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ABSTRACT
Execution monitoring is a critical challenge for agents in dynamic,
complex, multi-agent domains. Existing approaches utilize goal-
attentive models which monitor achievement of task goals.
However, they lack knowledge of the intended relationships
which should hold among the agents, and so fail to address key
opportunities and difficulties in multi-agent settings. We explore
SAM, a novel complementary framework for social monitoring
that utilizes knowledge of social relationships among agents in
monitoring them. We compare the performance of SAM when
monitoring is done by a single agent in a centralized fashion,
versus  team monitoring in a distributed fashion. We experiment
with several SAM instantiations, algorithms that are sound and
incomplete, unsound and complete, and both sound and complete.
While a more complex algorithm appears useful in the centralized
case (but is unsound), the surprising result is that a much simpler
algorithm in the distributed case is both sound and complete. We
present a set of techniques for practical, efficient implementations
with rigorously proven performance guarantees, and systematic
empirical validation.
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1. INTRODUCTION
Execution monitoring [2], [8] is a critical challenge for
applications of autonomous agents in training and instruction
[12], command-and-control operations [14], coordination ([3],
[13]), UAVs for traffic surveillance, etc. In these real-world
applications, a monitoring agent monitors the behavior of an
individual agent or a team (which may include itself), detecting
and diagnosing failures as they occur. Interactions among multiple
agents complicate the task of the monitor, since it now has to
consider interactions not only between the agents and the
environment, but also among the agents themselves. Also, failures
in interaction between an agent and the environment (e.g., failed
sensors) affect its interactions with other agents.

Previous investigations of execution monitoring (e.g., [1], [2], [8],
[14]) have focused on a single agent that utilizes task-specific
condition monitors, or a model of the monitored system, to
generate goal-attentive, or teleological, expectations of correct
execution, i.e., testing achievement of tasks and plan-steps. This
approach is very powerful, but fails to treat key opportunities and
problems in multi-agent settings.

First, the monitored target of these systems is usually a single
agent/system. When applied to monitoring multiple agents, the
failures they must detect may be distributed, and may not be
detected when monitoring an individual agent per se, e.g., the
failure may be that an individual agent did not help a teammate in
need, or that a team of agents is not in agreement on the goals of
the team. Second, a lack of knowledge of the relationship with
other agents prevents them from using other agents’ behavior as a
knowledge source for correcting the execution. For example, a
driver may not see a road-sign that tells it to turn. But if she is
driving in a convoy, where everybody shares the goal, she can
infer the existence of the road-sign when everybody else turns, or
at least look more carefully for it. Third, the focus of these
approaches on goal-attentive models of the monitored system
does not allow them to consider the relations that must be
maintained independently of the achievement of the goal. This
may cause recovery to be done in a way that violates important
relationships--Sacrificing teammates to achieve an individual goal
is hardly acceptable behavior.

This paper explores Socially Attentive Monitoring (SAM), a
social execution monitoring framework, complementary to
existing approaches. The key idea is to use various models of
social relationships among agents, rather than goal-attentive
models of the task, to drive the monitoring process. Our
hypothesis is that judging whether two agents are maintaining a
relationship (social monitoring) is often much easier than
determining whether they are acting correctly with respect to
some goal (goal-attentive monitoring). The behavior of a convoy
can be monitored by verifying in detail the goal of each agent
individually. However it is easier to detect a failure by noting that
the agents drive in different directions.

SAM has knowledge of different types of social relationships,
which are used to drive the monitoring process: teamwork
relationships, coordination relationships, similarity relationships,
etc. An agent running SAM uses communications, plan-
recognition, etc. to gain knowledge of monitored agents’ state.
Then the relationship models are used to verify that specified
relationships among agents are not violated. For instance, by
verifying the relative velocity and position of two agents, SAM



can judge whether they are maintaining formation (a type of
coordination relationship). Once a failure is detected, SAM
diagnoses the failure, attempting to explain the violation of the
relationships. The relationship models focus the diagnosis
process on relevant explanations, and greatly reduce the
computational effort. The resulting explanation paves the way to
recovery via negotiations, commands, etc.

Previous work [6] presented SAM in an initial form, adopting an
approach of a single social monitor observing its teammates,
without systematic experiments exploring the degrees of freedom
in SAM’s design, or any formalization of the method. This paper
presents a significant advance. It presents an experiments-driven
exploration of SAM’s parameters—centralized/single monitoring
agent vs. a distributed configuration, and the effects of explicit
representation of ambiguity in plan-recognition. The repeating
theme in all of these explorations is the desire to find simple,
cheap, and powerful techniques that agents can employ in
practice, with guaranteed results. In particular, we will show that a
simple distributed scheme which requires no explicit
representation of ambiguity, nor communications, performs better
(sound and complete detection) than a more complex scheme that
is used by a single monitoring agent (complete and unsound,
requiring communications and explicit representation of
ambiguity). SAM’s dimensions will be mostly illustrated using
collaboration relationships, but other relationship models are also
implemented (coordination, role similarity, etc.).

