
MONAD: A Flexible Architecture for Multi-Agent Control
Thuc Vu*, Jared Go*, Gal Kaminka*’**, Manuela Veloso*, Brett Browning*

{tdv, jgo}@andrew.cmu.edu, galk@cs.biu.ac.il, {mmv, brettb}@cs.cmu.edu
*School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213, USA

Tel: +1 412 268 1474

**Computer Science Department
Bar Ilan University

Ramat Gan 52900, Israel
Tel: +972-3-531-7233

ABSTRACT
Research in multi-agent systems has led to the development of
many multi-agent control architectures. However, we believe that
there is currently no known optimal structure for multi-agent
control since the effectiveness of any particular architecture varies
depending on the domain of the problem. Therefore, deployment
of multi-agent teams would be significantly sped up by a
development and deployment environment which would allow
designers to easily modify the architecture. In this paper, we
present a flexible team-oriented programming and execution
architecture, MONAD, which integrates hierarchical behavior-
based control, multi-agent coordination mechanisms, and agent-
task allocation services. MONAD uses a novel scripting language
that allows designers to easily modify the team structure, behavior
hierarchy, applicability conditions, and arbitration methods, in
pursuit of the best solution for a particular problem. We have
evaluated the MONAD architecture within a well-accepted
adversarial game environment, GameBots, to enable qualitative
comparison of different control techniques. In this environment,
we were able to rapidly design and test several teams of agents
who used role, preference, or a combination of role and
preference arbitration and observed that these different teams
varied in their performance characteristics.

Keywords
Arbitration, Behavior-based control, Robot Teams, Teamwork,
Collaboration, Team-oriented programming

1. INTRODUCTION
There is growing recognition, both in theory and in practice, that
multi-agent teams can significantly benefit from the principled
application of agent control architecture supporting explicit team
control mechanisms. Such mechanisms can automate
communication content and timing decisions, negotiations over
joint decision making, coordination of activities, social
organization into roles, and re-organization upon failures. This
allows the human designer to focus on specifying the goal-
oriented behavior of the agents, as collaborative behavior is
automated to a large degree. Indeed, a number of teamwork
models have been deployed successfully in complex dynamic
multi-agent applications, e.g. GRATE* (Jennings 1995), STEAM

(Tambe 1997), and ALLIANCE (Parker 1998).

Unfortunately, to our best knowledge, there is currently no known
architecture which is recognized as optimal for all applications.
Furthermore, experimenting with different team control
architectures can be expensive both in design time as well as in
deployment time. Coordination or negotiation mechanisms,
different behavior-based control mechanisms, different team
constitution schemes, all take non-trivial design and
implementation time.

We present in this paper an architecture for multi-agent control,
MONAD, which integrates script- and code-based off-line team-
programming and team design, with a run-time coordination
engine that can execute different team-control designs
automatically within a behavior-based framework. Using the
MONAD architecture, a designer can easily create, modify, and
experiment with a wide variety of team structures.

MONAD includes an intuitive and flexible scripting language
which enables designers to easily build a team in the form of an
augmented behavior hierarchy. This behavior hierarchy lends
naturally to the modification various parameters of a team, such as
the structure of the hierarchy itself and the negotiation protocols
to be used by the agents during synchronized execution of the
hierarchy. To further facilitate the process of generating teams,
MONAD also contains a GUI whose ultimate aim is to provide a
visual means of manipulating and modifying the parameters of a
team.

In order to execute the team structures specified by MONAD
scripts, the MONAD architecture includes a run-time distributed
behavior-based control engine called SCORE (Synchronized
CoORdination Engine) which is able to execute any team design
specified by the MONAD scripting language. The actual
execution of specific behaviors are coded independently by the
designer, but the coordinated multi-agent execution of these is
not. Instead, SCORE automatically synchronizes the execution of
behaviors across multiple agents, drawing on a user-designed
reusable library of negotiation protocols that support different
team-control designs. MONAD builds on earlier work on team-
oriented programming (Pynadath et al. 1999, Tambe et al. 2000),
and teamwork models (e.g., STEAM (Tambe 1997)) but extends
them in several ways (see Section 2 for details).

MONAD is a first step in our attempt to provide a set of design
and deployment tools for agents in virtual and physical
environments. We hypothesize that it is possible to parameterize
to a significant degree many of the various control mechanisms
which have been reported on in the literature. Such
parameterization will significantly reduce design and deployment
time, since it will allow designers to use and re-use generic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ’03, July 1-2, 2003, City, State.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

control templates, which would be instantiated simply by
indicating the module to use and setting the parameters of the
instantiation.

