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Abstract

Models of crowd behavior facilitate analysis and prediction
of human group behavior, where people are affected by each
other’s presence. Unfortunately, existing models leave many
open challenges. In particular, psychology models often of-
fer only qualitative description, while computer science mod-
els are often simplistic, and are not reusable from one sim-
ulated phenomenon to the next. We propose a novel model
of crowd behavior, based on Festinger’s Social Comparison
Theory (SCT). We propose a concrete algorithmic framework
for SCT, and evaluate its implementation in several crowd
behavior scenarios. Results from task measures and human
judges evaluation shows that the SCT model produces im-
proved results compared to base models from the literature.

Introduction
Models of crowd behavior facilitate analysis and prediction
of the behavior of groups of people, who are in close geo-
graphical or logical states, and are affected by each other’s
presence and actions (Helbing et al. 2001; Le Bon 1968;
Rymill & Dodgson 2005; Daamen & Hoogendoorn 2003).
Existing models, in a variety of fields, leave many open chal-
lenges. In particular, in computer science models are often
simplistic, and typically not tied to specific cognitive science
theories or data. Moreover, existing computer science mod-
els often focus only on a specific phenomenon (e.g., flock-
ing, pedestrian movement), and are therefore not reusable in
simulating new phenomena.

We propose a novel model of crowd behavior, based on
Social Comparison Theory (SCT) (Festinger 1954), a pop-
ular social psychology theory that has been continuously
evolving since the 1950s. The key ideas in this theory is
that humans, lacking objective means to evaluate their state,
compare themselves to others that are similar. We propose a
concrete algorithmic framework for SCT.

We evaluate the use of SCT models in generation of
pedestrian movement and imitational behavior, and show
that SCT generates behavior more in-tune with human
crowd behavior. Moreover, unlike many previous mod-
els, SCT generalizes across social phenomena. In pedes-
trian movement generation, the SCT model accounts for
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group formation in pedestrians that are inter-related, a phe-
nomenon unaccounted for by previous models. And where
previous techniques apply, SCT shows improved results. In
the context of imitational behavior, the SCT model was eval-
uated in studies with human subjects. The subjects ranked
SCT to be a middle-ground between completely individual
behavior, and perfect synchronized (“solider-like”) behav-
ior. Independently, human subjects gave similar rankings to
short clips showing human crowds.

Background and Motivation
A phenomenon observed with crowds is its homogeneous
nature. The participants act as if governed by a single mind,
despite using little or no verbal communications (Le Bon
1968). Social psychology literature provides several views
on the mechanisms underlying this phenomenon, but unfor-
tunately, these are too abstract to be used algorithmically.
For example, (Le Bon 1968) explains the behavior of crowd
by two processes: (i) imitation, where people in a crowd im-
itate each other; and (ii) contagion, where people in a crowd
behave very differently from how they typically would, in-
dividually.

In contrast, computational crowd models tend to be sim-
plistic, and focus on specific crowd behaviors (e.g, flocking).
A common theme in all of them is the generation of behav-
ior from the aggregation of many local rules of interaction,
e.g., (Rymill & Dodgson 2005). However, these models
have rarely, if ever, been validated against human (or animal)
data. Indeed, there is generally little quantitative data on the
behavior of human crowds, at a resolution which permits ac-
curate modeling. One exception is the formation of lanes (in
opposing directions) in human pedestrian movements (Daa-
men & Hoogendoorn 2003), which has been extensively in-
vestigated, and for which specific performance measures are
well-defined (reduced lane changes, flow, etc.).

Henderson modeled pedestrian movement on gas-kinetic
fluid movement (Henderson 1971). Helbing et al. (Helbing
et al. 2001) developed a model that takes into account in-
teractions between the individuals and the physical environ-
ment. Blue and Adler (Blue & Adler 2000) used cellular
automata. The focus of all of these is again on local interac-
tions; each simulated pedestrian is a particle or an automa-
ton, whose next action or behavior is determined by its local
surroundings.