2. MOTIVATION AND EXAMPLES
SAM was born out of frustration. During several years of
intensive development, and despite rigorous testing, our
automated pilot agents in a realistic battlefield training simulation
[12] displayed an annoying tendency to fail at the most critical
moments. The environment’s many uncertainties, such as
behaviors of other agents, unreliable communications and sensors,
etc., presented the agents with never-ending opportunities for
failure, which we could simply not anticipate. Our teamwork
model [11] prevents many failures, but it is not sufficient. SAM
can extend the model using plan-recognition.

Some examples may serve to illustrate. The first example
(henceforth, example 1) involves a scenario where a team of three
helicopter pilot agents were to fly to a specified waypoint (a given
position), where one of the team-members, the scout, was to fly
forward towards the enemy, while its teammates (attackers) land
and wait for its signal to join it. During flight, all of the agents
monitored for the waypoint. However, due to an unexpected
sensor failure, one of the attackers failed to sense the waypoint.
So while the other attacker correctly landed, the failing attacker
continued to fly forward with the scout.

In a different run (example 2), after all three agents reached the
waypoint and detected it, the scout has gone forward and
identified the enemy. It then sent a message to the waiting
attackers to join it and attack the enemy. One of the attackers did
not receive the message, and so remained behind indefinitely
while the scout and correct attacker continued the mission alone.

We have collected dozens of similar reports during the last three
years. While the failures are obvious to the human designer once
they occur, they are very hard to anticipate in design time. These
failures are almost always catastrophic, as the agents are often
unable to continue correct execution; yet the failure are not due to

lack of domain expertise, as agents could recover if they
monitored relationships with other agents. The goal-attentive
condition monitors are insufficient, as individual agents are
behaving correctly given their task-specific input.

3. SOCIAL DIAGNOSIS & MONITORING
The general structure of SAM (Socially Attentive Monitoring) is
shown in Figure 1. It consists of (1) a knowledge-base containing
models of relationships that should hold among the monitored
agents; (2) the agent modeling component responsible for
collecting and representing knowledge about the monitored
agents;  (3) the detector that monitors for violations of
relationships among monitored agents; and (4) the diagnoser that
verifies the failure, and provides an explanation for it.
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Figure 1. General Structure of a SAM System.

3.1 Agent Modeling and Representation
When an agent monitors itself, it may have direct access to its
own internal state information. When monitoring others, however,
this is often not possible. Even if monitored agents cooperate,
they cannot, in complex domains, continuously communicate their
internal state to the monitor, as it is intrusive and requires
communications to be safe, cheap, fast, reliable, etc. (which is
often not possible). Instead, a monitor may choose to use plan-
recognition to infer the agents’ unobservable state from their
observable behavior. This approach has greater computational
cost and reduced certainty, but is unintrusive, and robust in face
of communication failures (the monitor may still benefit from
focused communications with the other agents).

To enable such plan-recognition, we have developed a new
algorithm called RESL (REal-time Situated Least-commitments).
The key idea is to maintain all reactive-plan (henceforth, plan)
hypotheses matching each agent’s observed behavior. The entire
plan library hierarchy is expanded for each modeled agent, and all
paths matching the observed behavior of the agent being modeled
are tagged.

Figure 2 gives a simplified presentation of the plan hierarchies for
a variation of example 1, in which the two attackers (Figure 2-b)
detected the waypoint and have landed (switching to the wait-for-
scout plan, henceforth denoted by S), while the scout (Figure 2-a)
did not and is flying forward (executing F). The filled arrows
indicate the actual executing plans. Dotted arrows mark additional
plans that from an external observer's perspective match the
observable behavior. Team-plans (see below) are boxed. For
instance, when the observed scout’s speed and altitude match
“low-level”, one of the possible flight-methods under both the fly-
flight-plan (F) and Wait-for-Scout (S) plan, they are both flagged
as matching. This match is then propagated up. Similarly, when
the attackers land, RESL recognizes that they are executing the



"Just-Wait" plan. However, this plan can be used in service of
either the Wait-for-Scout plan (S), or the Ordered-Halt (H) plan --
a plan in which helicopters are ordered by their headquarters to
land immediately. Therefore, both H and S are tagged as
matching.