MONAD contributes concrete demonstration of this approach in a
set of implemented, integrated, tools and services. In addition,
using MONAD, we have been able to explore team control
designs which use a mixture of negotiation policies within a
general teamwork engine - designs that are not possible with
current models.

The next sections will present related work and background on
MONAD (Section 2), the details of MONAD (including off-line
and on-line components—Section 3), and the results of using
MONAD in a challenging virtual environment in which teams of
agents can coordinate and compete in various team games
(Section 4). Section 5 concludes.

2. MOTIVATION AND BACKGROUND
Our work on MONAD is motivated by our experience in
developing teams of virtual and physical robots in different
domains, and for different tasks. Development of such teams is a
long and arduous process, and we have found ourselves
experimenting with different control mechanisms to match the
task at hand with appropriate control. We therefore decided to
examine the challenge of creating a set of tools that would enable
us to explore many different team control structures without
having to redevelop a new coordination engine each time.

We were inspired in our work mainly by previous work on Team-
Oriented Programming (Pynadath et al. 1999, Tambe et al. 2000).
In this work, a graphical user interface is used by the team
designer to construct an organizational hierarchy, assign specific
tasks for organizational roles, and then assign agents to the
organization. During execution, the agents utilize the STEAM
teamwork model (Tambe 1997) to automatically coordinate the
execution of their tasks. Unfortunately, the tools and run-time
model described do not support several key components of team
control, which we felt were critical.

For instance, Tambe et al.'s team-oriented programming did not
allow the designer to specify the negotiation schemes that should
be used by the agents at different points (Pynadath et al. 1999).
Instead, a fixed protocol, built into STEAM, was used for all joint
decisions. However, we believe that different situations require
agents to negotiate (arbitrate) in different ways, and thus MONAD
provides the designer with tools to specify different protocols and
the situations in which they should be applied. This is supported
at run-time by the SCORE coordination engine and modular
arbitration algorithms either coded by the designer or reused from
other sources. These arbitration methods can implement well-
studied negotiation algorithms such as fixed-role, voting, market,
preference, etc. Given an implementation of an arbitration
technique, MONAD allows the designer to specify constraints and
parameters for that arbitrator on a per-behavior basis. This
flexibility is not possible in the earlier work.

The SCORE teamwork model and arbitration methods are also
related to previous teamwork models that have been reported in
the literature, such as GRATE (Jennings 1995), or ALLIANCE
(Parker 1998). However, such teamwork models address only the
execution-time component in deploying teams, and suffer from
the same weaknesses as STEAM (Tambe 1997) with respect to

being able to use different arbitration methods at different times
(based on designer-specified conditions). On the other hand,
models such as STEAM and ALLIANCE have mechanisms for
failure detection and recovery, while MONAD and the SCORE
engine currently lack support for such mechanisms.

3. MONAD ARCHITECTURE OVERVIEW
The MONAD system is composed of several key components
which work together to provide a flexible framework for multi-
agent programming (Figure 1). The components provided by the
designer include both offline script and code, in the form of the
team program, team description file, arbitration execution code,
and behavior execution code. The team program and description
file are both written in a format specified by the MONAD
architecture, while the arbitration and behavior execution must be
written and compiled to native code. However, the arbitration
execution code is portable across all teams and a given arbitration
algorithm, once written, can be added to user-collected libraries to
be used in any team program. Given these inputs, the MONAD
architecture provides synchronized execution of the team program
through SCORE which acts as a distributed coordination system
for the entire team. Each agent on a team runs an identical

Figure 1. Components of the MONAD Architecure.

copy of SCORE and initializes it with the same team program and
a team description file, along with an index which uniquely
identifies to SCORE which agent it is controlling. From this
point on, SCORE specifically handles the tasks of (1) ensuring
that the information one agent receives about the world state is
synchronized with the information known by the rest of the team
(subject to the designer’s wishes concerning data replication), (2)
ensuring synchronous transition from one behavior to the next by
means of sending the appropriate state change messages, and (3)
ensuring that the correct arbitration algorithm is used and that the
agents begin their execution of these algorithms in a synchronized
fashion.

3.1 Formal Definitions
To aid in our explanation of the architecture, we will begin by
formally defining the terminology that we use to describe various
structures, relations, and algorithms as they are used in the
MONAD architecture.

The team program specifies a behavior hierarchy that can be
thought of as a Directed Acyclic Graph in which each node
represents a behavior and each edge represents the relationship
between two behaviors. An extracted portion of a behavior
hierarchy, centered on some node A, is shown in Figure 2.