Indeed, in these previous works, the behavior of crowds



in every domain of study (pedestrian movement, flocking,
evacuation, etc.) is computed using a different algorithm,
yet the actions and perceptions remain largely invariant (e.g.,
distances to others, occupied spaces versus empty spaces,
goal locations, etc.). Instead, the computation itself changes
between modeled behaviors.

For instance, many models for crowd behavior utilize
cellular-automata (CA), which differ between domains. One
CA model for pedestrian movement (Blue & Adler 2000)
uses a set of 6 IF-THEN rules which work in parallel for all
cells, to simulate the movement of pedestrians in cells. The
rules utilize knowledge of the occupancy in adjacent (rules
1,3 in (Blue & Adler 2000)) and farther cells (rule 2), as well
as to the distance to oncoming pedestrians in the same lane
(rules 4, 6). The rules set the forward velocity and position
of the entities, by using a set of non-deterministic choices
(sub-rules 5a,5b,5c), biased by distributions which differ de-
pending on the environmental settings (e.g., choose from a
uniform 50%/50% split distribution if two nearby cells are
occupied, or from a 10%/80%/10% distribution when three
cells are available). In contrast, a recent CA model for evac-
uation (Tissera, Printista, & Errecalde 2007) uses knowledge
of adjacent cells and distances to exits, and sets the position
of the entities. Thus the actions and perceptions of each en-
tity are similar to those used in the pedestrian model. But the
algorithmic computation of the new position is done in two
deterministic rules (Tissera, Printista, & Errecalde 2007, pp.
17), which involve no arbitrary choices at all.

In contrast to these previous investigations, we seek a sin-
gle cognitive mechanism that, when executed by individu-
als, would give rise to different crowd behaviors, depending
on the perceptions and actions available to the agents. In
other words, our goal is to unravel a single computational
mechanism—a single algorithm—which would account for
different crowd phenomena, by virtue of the actions and per-
ceptions available to each individual.

A Model of Social Comparison
We took Festinger’s social comparison theory (SCT) (Fes-
tinger 1954) as inspiration for the social skills necessary for
our agent in order to be able to exhibit crowd behavior. Ac-
cording to social comparison theory, people tend to compare
their behavior with others that are most like them. To be
more specific, when lacking objective means for appraisal of
their opinions and capabilities, people compare their opin-
ions and capabilities to those of others that are similar to
them. They then attempt to correct any differences found.
This section shows how SCT can be turned into a concrete
algorithm, to be used for generating crowd behavior.

Festinger’s Social Comparison Theory
Festinger (Festinger 1954) presents social comparison the-
ory (SCT) as an explicit set of axioms. The following sub-
set of axioms (re-worded) are particularly relevant: (i) When
lacking objective means for evaluation, agents compare their
state to that of others; (ii) comparison increases with similar-
ity; (iii) agents take steps to reduce differences to the objects
of comparison.

Newell (Newell 1990) classified each of Festinger’s ax-
ioms with respect to the type of agent it assumes, and con-

cluded that in fact, SCT may be used in principle to gener-
ate social behavior out of axioms that are largely non-social
(in the sense that they do not cause agents to actively inter-
act). However, Newell’s discussion was essentially philo-
sophical: No algorithm was suggested, nor any method for
using SCT’s axioms as the basis for a computational process.

To be usable by computerized models, SCT’s axioms
must be transformed into an algorithm that, when executed
by an agent, will proscribe social comparison behavior. To
do this, we re-examined Festinger’s discussion and exam-
ples of how the axioms apply.

For instance, Festinger proposes that when lacking objec-
tive means for evaluation, people compare their opinions and
capabilities to those of others. He then carefully notes that
the comparison takes place at the level of the opinion or ca-
pability: “Thus, if a person evaluates his running ability, he
will do so by comparing his time to run some distance with
the times that other persons have taken.” (Festinger 1954, p.
116).

