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Abstract

With increasing deployment of multi-agent and distributed
systems, there is an increasing need for failure diagnosis sys-
tems. While successfully tackling key challenges in multi-
agent settings, model-based diagnosis has left open the di-
agnosis of coordination failures, where failures often lie in
the boundaries between agents, and thus the inputs to the
model—with which the diagnoser simulates the system to de-
tect discrepancies—are not known. However, it is possible
to diagnose such failures using a model of the coordination
between agents. This paper formalizes model-based coor-
dination diagnosis, using two coordination primitives (con-
currence and mutual exclusion). We define the consistency-
based and abductive diagnosis problems within this formal-
ization, and show that both are NP-Hard by mapping them to
other known problems.

Introduction
Model-based diagnosis (MBD) (Reiter 1987; de Kleer &
Williams 1987) relies on a model of the diagnosed system,
which is utilized to simulate the behavior of the system given
the operational context (typically, the system inputs). The
resulting simulated behavior (typically, outputs) are com-
pared to the actual behavior to detect discrepancies indicat-
ing failures. The model can then be used to pinpoint possible
failing components within the system.

MBD is increasingly being applied in distributed and
multi-agent systems (e.g., (Fröhlichet al. 1997; Roos, Teije,
& Witteveen 2003; Lamperti & Zanella 2003)). While suc-
cessfully addressing key challenges, MBD has been diffi-
cult to apply to diagnosing coordination failures (Micalizio,
Torasso, & Torta 2004). This is because many such failures
take place at the boundaries between the agent and their en-
vironment, including other agents. For instance, in a team,
an agent may send a message that another agent, due to a
broken radio, did not receive. As a result, the two agents
come to disagree on an action to be taken. Lacking an om-
niscient diagnoser that knows of the sending of the message,
the receiver has no way to detect and diagnose its fault, since
the context—the message that can be fed into a model of the
radio of both agents—is unobservable to the diagnoser.
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Surprisingly, it is still often possible to detect and diag-
nose coordination failures, given the actions of agents, and
the coordination constraints that should ideally hold between
them. In the example above, knowing that the two agents
should be in agreement as to their actions, and seeing that
their actions are not in agreement, is sufficient to (1) show
that a coordination failure has occurred; and (2) to propose
several possible diagnoses for it (e.g., the first agent did not
send a message, the second agent did not receive it, etc.).

Indeed, there are approaches to diagnosing such fail-
ures. However, they suffer from key limitations. Fault-
based techniques (Horling, Benyo, & Lesser 2001; Pen-
colé, Cordier, & Rozé 2002; Lamperti & Zanella 2003)
utilize pre-enumerated interaction fault models. When the
faults are observed, they trigger possible predicted diag-
noses. However, the interactions among system entities, in
multi-agent system, are not known in advance since they
depend on the specific conditions of the environment in
runtime and the appropriate actions assigned by the agents
(Micalizio, Torasso, & Torta 2004). (Kalech & Kaminka
2003) propose a technique in which the reasoning of the two
agents, leading to their mis-coordinated actions, is re-traced,
to determine the roots for their selection. However, this tech-
nique is specific to disagreements.

This work takes a first step towards addressing the open
challenge of formalizing diagnosis of coordination (inter-
agent) failures in terms of model-based techniques. We
model the coordination between agents as a graph of con-
currence and mutual exclusion constraints on agents’ ac-
tions. The diagnosis process begins with an observation of
the agents’ actions and inferring, by comparing to the coor-
dination model, the minimal number of agents that deviate
from the expected coordination (i.e., a minimal set ofabnor-
mal agents).

The formalization allows definition of both consistency-
based and abductive diagnosis problems, and points at sev-
eral approaches to their solution. While the formalization
does not commit to centralized or distributed diagnosis set-
tings, the initial methods we provide are centralized. For
consistency-based diagnosis, we show that computing the
coordination diagnosis can be mapped to the minimal ver-
tex cover problem. For abductive diagnosis, we take an ap-
proach based on satisfiability. Both of these problems are
thus NP-Hard.