In the behavior hierarchy, there are two types of directed edges
generated from one node, namely horizontal and vertical edges. A
horizontal edge from one node to another represents a sequential

Offline Script

Team Description File

Team Program
Variable Synchronization

Synchronized Team Program
Execution

Synchronized Team Arbitration

Arbitration Execution

Behavior Execution

Offline Code

Run-time Engine (SCORE)

relationship whereas a vertical edge from one node to another
represents a decompositional relationship. If behavior A is
connected vertically to behavior B, we say that B is a child
behavior of A. Similarly, if behavior A is connected horizontally
to behavior B, we say that B follows A or that B is the following
behavior of A. In terms of the structure of the behavior hierarchy,
the MONAD architecture forces the following restrictions: the in-
degree of each node is equal to one (except for the starting
behavior, which has in-degree zero), and a node can have at most
one outgoing horizontal edge and any number of outgoing vertical
edges. These restrictions are necessary for maintaining
synchronization as will be described in detail in Section 3.3.

There are also two types of nodes in the hierarchy, leaf nodes and
internal nodes. Internal nodes have one or more outgoing vertical
edges and represent internal behaviors. Internal behaviors are
behaviors whose goals can only be achieved through the
accomplishment of a set of sub-goals which belong to their child
behaviors. Conversely, leaf nodes have no outgoing vertical edges
and correspond to leaf behaviors that specify an atomic goal and
the execution required to achieve that goal.

Figure 2. Relationships for Node A in a team program.

Each behavior node also has well-defined starting conditions and
ending conditions that signify when it should begin and cease
execution.

A behavior stack is a stack on which agent’s currently executing
behaviors are stored. The order in which items are pushed and
popped from the stack is defined by the MONAD execution
model (Section 3.3). Each agent maintains one behavior stack as
part of its SCORE engine.

An execution group for a behavior is defined as a set of agents
that are currently executing that behavior, or equivalently they
have the behavior on their behavior stack. Every agent belongs to
the execution groups of all behaviors that they have on their stack.

An arbitration method or arbitrator is defined as an algorithm
that an execution group of agents can use when they must make a
transition from an internal behavior to its child behaviors. In this
case, they must make a joint-decision among themselves which
maps the agents to child behaviors. For each agent, the arbitrator
will receive the information about the environment, the agent
itself, and other agents if necessary, and return the new
assignment for the agent in a pre-specified fashion. During the
process, it is possible for the agents to communicate between each
other for additional information.

3.2 MONAD Team Programming
In order to build a team, the designer must supply the four offline
components: team program, team description file, behavior
execution code, and arbitration execution code. This section
describes each in detail.

The team program is written in the MONAD team programming
language, which was designed as a streamlined way of
representing the behavior hierarchy described in the previous
section. A single file specifies the entire team program which
includes all behaviors in the behavior hierarchy as well as
information on the pertinent team variables that SCORE must
synchronize and replicate among the agents. For each behavior in
the file, the designer specifies the name of the behavior, its
children and following behaviors, its applicability and termination
conditions, as well as its arbitrators and associated constraints. As
an example, the variable replication block and a single behavior
from a team program file are presented in Figure 3. It describes
an “Explore” behavior with particular starting and ending
conditions, as well as following and children behaviors, an
arbitrator and its constraints.

replicate
 ourBaseKnown
 ourBasePos
 theirBaseKnown
 theirBasePos
 theirFlagState
 theirFlagPos
 theirFlagHolder
 ourFlagState
 ourFlagPos
 ourFlagHolder
end

behavior Explore
 startswhen (var ourBaseKnown == NULL || var

theirBaseKnown == NULL)
 endswhen (var ourBaseKnown != NULL && var

theirBaseKnown != NULL)
 following WinGame
 children ExploreOurBase ExploreTheirBase

 arbitrator role
 constraint attacker
 constraint ExploreTheirBase
 constraint defender
 constraint ExploreOurBase
end behavior

Figure 3. An excerpt from a MONAD team program showing
the variable replication block and one behavior.

The language was designed to be a direct representation of the
formal structural features of a team program as described in the
previous section. The fields and keywords available within the
team programming language are as follows:

startswhen <condition>
The startswhen keyword is followed by a condition that uses a
Boolean expression containing variables from agent’s variable
table. The variables used in the expression may or may not be
marked for replication. This expression is called the applicability
condition. When arbitrating over the behavior, the applicability
conditions are checked in order to determine whether the behavior
should be considered for execution.

endswhen <condition>
The endswhen keyword is similar to the startswhen keyword, but
specifies the conditions upon which a particular behavior should
cease execution.