120Execute Mission

Wait for Scout (S)

Fly Route

Fly Flight Plan(F)

Low-Level Low-Level

Scout-Forward

Execute Mission

Ordered-Halt (H)Wait-for-Scout (S)

Just-WaitJust-Wait

(a)  Scout’s Plan Hierarchy (b) Attackers' Plan Hierarchy

Figure 2. Scout (a) and Attackers’ (b) actual and recognized
abbreviated reactive plan hierarchies. Both attackers use (b).

3.2 Social Failure Detection
The detector signals possible relationship violations (serving as an
initial trigger for the diagnoser, which verifies the failures). We
illustrate with an example of teamwork relationships. Recently,
domain-independent teamwork models that provide guidelines on
team-members behavior and responsibilities have been introduced
[7], [11], [5], to provide teamwork flexibility. STEAM (and
similarly, other teamwork models) dictate that team plans (boxed
in Figure 2) must be identical for all team-members. The detector
thus performs the teamwork test by comparing the agents’ plans at
each level of the hierarchy. The topmost difference found (if any)
signifies a difference in the goals of the agents, and therefore the
breakdown of teamwork. For instance, in Figure 2, the scout
differs from the attackers at the second level.

The detector may be correct in detecting relationship violations
despite being wrong about the details. For instance, when the
flying attacker notices its teammate has landed, it doesn’t know
which plan the other attacker has switched to. But it can be sure
that the other attacker is no longer executing the flight plan jointly
with itself. In terms of social failure detection, then, negatives and
positives are defined in terms of whether a relationship violation
has occurred, not in terms of the whether the agent modeling
hypotheses correctly match the observed agents actual plan, nor in
terms of whether a goal-attentive failure has occurred. Negatives
are defined as the detector not detecting a violation, and positives
are defined as where it does. They could be true or false,
depending on whether a violation has actually occurred.
Following this, completeness and soundness of social failure
detection are defined as not having any false-negatives and false-
positives, respectively.

The relationship tested determines the test used in SAM.
Coordination relationships, for instance, may require plans to be
unequal at all times: When engaging the enemy, pilots are
sometimes supposed to pop-up from behind the hills in sequence,
such that no two helicopters appear at the same time. Here, a
discovery that two agents are executing the same plan at the same
time is a sign of failure (exactly the opposite from collaboration).
In formation relationships, all the helicopters’ velocities are
defined in terms of the leader’s velocity. Failures here would be
expressed in failing to maintain the relative velocities within
nominal ranges.

3.3 Social Diagnosis
The diagnoser verifies the detected violation and constructs an
explanation for it. Although the details may vary depending on the
type of relationship, the diagnosis is often given in terms of a
(minimal) set of belief differences between the agents that can
account for the failure to maintain the relationship. These are used
as a basis for recovery. The starting point for this process is the
detected failure (e.g., the exact difference in executing team-
plans), and the monitor’s matching hypothesis(es) for what plans
the monitored agents are currently executing. The diagnoser
compares the beliefs of the agents to produce a set of differing
beliefs that account for differences in the plans. However, each
agent in a real-world domain may have many beliefs, and many of
them will vary among the agents, though most of them will be
irrelevant to the diagnosis. Moreover, the monitor is not likely to
have access to all of the beliefs held by the agents.

Knowledge of the relationships between the agents is useful here,
since they specify how the beliefs, goals, and actions of the
different agents are related. For example, the teamwork model
dictates which beliefs the agents hold must be mutually believed
by all the agents in the team [11]. Any difference that is detected
in those beliefs is a certain failure, as the team members do not
agree (because of a failure) on issues on which agreement is
mandatory to participation in the team. In particular, team plans
which mandate joint execution by the team members are jointly
selected (or terminated) by team members’ establishing mutual
belief in at least some of their preconditions (or termination
conditions).  Differences in plan selection are therefore a certain
failure.  Differences in conditions that are to be mutually believed
also signify certain failures.

Upon detection of the difference in team-plans (henceforth, plans)
among the agents, the diagnoser requests information from the
agent-modeling component about the beliefs of the agents
involved. In general, the diagnoser can infer only that each agent
believes that the termination conditions for its associated plans
have not been satisfied, and that the preconditions for those plans
just selected have become true. Often, however, the inference can
go even further. In domains in which changes in plans are always
observable, SAM will detect the difference in plans as soon as it
happens. Then, the diagnoser notes the last operator the now-
differing agents have been known to agree on, and their currently
executing plans. It then classifies each agent as: (a) still executing
the last-agreed-upon plan (i.e., never made a switch); or, (b)
having switched from the last agreed upon plan to a different one.
In case (a), the agent in question has never made the switch, and
so believes that the termination conditions of the last-agreed-upon
plan have not been achieved. If an agent has made a switch (case
b), then it believes that the previous plan’s termination conditions
were achieved, as were the preconditions for its next plan. Let Op

be the last agreed upon plan, with a disjunctive list T of
termination conditions Ti, each a conjunction of (possibly
negated) atomic terms. Let On be the plan currently executed, with
a disjunctive list P of preconditions Pj (again, each a conjunction).
Op could have terminated because of one or more Ti have become
true, and On could have been selected because one or more Pj have
become true.