Later on, in discussing how actions are selected to min-
imize differences, he again notes that the action is selected
at the level at which the difference is found: “When pres-
sures toward uniformity exist with respect to abilities, these
pressures are manifested less in social process and more in
action against the environment which restrains movement.
Thus, a person who runs more slowly than others with whom
he compares himself, and for whom the ability is important,
many1 spend considerable time practicing running. In a sim-
ilar situation where the ability in question is intelligence, the
person may study harder.” (Festinger 1954, p. 126).

Based on these observations, we take another step towards
the modeling of social comparison theory. We propose a
concrete algorithmic framework for SCT that can be exe-
cuted by an agent. Moreover, we propose the use of SCT al-
gorithmic framework for modeling crowd behaviors. In so-
cial psychology there are several views on the mechanisms
underlying individual that is a part of crowd behavior. How-
ever, to the best to our knowledge, social comparison the-
ory has never been connected to crowd behavior phenomena.
We believe that SCT algorithmic framework can provide so-
cial skills that are necessary for agents in order to exhibit
crowd behavior phenomenons. The basis of our belief is
that social comparison theory may account for Le Bon’s (Le
Bon 1968) characteristics of crowd behavior:

Imitation. Using social comparison, people may adopt
others’ behaviors. Festinger notes (Festinger 1954): ”The
drive for self evaluation is a force acting on persons to be-
long to groups, to associate with others. People, then, tend
to move into groups which, in their judgment, hold opinions
which agree with their own“.

Contagion. One implication of SCT is the formation of
homogeneous groups. Festinger writes (Festinger 1954):
”The existence of a discrepancy in a group with respect to
opinions or abilities will lead to action on the part of mem-
bers of that group to reduce the discrepancy”.

1This is likely a typo in the original manuscript, to be replaced
by ”may“.



An SCT Algorithm
In order to build algorithmic framework for SCT, each ob-
served agent is assumed to be modeled by a set of features
and their associated values. For each such agent, we calcu-
late a similarity value s(x), which measures the similarity
between the observed agent and the agent carrying out the
comparison process. The agent with the highest such value
is selected. If its similarity is between given maximum and
minimum values, then this triggers actions by the comparing
agent to reduce the discrepancy.

The process is described in the following algorithm,
which is executed by comparing agent.

1. For each known agent x calculate similarity s(x)

2. c← argmax s(x), such that Smin < s(c) < Smax

3. D ← differences between me and agent c

4. Apply actions to minimize differences in D.

In line 1, the comparing agent (me, for short) compares
itself with other agents. We model each agent as an ordered
set of features, where similarity can be calculated for each
feature independently of the others. We use a weighted lin-
ear sum to compute the similarity measure s(x):

s(x) =

k∑

i=0

wifi

where k is the feature index, fi similarity in feature i, 0 ≤
fi ≤ 1, and wi the weight of the feature in overall similarity
(non-negative).

For each calculated similarity value, we check in line 2
if it is bounded by Smin and Smax, and pick the agent that
maximizes the similarity, but still falls within the bounds.
Smin denotes values that are too dissimilar, and the associ-
ated agents are ignored. Festinger writes (Festinger 1954):
“When a discrepancy exists with respect to opinions or abil-
ities there will be tendencies to cease comparing oneself
with those in the group who are very different from one-
self”. Respectively, there is also an upper bound on similar-
ity Smax, which prevents the agent from trying to minimize
differences where they are not meaningful or helpful. For
instance, without this upper bound, an agent that is stuck in
a location may compare itself to others, and prefer those that
are similarly stuck in place.

In line 3, we determine the list of features fi that indicate a
difference with the selected agent c. We order these features
in an increasing order of weight wi, such that the first feature
to trigger corrective action is the one with the least weight.
The reason for this ordering is intuitive, and we admittedly
did not find evidence for it in the literature. However, no ev-
idence was provided against this ordering, and it empirically
worked better in the experiments (see below).

