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Abstract Modeling crowd behavior is an important challenge for cognitive model-
ers. Models of crowd behavior facilitate analysis and prediction of human group be-
havior, where people are close geographically or logically, and are affected by each
other’s presence and actions. Existing models of crowd behavior, in a variety of fields,
leave many open challenges. In particular, psychology models often offer only qual-
itative description, and do not easily permit algorithmic replication, while computer
science models are often not tied to cognitive theory and often focus only on a spe-
cific phenomenon (e.g., flocking, bi-directional pedestrian movement), and thus must
be switched depending on the goals of the simulation. We propose a novel model of
crowd behavior, based on Festinger’s Social Comparison Theory (SCT), a social psy-
chology theory known and expanded since the early 1950’s. We propose a concrete
algorithmic framework for SCT, and evaluate its implementations in several pedes-
trian movement phenomena such as creation of lanes in bidirectional movement and
movement in groups with and without obstacle. Compared to popular models from
the literature, the SCT model was shown to provide improved results. We also evalu-
ate the SCT model on general pedestrian movement, and validate the model against
human pedestrian behavior. The results show that SCT generates behavior more in-
tune with human crowd behavior then existing non-cognitive models.
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1 Introduction

Modeling crowd behavior is an important challenge for cognitive modelers. Models
of crowd behavior facilitate analysis and prediction of the behavior of groups of peo-
ple, who are in close geographical or logical states, and are affected by each other’s
presence and actions. Accurate models of crowd behavior are sought in training simu-
lations (Thalmann 2001), safety decision-support systems (Braun et al. 2003), traffic
management (Helbing and Molnar 1997; Rymill and Dodgson 2005), business and
organizational science.

Existing models of crowd behavior, in a variety of fields, leave many open chal-
lenges. In social sciences and psychology, models often offer only qualitative de-
scription, and do not easily permit algorithmic replication. In computer science, mod-
els are often not tied to specific cognitive science theories. Moreover, existing com-
puter science models often focus only on a specific phenomenon (e.g., flocking, bi-
directional pedestrian movement), and thus must be switched depending on the goals
of the simulation.

We propose a novel model of crowd behavior, based on Social Comparison The-
ory (SCT) (Festinger 1954), a social psychology theory that has been continuously
evolving since the 1950s. The key ideas in this theory is that humans, lacking objec-
tive means to evaluate their state, compare themselves to others that are similar. We
believe that social comparison is a general cognitive process underlying the social
behavior of each individual in crowd.

In social psychology there are several views on the mechanisms underlying indi-
vidual behavior when the individual is a part of a crowd. However, to the best to our
knowledge, social comparison theory has never been connected to crowd behavior
phenomena. We believe that it can provide an explanation for the social behaviors
that are exhibited in crowds. The basis for our belief is that social comparison the-
ory may account for characteristics of crowd behavior, noted by social psychology
scientists such as Le Bon (1895) and others:

– Imitation. One implication of SCT is the formation of homogeneous groups. Fes-
tinger notes (Festinger 1954, p. 135): “The drive for self evaluation is a force acting
on persons to belong to groups, to associate with others. People, then, tend to move
into groups which, in their judgment, hold opinions which agree with their own”.

– Contagion. Using social comparison, people may adopt others’ behaviors. Fes-
tinger writes (Festinger 1954, p. 124): “The existence of a discrepancy in a group
with respect to opinions or abilities will lead to action on the part of members of
that group to reduce the discrepancy”.

While inspired by SCT, we remain deeply grounded in computer science; we pro-
pose a concrete algorithmic framework for SCT, and evaluate its implementations
in several crowd behavior scenarios. We quantitatively compare the performance of
SCT crowd behavior model with popular models in the literature, and show that SCT
generates behavior more in-tune with human crowd behavior. We evaluate the use of
SCT model in generation of specific pedestrian movement phenomena such as cre-
ation of lanes in bidirectional movement and movement in groups with and without
obstacles. Moreover, we also evaluate the SCT model on general pedestrian behavior



350 N. Fridman, G.A. Kaminka

where individuals, pairs and small groups are all walking on the sidewalk in bidirec-
tional fashion with different speed. We compare this behavior to human pedestrian
behavior.