The diagnoser thus potentially faces numerous hypotheses. The
agent may hold true any one of the following sets of belief: T1∧P1,
T1∧P2, …. (T1∧T2) ∧(P1∧P2), etc. The number of possible



hypotheses is 2T×2P, the cardinality of the cross-product of the
two power-sets. Fortunately, the situation is not so bad in practice.
First, inconsistent hypotheses can be eliminated. (Suppose for
example that T1 = X∧Y∧¬Z and P2 = Q∧Y∧Z. Any hypothesis
that contains T1∧P2 would be inconsistent). Second, the diagnoser
may choose to heuristically rank the hypotheses. SAM uses the
minimal cardinality heuristic.

Now that it has access to the beliefs of each agent involved, the
diagnoser looks to the relationship model (teamwork, in this case)
to provide knowledge of how beliefs should have been related
(here, mutually believed or identical). Beliefs that do not maintain
the relation (here, not mutually believed) form the diagnosis set,
i.e., they provide an explanation for why the agents selected
different plans when they should have selected identical plans.

4. CENTRALIZED MONITORING
Our methodology is that of systematic experimental investigation
of the dimensions of SAM. We seek to find practical techniques
which maximize monitoring capabilities but minimize
computational and communications costs. We explore SAM by
presenting empirical results from systematic variations of
examples 1 and 2, in which we explore all combinations of agent
failures (i.e., a single agent failing, two agents, etc.), and all
monitor roles in the team (attacker/scout). We focus on examples
using collaboration relationship monitoring.

The simplest case of execution monitoring is where the
monitoring is done by a single agent (who may be part of the
monitored group). We experiment here with  the effects of explicit
representation of ambiguity in SAM’s plan recognition. We begin
by examining a SAM variation which limits computational
complexity by causing the agent modeling component to select a
single plan-recognition hypothesis for the detection process.

We first experiment with a novel disambiguation method that
ranks plan-recognition hypotheses by the level of team-coherence
they represent (the number of agents in agreement in each of
them). The more coherent an hypothesis, the higher its rank, e.g.,
any hypothesis which has all team-members executing identical
team-plans will be ranked highest (further disambiguation may
use other criteria, such as minimal assumptions). The intuition is
that failures to maintain relationships are occurring despite the
agents’ attempts. Thus often major parts of the team will remain
coherent.

In example 2, no matter which one of the agents is the monitor,
the failure to maintain relationship will be detected regardless of
ambiguity in the plan-recognition. The first set of experimental
results are shown in Table 1 (see end of paper), presenting the
results from the scout’s point of view of all systematic failure
variations of this scenario. Here, J marks the team plan where the
scout waits for the attackers to join it after identifying the enemy
and sending a message to the attackers; S marks the wait-for-scout
plan, selected when the waypoint is originally detected; and H
marks the ordered-halt plan, selected when a command is received
from HQ to halt execution. These are the topmost team plans at
which a difference in team-plans among agents will occur. The
failures are on the part of the attackers (to receive the message) or
on the part of the scout (to send it). There are five variations
possible (a failure to send is the same as both attackers not
receiving). The first three columns show the actual plans selected
by the three agents: A1, A2, and A3. The next three columns

show A3’s selected modeling hypothesis using team-coherence.
These show what A3 believes the team is doing as a whole. The
next two columns show in which of the cases a social failure has
actually occurred, and whether it was in fact detected by A3. The
next column summarizes the detection class: True positive, true
negative, etc. Finally, the last column explains the physical failure
that actually took place. For example, row 4 presents the case
where both attackers did not receive the message (physical failure:
A3's message was lost). They have landed and are waiting for the
scout (S). The scout, however, believes the message was received,
and so it lands, waiting for the attackers to join it (J). Here the
scout (acting as monitor) notices the two attackers are not moving
forward. So it cannot be the case that they are joining it (executing
J). Under the team-coherence criteria, they are both executing
either S (i.e., they never received the message), or H (i.e., the
scout failed to received the message to halt execution). But in any
case, the collaboration relationships have been violated. This
social failure is detected and is therefore a true-positive.