Related Work
(Pencolé, Cordier, & Rozé 2002; Lamperti & Zanella 2003)
use a fault-model approach, where the distributed system is
modeled as a discrete event system, and the faults are mod-
eled in advance. The diagnoser infers unobservable fault
events by computing possible paths in the discrete event
system that match observable events. (Horling, Benyo, &
Lesser 2001) and (Micalizio, Torasso, & Torta 2004) use
causal models of failures and diagnoses to detect and re-
spond to multi-agent and single-agent failures. A common
theme in all of these is that they require pre-enumeration
of faulty interactions among system entities. However, in
multi-agent systems, these are not necessarily known in ad-
vance since they depend on the specific run-time conditions
of the environment, and the actions taken by the agents.

(Fröhlichet al. 1997), and later (Roos, Teije, & Witteveen
2003) use a consistency-based approach to diagnose a spa-
tially distributed systems. A set ofn agents are responsible
for diagnosingn sub-systems, correspondingly. Every agent
makes a local diagnosis to its own sub-system and then all
agents compute a global diagnosis. In order to build a global
diagnosis set, each agent should consider the correctness of
those inputs of its subsystem that are determined by other
agents. But, Roos et al. and Fröhlich at al. assume that each
diagnoser agent knows the context of its sub-system and so it
may make the diagnosis. However in our multi-agent system
the diagnoser does not have the context so it is impossible to
make a diagnosis to every agent separately, unless we supply
a model of the coordination between the agents.

(Kalech & Kaminka 2004) presented a consistency-based
diagnosis procedure for behavior-based agents, which uti-
lized a model of behaviors that the agents should be in agree-
ment on (i.e., concurrence coordination). However, their ap-
proach was specific only to agreements.

Coordinated Multi-Agent Systems
We adopt a model-based diagnosis approach to diagnose the
agents and the coordination failures. To do this, we formal-
ize an agent, a multi-agent system, and the coordination be-
tween the agents.

The Agent Model
An agent is an entity that perceives its environment through
sensors and takes actions upon its environment using actu-
ators. Obviously, there are many different possible models
that can be used to describe agents. Our focus is on the coor-
dination of multiple agents through their actuators and their
sensors, and thus we will use a simplified model, of com-
pletely reactive agents, composed only of sensor and actua-
tor components. The connections between the sensors and
actuators are described logically.
Definition 1. An agent is a pair〈CMP,CON〉 of com-
ponentsCMP , and connectionsCON . CMP is a pair
〈SEN, ACT 〉whereSEN is a set of boolean variables rep-
resenting the sensors and theACT is a set of boolean vari-
ables representing the actions.CON is a set of logical con-
sequence statements, where the literals ofSEN are on the
left side of consequences, and the literals ofACT are on the
right side.

At any time, the agent may sense through a number of
sensors, but may only select one action. Thus multiple liter-

als inSEN may be true, but at any time exactly one literal
of ACT must be true. To enforce this, we apply acomplete-
nessformula (i.e. ACT1 ∨ . . . ∨ ACT|ACT |) and a set of
mutual-exclusionformulas∀i, j¬(ACTi ∧ACTj).
Example 1.Suppose we model a scout robot who looks for
wounded. The robot has two sensor components, one is a
radio sensor with two message values{seek, found} and
the other is a camera sensor which indicates if the wounded
is found. The actions of the robot{SEEK, WAIT} are
selected based on the sensor readings: Once the robot re-
ceives aseek message it selects the actionSEEK. It will
switch to the actionWAIT upon finding the wounded (via
its camera), or upon receiving a message that it was found
(by someone else). We represent this agent as follows:
SEN = {SENradio_seek, SENradio_found, SENcamera_found}
ACT = {SEEK, WAIT}
CON = {SENradio_seek ∧ ¬SENcamera_found ⇒ SEEK,

SENradio_found ∨ SENcamera_found ⇒ WAIT}

In addition we should verify that only one action is selected
by the agent, using the followingcompletenessandmutual-
exclusionaxioms:

WAIT ∨ SEEK

¬(WAIT ∧ SEEK)