In pedestrian movement generation, the SCT model accounts for group formation
in pedestrians that are inter-related, a phenomenon unaccounted for by previous mod-
els; and where previous techniques apply, SCT shows improved results. In addition
the SCT model accounts for group behavior in the presence of obstacles, modeling
the selection of group members to bypass obstacles in the same direction as other
members of the group.

The biggest challenge in modeling crowd behaviors is in their evaluation process.
Unfortunately, only a handful of existing models of crowd behavior have been evalu-
ated against real-world human crowd data. The main difficulty is lack of human data
to use in evaluation of models.

We provide qualitative evaluation of the SCT model, as well as others, against
human pedestrian behavior. We report on web-based experiment where 39 human
subjects compared the behavior generated from the different models to movies of
real-world pedestrians. The results demonstrate that the SCT model is superior to
others in its fidelity to human pedestrian behavior.

2 Background and motivation

Crowds are defined as large groups of people (agents) who are in similar or closely-
related states (logical or geographical). Examples of crowds include pedestrians, au-
diences in theaters or sports stadiums, people in demonstrations and stock-market
investors.

Social psychology literature provides several views on the emergence of crowds
and the mechanisms underlying its behaviors. These views can inspire computational
models, but are unfortunately too abstract to be used algorithmically. In contrast,
computational crowd models tend to focus on specific crowd behaviors (e.g, flock-
ing). A common theme in all of them is the generation of behavior from the aggre-
gation of many local rules of interaction (e.g., Rymill and Dodgson 2005; Reynolds
1987, 1999; Kretz 2007).

Social psychology A phenomenon observed with crowds, and discovered early in
crowd behavior research is that people in crowds act similar to one another, often
acting in a coordinated fashion, as if governed by a single mind (Le Bon 1895; Allport
1924; Blumer 1939; Berk 1974). However, this coordination is achieved with little or
no verbal communication.

Le Bon (1895) emphasized a view of crowd behaviors as controlled by a “Col-
lective Mind”, and observed that an individual who becomes a part of the crowd is
transformed into becoming identical to the others in the crowd. Le Bon explains the
homogeneous behavior by two processes: (i) Imitation, where people in a crowd imi-
tate each other; and (ii) Contagion, where people in a crowd behave differently from
how they typically would, individually.
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Blumer (1939) explains this coordinated crowd behavior occurres through “circu-
lar reaction” process which underlying each individual who is participates in collec-
tive behavior. According to Blumer “circular reaction” is: “a type of interstimulation
wherein the response of one individual reproduces the stimulation that has come from
another individual and in being reflected back to this individual reinforces the stimu-
lation.”

According to Allport, crowd behavior is a product of the behavior of likeminded
individuals. Allport’s explanation of crowd homogeneous behavior is that similar
people act in similar ways; otherwise they would not be a part of the same group.
However, individual behavior affected by the behavior of his surrounding, thus, ac-
cording to Allport, “the individual in the crowd behaves just as he would behave
alone, only more so.”

Turner and Killian (1972) investigated Emergent-norm Theory, which hypothe-
sizes that crowd members indeed imitate each other, but also create new norms for
the crowd as the dynamics of the situation dictate. Thus while crowds are not entirely
predictable, their collective behavior is a function of the decision-making processes
of their members.

Berk (1974) explanation of crowd behavior is based on decision making theory.
According to decision-theory, each individual always tries to maximize his or reward
and minimize costs. Berk argues that crowd behaviors are no exception, and that they
should be understood from a game-theoretic perspective. He explained coordinated
behavior of crowds as consistent with agents using a minimax strategy where the
greater the number of participants that engage in specific action, the less will be
an individual cost for engaging in this action. Thus, each individual will selects the
action of the majority.

Different theories provide different explanations as to what drives individual be-
havior when the individual is a part of a crowd. However, all theories agree that when
an individual is part of a crowd, his or her individual behavior is affected by others.

We based our work on Social Comparison Theory (Festinger 1954), which (to the
best of our knowledge) has never been applied to modeling crowd behavior. Never-
theless, as we show in the previous section, key elements of the theory are at the very
least compatible with those theories discussed above. Previously, Carley and Newell
(1994) have examined the implications of SCT on computational agents and their
sociability. We base our work on their observations.