Many failures are successfully captured by SAM with the team-
coherence heuristic (for example, all teamwork failures in Table
1). However, as we continued to experiment, we discovered cases
in which it doesn’t work as well. Table 2 presents the results of
the centralized social monitoring in a set of experiments based on
example 1 (Figure 2). These present the attacker A1’s non-
ambiguous view of the team under all possible permutations of the
failure to see the waypoint, using the team-coherence criteria. The
plan Fly-flight-Plan is marked F.

The two highlighted rows point out A1’s failures to recognize that
a social failure is taking place. The team coherence criteria has
caused A1 in both of these cases to believe the scout is in fact
maintaining its relationship with the rest of the team, i.e., the
scout (A3) is executing the same team-plan as A1 and A2. A false
negative has occurred in both of these cases. The ordered-halt
plan (see Figure 2) have been ruled out in all rows as hypotheses
in which it appeared were less team-coherent than those appearing
in the table.

In none of our experiments did the team-coherence criteria
produce a false-positive result, i.e. a social failure is detected
when none occurred. Indeed, we were able to verify these
capabilities formally:

Theorem 1: The team-coherence heuristic will not lead to a
false positive detection.

Proof sketch. An agent is observing a group of agents a0, … , an.
(which may include itself). For each monitored agent there is
an individual matching hypotheses set Hi. If all the agents are
executing the same plan P, then for each P∈Hi. Thus (P, …. ,
P) will be at least one of the group hypotheses produced by
the monitoring agent. This hypothesis implies maximal team
coherence and so would be ranked at the top. If it is selected,
the detector will give a negative result (i.e., no false
positive). If it isn’t selected, the selected one would have
equal coherence ranking (have all agents executing some
other plan Q). Resulting again in a negative detection. QED.

The team-coherence heuristic is thus guaranteed to cause no false
positives in the detector, and is therefore sound – any failure it
detects is indeed a true failure in maintaining relationships.
However, the detection may be incomplete (i.e., contain false
negatives) as we have seen.



Of course, we would have preferred an algorithm that is
complete–that is guaranteed to detect all social failures. We
therefore experimented with an alternative disambiguation
criteria, team-incoherence (i.e., the opposite of the team-
coherence criteria). Here, the modeling component prefers
hypotheses allowing for the possibility of a disagreement between
the agents. Table 3 gives the Attacker’s view, similarly to Table 2,
but using the team-incoherence criteria.

This heuristic guarantees that no false negatives would occur (the
proof follows that of theorem 1). It would thus cause the detector
be complete. However, completeness comes at a cost of false
positives (highlighted rows above), and thus detection is unsound.
If in practice most of the time the systems are performing
nominally, many useless false alarms would be generated.

The two inverse criteria – team-coherence and incoherence –
represent two extremes of a space of disambiguation methods for
social monitoring. The team-coherence criteria guarantees
soundness of social failure detection, at the price of completeness.
The team-incoherence criteria achieves completeness at the cost of
soundness. Moreover, without having additional information, we
can show that no disambiguation scheme exists that is both sound
and complete, and still consistent—given the same set of possible
matching hypotheses, it will have to sometimes choose one
hypothesis and sometimes another in order to be both sound and
complete.

Definition 1: Let M(A1/P1) denote the set of all hypotheses
matching a monitor’s observations of agent A1 when it
executes team-plan P1. We say that A1’s role in P1 is
observably different than in team-plan P2 if
M(A1/P1)∩M(A1/P2)=∅; i.e., the monitor can determine the
team-plan selected.

Theorem 2: Any disambiguation scheme D that does not utilize
external knowledge and is both sound and complete is not
consistent in its selection of a disambiguated hypothesis.

Proof sketch: Let D be the candidate disambiguation scheme that
is complete and sound. Assume that it is deterministic. Let
A1,A2 be agents whose role in P1, P2 is not observably
different: M(A1/P1)=M(A1/P2)=M(A2/P1)=M(A2/P2)={P1,
P2}. Let B be a monitoring agent who observes A1, A2 and
uses D for disambiguation. The set of matching hypotheses
when A1 and A2 are both executing P1 is  H={(P1,P1),
(P2,P1), (P1,P2), (P2,P2)}. And since D is both complete and
correct, B (using D) will choose (P1,P1). Now, when A1 and
A2 are executing P1and P2, respectively., the matching
hypothesis set is again H. But now B (using D again) must
select (P1,P2). Since the same set of options was available in
each case, and no other information was supplied, D must be
inconsistent in its selection. QED.

It would thus seem that our exploration of a centralized monitor
using a single, unambiguous, hypothesis, leads to discouraging
results. We therefore let go of our insistence on a single
hypothesis, and examine the effects of explicit representation of
ambiguity on the centralized monitoring process. We now allow
examining all individual matching hypotheses as maintained by
RESL. Table 4 shows again the attacker A1’s view of the team,
but this time with all hypotheses explicitly represented (Note that
RESL actually represents only individual hypothesis, so the group
combinations are actually implicit in our implementation, and

presented here for clarity). Due to the exponential size, we present
the results of only the first few variations.