Finally, in step 4 of the algorithm, the comparing agent
takes corrective action on the selected feature. Note that
we assume here that every feature has associated correc-
tive actions that minimize gaps in it, to a target agent, in-
dependently of other features. Festinger writes (Festinger
1954): “The stronger the attraction to the group the stronger
will be the pressure toward uniformity concerning abilities

and opinions within that group”. To model this, we use a
gain function g(o) for the action o, which translates into the
amount of effort or power invested in the action. For in-
stance, for movement, the gain function would translate into
velocity; the greater the gain, the greater the velocity.

g(o) =
Smax − Smin

Smax − s(c)

Modeling Pedestrian Movement
The coordinated behavior of crowds has often been inves-
tigated in the context of pedestrian dynamics. Pedestrian
motion (direction and velocity) is affected not only by phys-
ical elements (e.g., the sidewalk), but also by the motion of
other pedestrians. Wolff (Wolff 1973) noted that pedestrians
have a hight degree of cooperation and coordination which
without it, walking on sidewalk would be impossible.

Indeed, human pedestrians, moving in opposing direc-
tions, quickly self-organize into uni-directional lanes, in
which their movement is essentially undisturbed (Daamen
& Hoogendoorn 2003). This phenomenon is a focal point
for investigations: Quicker lane formations can lead to im-
proved flow through the area, and the more agents organize
into lanes, the less their need to spend efforts coordinating
with others (change lanes). Thus crowd models for pedes-
trians are often evaluated based on their ability to reduce the
number of lane changes (i.e., quicker lane formation).

We explore the use of SCT in generating pedestrian move-
ments in different settings (individual, groups, with and
without obstacles) and compare its performance to known
models. Our goal is to explore if SCT model can account for
common pedestrian behavior phenomenons like lane forma-
tions in bidirectional movement, and movement in groups,
with and without obstacles.

Each agent has a set of features and their corresponding
weights. For simulating pedestrian movement, we used the
following features and weights: Walking direction east or
west (weight 2); color (weight 3); and position (weight 1),
given global coordinates.

The similarities in different features (fi) are calculated
as follows. fcolor = 1 if color is the same, 0 otherwise.
fdirection = 1 if direction is the same, 0 otherwise. and fi-
nally, fdistance = 1

dist
, where dist is the Euclidean distance

between the positions of the agents. Each agent calculates
s(x) according to the model. If the chosen feature for clos-
ing the gap is distance, then the velocity for movement will
be multiplied by the calculated gain g(o). For other features
(which are binary), the gain is ignored.

The rationale for feature priorities, as represented in their
weights, follows from our intuition and common experience
as to how pedestrians act. Positional difference (distance) is
the easiest difference to correct, and the least indicative of a
similarity between pedestrians. Direction is more indicative
of a similarity between agents, and color (which we use to
denote sub-groups within the crowds) even more so. For in-
stance, if an agent sees two agents, one in the same direction
as it (and far away), and the other very close to it (but in the
opposite direction), it will calculate greater similarity to the
first agent, and try to minimize the distance to it (this may
cause a lane change).



To implement the model for pedestrians movement exper-
iments, we used NetLogo (Wilensky 1999). We simulated a
sidewalk where agents can move in a circular fashion from
east to west, or in the opposite direction. Each agent has
limited vision range and field of view (120◦). Each agent
follows an initially set direction. If forward movement is
blocked, the agent will choose the lane based on SCT al-
gorithm above. We use a default uniform velocity for all
agents. The velocity may change individually based on gain.

To evaluate the SCT model, we contrast it with a popular
alternative model, often used in pedestrian crowd research
(Blue & Adler 2000; Helbing et al. 2001). In this individual
choice model, each agent chooses lanes arbitrarily if forward
movement is blocked. This model was repeatedly shown to
produce lane formations.

