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ABSTRACT 
Research in multi-agent systems has led to the development of 
many multi-agent control architectures. However, we believe that 
there is currently no known optimal structure for multi-agent 
control since the effectiveness of any particular architecture varies 
depending on the domain of the problem.  Therefore, deployment 
of multi-agent teams would be significantly sped up by a 
development and deployment environment which would allow 
designers to easily modify the architecture. In this paper, we 
present a flexible team-oriented programming and execution 
architecture, MONAD, which integrates hierarchical behavior-
based control, multi-agent coordination mechanisms, and agent-
task allocation services.  MONAD uses a novel scripting language 
that allows designers to easily modify the team structure, behavior 
hierarchy, applicability conditions, and arbitration methods, in 
pursuit of the best solution for a particular problem.  We have 
evaluated the MONAD architecture within a well-accepted 
adversarial game environment, GameBots, to enable qualitative 
comparison of different control techniques.  In this environment, 
we were able to rapidly design and test several teams of agents 
who used role, preference, or a combination of role and 
preference arbitration and observed that these different teams 
varied in their performance characteristics. 

Keywords 
Arbitration, Behavior-based control, Robot Teams, Teamwork, 
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1. INTRODUCTION 
There is growing recognition, both in theory and in practice, that 
multi-agent teams can significantly benefit from the principled 
application of agent control architecture supporting explicit team 
control mechanisms. Such mechanisms can automate 
communication content and timing decisions, negotiations over 
joint decision making, coordination of activities, social 
organization into roles, and re-organization upon failures. This 
allows the human designer to focus on specifying the goal-
oriented behavior of the agents, as collaborative behavior is 
automated to a large degree. Indeed, a number of teamwork 
models have been deployed successfully in complex dynamic 
multi-agent applications, e.g. GRATE* (Jennings 1995), STEAM 

(Tambe 1997), and ALLIANCE (Parker 1998).  

Unfortunately, to our best knowledge, there is currently no known 
architecture which is recognized as optimal for all applications. 
Furthermore, experimenting with different team control 
architectures can be expensive both in design time as well as in 
deployment time. Coordination or negotiation mechanisms, 
different behavior-based control mechanisms, different team 
constitution schemes, all take non-trivial design and 
implementation time. 

We present in this paper an architecture for multi-agent control, 
MONAD, which integrates script- and code-based off-line team-
programming and team design, with a run-time coordination 
engine that can execute different team-control designs 
automatically within a behavior-based framework.  Using the 
MONAD architecture, a designer can easily create, modify, and 
experiment with a wide variety of team structures. 

MONAD includes an intuitive and flexible scripting language 
which enables designers to easily build a team in the form of an 
augmented behavior hierarchy.  This behavior hierarchy lends 
naturally to the modification various parameters of a team, such as 
the structure of the hierarchy itself and the negotiation protocols 
to be used by the agents during synchronized execution of the 
hierarchy.  To further facilitate the process of generating teams, 
MONAD also contains a GUI whose ultimate aim is to provide a 
visual means of manipulating and modifying the parameters of a 
team. 

In order to execute the team structures specified by MONAD 
scripts, the MONAD architecture includes a run-time distributed 
behavior-based control engine called SCORE (Synchronized 
CoORdination Engine) which is able to execute any team design 
specified by the MONAD scripting language.  The actual 
execution of specific behaviors are coded independently by the 
designer, but the coordinated multi-agent execution of these is 
not. Instead, SCORE automatically synchronizes the execution of 
behaviors across multiple agents, drawing on a user-designed 
reusable library of negotiation protocols that support different 
team-control designs. MONAD builds on earlier work on team-
oriented programming (Pynadath et al. 1999, Tambe et al. 2000), 
and teamwork models (e.g., STEAM (Tambe 1997)) but extends 
them in several ways (see Section 2 for details). 

MONAD is a first step in our attempt to provide a set of design 
and deployment tools for agents in virtual and physical 
environments. We hypothesize that it is possible to parameterize 
to a significant degree many of the various control mechanisms 
which have been reported on in the literature. Such 
parameterization will significantly reduce design and deployment 
time, since it will allow designers to use and re-use generic 
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control templates, which would be instantiated simply by 
indicating the module to use and setting the parameters of the 
instantiation. 

MONAD contributes concrete demonstration of this approach in a 
set of implemented, integrated, tools and services. In addition, 
using MONAD, we have been able to explore team control 
designs which use a mixture of negotiation policies within a 
general teamwork engine - designs that are not possible with 
current models.  

The next sections will present related work and background on 
MONAD (Section 2), the details of MONAD (including off-line 
and on-line components—Section 3), and the results of using 
MONAD in a challenging virtual environment in which teams of 
agents can coordinate and compete in various team games 
(Section 4). Section 5 concludes. 