The cost of this representation is clear just from a first look at the
table: the detector and diagnoser potentially have an exponential
(in the size of the team) number of hypotheses to reason about.
The question is whether this enabling of multiple hypotheses
representation alleviates our concerns as to lack of soundness or
completeness.

The detection can be qualified simply by examining a candidate
team-incoherent hypothesis and a candidate team-coherent
hypothesis. These, in essence, bound the matching hypotheses
between them with respect to failure detection. If they agree that a
failure exists, then the detector can be sure of a true positive. If
they disagree (i.e., the team-coherent hypothesis produces
negative detection), the detector cannot be certain, and must revert
back to verification. Though detection is still unsound, this
process reduces the number of cases needing verification (50% in
tables 2-3). It also requires representing only two candidate
hypotheses–one team-coherent hypothesis, and one team-
incoherent hypothesis.

Representing multiple hypotheses explicitly is also necessary for
centralized diagnosis. The diagnosis procedure as described
(section 3.3) implicitly assumes the underlying detection is sound,
and the models of the diagnosed agents are correct. But it may be
possible that the diagnosis will take place using an incorrect
description (plan recognition hypothesis) of the agents. These
cases can be categorized as follows:

1. The detection is correct, but the models of the agents are
incorrect. For example, row 4 of Table 1 presents a case of
correct detection using incorrect models.

2. The detection is incorrect (a false positive). The entire
diagnosis is irrelevant.

3. The detection is correct, but some of the agents are falsely
assumed to be executing a non-differing plan. For instance,
in row 2 of Table 2.   

Explicit representation of all matching hypotheses means that the
correct hypothesis, even when not selected, is still available for
the diagnoser. It is therefore able to assess the state of its
knowledge, and attempt verification when appropriate.

We have explored SAM in this section in centralized
configuration, with and without explicit representation of
ambiguity, and under several different disambiguation schemes
and combinations. The emerging technique for centralized social
monitoring is complete, but unsound, and is quite complex and
expensive, requiring representation of multiple hypotheses and
communications for verification.

5. DISTRIBUTED MONITORING
The next configuration of SAM we explore is distributed
monitoring, where all participating agents monitor themselves and
the team using SAM. We begin exploration again with the simple
scheme of team-coherence.

The results for the variations of example 1 are in Table 2 for the
attackers, Table 5 for the scout. When we examine them more
closely, we find that the two false-negatives of (Table 2. , rows 4-
5), occur when the attackers monitor the team, but not when the
scout does. In fact, as Table 5 shows, the scout correctly detects
all cases where a social failure would occur, and so it can



compensate for the attackers’ false-negative detection (though it
may select the wrong hypothesis, H, to explain their actions, the
detection is still correct).

The surprising result is that the team, relying on the scout to
identify failures, can in fact completely detect all failures using
simple team-coherence, without the need for the complex
algorithm deployed by the centralized monitor.

We attempt to formally define the circumstances under which this
phenomenon holds. Under the team-coherence criteria, a failure is
detected between agent A1 (running P1) and agent A2 (running
P2) if M(A1/P1)∩M(A2/P2)=∅. First we prove a lemma on the
conditions in which a single agent will detect a difference. We
then use this lemma to prove the conditions under which a self-
monitoring team would detect a failure.

Lemma 1: A monitoring agent who is part of the team and is
executing P1 would detect a difference with an agent A2
executing a different plan P2, if A2 has an observably
different role in P1 and P2.

Proof sketch: Since M(A2/P1)∩M(A2/P2)=∅, therefore
P1∉M(A2/P2).  QED.

Before proving the main theorem, let us define the following
property:

Definition 2: A agent team T executing a set of team-plans P is
said to be observably-partitioned with respect to P if for any
two plans Pi, Pj there exists an agent in the team whose role is
observably different in Pi and Pj.

For instance, our helicopter pilots team is observably-partitioned
with respect to the plans fly-flight-plan, wait-at-point, and
ordered-halt. The attackers’ behavior is different in the first two
plans. The scout’s behavior is different in the second and third,
and the attackers’ is different in the first and third.

Theorem 3: If an agent team T is observably-partitioned with
respect to a set of team-plans P, and all agents are using the
team-coherence heuristic, the social failure detection is sound
and complete.

