can specify such selections in a coordinating policy. A coordinating policy
is often easier to understand and design since it relates the plans and goals of others
to those of the coordinating agent at a convenient level of abstraction.

Unfortunately, SBC often requires substantial computational resources. Infer-
ring the state of the other agents based on observations (a process sometimes known
as plan-recognition [2], behavior recognition, or agent modeling) is often expen-
sive because, in general, the same observation can be interpreted as evidence for
multiple internal states. A common approach relies on probabilistic networks for
plan recognition, e.g., [2]. Washington[9] relies on POMDPs in coordination. Both
probabilistic networks and POMDPs are intractable in the general case. Washing-
ton shows that under certain conditions, the coordination problem using POMDPs
can be polynomial, however these conditions require the coordinating agent to not
affect the behavior of the observed agents—a significant restriction in collaborative
and adversarial settings. Tambe developed the non-probabilistic polynomial-time
RESCyeqm algorithm for reasoning about adversaries hierarchical behaviors [10].
This algorithm gains its computational advantage by always adapting and commit-
ting to a single interpretation of the opponents’ actions.

Independently from investigations of SBC (mostly in software agent settings),
researchers in the multi-robot community have focused their efforts on approaches
appropriate for resource-limited hardware. The key ideas in these is to shortcut the
inference and decision making process of SBC by introducing reactive coordina-
tion (RC) behaviors that tie specific observations of other agents with actions by
the coordinating agent. For instance, Mataric demonstrated that many spatial group
behaviors can be achieved by combinations of relatively simple agent-local rules,
that directly tie spatial observations (e.g., distance and angle to other robot) with
actions that should be taken [6]. Balch investigated methods for reliable execution
of group tasks, such as foraging and formation maintenance, using hierarchical re-
active behaviors that emphasized coordination by reliance on simple relative obser-
vations of other agents [5]. Unfortunately, while RC does indeed offer significant
execution-time advantages for resource-constrained settings, it is difficult to design
and maintain. Coordinated group behavior emerges in RC out of the interaction of
reactive behaviors, but these interactions are difficult to predict.

This paper takes a step towards unifying these themes, by showing how an im-
portant class of coordination relationships can be specified in a more understand-
able manner (i.e., at the internal state level), but still executed quickly by resource-
constrained agents. We focus on an important component in the OBC task: The
observation-based monitoring that allows agents to detect coordination failures in
their peers, thus allowing them to decide on an action if a failure is detected. The
idea is to compile the expensive on-line failure detection process at design time



into a set of fast-to-execute reactive rules. These rules can then be used at run-time
to detect failures directly from observations without having to infer the joint agent
state.

3 A Formalism for Describing Observation-Based Coordination

This section defines OBC formally and uses a running example from a coordination
process from the literature to illustrate its meaning.

3.1 Examples from the literature

These examples are taken from the ModSAF domain, a high-fidelity virtual envi-
ronment for military training that allows thousands of agents (synthetic and human)
to interact in battlefield scenarios [1]. Several coordination scenarios for synthetic
helicopter pilots in this domain have been described in [11,8]. These rise from the
scenario described below.

A team of 3-6 helicopters take off from their base and fly in formation (with the
fly-flight-plan (f) behavior) until they reach an area marked by a visible landmark.
Upon arrival, they select the wait-at-point (w) behavior, in which they split into
two subteams. The scouting subteam moves towards the estimated enemy location
to identify its exact position (7). The attacker subteam stays behind (b). When the
scouting team identifies the enemy position, it radios for the attackers to join it (all
team-members select the join-scout (c) behavior) and waits for it to arrive. Once
joined, they engage the enemy together (the engage (e) behavior). Each helicopter
masks (m) by hiding behind trees or hills and unmasks (u) to come out of hiding to
shoot (s) at the enemy. It then masks again before moving to a new location to shoot.
When the enemy is destroyed, the entire team joins together and flies in formation
(f) back to base. At any point during the mission, pilots may be ordered to halt (h)
their activities and await further instructions.