Computational models Work on computer modeling of collective behavior has been
carried out in other branches of science, in particular for modeling and simulation.
Inspired by different science fields, researchers have been developing computational
models for simulation of collective behavior. However, only a few models have
been validated against human data (Daamen and Hoogendoorn 2003; Kretz 2007;
Helbing 2001) Indeed, there exists only limited quantitative data on the behavior of
human crowds at a resolution which permits accurate modeling. Moreover, a key
problem with these models is that the algorithms they provide change with the crowd
phenomenon modeled.

Reynolds (1987) simulated bird flocking using simple, individual-local rules,
which interact to create coherent collective movement. There are only three rules:
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Avoid collision with neighbors, match velocity with neighbors, and stay close to the
center of gravity of all neighbors. Each simulated bird is treated as a particle, attracted
and repelled by others. Tu and Terzopoulos (1994) simulated motion of artificial fish
that addressed individual goals. Like Reynolds’ “boids”, the artificial fish are au-
tonomous creatures which have simple behaviors and together are able to create a
more complex, collective behavior.

Henderson compared pedestrian movement to gaskinetic fluids. Based on experi-
ments on real human crowds, he showed in Henderson (1971) that crowd distribution
is compatible with Maxwell-Boltzmann’s distribution. Henderson (1974) developed
a pedestrian movement model based on Maxwell-Boltzmann theory. Since each per-
son has mass and velocity, the crowd may be likened to liquid gas and under some
assumption, the Maxwell-Boltzmann theory may be applied. Based on Boltzmann-
like equations, Helbing (1993, 2001) developed a general behavior model for simula-
tion of crowd dynamics. The proposed model takes into account social forces caused
by interaction between the individuals and external or spontaneous forces which are
caused by the physical environment.

Helbing et al. (2001, 1997, 2001) observed phenomena of self-organization in
collective motion which can be caused by interaction among pedestrians. By self-
organization, it means that there are some behavioral phenomena which were not
planned: for example, creation of lane formation in pedestrian movement. These lanes
are created as a result of pedestrians moving against the flow. The number of lanes
that are created cannot be planned. It depends on the width of the street and on pedes-
trian density.

Adriana Brown et al. (2003) examined how individual characteristics impact
crowd evacuation. They expanded Helbing’s physical model by adding to each agent
individual parameters, such as dependence level and altruism level. According to the
model, there will be a creation of groups which are combined from altruism and
dependent agents. By changing these attributes, they examined crowd evacuation by
measuring the flow of people passing the door per second, and population distribution
in the flow.

Blue and Adler (2000) proposed a different approach to model collective dynam-
ics. They used Cellular Automata (CA) in order to simulate collective behaviors, in
particular pedestrian movement. The focus is again on local interactions: Each sim-
ulated pedestrian is controlled by an automaton, which decides on its next action or
behavior, based on its local neighborhoods. Blue and Adler showed that this sim-
ple rule results in the formation of lanes in movement, similarly to those formed in
human pedestrian movement (Wolff 1973).

Toyama et al. (2006) expanded the cellular automata model by adding different
pedestrian characteristics, such as speed, gender, repulsion level, etc. The model was
examined on bi-directional pedestrian movement behavior and on evacuation behav-
ior. The main problem with this approach is that each collective behavior is simulated
with different CA model. For example, CA for simulation of pedestrian behavior has
different set of rules than the CA for evacuation behavior.

Kretz (2007) proposes the Floor field-and-Agent based Simulation Tool model
(F.A.S.T) which is a discrete-space and discrete-time model for pedestrian motion.
The F.A.S.T model can be classified as an extension of Probabilistic Cellular Au-
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tomata (PCA). The F.A.S.T model has been validated against human data. In partic-
ular, the model simulation results of evacuation scenario was compared to results of
evacuation exercise at a primary school.