Proof sketch: First, since no individual member in the team
would report a false positive, it follows that no false positive
detection would be reported in general. Thus this distributed
monitoring scheme is sound. We will prove at least one agent
will detect a difference between itself and others whenever
team-members are not all executing the same plan (i.e., a
failure is occurring). Let team-plans Pi, Pj∈P be two of the
plans currently executed by team-members (there are at least
two, otherwise there is no failure). For Pi and Pj there exists at
least one agent a1 whose role is observably different in Pi and
Pj. There are three cases: (i) a1 is executing Pi. In this case any
agent executing Pj would detect failure (lemma 1); (ii) a1 is
executing Pj. In this case any agent executing Pi would detect
failure (lemma 1); (iii) a1 is executing some other plan Q. Its
role in Q must observably different than  in Pi or in Pj (or
both), and  again any agent executing Pj /Pi would detect the
failure. (a1’s role in Q cannot be observably non-different in
both Pi and Pj, since then M(a1/Pi)∩M(a1/Pj)=Q, which
contradicts a1 being observably-different in Pi and Pj). Based
on (i)-(iii), distributed monitoring is complete. QED.

Thus if we could guarantee at design-time that the team is
observably-partitioned w.r.t the plans executed, we would be
guaranteed sound and complete distributed social failure
detection. This may not be a difficult property to design: Teams
are very often composed such that not all agents have the same
role in the same plan. Monitoring in a team where this property
holds can be achieved by a very simple protocol: Use the team-
coherence heuristic to choose a most coherent hypothesis. If it
contains a failure, go ahead with diagnosis and/or let the other
agents know. If it doesn’t, go ahead with the execution of the
individual task and continue monitoring.

If the team, however, is not observably-partitioned, there may be a
case where any two agents are each executing a different plan, but
both will have a false negative detection, and therefore overall the
distributed monitoring will have a false negative. Fortunately, this
problem may be alleviated. It occurs when A1 (executing P) has
P∈M(A2/Q), and A2 (executing Q) has Q∈M(A1/P). A check for
this condition can be made a part of the plan design process,
marking risky points in the execution in which verification by
communications can be prescribed proactively. Or, the check
could be inserted into the protocol for run-time analysis—the
agent would simulate the other’s hypotheses matching their own
actions, and detect risky points dynamically.

Moving from centralized detection to distributed detection has
both simplified and improved the results of the detection, due to
shared responsibility. Similarly, the distributed diagnosis problem
can potentially made easier because other agents in the team are
participating in the monitoring. In specific circumstances, for
instance, an agent might be able to not only detect a failure in its
own behavior, but also to diagnose it and recovery by quietly
adopting its team-mates plan, without the other team members
even knowing that a problem exists. However, here the situation is
more complex. In general, adoption of others’ team-plans may
lead to dead-locks, looping behavior (A adopts B’s plan, B adopts
A’s), etc. These issues are subject for  future work.

6. RELATED WORK
In the arena of distributed monitoring, the idea of comparing
beliefs has earlier appeared in [10] and [9]. Sugawara and Lesser
[10] have used comparative analysis [4] in the context of a group
of diagnosis agents that coordinate in diagnosing a network. Their
work focuses on learning situation-specific coordination rules for
each of the agents, to optimize their coordination strategy. This
involves the construction of a global system view by the agents
involved (via communications), and comparing this view to the
agents’ own local views to detect errors in local view to be
corrected by learning. Schroeder and Wagner [9] have proposed a
scheme for distributed diagnosis by cooperating agents who
receive requests for tests and diagnoses, and send responses to
other agents. The agents each construct a global diagnosis based
on the local ones they produce and receive. They do not consider
communication costs, uncertainties, nor conflicts in the
construction of the global view, and in both investigations,
cooperation is assumed. In contrast, SAM uses plan-recognition
and minimizes communications, and uses explicit models of the
relationships between the agents to drive both detection and
diagnosis.

Huber and Durfee [3] use plan recognition for coordination. They
do not assume an explicit relationship model, but instead assume
opportunistic agents, which coordinate with others when it suits



their individual goals. Because of this, they have no guarantees of
failure: when an agent no longer maintains a relationship, it may
just have opportunistically found a better goal to pursue. Work on
teamwork [5], [11] concentrates on establishing and preventative
maintenance of collaboration relationships, often by attempting to
establish mutual belief (undecideable in theory) in team goals and
plans. SAM offers useful complementary capabilities, using plan-
recognition to attempt detection of cases when the establishment
or maintenance of mutual belief fails. It also generalizes to
coordination, similarity, etc., and to non-participatory monitoring.