A Model of Coordination
The multi-agent systems of interest to us are composed of
several agents, which (by design) are to satisfy certain coor-
dination constraints. We call this type of system ateam, to
distinguish it from general multi-agent systems in which it
is possible that no coordination constraints exist.
Definition 2. A teamT is a set of agents.T = {A1...An}
whereAi is an agent. Given a teamT , AS represents the
set of the action literals of the agents. Formally, letACTi

be the set of actions of agentAi thenAS =
⋃n

i=1 ACTi,
whereASij represents thej’th boolean action variable of
agentAi. As a shorthand, we useASi to denote the boolean
action literal of agentAi whose value is true. We callASi

theactive selectionof agentAi.
The actions of agents in a team are coordinated. We uti-

lize two coordination primitives—concurrenceandmutual
exclusion—to define the coordination constraints. Concur-
rence states that two specific actions must be taken jointly,
at the same time. Mutual exclusion states the opposite, i.e.,
that two specific actions may not be taken at the same time.
Definition 3. A concurrence coordination (CCRN)con-
straint between two actions of different agents mandates that
the two actions must be true concurrently. Logically, we rep-
resent this constraint in a DNF (disjunctive normal form).
For two actionsASix andASjy (actionx of agentAi and
actiony of agentAj) as follows:

CCRN(ASix, ASjy) ⇒ (ASix ∧ ASjy) ∨ (¬ASix ∧ ¬ASjy)

Definition 4. A mutual exclusion coordination MUEXcon-
straint between two actions of different agents mandates that
they cannot be true concurrently. Logically, for two actions
ASix andASjy,

MUEX(ASix, ASjy) ⇒ (ASix ∧ ¬ASjy) ∨
(¬ASix ∧ ASjy) ∨
(¬ASix ∧ ¬ASjy)



Once we defined the coordination types, we can model
the coordination between the agents formally with a set of
coordination constraints, defining a graph:
Definition 5. A coordination graphfor a teamT is an undi-
rected graphCG = {V,E}, where the vertices setV rep-
resents the boolean variables of the actions of the agents,
and the set of edgesE is the set of coordination constraints
between the actions. We useCGm to refer to them’th con-
straint withinE. CG(ASix, ASjy) denotes the constraint
relatingASix andASjy. CGm is considered true if the con-
straint holds and false otherwise.
Example 2. Figure 1 presents a coordination graph. The
concurrence constraints are represented by solid lines, and
the mutual exclusion constraints are represented by dashed
lines. Assume a team of three agents{A1, A2, A3}. A1 and
A2 are scout robots as described in Example 1, andA3 is a
paramedic robot who has one radio sensor with one message
value {found_message}, and three actions{JOIN, TREAT,
CHARGE}. AgentsA1 andA2 have the same role in the
team so they haveconcurrence coordinationconstraints be-
tween their actions. At the beginningA1 and A2 receive
a seek message so they select the actionSEEK while A3

may select any action exceptTREAT , meaning it can not
treat a wounded, while the other robots seek. We can see
themutual exclusion coordinationconstraints between these
behaviors. OnceA1 or A2 find the wounded, they send a
found_message to the other agents in the team, thenA1

andA2 transport to theWAIT action, whileA3 transports
to JOIN action. Again we can see theconcurrence coor-
dination constrains between these behaviors. In addition,
when agentA3 is being charged (CHARGE behavior),
there are no constraints between the agents. The correspond-
ing CG is formally defined as follows:

V = {AS1W AIT
, AS2W AIT

, AS1SEEK
, AS2SEEK

,

AS3T REAT
, AS3JOIN

, AS3CHARGE
}

E = {CCRN(AS1W AIT
, AS2W AIT

),

CCRN(AS1SEEK
, AS2SEEK

),

MUEX(AS2SEEK
, AS3T REAT

),

CCRN(AS2W AIT
, AS3JOIN

),

MUEX(AS1SEEK
, AS3T REAT

),

CCRN(AS1W AIT
, AS3JOIN

)}
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Figure 1:The coordination graph for team {A1, A2, A3}.