The designers of these synthetic pilots use hierarchic behaviors to implement
portions of the tasks. That is, higher-level behaviors control the instantiation and
sequential activation of lower-level behaviors for each pilot. To coordinate the activ-
ities between pilots, the designers sought to make sure that specific, selected team-
level tasks are jointly selected by different agents. We extract several general cases
of coordination:

Agreement. Two or more agents have to simultaneously and synchronously select
a single plan for joint execution by the entire team [11,8]. In the scenario above,
agreement was to be achieved on the team-level behaviors, e.g., f, j, w, and h.

Smultaneousrole selection coordination. Two or more agents have to select from a
pool of behaviors, such that when one agent has selected a specific behavior another
agent has selected the appropriate corresponding behavior. In the scenario above,
such coordination takes place when the scouting subteam members select [ while
the attackers select b.



Sequential coordination. Two or more agents select states in a particular coordi-
nated sequence. For instance, when engaging the enemy, the helicopters may want
to fire in particular sequence such that all helicopters go through m — v — s —
m — ... in the same order. When one helicopter is executing a particular step in this
sequence, its teammate executes the next step in the sequence.

The problem is to verify that the individual selection of team-level behaviors is co-
ordinated [11]. Under the limited communication range and reliability conditions in
this domain, as well as security restrictions imposed on the pilots, an OBC scheme
was required [8]. The key to this approach is for each pilot agent to observe its team-
mates using radar. Based on their velocity and altitude, the agent would infer what
behaviors are being executed (a behavior-recognition process), and detect failures
in coordination. For most cases, the same observation can be interpreted as being
indicative of different behaviors. Hence, there can be multiple interpretations for
the observation. The agent can then use an optimistic or pessimistic monitoring pol-
icy to select between these interpretations, thereby guaranteeing sound or complete
detection quality (see [8]) for details).

We will now show how these examples can be formalized. We start by defining
the basic elements of OBC before continuing to the failure detection (FD) policies
and algorithms. To illustrate the formalism, we use the Simultaneous Role Selection
coordination as described above.

3.2 Definitions

Consider a team of n agents. Each of the agents has several internal states that are
in general unobservable to any other agent but itself. We define the state space to
be identical for each agent. In practice agents may use only a subset of the full state
space (i.e., different agents have different state spaces). The state space is then:

S ={s1,y8m} (1)

In our working example, we define the state space to be {b, ¢, !, f,w,m,u, s, h}

As an agent’s state is typically not directly observable, each agent must engage
in behavior recognition. An agent’s state must be inferred by observing its behavior.
We formalize observations as discrete members of a set

0= {017---0k} (2)

Observations map to states in some predefined manner. We define the observation
state mapping, which we call the recognition function, for agent j to be:

Mj:0 5" €8={(01,5,), (oS}
where o1,..,0, € O and S} ,,..,S;, C S, forj=1.n

3)

In our working example, observations and recognition function may be:

O = {(01 : speed < 3), (02 : (altitude > 3) A (speed > 3))} 4)
M1 :M2:...:M:{<01,b),<01,l),<02,b)} (5)



Intuitively, the agent slows down when waiting (b) and moves forward at altitude
when locating the enemy’s position (7). It may also slow down in I, making obser-
vation o, ambiguous.

Observations on the team of agents form a joint observation space defined as:

JO =0 x..x0 ={(0;,--,0i,) oi; €0, Vij =1.k,j =1.n}  (6)
We will use the following notation for an element of the joint observation set.
jOil’___’,'n = <O,’1,....,Oz’n> e JO (7)

Each element of the joint observation set, via the recognition function, maps to
one or more elements in a joint state space, formed by the cross products of the state
spaces.