7.  SUMMARY AND FUTURE WORK
This paper presents SAM, a fully implemented novel framework
used by our agents for social execution monitoring in multi-agent
domains. SAM uses models of relationships among agents to
drive monitoring, not a model of the task to be executed. It is able
to capture failures in maintaining relationships even when each
individual is correct, and offers significant improvements to the
goal-attentive schemes. We explored SAM in single and
distributed configurations, with and without explicit
representation of ambiguity, demonstrating its effectiveness by
systematic empirical evaluation and rigorous mathematical
analysis. Key novel aspects in this paper include: (a) an overall
framework, SAM, for social monitoring, (b) practical algorithms
for social monitoring with proven guarantees of detection, (c)
integration of plan-recognition and communication for
monitoring, (d) a simple distributed monitoring algorithm proven
to be better than a complex centralized scheme, and (e) a
condition for risky-points in which agents are to communicate
regardless of monitoring state. Future work includes further
exploration of distributed diagnosis, and additional relationship
models (besides the coordination, collaboration, and role-
similarity already implemented).
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ACTUAL PLANS INTERPRETATION (A3’s) SOCIAL FAILURE PHYSICAL FAILURE
Attacker  A1 Attacker  A2 Scout  A3 A1 A2 A3 Occurred Detected Detect. Class

J J J J J J - - True Negative  None
S J J S J J + + True Positive A1 Fails to Receive
J S J J S J + + True Positive A2 Fails to Receive
S S J H H J + + True Positive A3 Message Lost
S S S S S S - - True Negative Enemy not identified

Table 1. Scout’s view in all permutations of the broken radio-link scenario (example 2).



ACTUAL PLANS INTERPRETATION (A1’s) SOCIAL FAILURE PHYSICAL FAILURE
Attacker  A1 Attacker  A2 Scout  A3 A1 A2 A3 Occurred Detected Detect. Class

S S S S S S - - True Negative  None
F S S F S F + + True Positive A1 Vision Fails
S F S S F S + + True Positive A2 Vision Fails
F F S F F F + - False Negative A1, A2 Vision Fail
S S F S S S + - False Negative A3 Vision Fails
F S F F S F + + True Positive A1,A3 Vision Fails
S F F S F F + + True Positive A2, A3 Vision Fails
F F F F F F - - True Negative All agents' vision fails

Table 2. Attacker A1’s view of the team in all permutations of example 1, using team coherence.

ACTUAL PLANS INTERPRETATION (A1’s) SOCIAL FAILURE PHYSICAL FAILURE
Attacker  A1 Attacker  A2 Scout  A3 A1 A2 A3 Occurred Detected Detect. Class

S S S S H F - + False Positive  None
F S S F H S + + True Positive A1 Vision Fails
S F S S F F + + True Positive A2 Vision Fails
F F S F F S + + True Positive A1, A2 Vision Fail
S S F S H F + + True Positive A3 Vision Fails
F S F F H S + + True Positive A1,A3 Vision Fails
S F F S F F + + True Positive A2, A3 Vision Fails
F F F F F S - + False Positive All agents' vision fails

Table 3. Attacker A1’s view of the team using the team-incoherence criteria (example 1).

ACTUAL PLANS INTERPRETATION (A1’s) SOCIAL FAILURE PHYSICAL FAILURE
Attacker  A1 Attacker  A2 Scout  A3 A1 A2 A3 Occurred Detected Detect. Class

S S S S
S
S
S

H
H
S
S

F
S
F
S

- +
+
+
-

False Positive
False Positive
False Positive
True Negative

 None

F S S F
F
F
F

H
H
S
S

F
S
F
S

+ +
+
+
+

True Positive
True Positive
True Positive
True Positive

A1 Vision Fails

S F S S
S

F
F

F
S

+ +
+

True Positive
True Positive

A2 Vision Fails

F F S F
F

F
F

S
F

+ +
-

True Positive
False Negative

A1, A2 Vision Fail

S S F S
S
S
S

H
H
S
S

F
S
F
S

+ +
+
+
-

True Positive
True Positive
True Positive

False Negative

A3 Vision Fails

Table 4. Representing explicitly all matching hypotheses for A1’s view of team (example 1, portion of results).

ACTUAL PLANS INTERPRETATION (A3’s) SOCIAL FAILURE PHYSICAL FAILURE
Attacker  A1 Attacker  A2 Scout  A3 A1 A2 A3 Occurred Detected Detect. Class

S S S S S S - - True Negative  None
F S S F S S + + True Positive A1 Vision Fails
S F S S F S + + True Positive A2 Vision Fails
F F S F F S + + True Positive A1, A2 Vision Fail
S S F H H F + + True Positive A3 Vision Fails
F S F F H F + + True Positive A1,A3 Vision Fails
S F F H F F + + True Positive A2, A3 Vision Fails
F F F F F F - - True Negative All agents' vision fails

Table 5.  Scout’s (A3’s) view of all permutations of the example 1, using team-coherence.