We compare these models as is commonly done in pedes-
trian movement experiments: We controlled for crowd den-
sity, calculated as the number of agents divided by the area.
We follow the literature in measuring two principal char-
acteristics of pedestrian movement: the total number of
lane changes (lower numbers indicate improved lane forma-
tions), and the flow (average speed divided by the space-per-
agent; higher flow is better).

Experiment 1: Bidirectional Pedestrian Movement
We first evaluate SCT in accounting for lane formation in
oppositely moving pedestrians; this is likely the most com-
mon experimental task for pedestrian crowd models.

In this first experiment all agents moving in the same di-
rection had the same color (different than the other direc-
tion). To evaluate the effects of gain, we vary the Smin and
Smax values, as they set the enumerator in the gain calcu-
lation. Setting Smax at 6 means that any dissimilarity other
than color triggers action and setting Smin at 2 means that
agents that differed only in distance (but not by color or di-
rection) were not considered similar.

To evaluate the effect of the gain, we contrasted three vari-
ants of the social comparison model introduced earlier:
• Smax = 5.5, Smin = 5, i.e., g(o) = 1 (no change).

• Smax = 5.5, Smin = 4, i.e., g(o) = 3

• Smax = 5.5, Smin = 2, i.e., g(o) = 7

Figure 1 shows the initial positions of the agents in one of
the trials (top figure), and typical results after 5000 cycles,
with a gain of 1 (second figure), gain of 3 (third figure), and
gain of 7 (forth figure). The figures show how the increased
gain causes the agents to group more closely together.

Figure 1: Bidirectional Pedestrian Movement.

Figure 2 shows lane formation and flow results for the in-
dividual and social comparison models. The X-axis in both

subfigures measures density. The Y-axis in Figure 2(a) mea-
sures the number of lane changes; a higher number indicates
more lanes are formed, since agents must still change lanes,
having met opposing pedestrians. The Y-axis in Figure 2(b)
measures flow. Each data-point is an average over 15 trials.

(a) Lane changes.

(b) Flow.

Figure 2: Bidirectional pedestrian measurement results
The figures show that the number of lane changes in

SCT is significantly lower than that of the individual-choice
model (one tailed t-test, 0.05 significance level). This is true
even with a gain of 1, which effectively neutralizes the gain
in comparison to the individual-choice model. Moreover,
the difference with the individual-choice model increases
with an increased gain. However, there are essentially no
differences in flow. These results support the hypothesis that
the use of SCT can lead to quicker lane formations, which
would indicate an improved model of crowd behavior.

Experiment 2: Pedestrians in Groups
In this experiment, we evaluate the SCT model in settings
where the pedestrians form subgroups. This type of situation
arises, for instance, in pedestrians that are composed of fam-
ilies and/or friends, which then often move closer together
even when undisturbed by opposing traffic. The individual
choice model does not account for such behavior. In con-
trast, we expect SCT to address such settings, as subgroup
members would be more similar.

To examine this hypothesis, we carried out experiments
where agents belonging the same group have the same color.
In these experiments, all agents move in the same direction,
for 5000 cycles. The population contains 150 agents with
a different number of colors (we experimented with 5, 10,
and 20 and color). Agents use comparison at all times, and
not just when stuck. Walking direction of all agents is West.
Smax was set at 6.5, and Smin was set at 2.

To account for the western cultural intuition that friends



# Groups Individual-Choice Social Comparison
5 173.2 87.4
10 143.3 85.8
20 101.5 60.1

Table 1: Grouping measurements of individual-choice
and social comparison models.

(and family) walk side-by-side, rather than in columns, we
added another feature: The similarity in position along the
x-axis. The revised features and weights are as follows: di-
rection, weight 2; distance, weight 0.5; color, weight 3; and
X-coordinate, weight 1. The rationale behind these weights
is that the agent will first close the distance gap with the
agent selected as most similar, and only then try to locate
itself on the same X-coordinate.

Figure 3: Screen shots, grouped pedestrian movement.