JS=8%x.x8= {(S,’l,..,sin> |Sz']. €S, Vij S {lm},] = 1..n} (8)
We will use the following notation for an element of the joint states set.
jsily"'yin = <3i17---73in> eJS (9)

For a given joint observation, jo;,,....;,, we call the set of possible joint states the
team could be in, the observed joint states O.J.S or hypotheses set. We can construct
0JS as the cross-product of the mapped sub-sets from 1 ; for each agent j = 1..n.
That is for the given joint observation we form:

OJSi,....in = M1 (0i;) X ... X My, (03,)
=814, XS54, X . XS]

Nyin

n

(10)

In our example, given a joint observation {01, 01, 02), the observing agent may
conclude that the O.J S for the observed agentis: {{(b, b,1), (b, 1,1}, {l,b,1) ,{l,1,1)}.
In order to detect failures in coordination, the hypotheses set is compared to the set
of desired joint states (D.JS) as specified by the designer. DJS, a subset of JS, is
defined as:

DJS = {jsiy,...in|dSi1,....in € JS A jsiy,... i, desired} C JS (11)

In principle, if DJSNOJS = () then the observed agents’ joint state is definitely
not desired and a clearly recognizable coordination failure has occured. In contrast,
if DJS N OJS = OJS then no failure occured. In general, however, DJS and
0JS only partially overlap meaning some joint states are acceptable and some are
not. Therefore, we must classify failures via some policy in these ambiguous cases.

We define two failure detection policies: mprp a pessimistic policy and morp
an optomistic policy. mprp takes any possibility of a failure to mean a failure oc-
curred, while mo pp reports failures only when a clear failure occurred. Mathemati-
cally, mppp reports failures when any element of OJ S is not an elements of DJS.
In contrast, morp reports failures only when no element of OJS is an element of



DJS. It can be shown that 7o s Will never report a false-positive, while 7ppg will
never report a false-negative. Thus:

failure OJS;, ... i, € DJS

7prD (JOir,....in) = {okay otherwise (12)
i _ [ failure 0JS;,,.;, UDJS =0
7oFD (JOiy,...in) = {okay otherwise (13)

3.3 Examples

To better clarify the formalism, let us consider a simple three agent system with three
states s1, s2, 3 and two observations oy, 02. Let us define the recognition functions
and DJS as:

Mj =M= {<01781>7<01732)7(02733>} fij =123 (14)
DJS = {<31,31,81>,<82,82,82>,<83,83,83)} (15)

Let us consider the three joint observations {01, 01,01) , (01, 01, 02) and {02, 02, 02).
Thus we have:

jo1,11 = M (01) X M (01) x M (01) = {s1,82} X {s1,82} X {s1,52} (16)

= {(Sla 81751> ) <$1731782) [ <527 32752)} (17)
jor,1,2 = {(s1,51,83),(s1,52,83), (52, 51,53) , (52,82, 83) } (18)
Jo2,2.2 = {(s3,53,53)} (19)

The first observation contains some elements that are also in D.J.S and so passes the
optomistic FD policy but fails the pessimistic one. The second observation contains
no elements from D.J.S and thus fails both policies and is a clear failure. The final
observation is a strict subset of D.JS and therefore is a success using either policy.

As a final example, let us return to our earlier helicopter example. Let us
assume that the first agent is a scout and the other two agents are attackers.
We have DJS = {(l,b,b)}. Given a joint observation {01, 01,02), OJS is
{{(b,b,1),{b,1,1),{1,b,1),{l,1,1)}. The wprp policy would report a failure as
0JS ¢ DJS. morp would also report a failure as OJS N DJS = . In con-
trast, for {02, 01, 01), mppp reports a failure while 7o g does not. In general, the
set of joint observations that are failures according to morp are a subset of those
classified as failures by mppp.

4 Compiling Reactive Monitoring Rules

Performing the failure detection (FD) policy evaluation on-line becomes intractable
in many problems, particularly where computational resources are at a premium.
The core computational cost in the policy evaluation occurs in the OJ S calculations.



The calculation for O.J S, see 10, are exponential in the number of agents. Off-line
compilation of reactive rules offers one method for addressing this issue.