Node A
Node
“Following” A

Horiz. Edge

(Sequential)

Parent of
Node A

Child 1 of
Node A

Child 2 of
Node A

Vertical Edges

(Decomposition)

children <child 1> <child 2> … <child n>
The children keyword describes the list of child behaviors
reachable from the current behavior. These child behaviors
correspond to the vertically connected nodes reachable from the
current behavior. This keyword is optional since a behavior that
does not have a children statement is by definition a leaf node.

following <behavior>
The following keyword specifies the next same-level behavior that
should be executed after the current behavior. This keyword is
optional and if omitted specifies that when this behavior
terminates, it should be executed again.

arbitrator <arbitrator name>
The arbitrator keyword specifies the arbitrator that should be run
at the current behavior, when deciding which of its alternative
child decompositions should be taken. This keyword can only be
omitted if the behavior is a leaf behavior.

constraint <string>
The constraints are dependent on the arbitrator specified. There
can be multiple constraint statements within the body of a single
behavior, each is parsed as a string and passed as a vector of
strings to the arbitrator. As an example, for fixed role arbitration,
the constraint field might specify which child behavior is chosen
per role. For preference-based arbitration, the constraint fields
might specify how many agents are required to select each
behavior (to prevent a scenario where all agents pick one of the
children, yet joint execution requires some to select the other
children behavior as well).

In addition to the team program, the designer must provide the
team description file which determines the composition of the
team. The team description file specifies the number of agents on
the team, the team program to use, as well as any preset bindings
that must occur (such as role bindings for each agent in the event
that the designer is using role-based arbitration).

5
test.behavior
0 role attacker1
1 role attacker1
2 role attacker2
3 role attacker2
4 role defender

Figure 4. A sample MONAD team description file.
An example of a team description file for a small team using role
arbitration is shown in Figure 4. In this case, the file denotes a
team with 5 agents running the test.behavior team program, with
agents 0 and 1 having their variable “role” preset to attacker1,
agents 2 and 3 having their variable “role” preset to attacker2, and
agent 4 having its variable “role” preset to defender.

To facilitate the process of generating the team description file
and the team program, MONAD also includes a prototype tool,
BotConfig, which provides a graphical user interface (GUI) that
allow a team designer to define several aspects of the team (Figure
5). While the tool is currently biased towards role-based
arbitration editing, the ultimate intent of the program is to allow
visual editing of the team program. Beyond facilitating team
design, a visual editor would reduce the potential for syntax and
design errors in the team program and thus speed up the team
design process.

Figure 5. A screenshot of the MONAD BotConfig Tool.
Lastly, the behavior execution code and arbitration code must be
written and compiled alongside the MONAD system as those
systems uses constructs and data which cannot be expressed by
the scripting language. For example, typical behavior execution
code would involve sending particular commands to a simulation
via a socket. The behavior execution and arbitration functions are
registered with the SCORE engine at compile time and become
available to the engine at runtime.

3.3 Execution Model and Algorithm
Given a behavior structure as previously explained, the SCORE
runtime engine distributed across the team of agents provides the
synchronization and execution. Within SCORE, there are two key
data structures which form the cornerstone of the execution model
– the behavior stack and the variable table. The behavior stack
maintains the stack of behaviors as previously explained where
the top behavior in the stack corresponds to the currently active
behavior of the agent. The variable table contains a list of
variables whose values can be modified. A subset of these
variables is marked for replication by the team program. The
replication itself proceeds according to a simple algorithm in each
agent. When changes are made to particular variables in the table,
SCORE timestamps the changes and broadcasts the new data and
time of update to the other agents.

SCORE executes at fixed intervals by triggering an update cycle
in which the pseudocode shown in Figure 6 is executed. At a
high-level, the behavior of the agents following the update
algorithm is as follows. Given a set of agents who are all
executing at some node in the hierarchy (i.e. synchronized),
several important events can occur which trigger transitions in
execution.

If the set of agents is executing at a leaf node, then they will
simply continue execution of that node until the termination
condition of one of the behaviors in their stack is met. At this
point, all agents either move to the parent of the terminated
behavior (if the terminated behavior has no following behavior),
or move horizontally to the following behavior if it exists. In
either case, once an agent transitions, it enters a waiting state in
which it will not begin execution of the new behavior until all
agents in the execution group of the terminated behavior have also
transitioned. This ensures that all agents will begin executing the
new behavior simultaneously, which is essential if the new
behavior is an internal behavior and requires the execution of an

arbitrator. On the other hand, if set of agents is executing at an
internal node, then the agents at that node call their arbitrator
methods at each iteration until each agent has enough information
to determine the child behavior that it should transition to.
� The agent executes built-in code to obtain new data

about its simulated surroundings and updates its
internal variables accordingly.

� SCORE examines any changed variables which are marked
for replication and begins broadcasting these changes
to other members of the team.