Figure 3 shows the initial random positions of the agents
(top figure), their positions after moving for 5000 cycles us-
ing the individual model (second figure), and their positions
after moving 5000 cycles using the social comparison model
(third figure). The figures show that the social comparison
model causes similar-colored agents to group together.

We used hierarchical social entropy—a measure of group
heterogeneity (Balch 1998)—to measure the grouping re-
sults. The key intuition behind this measure is to iteratively
sum entropy over increasing areas. The measure equals 0
when all agents are positioned in the exact same spot, and
grows with their uniform spreading in space. Thus lower
values indicate improved grouping.

Table 1 shows the measurement results for the individual-
choice and social-comparison models. Each row corre-
sponds to the average results over multiple trials, with a dif-
ferent number of colors. The table shows (third column) that
the social comparison model provides for significantly im-
proved grouping compared to the individual-choice model
(one-tailed t-test, 0.05 significance level). Again, these re-
sults support the hypothesis that SCT is an improvement
over the basis individual-choice model.

Experiment 3: Groups and Obstacles
Our final set of pedestrian movement experiments addresses
the response of groups within moving pedestrian crowds, to
obstacles in their path. Intuitively, we recognize that such
groups will choose to stick together in face of an obstacle
(moving together to one side of it). We sought to examine
whether the SCT model would account for this behavior.

We created a sidewalk environment as described earlier,

Figure 4: Screen shots, movement around an obstacle.

Figure 5: Entropy of grouped pedestrians’ movement
around the obstacle.

but this time with an elongated rectangular obstacle in the
middle of it. The population contains 100 agents, with 2
colors (red or blue). Walking direction of all agents is West.
Each agent has the following features: Direction, distance
and color (weights: same as in the bidirectional pedestrian
experiments). Agents use comparison at all times, and not
just when stuck. Smax was set at 6.5, Smin at 3.

Figure 4 shows the initial random positions of the agents
(top figure), their positions after 5000 cycles using the indi-
vidual model (second figure), and their positions after 5000
using the SCT (third figure). The figures show clearly that
the the social comparison model causes similarly-colored
agents to group together on one side of the obstacle, pass-
ing it together.

In order to measure to what degree agents of the same
color stay on one side of the obstacle, we defined virtual
“gates” on either side of the obstacle, and monitored agents
that move through them. Each trial allowed 100 agents to
pass through the gates 10 times (i.e., 10 waves). At the end
of each wave, we calculated (separately) the entropy of each
color as its agents are divided between the two gates. The
final result of each wave is the average entropy value across
the two colors. Lower entropy values indicate increased
grouping on one side.

Figure 5 shows the average entropy value for each wave,
for the ten waves. The results are averaged over 25 tri-
als. The X-axis shows the wave number (1–10). The Y-
axis measures the entropy. Lower score indicates improved
grouping. The figure shows that the entropy value of the
social-comparison model quickly goes down from 1 and ap-
proaches 0. This indicates that the SCT model does indeed
cause groups to stick together in face of obstacles.

SCT in Imitational Behavior
An attractive feature of social comparison is its hypothesized
prevalence in human group behavior. Indeed, we believe that
the SCT model is sufficiently general to account for a wide
variety of group behaviors. This section provides initial ev-
idence for such generality by describing the application of
the SCT model to the problem of generating imitational be-



haviors in loosely-coupled groups.
Unlike individual imitation, where one agent imitates a

role model, crowd imitational behavior spreads across a
group of individuals who dynamically select role models for
imitation. Here, imitation occurs more loosely, as the role
models do not necessarily intend to play their role, and in-
deed may not even know that they are being imitated. Also,
the imitators potentially switch their role-model targets from
one moment to the next. Psychology literature describes
such imitational behavior as one of the keystones of crowd
behaviors (Le Bon 1968).

To explore imitational behavior, we utilized a 3D virtual
world (see Figure 6), in which multiple agents can interact
with each other. Each agent is controlled by a separate pro-
cess, implemented SCT in the Soar cognitive architecture
(Newell 1990; Soar 2006).