2. MOTIVATION AND BACKGROUND 
Our work on MONAD is motivated by our experience in 
developing teams of virtual and physical robots in different 
domains, and for different tasks. Development of such teams is a 
long and arduous process, and we have found ourselves 
experimenting with different control mechanisms to match the 
task at hand with appropriate control. We therefore decided to 
examine the challenge of creating a set of tools that would enable 
us to explore many different team control structures without 
having to redevelop a new coordination engine each time. 

We were inspired in our work mainly by previous work on Team-
Oriented Programming (Pynadath et al. 1999, Tambe et al. 2000). 
In this work, a graphical user interface is used by the team 
designer to construct an organizational hierarchy, assign specific 
tasks for organizational roles, and then assign agents to the 
organization. During execution, the agents utilize the STEAM 
teamwork model  (Tambe 1997) to automatically coordinate the 
execution of their tasks. Unfortunately, the tools and run-time 
model described do not support several key components of team 
control, which we felt were critical.  

For instance, Tambe et al.'s team-oriented programming did not 
allow the designer to specify the negotiation schemes that should 
be used by the agents at different points (Pynadath et al. 1999). 
Instead, a fixed protocol, built into STEAM, was used for all joint 
decisions.  However, we believe that different situations require 
agents to negotiate (arbitrate) in different ways, and thus MONAD 
provides the designer with tools to specify different protocols and 
the situations in which they should be applied.  This is supported 
at run-time by the SCORE coordination engine and modular 
arbitration algorithms either coded by the designer or reused from 
other sources.  These arbitration methods can implement well-
studied negotiation algorithms such as fixed-role, voting, market, 
preference, etc.  Given an implementation of an arbitration 
technique, MONAD allows the designer to specify constraints and 
parameters for that arbitrator on a per-behavior basis. This 
flexibility is not possible in the earlier work.  

The SCORE teamwork model and arbitration methods are also 
related to previous teamwork models that have been reported in 
the literature, such as GRATE (Jennings 1995), or ALLIANCE 
(Parker 1998). However, such teamwork models address only the 
execution-time component in deploying teams, and suffer from 
the same weaknesses as STEAM (Tambe 1997) with respect to 

being able to use different arbitration methods at different times 
(based on designer-specified conditions). On the other hand, 
models such as STEAM and ALLIANCE have mechanisms for 
failure detection and recovery, while MONAD and the SCORE 
engine currently lack support for such mechanisms.   

3. MONAD ARCHITECTURE OVERVIEW 
The MONAD system is composed of several key components 
which work together to provide a flexible framework for multi-
agent programming (Figure 1).  The components provided by the 
designer include both offline script and code, in the form of the 
team program, team description file, arbitration execution code, 
and behavior execution code.  The team program and description 
file are both written in a format specified by the MONAD 
architecture, while the arbitration and behavior execution must be 
written and compiled to native code.  However, the arbitration 
execution code is portable across all teams and a given arbitration 
algorithm, once written, can be added to user-collected libraries to 
be used in any team program.  Given these inputs, the MONAD 
architecture provides synchronized execution of the team program 
through SCORE which acts as a distributed coordination system 
for the entire team. Each agent on a team runs an identical 

 
Figure 1. Components of the MONAD Architecure. 

copy of SCORE and initializes it with the same team program and 
a team description file, along with an index which uniquely 
identifies to SCORE which agent it is controlling.  From this 
point on, SCORE specifically handles the tasks of (1) ensuring 
that the information one agent receives about the world state is 
synchronized with the information known by the rest of the team 
(subject to the designer’s wishes concerning data replication), (2) 
ensuring synchronous transition from one behavior to the next by 
means of sending the appropriate state change messages, and (3) 
ensuring that the correct arbitration algorithm is used and that the 
agents begin their execution of these algorithms in a synchronized 
fashion.  

3.1 Formal Definitions 
To aid in our explanation of the architecture, we will begin by 
formally defining the terminology that we use to describe various 
structures, relations, and algorithms as they are used in the 
MONAD architecture. 

The team program specifies a behavior hierarchy that can be 
thought of as a Directed Acyclic Graph in which each node 
represents a behavior and each edge represents the relationship 
between two behaviors.  An extracted portion of a behavior 
hierarchy, centered on some node A, is shown in Figure 2. 