� If the agent is currently waiting:
o Check if the all agents who are supposed to be in

the current sub-team have joined us at the current
node in the tree.

o If all agents have joined:
� Go to the executing state.

o Otherwise:
� Remain in the waiting state.

� If the agent is currently executing:
o Beginning from the bottom of the behavior stack,

SCORE examines each behavior on the stack and
determines if its termination condition has been
met, given the value of the variables in the
table.

o If none of the conditions have broken:
� If the current behavior is a leaf node,

execute the behavior execution code for the
current behavior

� Otherwise, if the current behavior is an
internal node, run the arbitration execution
code specified by the current behavior. If
the arbitrator completes, push the selected
child behavior onto the stack and go to the
waiting state. Otherwise, remain in the
executing state.

o Otherwise, on the first behavior in the stack
whose termination condition was met:
� Pop off all behaviors above and including

the one which first terminated
� If the terminated behavior has a following

link, push the following behavior onto the
stack

� Go to the waiting state

Figure 6. Pseudocode for SCORE update algorithm.
Note that the set of behaviors sent into the arbitrator for
consideration involve only those which are applicable, i.e. whose
applicability condition startswhen is satisfied. Once the arbitrator
returns a selection, the agent transitions into the selected behavior
and remains in a waiting state until all members of the execution
group have transitioned into their respective child behaviors.
They then begin executing the new behavior together. In the
MONAD architecture, agents are able to determine when their
execution group has transitioned as the agents replicate their
current behavior to the other members of the team.

As mentioned in the formal definitions (Section 3.1), the
restrictions in our hierarchy are enforced in order to unify the
notion of synchronized executing groups and ensure that
transitions are well-defined when behaviors become no longer
applicable. Many behavior-based control architectures do not
differentiate between sequential and decompositional
relationships as they attempt to handle sequences of actions by
depending upon applicability conditions in the nodes of the
hierarchy. The MONAD architecture allows for a more natural
representation of temporal dependencies by separating the notion
of a following relationship from a decompositional relationship.
In addition, the restriction of having a horizontal out-degree of at
most one allows MONAD to avoid difficulty in the following
situation. If a node were followed by one or more nodes, then the
relationship of those following nodes to the current node and to
each other is poorly defined. The applicability and termination

conditions of the two following behaviors would have no implicit
relationship to the conditions of the prior behavior and thus it is
possible for a subset of the following behaviors to break on some
world condition when the others do not.

While this is not a direct problem, an unrestricted architecture of
this form would allow multiple following behavior branches in a
row. After such branching, since there is no implicit way to
determine where agents should transition to when behaviors lose
applicability or terminate. This would make synchronized
arbitration nearly impossible as the set of agents who should be
jointly deciding upon actions may fragment and be separated into
different portion of the behavior hierarchy, with little unifying
notion of how and when to rejoin the teams. Even in the case of
adding termination links to each node of the hierarchy, there
exists a large possibility of human error in creating these
termination links and also a large inefficiency in explicitly
specifying the transition node for each way that the behavior may
have terminated.

The MONAD architecture’s behavior hierarchy avoids this
problem by clearly defining the two forms of relationships,
decomposition and following, and using these notions to form an
intuitive and implicit web of dependency between the behaviors.
In our case, decomposition intuitively indicates that the goals of
the child behaviors are subsets of the goals of the parent behavior.
Thus, if the parent’s goals are achieved and the behavior
terminates, it follows that any behaviors in the part of the
hierarchy specified by the children of the parent node should
terminate since they constitute a subset of the goals of the parent
node. This is achieved through our definition of execution groups
and our method of examining the stack from bottom to top to
determine whether or not a behavior terminated at one of our
parent decomposition points. Thus, with respect to the single
following relationship, we note that the restriction in the MONAD
architecture forces all splits of execution groups to be
decompositional. Consequently, it becomes trivial (through the
behavior stack) to maintain the well-defined relationship between
the agents as they split into various execution groups many levels
deep, which greatly simplifies the synchronization of agents in
arbitration and team program execution.

3.4 A Simple Execution Example
In order to clarify the events that occur during execution, we show
the team of agents and the way in which they execute a sample
team program. These agents in this example are running in a
simulated GameBots Capture The Flag environment, which is
explained in greater detail in Section 4. Initially, via the team
description file, we set the “role” variable of each agent to be as
follows: Agent 1 = “attacker1”, Agent 2 = “attacker2”, Agent 3 =
“defender”. The behavior hierarchy used in this example is
shown in Figure 7. While each behavior has associated
applicability, termination conditions, and constraints that are
useful in our explanation, the entire team program is too long to
insert in this paper and thus throughout this example we simply
indicate when a particular condition breaks and the effect of the
constraints on the arbitration process. For reference, Figure 3
shows the Explore behavior from this team program.