Figure 6: Soar agents in the GameBots environment.
A detailed discussion of Soar’s role as a cognitive ar-

chitecture is beyond the scope of this paper. We provide
a very brief overview here, and refer the interested reader
to (Newell 1990; Soar 2006) for additional details. Soar
has two components: a graph-structured working memory,
and a set of user-defined production rules that test and mod-
ify this memory. Efficient algorithms maintain the working
memory by executing rules that match existing contents. All
the agent’s knowledge, sensor readings, and decisions are
recorded in the working memory. Soar operates in a clas-
sic sense-think-act cycle, which includes a decision phase in
which all relevant knowledge is brought to bear to propose,
and then select, an operator, that will then carry out delib-
erate mental (and sometimes physical) actions. Once the
operator finishes its actions, it is automatically de-selected
(terminated), and the cycle repeats. Unlike simple produc-
tion rules, whose effects on working memory are temporary,
operator-induced actions on working memory (and in turn,
on physical actions) are persistent, even after the operator
has been de-selected. Overall, a Soar agent’s behavior is the
result of the sequential selection of operators, each perform-
ing an action on the environment and/or internal memory.

For our experiments, several basic task-oriented operators
were implemented, to allow the agents to move about, turn
towards each other, etc. Thus one thread of control, always
running, is in control of the agent’s actions towards whatever
tasks it was given. Normally, Soar agents only utilize this
single thread of control.

SCT was implemented as secondary parallel thread of
control within Soar. Whereas normally, operators are pro-
posed (and selected) by Soar based on their suitability for
a current goal, in our agent, operators were also proposed

based on their suitability for SCT. The SCT thread proposed
operators by following our algorithm, though in a way that
is adopted for Soar’s decision cycle: At every cycle, for each
observed agent and for each difference, the SCT process
would propose an operator that would minimize the differ-
ence. Then, a set of preference rules is triggered that ranks
the proposals based on feature weight. Additional rules pre-
fer the most similar agent (that is still not sufficiently simi-
lar). Thus at the end, only one SCT operator is supported.

In other words, at every cycle, a Soar agent would con-
sider operators that advance it towards its goal (as it nor-
mally would), but these would compete for selection with
SCT-proposed operators that seek to minimize perceived dif-
ferences to other agents. This may appear to contradict Fes-
tinger’s theorizing that social comparison comes into play
only when people are at an impasse with respect to their goal
(lack objective means to evaluate themselves). However,
this is not the case. By setting Soar’s decision preferences to
prefer SCT-proposed operators only when no task-oriented
operators are available, one gets the behavior predicted by
Festinger’s theory. Further exploration of this issue is be-
yond the scope of this paper.

Here an addition to the SCT model became necessary.
Suppose an agent X decided to turn towards the same angle
as an agent Y that is next to it. Due to the limited field-of-
view of X , it would lose track of Y once it makes the turn.
From that point on, it could no longer keep track of Y , to
minimize additional differences. This would cause it to be-
come overly reactive, turning about immediately to seek Y
again, or to select a different operator altogether (now that
Y could no longer be imitated).

We thus found it necessary to utilize two mechanisms: (i)
a memory mechanism that keeps track of the whereabouts
of agents, once seen; and (ii) an exploration mechanism that
occasionally would turn towards remembered agents, to pro-
vide an update on their state (for the purpose of comparison).
Both of these mechanisms (memory and exploration) are of
course present in many cognitive architectures, and are not
necessarily linked to SCT. We thus leave discussion of such
mechanisms outside of this paper.
Experiment 4: Imitational Behavior
We conducted experiments to evaluate whether SCT can in-
deed account for imitational behavior in groups, and whether
it resembles human crowds. We rely on experiments with
human subjects, which judged the human crowd behav-
ior and the resulting SCT behavior in comparison to an
individual-choice model (i.e., where each agent makes de-
cisions independently of its peers), and to completely syn-
chronized behavior (i.e., all agents act in complete unison).