Daamen and Hoogendoorn (2003) performed empirical experiments on human
crowds, in particular in terms of movement as pedestrians. In these experiments,
participants were asked to walk through a monitored area, in both directions. Their
movements were recorded. One conclusion was that “During capacity conditions,
two trails or lanes are formed: pedestrians tend to walk diagonally behind each other,
thereby reducing the head ways and thus maximizing the use of the infrastructure
supply”.

In all of these previous works above, the behavior of crowds in every domain of
study (pedestrian movement, flocking, evacuation, etc.) is computed using a different
algorithm, yet the actions and perceptions remain largely invariant (e.g., distances
to others, occupied spaces versus empty spaces, goal locations, etc.). Instead, the
computation itself changes between modeled behaviors.

For instance, many models for crowd behavior utilize cellular-automata (CA),
which differ between domains. One CA model for pedestrian movement (Blue and
Adler 2000) uses a set of 6 IF-THEN rules which work in parallel for all cells, to sim-
ulate the movement of pedestrians in cells. The rules utilize knowledge of the occu-
pancy in adjacent (rules 1, 3 in Blue and Adler 2000) and farther cells (rule 2), as well
as of the distance to oncoming pedestrians in the same lane (rules 4, 6). The rules set
the forward velocity and position of the entities, by using a set of non-deterministic
choices (sub-rules 5a, 5b, 5c), biased by distributions which differ depending on the
environmental settings (e.g., choose from a uniform 50%/50% split distribution if two
nearby cells are occupied, or from a 10%/80%/10% distribution when three cells are
available). Another CA model for evacuation (Tissera et al. 2007) uses knowledge of
adjacent cells and distances to exits, and sets the position of the entities. Thus the ac-
tions and perceptions of each entity are similar to those used in the pedestrian model.
But the algorithmic computation of the new position is done in two deterministic
rules (Tissera et al. 2007, pp. 17), which involve no arbitrary choices at all.

In contrast to these previous investigations, we seek a single cognitive mech-
anism—a single algorithm—that, when executed by individuals, would give rise
to different crowd behaviors, depending on the perceptions and actions available
to the agents. This single algorithm would account for different crowd phenom-
ena, by virtue of the actions and perceptions available to each individual. In this
paper, we focus on various pedestrian phenomena. Elsewhere, we describe the
use of the same model for other crowd behaviors (Fridman and Kaminka 2009;
Fridman 2007).

A successful introduction of a single cognitive mechanism which accounts for
multiple crowd phenomena would allow exploration of its role within cognitive ar-
chitectures and within unified theories of cognition. Indeed, in Fridman and Kaminka
(2011), we describe the implementation of a general SCT mechanism in the Soar cog-
nitive architecture (Newell 1990). Such a model would also change the way crowds
are simulated in practice today, in applications of computer science. Rather than rely
on labor-intensive programming of crowd behaviors for every new domain of appli-
cation, we would be able to re-use the crowd behavior module across applications,
and thus save significant resources.
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3 A model of social comparison

We took Festinger’s social comparison theory (SCT) (Festinger 1954) as inspiration
for the social skills necessary for our agent in order to be able to exhibit crowd be-
havior. According to social comparison theory, when lacking objective means for
appraisal of their opinions and capabilities, people compare their opinions and ca-
pabilities to those of others that are similar to them. They then attempt to correct
any differences found. This section shows how SCT can be turned into a concrete
algorithm, to be used for generating crowd behavior.

3.1 Festinger’s social comparison theory

Festinger presents social comparison theory (SCT) as an explicit set of axioms. The
following subset of axioms (re-worded) are particularly relevant (see also Festinger
1954; Carley and Newell 1994 for additional discussion):

– When lacking objective means for evaluation, agents compare their state to that of
others;

– Comparison increases with similarity;
– Agents take steps to reduce differences to the objects of comparison.

We propose a concrete algorithmic framework for SCT that can be executed by
an agent. Moreover, we propose the use of SCT algorithmic framework for modeling
crowd behaviors.

3.2 An SCT algorithm

In order to build algorithmic framework for SCT, each observed agent Ai is taken
to be a tuple of k state features A ≡ 〈f A

1 , . . . , f A
k 〉. Each feature f i

j of agent Ai

(1 ≤ j ≤ k) corresponds to a dimension, such that agent Ai is represented by a point
in a k-dimensional space, where the various dimensions correspond to state features
(such as location in x, y coordinates, color, heading, etc.)