At startup, the behavior stack for each agent contains only the first
behavior in the hierarchy, Explore, which is the initial behavior
because it has in-degree 0. The strings after each agent show the

Figure 7. Behavior Hierarchy used in GameBots team and

example. Double arrows indicate horizontal edges and single
arrows indicate vertical edges for clarity.

behavior stack for that agent, beginning from the bottom of the
stack. Therefore, the state of the team at startup is:

Agent 1 = Explore
Agent 2 = Explore
Agent 3 = Explore

At this point, the agents have just entered the game. For the
purposes of this example, we will assume that the arbitration
method used at all internal behaviors is a fixed-role-based
arbitrator which uses predetermined assignments of agents to
tasks. When the update cycle executes, since Explore is not a leaf
node, (i.e. it has children), then there is no behavior execution
code for this node. Instead, the SCORE engine in each agent
evaluates the applicability condition of the two children of
Explore, which are ExploreOurBase and ExploreOtherBase. Out
of these two behaviors, the subset of behaviors whose
applicability conditions evaluate to true is passed into the
arbitrator so that the agents can decided amongst them. Since
fixed role arbitration is being used, no communications are
needed by the arbitration execution code, and the agents simply
follow the constraints defined in the program. Assume for now
that the constraints lead to the following assignment: Agent 1 and
Agent 2 choose the ExploreOtherBase behavior, while Agent 3
chooses ExploreOurBase. The situation now looks like:

 Agent 1 = Explore � ExploreOtherBase
 Agent 2 = Explore � ExploreOtherBase
 Agent 3 = Explore � ExploreOurBase

Now assume that the termination condition in ExploreOurBase
becomes true when an agent on the team sees the team’s flag.
Then when some agent discovers the location of its team’s flag,
the variable OurFlagKnown in the variable table is set to true by
the agent’s update code, and is replicated to the other agents.
Now, the end condition of the behavior ExploreOurBase becomes
true, and that behavior ends. Agent 3’s behavior stack is popped
up to and including ExploreOurBase. Since the behavior
ExploreOurBase has a following behavior (DefendBaseNoStop),
Agent 3 pushes that behavior onto its stack, leaving the state of
the team as:

 Agent 1 = Explore � ExploreOtherBase
 Agent 2 = Explore � ExploreOtherBase
 Agent 3 = Explore � DefendBaseNoStop

This situation continues for a while, until any agent (presumably
Agent 1 or Agent 2) locates the enemy team’s flag. This fulfills
the end condition for Explore since at this point the locations of
both teams’ flags are known. Since all three agents are in the
execution group of Explore, they pop their behavior stacks up to
and including Explore. Since Explore has a following behavior
(WinGame), the agents push it onto their stacks:

 Agent 1 = WinGame
 Agent 2 = WinGame

Agent 3 = WinGame

Since WinGame has the two child behaviors Attack and Defend, it
is not a leaf node and therefore the only execution for this
behavior is arbitration among the three agents to determine their
split into child behaviors. The agents call the role arbitrator and
the constraints again cause the first two agents to transition into
Attack, while Agent 3 transitions into Defend.

 Agent 1 = WinGame � Attack
 Agent 2 = WinGame � Attack

Agent 3 = WinGame � Defend

Since both Attack and Defend are not leaf nodes, all agents must
again arbitrate. At this point, however, Agent 1 and 2 arbitrate in
a separate execution group from Agent 3 since they are deciding
amongst the children of Attack while Agent 3 decides amongst the
children of Defend. The constraints specified at Attack and
Defend then lead to following configuration:

Agent 1 = WinGame � Attack � GoForFlag
Agent 2 = WinGame � Attack � AttackBase
Agent 3 = WinGame � Defend � DefendBase

At this point, all three behaviors at the top of the stacks are leaf
nodes, so at every thinking interval SCORE calls the execution
function for those behaviors. Assume now at some later time that
Agent 1 picks up the enemy flag. Then the end condition in
behavior Attack becomes true and Agents 1 and 2 pop their
behavior stack up to and including Attack. Since Attack has
GoBack as a following behavior, Agents 1 and 2 push GoBack
onto their stack.

Agent 1 = WinGame � GoBack
Agent 2 = WinGame � GoBack
Agent 3 = WinGame � Defend � DefendBase

Again, the first two agents arbitrate at the GoBack behavior, and
again the role constraints lead to Agent 1 choosing
GoBackToBase and Agent 2 choosing Distract.