Given a coordination graphCG and a teamT , we can de-
fine a multi-agent system description as a set of implications
from the normality of the agents to the satisfaction of the co-
ordination constraints. This is the final piece in formalizing
a normally-functioning multi-agent system.
Definition 6. A multi agent system description (MASD)is
a set of implications from the normality of agents in a team
T to CG. The meaning of the predicateAB(.) is that the
corresponding agent is considered abnormal (failing).

MASD = {¬AB(Ai) ∧ ¬AB(Aj) ⇒ CG(ASix, ASjy)

|CG(ASix, ASjy) ∈ CG ∧ Ai, Aj ∈ T}

Diagnosis of Coordination Faults
A fault in the coordination of a multi-agent system may be
the result of a fault in one of the sensors or other agent com-
ponents1 Given anMASD and a set of normality assump-
tions, it is possible to infer that a fault exists (and to generate
hypotheses as to its identity), by checking whether the ob-
served actions of the agents satisfy theMASD.

Let us formalize the coordination diagnosis in terms of
model based diagnosis:
Definition 7 Coordination Diagnosis Problem. Given
{T, MASD, AS} whereT is a team of agents{A1...An},
MASD is a multi agent system description defined overT
(Def. 6), andAS is the set of the actions of the agents (Def.
2), then thecoordination diagnosis problem (CDP)arises
when

MASD ∪ {¬AB(Ai)|Ai ∈ T} ∪ AS ` ⊥

We use the following example to illustrate.
Example 3. Suppose we are given the followingMASD,
T , andAS (only the true literals inAS are shown):

T = {A1, A2, A3, A4, A5, A6}
MASD = {¬AB(A1) ∧ ¬AB(A4) ⇒ MUEX(AS11, AS41),

¬AB(A1) ∧ ¬AB(A2) ⇒ CCRN(AS12, AS21),

¬AB(A1) ∧ ¬AB(A6) ⇒ CCRN(AS12, AS61),

¬AB(A2) ∧ ¬AB(A3) ⇒ CCRN(AS22, AS31),

¬AB(A2) ∧ ¬AB(A5) ⇒ CCRN(AS22, AS51),

¬AB(A2) ∧ ¬AB(A6) ⇒ CCRN(AS21, AS61),

¬AB(A3) ∧ ¬AB(A4) ⇒ MUEX(AS32, AS42),

¬AB(A3) ∧ ¬AB(A5) ⇒ CCRN(AS31, AS51)}
AS = {AS11, AS21, AS31, AS41, AS51, AS61}

Figure 2 shows the coordination graph for thisCDP .
Assuming all the agents are not abnormal, the actions
of the agents are not consistent with the coordination
graph. For instance, the actionsAS11 = true and
AS41 = true causes an inconsistency inCG1, as it
produces a false value ofMUEX(AS11, AS41), though,
MUEX(AS11, AS41) should be true, given the normality

1It may also be the result of a fault in the environment, e.g.,
when a message is lost in transit. This is treated as a fault in the
receiver.



assumptions¬AB(A1),¬AB(A4). On the other hand, if
the actionsAS12, AS21, AS32, AS41, AS52, AS61 were true
(implying that the other actions were false), they would have
been consistent with the coordination graph.
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Figure 2: The coordination graph and active selection
(gray circles) of the teamT = {A1, A2, A3, A4, A5, A6}

Given a CDP , the goal of the coordination diagnosis
process is to determine a minimal set of abnormal agents
whose selection and subsequent setting of theAB(.) clause
would eliminate the inconsistency (consistency-based diag-
nosis, Section ), or explain it (abductive diagnosis, Section ).
A coordination diagnosis (a set of abnormal agents) is mini-
mal, iff no proper subset of it is a coordination diagnosis.

Once the set of such abnormal agents is found, the diag-
noser infers the abnormal components (in our case, sensors)
within the abnormal agents. This is done using straightfor-
ward back-chaining through the setCON (Def. 1) of logical
consequence statements connecting sensors to actions (e.g.,
as in (Kalech & Kaminka 2003)).