For each such agent, we calculate a similarity value Sim(Ame,Ao), which mea-
sures the similarity between the observed agent Ao and the agent carrying out the
comparison process Ame. The agent with the highest such value is selected. If its
similarity is between given maximum and minimum values, then this triggers actions
by the comparing agent to reduce the discrepancy.

The process is described in Algorithm 1, which is executed by the comparing
agent.

Each agent Ai executes Algorithm 1. In line 2 and 3, for each observed agent
Ao ∈ O , we calculate a similarity value Sim(Ame,Ao), which measures the similarity
between the observed agent Ao and the agent carrying out the comparison process
(Ame) (Equation (1)). We model each agent as an ordered set of features, where sim-
ilarity can be calculated for each feature independently of the others. We measure
similarity between agents independently along each dimension. The similarities in
different dimensions are functions sfi

(f
Ame

i , f
Ao

i ) : fi × fi �→ [0,1]. The function
sfi

defines the similarity in feature fi between the two agents Ame and Ao. A value of
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Algorithm 1 Argmax SCT (O,Ame,Smin, Smax )
1: S ← ∅
2: for all Ao ∈ O do
3: if Smin < Sim(Ame,Ao) < Smax then
4: S → S ∪ Ao

5: Ac ← argmaxAc∈S(Sim(Ame,Ao)

6: D ← differences between me and agent Ac

7: a ← SelectAction(D)
8: Apply action a with its Gain (Equation 2) to minimize differences in D.

0 indicates complete dissimilarity. A value of 1 indicates complete similarity. For in-
stance, one commonly used feature denotes normalized Euclidean distance, inverted:
A value of 0 means that the agents are as far apart as possible. A value of 1 means
that they are positioned in the same location.

To determine the overall similarity between two agents, we use a weighted sum
over the functions sfi

. With each feature fi , we associate a weight wi ≥ 0. The simi-
larity between two agents is then given by Eq. 1 below.

Sim(Ame,Ao) ≡
k∑

j=1

sfj
(f

Ame

j , f
Ai

j ) · wj (1)

For each calculated similarity value, we check in line 3 if it is bounded by Smin and
Smax , and in line 5 we pick the agent Ac that maximizes the similarity, but still falls
within the bounds. Smin denotes values that are too dissimilar, and the associated
agents are ignored. Festinger writes (Festinger 1954): “When a discrepancy exists
with respect to opinions or abilities there will be tendencies to cease comparing one-
self with those in the group who are very different from oneself”. Respectively, there
is also an upper bound on similarity Smax , which prevents the agent from trying to
minimize differences where they are not meaningful or helpful. For instance, without
this upper bound, an agent that is stuck in a location may compare itself to others,
and prefer those that are similarly stuck in place.

In line 6, we determine the list of features (fi , wi ) which cause the differences
between Ame and the selected agent Ac (list of features with fi < 1). We order these
features in an increasing order of weight wi , such that the first feature to trigger cor-
rective action is the one with the lowest weight. Thus, the correction order increases
from lowest weight to the highest one. The reason for this ordering is intuitive, and
we admittedly did not find evidence for it (or against it) in the literature and the ex-
periments (see Sect. 5.1.1).

Finally, in step 7 of the algorithm, the comparing agent Ame takes corrective action
(a) on the selected feature. Note that we assume here that every feature has one
associated corrective actions that minimize gaps in it, to a target agent, independently
of other features. Festinger writes (Festinger 1954): “The stronger the attraction to
the group the stronger will be the pressure toward uniformity concerning abilities
and opinions within that group”. To model this, we use a gain function Gain (see
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(2)), which translates into the amount of effort or power invested in the action. For
instance, for movement, the gain function would translate into velocity; the greater
the gain, the greater the velocity.

Gain(Sim(Ame,Ac)) ≡ Smax − Smin

Smax − Sim(Ame,Ac)
(2)

4 Modeling pedestrian movement

The coordinated behavior of crowds has often been investigated in the context of
pedestrian dynamics. Pedestrian motion (direction and velocity) is affected not only
by physical elements (e.g., the sidewalk), but also by the motion of other pedestrians.
Wolff (1973) noted that pedestrians have a hight degree of cooperation and coordina-
tion without which, walking on sidewalk would be impossible.