In the behavior hierarchy, there are two types of directed edges 
generated from one node, namely horizontal and vertical edges. A 
horizontal edge from one node to another represents a sequential 
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relationship whereas a vertical edge from one node to another 
represents a decompositional relationship.  If behavior A is 
connected vertically to behavior B, we say that B is a child 
behavior of A.  Similarly, if behavior A is connected horizontally 
to behavior B, we say that B follows A or that B is the following 
behavior of A. In terms of the structure of the behavior hierarchy, 
the MONAD architecture forces the following restrictions: the in-
degree of each node is equal to one (except for the starting 
behavior, which has in-degree zero), and a node can have at most 
one outgoing horizontal edge and any number of outgoing vertical 
edges.  These restrictions are necessary for maintaining 
synchronization as will be described in detail in Section 3.3. 

There are also two types of nodes in the hierarchy, leaf nodes and 
internal nodes.  Internal nodes have one or more outgoing vertical 
edges and represent internal behaviors. Internal behaviors are 
behaviors whose goals can only be achieved through the 
accomplishment of a set of sub-goals which belong to their child 
behaviors. Conversely, leaf nodes have no outgoing vertical edges 
and correspond to leaf behaviors that specify an atomic goal and 
the execution required to achieve that goal. 

 
Figure 2. Relationships for Node A in a team program. 

Each behavior node also has well-defined starting conditions and 
ending conditions that signify when it should begin and cease 
execution. 

A behavior stack is a stack on which agent’s currently executing 
behaviors are stored. The order in which items are pushed and 
popped from the stack is defined by the MONAD execution 
model (Section 3.3). Each agent maintains one behavior stack as 
part of its SCORE engine. 

An execution group for a behavior is defined as a set of agents 
that are currently executing that behavior, or equivalently they 
have the behavior on their behavior stack. Every agent belongs to 
the execution groups of all behaviors that they have on their stack.  

An arbitration method or arbitrator is defined as an algorithm 
that an execution group of agents can use when they must make a 
transition from an internal behavior to its child behaviors.  In this 
case, they must make a joint-decision among themselves which 
maps the agents to child behaviors.  For each agent, the arbitrator 
will receive the information about the environment, the agent 
itself, and other agents if necessary, and return the new 
assignment for the agent in a pre-specified fashion. During the 
process, it is possible for the agents to communicate between each 
other for additional information. 

3.2 MONAD Team Programming 
In order to build a team, the designer must supply the four offline 
components: team program, team description file, behavior 
execution code, and arbitration execution code.  This section 
describes each in detail. 

The team program is written in the MONAD team programming 
language, which was designed as a streamlined way of 
representing the behavior hierarchy described in the previous 
section.  A single file specifies the entire team program which 
includes all behaviors in the behavior hierarchy as well as 
information on the pertinent team variables that SCORE must 
synchronize and replicate among the agents.  For each behavior in 
the file, the designer specifies the name of the behavior, its 
children and following behaviors, its applicability and termination 
conditions, as well as its arbitrators and associated constraints. As 
an example, the variable replication block and a single behavior 
from a team program file are presented in Figure 3.  It describes 
an “Explore” behavior with particular starting and ending 
conditions, as well as following and children behaviors, an 
arbitrator and its constraints. 

replicate 
  ourBaseKnown 
  ourBasePos 
  theirBaseKnown 
  theirBasePos 
  theirFlagState 
  theirFlagPos 
  theirFlagHolder 
  ourFlagState 
  ourFlagPos 
  ourFlagHolder 
end 
 
behavior Explore 
  startswhen (var ourBaseKnown == NULL || var      

theirBaseKnown == NULL) 
  endswhen (var ourBaseKnown != NULL && var 

theirBaseKnown != NULL) 
  following WinGame 
  children ExploreOurBase ExploreTheirBase 

 
  arbitrator role 
  constraint attacker 
  constraint ExploreTheirBase 
  constraint defender 
  constraint ExploreOurBase 
end behavior 
 

Figure 3. An excerpt from a MONAD team program showing 
the variable replication block and one behavior. 

The language was designed to be a direct representation of the 
formal structural features of a team program as described in the 
previous section.  The fields and keywords available within the 
team programming language are as follows: 

startswhen <condition>  
The startswhen keyword is followed by a condition that uses a 
Boolean expression containing variables from agent’s variable 
table. The variables used in the expression may or may not be 
marked for replication. This expression is called the applicability 
condition. When arbitrating over the behavior, the applicability 
conditions are checked in order to determine whether the behavior 
should be considered for execution. 

endswhen <condition> 
The endswhen keyword is similar to the startswhen keyword, but 
specifies the conditions upon which a particular behavior should 
cease execution. 
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children <child 1> <child 2> … <child n> 
The children keyword describes the list of child behaviors 
reachable from the current behavior.  These child behaviors 
correspond to the vertically connected nodes reachable from the 
current behavior.  This keyword is optional since a behavior that 
does not have a children statement is by definition a leaf node. 