Consistency-Based Coordination Diagnosis
We begin by defining consistency-based coordination diag-
nosis.
Definition 8. A consistency-based global coordination di-
agnosis (CGCD)is a minimal set∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

The first step in this process to determine which agents are
in conflict:
Definition 9. Two agentsa and b are calledconflict pair
〈a, b〉, if there exist a constraintCGi that relatesa andb and
whose value is false.

∀a, b ∈ T, ∃i, j, k s.t.¬CGi(ASaj , ASbk) ⇒ 〈a, b〉
Definition 10. A local conflict setis a set of the all conflict
pairs in the system, and is denoted byLC.
Example 4. LC in the graph of example 3 is:LC =
{〈A1, A4〉 〈A1, A2〉, 〈A1, A6〉, 〈A2, A3〉, 〈A2, A5〉}
The local conflict set forms the basis for theCGCD, be-
cause for each conflict pair, at least one of the agents is ab-
normal. However, theCGCD is not a simple combination
of all agents in theLC pairs, as arbitrary selection of agents
may lead to diagnosis sets that are themselves inconsistent.

For instance, treating each pair in the computedLC in Ex-
ample 4 by itself, produces the following subset of possible
diagnoses:

〈A1, A2〉 ⇒ {AB(A1),¬AB(A2)}
〈A1, A2〉 ⇒ {¬AB(A1), AB(A2)}
〈A1, A4〉 ⇒ {AB(A1),¬AB(A4)}
〈A1, A4〉 ⇒ {¬AB(A1), AB(A4)}

It is easy to see that combining these diagnoses
may produce inconsistency (for instance, combining
the first and last implications would produce the set
{AB(A1),¬AB(A2),¬AB(A1), AB(A4)}).

Therefore, we cannot diagnose every conflict pair by itself
and then combine the results. Rather, we should compute the
diagnoses sets∆ considering the dependencies between the
conflict pairs. To do this, we should look for the abnormal
agent(s) in every conflict pair.

We achieve this goal by generating a hitting-set of agents,
selecting at least one agent as abnormal from every con-
flict pair, such that the resulting agents cover between them
all conflict pairs. We want to maintain a minimal number
of such agents. This is somewhat similar to Reiter’s HS-
Tree (1987), or de Kleer and Williams’ technique (1987).
It is also related to minimal model techniques used in non-
monotonic reasoning (Olivetti 1992; Niemelä 1996). We
plan to explore these connections in the future.

We achieve this goal by transforming the conflict set into
a graph, and finding the vertex cover for this graph. Let us
define a conflict graphG = {V ′, E′} whereE′ is a set of
the conflict pairs andV ′ is a set of the agents involved in
the conflict set. In order to compute the diagnosis we run an
algorithm to find a minimal vertex cover—a set of vertices
that involve all edges. A vertex cover set is guaranteed to be
a diagnosis since all the edges, namely the conflict pairs, are
covered by this set, namely by a set of abnormal agents. We
are looking for all the possible minimal vertex cover sets,
since the diagnosis contains all the possibilities of abnormal
agents. Minimal vertex covers guarantee minimal diagnosis,
since a vertex cover is minimal only if no proper subset of it
is a vertex cover.

Determining a minimal vertex cover is known to be NP-
Complete, however the problem of determining the set of
minimal vertex covers is NP-Hard (Skiena 1990). A sim-
ple O(2|V |) exact algorithm for its solution is to find all the
possible vertex covers in size one, then continue to find the
possible vertex cover in size two, under the condition that
it is not a superset of a previous vertex cover, and so on up
to the max size of the graph. The complexity of comput-
ing theCGCD is thus the same as in single-agent diagnosis
methods, e.g., (de Kleer & Williams 1987).
Example 5.Figure 3 presents the graph of the conflict pairs
that were computed in example 4. The vertex cover set
of size one is empty, for size two it isV C1 = {A1, A2},
and there are two sets of size three:V C2 = {A1, A3, A5}
andV C3 = {A2, A4, A6} (there are more vertex cover sets
which are superset ofV C1), it is unnecessary to continue
to check the vertex cover in size four and more since ev-
ery such vertex cover will be a superset of the formers. By