One of the major problems in modeling crowd behaviors in general is the lack of
human data that models can be compared with. The difficulty in creation this data is
that crowd experiments are complex and very costly since they have to be in large
scale. Moreover, there is also a difficulty in analyzing these experiments in order to
receive the numerical data. Defining the appropriate measurements for crowd behav-
iors is probably one of the biggest challenges for researches in crowd behaviors ex-
periments. However, there are fortunately few domains that accepted measurements
do exist and some numerical and qualitative data are available.

One example is pedestrian domain where there exist some qualitative data. The
biggest challenge in pedestrian behaviors is defining appropriate measurements. One
of the common and most explored phenomena in pedestrians is that there is a creation
of lanes in bidirectional movement. There are a few human crowd experiments on
creation of lanes (Wolff 1973; Daamen and Hoogendoorn 2003). However, the main
conclusion is that lanes in human pedestrian movement are formed in bidirectional
movement. The more agents organize into lanes, the less their need to change lanes in
the future. In pedestrian domains, the commonly used quantitative measures are thus
the number of lane changes and flow. However, this ignores more general pedestrian
behavior evaluation, such as grouping.

We explore the use of SCT in generating pedestrian movements in different set-
tings (individual, groups, with and without obstacles) and compare its performance
to known models. Our goal is to explore if SCT model can account for common
pedestrian behavior phenomenons like lane formations in bidirectional movement,
and movement in groups, with and without obstacles.

To implement the model for pedestrians movement experiments, we used NetL-
ogo (Wilensky 1999). We simulated a sidewalk where agents can move in a circular
fashion from east to west, or in the opposite direction. Each agent has limited vision
distance (beyond this distance it cannot see). It also has a cone-shaped field-of-view
of 120 degrees. Each agent initially moves with a default walking velocity (in our
case, 0.1). Agents are not allowed to move through other agents, and thus no two
agents can occupy the same space.
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Fig. 1 Initial NetLogo sidewalk

Fig. 2 Lane formations—experiment end-results

Figure 1 shows the NetLogo sidewalk environment, in an initial state where simu-
lated pedestrians are randomly placed about. Each small triangle is a simulated pedes-
trian, able to move left-to-right or right-to-left. Pedestrians exiting the sidewalk on
any side appear on the other side, heading in the same direction. Figure 2 shows an
end-result from one of the experiments (described below), where lanes have formed.

Each agent has a set of features and its corresponding weight. For simulating
pedestrian movement, we used the following features and weights:

Walking direction (weight: 2). Agents can move in two opposite directions, east and
west. Represent agents’ goal orientation.

Color (weight: 3). Each agent has a color (blue, pink, red, green, etc.). Represent
agents’ relation, agents with similar color consider related to each other.

Distance (weight 1). Each agent has a position, given in global coordinates.

The similarities in different features (sfi
) are calculated as follows. sfcolor

= 1 if
the color is the same, 0 otherwise. sfdirection

= 1 if direction is the same, 0 otherwise.
and finally, sfdistance

= 1
dist , where dist is the Euclidean distance between the positions

of the agents.
The rationale for feature priorities, as represented in their weights, follows from

our intuition and common experience as to how pedestrians act. Positional difference
(distance) is the easiest difference to correct, and the least indicative of a similarity
between pedestrians. Direction, which in this simulation indicates an agents’ goal
orientation, is more indicative of a similarity between agents. Color, which we defined
to be the same for agents of the same group, even more so. If an agent sees two others,
one in the same direction as it (and far away), and the other very close to it (but in
the opposite direction), it will calculate greater similarity to the first agent, and try to
minimize the distance to it (this may cause a lane change).

Each agent Ame calculates Sim(Ame,Ao) according to the model. If the chosen
feature for closing the gap is distance, then the velocity for movement will be mul-
tiplied by the calculated gain Gain(Sim(Ame,Ao)). For other features (which are bi-
nary), the gain is ignored.