Agent 1 = WinGame � GoBack � GoBackToBase
Agent 2 = WinGame � GoBack � Distract
Agent 3 = WinGame � Defend � DefendBase

If the agent who is carrying the flag drops it or captures it, the end
condition for GoBack becomes true. The first two agents would
pop behaviors off their stack up to and including GoBack. Since
GoBack has no following behavior, nothing is put on the stack
and the Agent 1 and 2 end up returning to WinGame where they
arbitrate.

Agent 1 = WinGame
Agent 2 = WinGame
Agent 3 = WinGame � Defend � DefendBase

Explore WinGame

Explore
Other
Base

Explore
Our
Base

DefendBase
No Stop

AttackBase
No Stop

Attack GoBack

Defend

Defend
Base

Return
OurFlag

Attack
Base

Go
ForFlag

Distract

GoBack
ToBase

Escort

Again, since we are using a fixed-role arbitrator, the arbitration
execution for the first two agents leads them to both choose Attack
and push it into their stacks. The process thus repeats until the
game ends. Note that during this time, Agent 3 is executing
orthogonally to the first two agents since it is in the same
execution group only for WinGame, whose termination condition
is never met until the end of the game. Furthermore, as designed,
if the other team took our team’s flag, then Agent 3 would have
similarly transitioned to ReturnOurFlag, etc. without affecting the
execution being carried out by Agents 1 and 2.

4. RESULTS
In order to evaluate the effects of the MONAD architecture's
flexibility, we implemented a multi-agent system framework that
utilizes MONAD architecture to enable the construction of
different team structures which shared the low level behavior
execution and arbitration execution code. We tested these
different teams in a complex, dynamic environment based in the
GameBots multi-agent testbed (Kaminka et al. 2002). This test-
bed facilitates experiments with agents in a rich virtual
environment, in which the physical characteristics of the
environment and the task to be carried out by agents can be
flexibly changed. For the purposes of our experiments, we chose
the Capture-the-Flag task, in which two teams of agents attempt to
each steal the opponent's flag from the opponent's base as many
time as possible, while at the same time protecting their own flag
from the opponent. The agents, each a separate program, connect
to the game through sockets, using a text protocol that allows
them to sense their immediate surrounding, and act (e.g., by
moving, turning, etc.). The game ends when one team reaches the
capture limit (2, in our case) or when the game reaches the time
limit (15 minutes, in our case). When the game ends, the team that
captured more flags wins. If both teams have the same number of
flags, the game is considered a tie.

Using MONAD, one can make significant changes to the team
structure simply by changing the configuration of edges between
behaviors in the hierarchy or the associations between child
behaviors and their behavior execution code. However, we
focused our tests on a MONAD feature that distinguishes it from
previous investigations: Its ability to allow the designer to define
different multi-agent arbitration methods for use by team-
members under different conditions specified on a per-behavior
basis.

We created three teams from three similar team description files
which all contained the general behavior hierarchy as in Figure 7
(see Section 3.2). Each behavior in the hierarchy has all the
details as mentioned in Section 3.2: starts-when, ends-when
conditions; the constraints of splitting and the children behaviors
for the team to split into if there is any; and either the name of the
arbitration method or the name of the execution function,
depending on whether the behavior is at an internal node or a leaf
node.

The only difference between the teams was the arbitration method
that we used at the internal nodes. For the first team, ROLE, all
the internal behaviors used role arbitration model. For the second
team, PREF, a preference arbitration model was used. Finally, for
the third team, MIXED, a combination of the previous two
models was designed where one of the most important behaviors,
the Attack behavior, used preference arbitration and the remaining
behaviors used role arbitration.

In total, we managed to run 135 games for ROLE, 59 games for
PREF, and 89 games for MIXED. In all of these games, we
modified only the evaluated team: The opponent and the
environment remained fixed. The results of these experiments are
presented in table 1 and 2.

Table 1. The percentage of games won by each team.

 ROLE PREF MIXED
% of games won 58.519 35.593 56.180

Table 2. The mean, standard deviation, and normalized to
mean ROLE values of different important figures in the

following order: the difference in score, the time required for
the teams to win a game, to capture the first flag, and to reach

opponent’s flag in Test Set 1.
 ROLE PREF MIXED
 Mean Std.

Dev.
Mean Std.

Dev.
Mean Std

Dev.

Difference
 in score

0.60 1.35 -0.19 1.31 0.61 1.36

733.7 229.3 847.0 130.6 670.8 199.7 Time
to win
(sec) 100% 115% 91%

427.9 219.0 472.7 223.7 369.5 183.4 Time to
capture flag

(sec) 100% 110% 86%

130.7 60.2 145.3 78.6 113.0 53.1 Time to
reach flag

(sec) 100% 111% 86%

The overall performance of the teams in Table 1 and the average
difference in score in Table 2 show a large difference between
ROLE and PREF (58.5% compared to 35.5%, and -0.19
compared to 0.60). Interestingly, as the combination of features
from PREF and ROLE, MIXED not only demonstrated
competitive overall performance (56% of games won), but also
demonstrated certain advantages when compared to ROLE. In
particular, it required MIXED only 91% of the time ROLE needs
to win a game, 86% of the time to capture the first flag, or 86% of
the time to the opponent’s flag.