following <behavior> 
The following keyword specifies the next same-level behavior that 
should be executed after the current behavior.  This keyword is 
optional and if omitted specifies that when this behavior 
terminates, it should be executed again. 

arbitrator <arbitrator name> 
The arbitrator keyword specifies the arbitrator that should be run 
at the current behavior, when deciding which of its alternative 
child decompositions should be taken.  This keyword can only be 
omitted if the behavior is a leaf behavior. 

constraint <string> 
The constraints are dependent on the arbitrator specified. There 
can be multiple constraint statements within the body of a single 
behavior, each is parsed as a string and passed as a vector of 
strings to the arbitrator. As an example, for fixed role arbitration, 
the constraint field might specify which child behavior is chosen 
per role. For preference-based arbitration, the constraint fields 
might specify how many agents are required to select each 
behavior (to prevent a scenario where all agents pick one of the 
children, yet joint execution requires some to select the other 
children behavior as well). 

In addition to the team program, the designer must provide the 
team description file which determines the composition of the 
team.  The team description file specifies the number of agents on 
the team, the team program to use, as well as any preset bindings 
that must occur (such as role bindings for each agent in the event 
that the designer is using role-based arbitration).   

5 
test.behavior 
0 role attacker1 
1 role attacker1 
2 role attacker2 
3 role attacker2 
4 role defender  

Figure 4. A sample MONAD team description file. 
An example of a team description file for a small team using role 
arbitration is shown in Figure 4.  In this case, the file denotes a 
team with 5 agents running the test.behavior team program, with 
agents 0 and 1 having their variable “role” preset to attacker1, 
agents 2 and 3 having their variable “role” preset to attacker2, and 
agent 4 having its variable “role” preset to defender.  

To facilitate the process of generating the team description file 
and the team program, MONAD also includes a prototype tool, 
BotConfig, which provides a graphical user interface (GUI) that 
allow a team designer to define several aspects of the team (Figure 
5).  While the tool is currently biased towards role-based 
arbitration editing, the ultimate intent of the program is to allow 
visual editing of the team program.  Beyond facilitating team 
design, a visual editor would reduce the potential for syntax and 
design errors in the team program and thus speed up the team 
design process. 

 

Figure 5. A screenshot of the MONAD BotConfig Tool. 
Lastly, the behavior execution code and arbitration code must be 
written and compiled alongside the MONAD system as those 
systems uses constructs and data which cannot be expressed by 
the scripting language.  For example, typical behavior execution 
code would involve sending particular commands to a simulation 
via a socket. The behavior execution and arbitration functions are 
registered with the SCORE engine at compile time and become 
available to the engine at runtime. 

3.3 Execution Model and Algorithm 
Given a behavior structure as previously explained, the SCORE 
runtime engine distributed across the team of agents provides the 
synchronization and execution.  Within SCORE, there are two key 
data structures which form the cornerstone of the execution model 
– the behavior stack and the variable table. The behavior stack 
maintains the stack of behaviors as previously explained where 
the top behavior in the stack corresponds to the currently active 
behavior of the agent.  The variable table contains a list of 
variables whose values can be modified.  A subset of these 
variables is marked for replication by the team program.  The 
replication itself proceeds according to a simple algorithm in each 
agent.  When changes are made to particular variables in the table, 
SCORE timestamps the changes and broadcasts the new data and 
time of update to the other agents.  

SCORE executes at fixed intervals by triggering an update cycle 
in which the pseudocode shown in Figure 6 is executed.  At a 
high-level, the behavior of the agents following the update 
algorithm is as follows.  Given a set of agents who are all 
executing at some node in the hierarchy (i.e. synchronized), 
several important events can occur which trigger transitions in 
execution.   

If the set of agents is executing at a leaf node, then they will 
simply continue execution of that node until the termination 
condition of one of the behaviors in their stack is met.  At this 
point, all agents either move to the parent of the terminated 
behavior (if the terminated behavior has no following behavior), 
or move horizontally to the following behavior if it exists.  In 
either case, once an agent transitions, it enters a waiting state in 
which it will not begin execution of the new behavior until all 
agents in the execution group of the terminated behavior have also 
transitioned.  This ensures that all agents will begin executing the 
new behavior simultaneously, which is essential if the new 
behavior is an internal behavior and requires the execution of an 



arbitrator. On the other hand, if set of agents is executing at an 
internal node, then the agents at that node call their arbitrator 
methods at each iteration until each agent has enough information 
to determine the child behavior that it should transition to.  
� The agent executes built-in code to obtain new data 

about its simulated surroundings and updates its 
internal variables accordingly. 