To compile reactive rules, we want to generate from our apriori knowledge a
mapping from JO to the two-element space, { fail, pass}, representing the output
of the policy evaluation. Our approach divides JO into two subsets, one containing
joint observations that map to failures F'.JO, and the other containing joint obser-
vations that map to successes SJO. Thus we define FJO and SJO for failure
detection policy 7rp as:

FJoO = {joil,,,,,in |j0i1,...,in € JOANTprp (joiu---,in) = failure} C JO (20)
SJO = {joi,,....in|§0is,....in € JO ATED (jOiy....i,) = Success} C JO (21)

FJO and SJO partition JO such such that FJO,SJO C JO and FJO U
SJO = JO. For the ensuing discussion we will use the non-failure set SJO with
the optimistic 7o rp policy. A similar approach could be taken for the 7 ppr policy
but will not be discussed here.

It is readily apparent that building SJO by testing each individual element of
0JS with the policy function, morp, will take an exponential amount of time.
Clearly, a better approach is required. Our approach operates by recognizing that we
only need to find those joint observations that have any corresponding joint states in
DJS. Thus, for each joint state in D.J.S we generate the set of observation tuples
that could possibly map to that joint state. For a given element of a joint state that is
in DJS the GENO function, short for GENerate Observations, will perform this
tasks as:

GENO (j7j5i1,...,in) = {Ov|sij € U Ma (Ov)} where jsi1,.
a=1..N

e DJS

dAjenin

(22)
Generating the set of joint observations that could possibly map to the given joint
state is a cross product operation as:

GENJO (jsi,,. i) = GENO (1,§s4y,...i,) X .. x GENO (n, jsi,,..i.) (23)

The complete compilation operates over all the elements in DJS with the results
combined with the union operator to form SJO as:

SJO(DJS)=  |J  GENJO(jsi,..i.) (24)

5 Evaluation

We implemented a system that accepts monitoring examples written in the presented
formalism. The system performs monitoring when given observation tuples using
both uncompiled and compiled mechanisms. To evaluate the performance of com-
pilation, we translated all three examples described in section 3 using the formal-
ism and compared the mean execution times for 100 randomly selected observation



tuples. Trials were performed with between 1 and 20 agents using the optomistic
failure detection policy.

Figure 1 shows the average running times for the compiled and non-compiled
versions. The X axis shows the number of agents in each configuration. The Y axis
measure monitoring time in seconds. Figure 1-a shows that the run-time curve as the
number of agents increase is non-linear in all three examples, indeed clearly expo-
nential in the case of the agreement coordination example (in which the observations
lead to very ambiguous interpretations).

The compiled monitoring results (Figure 1-b) follow very similar trends to those
of the non-compiled versions, however their running times are orders of magnitude
smaller (note the difference in range on the Y axis between the two figures). While
the curves for the compiled “Simultaneous Role” and “Sequential” coordination
monitoring seem almost linear, the curve for compiled agreement monitoring again
grows exponentially, though much slower than its non-compiled version. As de-
scribed in Section 4, the compiled rules may still require exponential time in the
worst case.

(a) Un-compiled (b) Compiled

Fig. 1. Average running times for the non-compiled and compiled monitoring. Note the Y-axis
range is significantly different in Figures a and b.

6 Conclusionsand Future Work

This paper introduces a novel formalism for describing observation-based moni-
toring for coordination failure, an important component in observation-based coor-
dination. The formalism allows application-independent investigation of the mon-
itoring process, and facilitates analytical treatment of monitoring. We provide an
example of such analytical treatment, a process that compiles the exponential run-
time process of monitoring into a set of reactive rules that can be executed quickly.
We evaluate our work empirically on varying-scale examples of observation-based



monitoring taken from the literature, and show that the compilation process results
in orders-of-magnitude faster run-time. Future directions for our work include in-
depth study of the compilation process and the effects of ambiguous observations
on monitoring run-time.
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