To evaluate the SCT model, we contrast it with a popular alternative model, often
used in pedestrian crowd research (Blue and Adler 2000; Helbing and Molnar 1997;
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Helbing et al. 2001). In this individual choice model, each agent chooses lanes ar-
bitrarily if forward movement is blocked. If so, then the agent seeks to move left or
right. If both lanes are available, one is chosen arbitrarily. This choice may be biased
by culture (Wolff 1973), but we did not utilize such a bias in our experiments. This
model was repeatedly shown to produce lane formations and is considered to be a
base model for pedestrian movement.

We compare these models as is commonly done in pedestrian movement experi-
ments: We controlled for crowd density, calculated as the number of agents divided by
the area. We follow the literature in measuring two principal characteristics of pedes-
trian movement: the total number of lane changes (lower numbers indicate improved
lane formations), and the flow (average speed divided by the space-per-agent).

In the following sections, we evaluate the social comparison model and its imple-
mentation in modeling pedestrian movement. The basic movement pattern that our
simulated pedestrians follow, stemming from the social comparison model, is as fol-
lows: Each agent follows an initially set direction. It chooses moving in this direction,
unless blocked. If forward movement is indeed blocked, the agent can change lanes
to the left or right. It will choose the lane where there is an agent that is similar to it
(if such an agent exists); otherwise, it chooses arbitrarily.

4.1 Experiment 1: independent pedestrians

Our first experiment contrasted the social comparison model with previous mod-
els. We begin by examining individual pedestrian movements, where each syn-
thetic pedestrian is independent of others. Each agent had a unique color. Each
agent’s direction (east or west) and initial position was chosen randomly. We con-
trasted the social comparison model with that of individual choice, which was
shown to produce lane formations (Blue and Adler 2000; Helbing and Molnar 1997;
Helbing et al. 2001) and is considered to be a base model for pedestrian models.

In this experiment, we eliminated the Gain component by fixing its value at 1 (see
below for experiments examining gain). Smax was set at 6, which means that no agent
will be too similar, and any dissimilarity triggers an action (other than color which
cannot be changed). Smin was set at 2, which means that agents that differed only in
distance (but not in color or direction) were not considered similar. Each trial was
executed for 5000 cycles.

Figure 3 shows lane changes for the individual-choice and social comparison mod-
els. The X-axis measures density. The Y-axis measures the number of lane changes
during the course of 5000 cycles. Each configuration was repeated 30 times. Figure
4 measures flow for the two models; the X-axis again measures density, the Y-axis
measures the flow.

The figures shows that the number of lane changes is significantly lower than that
of the individual-choice model (one-tailed t-test, p = 0.009), implying that lanes
form faster and are maintained longer with the social-comparison models. However,
as the flow results show, there are no meaningful differences in flow. In other words,
the social comparison model performs better, but with essentially no cost to the flow.
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Fig. 3 Independent pedestrians’ lane changes

Fig. 4 Independent pedestrians’ flow

4.2 Experiment 2: independent pedestrians with varying gain

The next set of experiments explored the performance of the model when the gain
component was allowed to vary, per its definition in the social comparison model.
We repeated the individual pedestrian experiments, though ignoring color: All agents
moving east were colored red, and all agents moving west were colored blue. Because
of this, agents really see only two kinds of agents: Those who have similarity of 1 (or
less) , and those with similarity of 5 (or more). Thus the only way to vary the gain, is
to vary the Smin and Smax values, as they set the enumerator in the gain calculation.

To evaluate the effect of the gain, we contrasted three variants of the social com-
parison model introduced earlier:

• Smax = 5.5, Smin = 5, i.e., Gain(Sim(Ame,Ao)) = 1
• Smax = 5.5, Smin = 4, i.e., Gain(Sim(Ame,Ao)) = 3
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Fig. 5 Screen shots, independent pedestrians: varied gains

• Smax = 5.5, Smin = 2, i.e., Gain(Sim(Ame,Ao)) = 7

Figure 5 shows the initial positions of the agents in one of the trials (5(a)), and
typical results after 5000 cycles, with a Gain of 1 (5(b)), Gain of 3 (5(c)), and Gain
of 7 (5(d)). The figures show how the increased gain causes the agents to group more
closely together, thus forming lanes faster.