� SCORE examines any changed variables which are marked 
for replication and begins broadcasting these changes 
to other members of the team. 

� If the agent is currently waiting: 
o Check if the all agents who are supposed to be in 

the current sub-team have joined us at the current 
node in the tree. 

o If all agents have joined: 
� Go to the executing state. 

o Otherwise: 
� Remain in the waiting state. 

� If the agent is currently executing: 
o Beginning from the bottom of the behavior stack, 

SCORE examines each behavior on the stack and 
determines if its termination condition has been 
met, given the value of the variables in the 
table. 

o If none of the conditions have broken: 
� If the current behavior is a leaf node, 

execute the behavior execution code for the 
current behavior 

� Otherwise, if the current behavior is an 
internal node, run the arbitration execution 
code specified by the current behavior. If 
the arbitrator completes, push the selected 
child behavior onto the stack and go to the 
waiting state. Otherwise, remain in the 
executing state. 

o Otherwise, on the first behavior in the stack 
whose termination condition was met: 
� Pop off all behaviors above and including 

the one which first terminated 
� If the terminated behavior has a following 

link, push the following behavior onto the 
stack 

� Go to the waiting state 

Figure 6. Pseudocode for SCORE update algorithm. 
Note that the set of behaviors sent into the arbitrator for 
consideration involve only those which are applicable, i.e. whose 
applicability condition startswhen is satisfied. Once the arbitrator 
returns a selection, the agent transitions into the selected behavior 
and remains in a waiting state until all members of the execution 
group have transitioned into their respective child behaviors.  
They then begin executing the new behavior together.  In the 
MONAD architecture, agents are able to determine when their 
execution group has transitioned as the agents replicate their 
current behavior to the other members of the team. 

As mentioned in the formal definitions (Section 3.1), the 
restrictions in our hierarchy are enforced in order to unify the 
notion of synchronized executing groups and ensure that 
transitions are well-defined when behaviors become no longer 
applicable.  Many behavior-based control architectures do not 
differentiate between sequential and decompositional 
relationships as they attempt to handle sequences of actions by 
depending upon applicability conditions in the nodes of the 
hierarchy.  The MONAD architecture allows for a more natural 
representation of temporal dependencies by separating the notion 
of a following relationship from a decompositional relationship.  
In addition, the restriction of having a horizontal out-degree of at 
most one allows MONAD to avoid difficulty in the following 
situation.  If a node were followed by one or more nodes, then the 
relationship of those following nodes to the current node and to 
each other is poorly defined.  The applicability and termination 

conditions of the two following behaviors would have no implicit 
relationship to the conditions of the prior behavior and thus it is 
possible for a subset of the following behaviors to break on some 
world condition when the others do not.   

While this is not a direct problem, an unrestricted architecture of 
this form would allow multiple following behavior branches in a 
row. After such branching, since there is no implicit way to 
determine where agents should transition to when behaviors lose 
applicability or terminate. This would make synchronized 
arbitration nearly impossible as the set of agents who should be 
jointly deciding upon actions may fragment and be separated into 
different portion of the behavior hierarchy, with little unifying 
notion of how and when to rejoin the teams.  Even in the case of 
adding termination links to each node of the hierarchy, there 
exists a large possibility of human error in creating these 
termination links and also a large inefficiency in explicitly 
specifying the transition node for each way that the behavior may 
have terminated.  

The MONAD architecture’s behavior hierarchy avoids this 
problem by clearly defining the two forms of relationships, 
decomposition and following, and using these notions to form an 
intuitive and implicit web of dependency between the behaviors.  
In our case, decomposition intuitively indicates that the goals of 
the child behaviors are subsets of the goals of the parent behavior.  
Thus, if the parent’s goals are achieved and the behavior 
terminates, it follows that any behaviors in the part of the 
hierarchy specified by the children of the parent node should 
terminate since they constitute a subset of the goals of the parent 
node.  This is achieved through our definition of execution groups 
and our method of examining the stack from bottom to top to 
determine whether or not a behavior terminated at one of our 
parent decomposition points.  Thus, with respect to the single 
following relationship, we note that the restriction in the MONAD 
architecture forces all splits of execution groups to be 
decompositional.  Consequently, it becomes trivial (through the 
behavior stack) to maintain the well-defined relationship between 
the agents as they split into various execution groups many levels 
deep, which greatly simplifies the synchronization of agents in 
arbitration and team program execution. 