building the vertex cover sets we obtain the global coordi-
nation diagnosis,∆1 = {A1, A2}, ∆2 = {A1, A3, A5},
∆3 = {A2, A4, A6}}.
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Figure 3:A graph of the conflict pairs in example 4
A disadvantage of the consistency-based approach is that

it may produce diagnoses that are unsound, in the sense that
while they eliminate the inconsistency, they do not explain
it. Intuitively, such diagnoses correspond to eliminating the
abnormal agents from consideration, rather than suggesting
that they change their actions. For such diagnoses, there may
be no actions that the abnormal agents could take that would
be consistent with theMASD.

For instance, in Example 5 the diagnosis set{A1, A2}
represents a minimal set of abnormal agents, but chang-
ing their actions(A11 = false, A12 = true,A21 =
false, A22 = true) will leave the system inconsistent,
with CCRN(AS12, AS21) = false. On the other hand,
changing the actions of the agents in the other diagnoses
({A1, A3, A5}, {A2, A4, A6}) will eliminate the inconsis-
tency.

Abductive Coordination Diagnosis
The implication is that stronger conditions on the solution
sets may be needed. Such conditions correspond to abduc-
tive diagnosis, in which changing the actions of the abnor-
mal agents entails the coordination graph:
Definition 11. An abductive global coordination diagnosis
(AGCD) is a minimal set∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

and,

{AB(Ai)|Ai ∈ ∆}
⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS ⇒ CG

where, we make the active selection of agentAi (Def. 2),
ASi, false, and forceAi to choose a different action,

AB(Ai) ⇒ ¬ASi ∧ (ASi1 ∨ . . . ∨ ASi|ACT |)

The first condition in Def. 11 is exactly as in Defini-
tion 8 (i.e.,CGCD) to satisfy the consistency requirement.
The second condition requires that for any abnormal agents
found, it will be possible to change their active selection, in
order to entail the coordination graph and thus satisfy the
coordination constraints. Note that the entailment here is of
the coordination graph, not the fullMASD.

The unsound diagnosis set{A1, A2}, given by the
consistency-based approach, will not pass this second con-
dition, since the alternative actions of agentA1 and of agent
A2 do not entail the coordination graph.

In order to satisfy Definition 11, the diagnosis process
needs to go beyond pinpointing suspect agents, to verifying
that by changing their actions, coordination will be restored.
Thus in contrast with consistency-based approach, we do not
utilize conflict pairs to compute the diagnoses, but instead
examine all action literals assignments that entail the coor-
dination graph, i.e., all actions which will satisfy the coordi-
nation constraints. Then the process compares the existing
truth values to those that will satisfy the coordination, and
computes aminimalset of changes.
Example 6. Let us compute theAGCD of the Example
3. Table 1 presents the satisfying truth assignments for the
actions of agentsA1 . . . A6. There are only two such assign-
ments. In order to find the minimalAGCD, we should com-
pare the actions of the agents with these assignments and
point out the agents that deviate. Consider the actions in Ex-
ample 3 (whereAS11, AS21, AS31, AS41, AS51, AS61 are
true, and the other action literals are false). Then, in the first
row AS11 = false, but we haveAS11 = true. We thus
mark actionAS11 as faulty. The second value in the table
is AS12 = true, but we haveAS12 = false, so we again
mark this as faulty, and so on for each one of the actions. For
the first entry in the truth table we got the following faulty
actions: AS11, AS12, AS31, AS32, AS51, AS52. From this
list, we can determine the abnormal agents by finding the
agents whose actions are faulty. We thus conclude that a
minimal AGCD is ∆1 = {A1, A3, A5} for this row. From
the second row, we similarly find∆2 = {A2, A4, A6}. Set-
ting these agents to abnormal, and thus forcing them to select
different actions, would satisfy the coordination constraints.