While conducting the experiments, we noticed that role arbitration
had a minor advantage in speed while preference arbitration had a
more advantageous mapping of agents to chosen behaviors. Thus,
to further evaluate the efficiency of the MIXED team, we
increased the difficulty level of the opposing built-in Unreal
Tournament bots while keeping all other features of the game the
same. The effects of raising the difficulty were an increase the
accuracy of the opponent team as well as an improvement the
strategies that they used. Under this configuration, we ran 70
games for ROLE and 66 games for MIXED. The results of these
experiments are presented in table 3 and 4.

Indeed, in this set of tests, the accuracy features from Preference
Arbitration helped MIXED to have better overall performance
than ROLE (33% of games won compared to 31% of ROLE)
while still maintaining other advantages such as less time required
to win a game (93.3%) or less time required to capture the first

flag (81.4%). Thus, it appears that the performance of a multi-
agent team in a given simulation is highly dependent on the

Table 3. The percentage of winning games and the average of
the difference in score in Test Set 2

 ROLE MIXED
% of winning 31.428 33.333

Table 4. The value, the percentage of the value compared to
that of ROLE, and the standard deviation of different
important figures in the following order: the average

difference in score, the average time required for the teams to
win a game, and to capture the first flag in Test Set 2.

 ROLE MIXED
 Value Std. Dev. Value Std Dev.

Av. Diff. in score -0.42 1.35 -0.22 1.58

657.8 196.9 507.5 183.8 Av. Time to win
(sec) 100% 93.3%

455.2 172.3 370.5 146.4 Av. Time to
capture flag

(sec) 100% 81.4%

structure of the team, again despite the fact that all
implementations shared the same low-level behavior execution
and arbitration execution code. This demonstrates the need for
testing different team structures in pursuit of one with the best
performance for a given problem. The MONAD architecture can
accommodate a wide variety of team structures with only small
changes to the team program, which greatly accelerates and
facilitates the development of multi-agent teams.

5. SUMMARY
We have presented MONAD, a set of design tools and supporting
run-time architecture that allows a team-designer to quickly
configure a team's control mechanism, and have this design
automatically executed when the team is deployed. The design
tools include a scripting language and a GUI. The run-time
support includes a behavior-based architecture which integrates
the SCORE teamwork model. We demonstrated the efficacy of
our approach by showing how three different teams can be easily
configured using our tools, and this indeed leads these teams to
greatly differ in performance.

In terms of extending the MONAD architecture, one area of
additional research is into synchronization of data and execution
and improving the performance of the system under lossy and
error-prone communication environments. With the current
system, it is possible for communication difficulties to cause
subsets of agents to lose synchronization and therefore cause
errors or lockups in SCORE’s execution of the team program. We
would also like to research ways of improving SCORE’s
coordinated execution model to be compatible with larger teams
of agents.

6. ACKNOWLEDGMENTS
This research was sponsored by Grants No. NBCHC010059 and
F30602-00-2-0549. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the funding agencies.

7. REFERENCES
[1] Jennings, N. R. 1995. Controlling cooperative problem

solving in industrial multi-agent systems using joint
intentions. Artificial Intelligence, 75(2).

[2] Kaminka, G. A.; Veloso, M.; Schaffer, S.; Sollitto, C.;
Adobbati, R.; Marshal, Andrew N.; Scholer, Andrew, S.; and
Tejada, S. 2002. GameBots: the ever-challenging multi-agent
research test-bed, In Communications of the ACM, January
2002.

[3] Parker, L. E., 1998. ALLIANCE: An architecture for fault-
tolerant multirobot cooperation. In IEEE Transactions on
Robotics and Automation, 14(2).

[4] Pynadath, D., Tambe, M., Chauvat, N. and Cavedon, L.
1999. Toward team-oriented programming. Proceedings of
the Agents, theories, architectures and languages (ATAL'99)
workshop, published as Springer Verlag LNAI "Intelligent
Agents VI".

[5] Tambe, M. 1997. Towards Flexible Teamwork Journal of
Artificial Intelligence Research, Volume 7, Pages 83-124.

[6] Tambe, M., Pynadath, D., Chauvat, C., Das, A., and
Kaminka, G. 2000. Adaptive agent architectures for
heterogeneous team members Proceedings of the
International Conference on Multi-agent Systems (ICMAS).