3.4 A Simple Execution Example 
In order to clarify the events that occur during execution, we show 
the team of agents and the way in which they execute a sample 
team program.  These agents in this example are running in a 
simulated GameBots Capture The Flag environment, which is 
explained in greater detail in Section 4. Initially, via the team 
description file, we set the “role” variable of each agent to be as 
follows: Agent 1 = “attacker1”, Agent 2 = “attacker2”, Agent 3 = 
“defender”.  The behavior hierarchy used in this example is 
shown in Figure 7.  While each behavior has associated 
applicability, termination conditions, and constraints that are 
useful in our explanation, the entire team program is too long to 
insert in this paper and thus throughout this example we simply 
indicate when a particular condition breaks and the effect of the 
constraints on the arbitration process.  For reference, Figure 3 
shows the Explore behavior from this team program. 

At startup, the behavior stack for each agent contains only the first 
behavior in the hierarchy, Explore, which is the initial behavior 
because it has in-degree 0. The strings after each agent show the 



 
Figure 7. Behavior Hierarchy used in GameBots team and 

example. Double arrows indicate horizontal edges and single 
arrows indicate vertical edges for clarity. 

behavior stack for that agent, beginning from the bottom of the 
stack.  Therefore, the state of the team at startup is: 

Agent 1 =  Explore 
Agent 2 =  Explore 
Agent 3 =  Explore 

At this point, the agents have just entered the game.  For the 
purposes of this example, we will assume that the arbitration 
method used at all internal behaviors is a fixed-role-based 
arbitrator which uses predetermined assignments of agents to 
tasks.  When the update cycle executes, since Explore is not a leaf 
node, (i.e. it has children), then there is no behavior execution 
code for this node.  Instead, the SCORE engine in each agent 
evaluates the applicability condition of the two children of 
Explore, which are ExploreOurBase and ExploreOtherBase. Out 
of these two behaviors, the subset of behaviors whose 
applicability conditions evaluate to true is passed into the 
arbitrator so that the agents can decided amongst them. Since 
fixed role arbitration is being used, no communications are 
needed by the arbitration execution code, and the agents simply 
follow the constraints defined in the program. Assume for now 
that the constraints lead to the following assignment: Agent 1 and 
Agent 2 choose the ExploreOtherBase behavior, while Agent 3 
chooses ExploreOurBase. The situation now looks like: 

 Agent 1 = Explore � ExploreOtherBase 
 Agent 2 = Explore � ExploreOtherBase 
 Agent 3 = Explore � ExploreOurBase 

Now assume that the termination condition in ExploreOurBase 
becomes true when an agent on the team sees the team’s flag. 
Then when some agent discovers the location of its team’s flag, 
the variable OurFlagKnown in the variable table is set to true by 
the agent’s update code, and is replicated to the other agents. 
Now, the end condition of the behavior ExploreOurBase becomes 
true, and that behavior ends. Agent 3’s behavior stack is popped 
up to and including ExploreOurBase. Since the behavior 
ExploreOurBase has a following behavior (DefendBaseNoStop), 
Agent 3 pushes that behavior onto its stack, leaving the state of 
the team as: 

 Agent 1 = Explore � ExploreOtherBase 
 Agent 2 = Explore � ExploreOtherBase 
 Agent 3 = Explore � DefendBaseNoStop 

This situation continues for a while, until any agent (presumably 
Agent 1 or Agent 2) locates the enemy team’s flag.  This fulfills 
the end condition for Explore since at this point the locations of 
both teams’ flags are known.  Since all three agents are in the 
execution group of Explore, they pop their behavior stacks up to 
and including Explore. Since Explore has a following behavior 
(WinGame), the agents push it onto their stacks: 

 Agent 1 = WinGame 
 Agent 2 = WinGame 

Agent 3 = WinGame 

Since WinGame has the two child behaviors Attack and Defend, it 
is not a leaf node and therefore the only execution for this 
behavior is arbitration among the three agents to determine their 
split into child behaviors.  The agents call the role arbitrator and 
the constraints again cause the first two agents to transition into 
Attack, while Agent 3 transitions into Defend. 

 Agent 1 = WinGame � Attack 
 Agent 2 = WinGame � Attack 

Agent 3 = WinGame � Defend 

Since both Attack and Defend are not leaf nodes, all agents must 
again arbitrate.  At this point, however, Agent 1 and 2 arbitrate in 
a separate execution group from Agent 3 since they are deciding 
amongst the children of Attack while Agent 3 decides amongst the 
children of Defend.  The constraints specified at Attack and 
Defend then lead to following configuration:  

Agent 1 = WinGame � Attack � GoForFlag 
Agent 2 = WinGame � Attack � AttackBase 
Agent 3 = WinGame � Defend � DefendBase 

At this point, all three behaviors at the top of the stacks are leaf 
nodes, so at every thinking interval SCORE calls the execution 
function for those behaviors.  Assume now at some later time that 
Agent 1 picks up the enemy flag. Then the end condition in 
behavior Attack becomes true and Agents 1 and 2 pop their 
behavior stack up to and including Attack.  Since Attack has 
GoBack as a following behavior, Agents 1 and 2 push GoBack 
onto their stack. 