# A1 A2 A3 A4 A5 A6

1 2 1 2 1 2 1 2 1 2 1 2
1 0 1 1 0 0 1 1 0 0 1 1 0
2 1 0 0 1 1 0 0 1 1 0 0 1

Table 1:Coordination-satisfying actions in Example 6.

Obviously, we should consider only the minimalAGCD.
We fulfill this requirement by comparing every new hypoth-
esized coordination diagnosis to the former coordination di-
agnoses, and checking whether it is a subset, a superset, or
different than the former diagnoses.

Thus theAGCD problem is essentially that of finding all
sets of truth assignments that will satisfy a target proposi-
tion, an NP-Hard problem. A detailed discussion of satisfia-
bility, and the rich literature offering efficient exact and ap-
proximate solution methods is well beyond the scope of this
paper. However, we point at two diagnosis-specific mecha-
nisms that can potentially be used to alleviate computational
load in our case:

1. Ordered binary decision diagram (OBDD) (Bryant 1992)
can be used to efficiently reason about diagnosis-
satisfying assignments (Torasso & Torta 2003). By re-
stricting the representation, boolean manipulation be-
comes much simpler computationally. We can compactly
represent the coordination graph using OBDDs (an off-
line construction process), and then truth assignments can
be computed in linear time in many cases.



2. Assumption-based truth maintenance systems (ATMS)
(de Kleer 1986) can be used to build the satisfying as-
signments incrementally. We exploit the fact that it is un-
necessary to check all the assignments since the legal as-
signments depend each on the other. For instance, assume
a concurrence coordination betweena andb and between
b andc: ((a ∧ b) ∨ (¬a ∧ ¬b))∧

((b ∧ c) ∨ (¬b ∧ ¬c))

Instead of computing the full truth table ofa, b and c,
(23), we can use an ATMS, which given these justifica-
tions will provide only two assignments:(a = true, b =
true, c = true) or (a = false, b = false, c = false).

There is also an obvious connection between this prob-
lem and constraint satisfaction and optimization problems,
though theAGCD process looks forall minimal solutions,
rather than any minimal solution. We plan to explore this in
the future.

Summary and Future Work
We presented a novel formalization for diagnosing coordi-
nation failures in multi agent systems without knowing the
inputs of the agents, instead relying on a model of the co-
ordination between the agents. We model such coordination
using two coordination primitives (concurrence and mutual
exclusion). In the diagnosis process the diagnoser observes,
the actions of the agents, then it finds the candidate abnor-
mal agents by the coordination model, and finally continues
to compute the abnormal sensors by back-chaining (shown
in (Kalech & Kaminka 2003)).

We defined both a consistency-based and abductive diag-
nosis versions of coordination diagnosis, and proposed ini-
tial algorithms for both. The consistency-based approach
finds the local conflicts between pairs of agents, then con-
tinues to compute the diagnosis by combining the conflicts
using a minimal vertex cover algorithm. We showed that this
approach is unsound, in that it may produce diagnoses that
are impossible, in that they cannot be corrected. The second
approach maps the abductive coordination diagnosis prob-
lem to that of satisfiability, finding a minimal set of truth-
value changes that satisfy a given proposition. Here, our
initial approach pre-computes all the possible coordination-
satisfying action assignments, and then uses these during on-
line diagnosis by comparing the actions of the agents to each
one of the instances of the satisfying action assignments.

Our goal in this paper was to take a first step towards the
use of MBD techniques in multi-agent systems. Much is
left for future research. First, the algorithms we proposed
are related to key techniques in diagnosis, CSP, and non-
monotonic reasoning. We plan to explore the connections,
to bring to bear on this diagnosis problem. Second, the pre-
sented model is sensors-actions based since we would like
to focus on the coordination diagnosis issue. However, as
it stands, it can already be used to model simple situated
agents, in domains such as RoboCup and others (Kalech &
Kaminka 2003). We hope to explore richer models of com-
plex multi-component agent models, and richer coordination
primitives in the future. In addition, while this paper has
adopted the perspective of a centralized single diagnoser, we
plan to tackle distributed algorithms next.
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