We hypothesized that agents controlled by SCT would
display behavior that would be ranked somewhere in-
between the individual and perfect-coordination models,
i.e.., that SCT would generate behavior that would be per-
ceived as coordinated, but not perfectly so. Furthermore,
we hypothesized that human crowds would also be ranked
in-between the individual and perfect-coordinated.

To examine these hypotheses, we created three screen-
capture movies of 11 Soar agents in action. All movies were
shot from the same point of view, and showed the agents



in the same environment. In all, the agents were fixed to
their initial locations, and the only actions available to them
were to do nothing, or turn at some angle. In all movies, one
agent, colored blue, simply turned up to 90◦ left or right,
arbitrarily. All others (red) acted according to one of the
models. In one movie (individual), the red agents acted
completely independently of each other, arbitrarily choos-
ing an angle and turning to it. In another (unison), the
red agents relied on communications to act in almost per-
fect synchronization, turning towards the same angle as the
blue almost instantaneously (small timing differences result-
ing from asynchronous responses of the simulated environ-
ment). Finally, in the SCT movie, the red agents behaved
according to the model described above.

The first hypothesis experiments were carried out using
12 subjects (ages: 18–40, male: 6; additional 4 subjects
dropped due to technical reasons). Each subject was given
a brief description of the appearance of the environment and
agents, sometimes aided by a snapshot from a movie (as in
Figure 6). After the description, the movies were shown to
the subject. After each movie, the subjects were asked to fill
a short questionnaire (described below). The order of pre-
sentation of movies was randomly selected for each subject,
to control for learning and order effects.

To examine the second hypothesis, we used a TV news
clip, which showed a group of people standing and waiting
for some event to occur; the only action they performed was
to occasionally turn. 12 new subjects were asked to fill the
same questionnaire as in previous experiments, after seeing
only the news clip.

For lack of space, we will focus here only on a subset of
the results, summarized in Figures 7-a and 7-b. The cat-
egories in the X-axis in both figures correspond to ques-
tions given to the subjects: (i) Relationship: To what degree
were the agents/humans related to each other; (ii) Coordi-
nated: To what degree were the turning angles chosen by
agents/humans coordinated; (iii) Non-random: To what de-
gree were the observed movements non-random. In all of
these questions, the subjects were asked to grade the movies
on an ordinal scale of 1–6, with 1 being a low result (associ-
ated with more individual behavior, and 6 being a high result
(associated with perfect unison). The three bars (Figure 7-a)
for each question measure the median result for the individ-
ual, SCT, and unison models. In Figure 7-b, the results are
shown for the news clip.

(a) Virtual environment. (b) News clip.
Figure 7: Experiment 4 results (subset).

The results clearly demonstrate that the SCT model lies
in-between the individual and perfect-unison model. While
it appears to be somewhat closer to the individual model, it

is significantly different from it at the 0.05 significance level
(t-test, one-tailed). We also compare the human crowd re-
sults to the simulated individual and perfect-unison models
results. It appears to be significantly different from individ-
ual model in all questions at the 0.05 significance level (t-
test, one-tailed). However, in comparison to perfect-unison
model, it significantly different in coordination and non-
random questions but not in relationship question. We thus
conclude that in general, both the SCT and real human be-
havior lie between perfect coordinated and individual behav-
ior, though some notion of relationship is observable in the
news clip, but not in the virtual environment movies.

Summary and Future Work
This paper presented a model proscribing crowd behavior,
inspired by Festinger’s social comparison theory (Festinger
1954). The model intuitively matches many of the character-
istic observations made of human crowd behavior, and was
shown to cover several distinct crowd phenomena. Results
from experiments in pedestrian movement and imitation do-
mains are promising, and support the general applicability of
the SCT model. Future work includes an improved memory
model, and examination of leadership.
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