Agent 1 = WinGame � GoBack 
Agent 2 = WinGame � GoBack 
Agent 3 = WinGame � Defend � DefendBase 

Again, the first two agents arbitrate at the GoBack behavior, and 
again the role constraints lead to Agent 1 choosing 
GoBackToBase and Agent 2 choosing Distract.  

Agent 1 = WinGame � GoBack � GoBackToBase 
Agent 2 = WinGame � GoBack � Distract 
Agent 3 = WinGame � Defend � DefendBase 

If the agent who is carrying the flag drops it or captures it, the end 
condition for GoBack becomes true.  The first two agents would 
pop behaviors off their stack up to and including GoBack.  Since 
GoBack has no following behavior, nothing is put on the stack 
and the Agent 1 and 2 end up returning to WinGame where they 
arbitrate. 

Agent 1 = WinGame  
Agent 2 = WinGame 
Agent 3 = WinGame � Defend � DefendBase 

Explore WinGame 

Explore 
Other 
Base 

Explore 
Our 
Base 

DefendBase 
No Stop 

AttackBase 
No Stop 

Attack GoBack 

Defend 

Defend 
Base 
 

Return 
OurFlag 
 

Attack 
Base 
 

Go 
ForFlag 
 

Distract 
 

GoBack 
ToBase 
 

Escort 
 



Again, since we are using a fixed-role arbitrator, the arbitration 
execution for the first two agents leads them to both choose Attack 
and push it into their stacks.  The process thus repeats until the 
game ends.  Note that during this time, Agent 3 is executing 
orthogonally to the first two agents since it is in the same 
execution group only for WinGame, whose termination condition 
is never met until the end of the game.  Furthermore, as designed, 
if the other team took our team’s flag, then Agent 3 would have 
similarly transitioned to ReturnOurFlag, etc. without affecting the 
execution being carried out by Agents 1 and 2. 

4. RESULTS 
In order to evaluate the effects of the MONAD architecture's 
flexibility, we implemented a multi-agent system framework that 
utilizes MONAD architecture to enable the construction of 
different team structures which shared the low level behavior 
execution and arbitration execution code. We tested these 
different teams in a complex, dynamic environment based in the 
GameBots multi-agent testbed (Kaminka et al. 2002). This test-
bed facilitates experiments with agents in a rich virtual 
environment, in which the physical characteristics of the 
environment and the task to be carried out by agents can be 
flexibly changed. For the purposes of our experiments, we chose 
the Capture-the-Flag task, in which two teams of agents attempt to 
each steal the opponent's flag from the opponent's base as many 
time as possible, while at the same time protecting their own flag 
from the opponent. The agents, each a separate program, connect 
to the game through sockets,  using a text protocol that allows 
them to sense their immediate surrounding, and act (e.g., by 
moving, turning, etc.). The game ends when one team reaches the 
capture limit (2, in our case) or when the game reaches the time 
limit (15 minutes, in our case). When the game ends, the team that 
captured more flags wins.  If both teams have the same number of 
flags, the game is considered a tie. 

Using MONAD, one can make significant changes to the team 
structure simply by changing the configuration of edges between 
behaviors in the hierarchy or the associations between child 
behaviors and their behavior execution code. However, we 
focused our tests on a MONAD feature that distinguishes it from 
previous investigations: Its ability to allow the designer to define 
different multi-agent arbitration methods for use by team-
members under different conditions specified on a per-behavior 
basis. 

We created three teams from three similar team description files 
which all contained the general behavior hierarchy as in Figure 7 
(see Section 3.2).  Each behavior in the hierarchy has all the 
details as mentioned in Section 3.2: starts-when, ends-when 
conditions; the constraints of splitting and the children behaviors 
for the team to split into if there is any; and either the name of the 
arbitration method or the name of the execution function, 
depending on whether the behavior is at an internal node or a leaf 
node.  

The only difference between the teams was the arbitration method 
that we used at the internal nodes. For the first team, ROLE, all 
the internal behaviors used role arbitration model. For the second 
team, PREF, a preference arbitration model was used. Finally, for 
the third team, MIXED, a combination of the previous two 
models was designed where one of the most important behaviors, 
the Attack behavior, used preference arbitration and the remaining 
behaviors used role arbitration. 

In total, we managed to run 135 games for ROLE, 59 games for 
PREF, and 89 games for MIXED. In all of these games, we 
modified only the evaluated team: The opponent and the 
environment remained fixed. The results of these experiments are 
presented in table 1 and 2. 

Table 1. The percentage of games won by each team. 

 ROLE PREF MIXED 
% of games won 58.519 35.593 56.180 

 
Table 2. The mean, standard deviation, and normalized to 
mean ROLE values of different important figures in the 

following order: the difference in score, the time required for 
the teams to win a game, to capture the first flag, and to reach 

opponent’s flag in Test Set 1. 
 ROLE PREF MIXED 
 Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std 

Dev. 

Difference 
 in score 

0.60 1.35 -0.19 1.31 0.61 1.36 

733.7 229.3 847.0 130.6 670.8 199.7 Time  
to win  
(sec) 100% 115% 91% 

427.9 219.0 472.7 223.7 369.5 183.4 Time to 
capture flag 

(sec) 100% 110% 86% 

130.7 60.2 145.3 78.6 113.0 53.1 Time to 
reach flag 

(sec) 100% 111% 86% 

 
The overall performance of the teams in Table 1 and the average 
difference in score in Table 2 show a large difference between 
ROLE and PREF (58.5% compared to 35.5%, and  -0.19 
compared to 0.60). Interestingly, as the combination of features 
from PREF and ROLE, MIXED not only demonstrated 
competitive overall performance (56% of games won), but also 
demonstrated certain advantages when compared to ROLE. In 
particular, it required MIXED only 91% of the time ROLE needs 
to win a game, 86% of the time to capture the first flag, or  86% of 
the time to the opponent’s flag.  

While conducting the experiments, we noticed that role arbitration 
had a minor advantage in speed while preference arbitration had a 
more advantageous mapping of agents to chosen behaviors. Thus, 
to further evaluate the efficiency of the MIXED team, we 
increased the difficulty level of the opposing built-in Unreal 
Tournament bots while keeping all other features of the game the 
same.  The effects of raising the difficulty were an increase the 
accuracy of the opponent team as well as an improvement the 
strategies that they used.  Under this configuration, we ran 70 
games for ROLE and 66 games for MIXED. The results of these 
experiments are presented in table 3 and 4. 

Indeed, in this set of tests, the accuracy features from Preference 
Arbitration helped MIXED to have better overall performance 
than ROLE (33% of games won compared to 31% of ROLE) 
while still maintaining other advantages such as less time required 
to win a game (93.3%) or less time required to capture the first 



flag (81.4%). Thus, it appears that the performance of a multi-
agent  team  in  a  given   simulation  is  highly  dependent  on the 

Table 3. The percentage of winning games and the average of 
the difference in score in Test Set 2 

 ROLE MIXED 
% of winning 31.428 33.333 

 

Table 4. The value, the percentage of the value compared to 
that of ROLE, and the standard deviation of different 
important figures in the following order: the average 

difference in score, the average time required for the teams to 
win a game,  and to capture the first flag in Test Set 2. 

 ROLE MIXED 
 Value Std. Dev. Value Std Dev. 

Av. Diff. in score -0.42 1.35 -0.22 1.58 

657.8 196.9 507.5 183.8 Av. Time to win 
(sec) 100% 93.3% 

455.2 172.3 370.5 146.4 Av. Time to 
capture flag  

(sec) 100% 81.4% 

 

structure of the team, again despite the fact that all 
implementations shared the same low-level behavior execution 
and arbitration execution code.  This demonstrates the need for 
testing different team structures in pursuit of one with the best 
performance for a given problem.  The MONAD architecture can 
accommodate a wide variety of team structures with only small 
changes to the team program, which greatly accelerates and 
facilitates the development of multi-agent teams.
 

5. SUMMARY 
We have presented MONAD, a set of design tools and supporting 
run-time architecture that allows a team-designer to quickly 
configure a team's control mechanism, and have this design 
automatically executed when the team is deployed. The design 
tools include a scripting language and a GUI. The run-time 
support includes a behavior-based architecture which integrates 
the SCORE teamwork model. We demonstrated the efficacy of 
our approach by showing how three different teams can be easily 
configured using our tools, and this indeed leads these teams to 
greatly differ in performance. 

In terms of extending the MONAD architecture, one area of 
additional research is into synchronization of data and execution 
and improving the performance of the system under lossy and 
error-prone communication environments.  With the current 
system, it is possible for communication difficulties to cause 
subsets of agents to lose synchronization and therefore cause 
errors or lockups in SCORE’s execution of the team program.  We 
would also like to research ways of improving SCORE’s 
coordinated execution model to be compatible with larger teams 
of agents.   
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