Figures 6 and 7 shows lane formation and flow results for the individual and so-
cial comparison models. The X-axis in both figures measures density. The Y-axis in
Fig. 6 measures the number of lane changes; a higher number indicates more lanes
are formed, since agents must still change lanes, having met opposing pedestrians.
The Y-axis in Fig. 7 measures flow. Each data-point is an average over 15 trials.

The figures show that the number of lane changes in SCT is significantly lower
than that of the individual-choice model (one tailed t-test, p = 0.05). This is true
even with a gain of 1, which effectively neutralizes the gain in comparison to the
individual-choice model. Moreover, the difference with the individual-choice model
increases with an increased gain. However, there are essentially no differences in
flow. These results support the hypothesis that the use of SCT can lead to quicker
lane formations, which would indicate an improved model of crowd behavior.

4.3 Experiment 3: pedestrians in groups

We now move away from considering scenarios previously appearing in the litera-
ture, to exploring new types of pedestrian behaviors. In particular, we experiment
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Fig. 6 Independent pedestrians with varying gain: lane changes. A lower result is better

Fig. 7 Independent pedestrians with varying gain: flow

with pedestrian movement where the pedestrians belong to different groups inter-
nally. This type of situation arises, for instance, in pedestrians that are composed of
families and/or friends. The individual-choice model does not account for such be-
havior, because it does not treat the group in any way. In contrast, we expect our
social comparison model to treat groups (agents that belong to the same group would
be more similar).

To examine this hypothesis, we carried out experiments in which color is meaning-
ful: Agents belonging the same group have the same color. In these experiments, all
agents move in the same direction, again, for 5000 cycles. Gain was allowed to vary
per the model, as described above (see (2)). The population contains 150 agents with
a different number of colors (we experimented with 5, 10, and 20 color). Walking
direction of all agents is West. Smax was set at 6.5, and Smin was set at 2.

To account for the western cultural intuition that friends (and family) walk side-
by-side, rather than in columns, we added another feature: The similarity in posi-
tion along the x-axis. The revised features and weights are as follows: Direction,
with weight 2; Distance, with weight 0.5; Color, with weight 3; X-Coordinate, with
weight 1.
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Fig. 8 Screen shots, grouped pedestrian movement

The rationale behind these weights is that the agent will first close the distance gap
with the agent selected as most similar, and only then try to locate itself on the same
X-Coordinate.

There exists a significant challenge in being able to quantitatively measure the
grouping results of the experiments. Normally, a simple clustering measure would do,
as all agents of same color would group together. However, due to the initial random
positions and the limited visual range of agents, agents of the same color may never
group together, instead forming several groups that are far from each other.

Balch (1998) has offered a clustering measure, hierarchical social entropy, that
can address such cases. The key intuition behind this measure is to iteratively sum
entropy over increasing areas. The measure equals 0 when all agents are positioned
in the exact same spot, and grows with their spreading around. Thus lower values
indicate improved grouping. Balch (1998) provides the details.

Table 1 shows the measurement results for the individual-choice and social-
comparison models. Each row corresponds to the average results over multiple tri-
als, with a different number of colors. The table shows (third column) that the so-
cial comparison model provides for significantly improved grouping compared to the
individual-choice model (one-tailed t-test, p = 0.05). Again, these results support the
hypothesis that SCT is an improvement over the basis individual-choice model.

4.4 Experiment 4: groups and obstacles

Our final set of pedestrian movement experiments addresses the response of groups
within moving pedestrian crowds to obstacles. Here, we consider an obstacle which to
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Table 1 Grouping measurements of individual-choice and social comparison models. Lower values indi-
cate improved grouping

# Groups Individual-choice Social comparison

5 173.2 87.4

10 143.3 85.8

20 101.5 60.1

the agents appears as a long dividing fence whose end is not visible. Thus, they need
to decide whether to move together or split. Intuitively, we recognize that such groups
will choose to stick together in face of an obstacle (moving together to one side of it),
while individual-choice pedestrians choose arbitrarily. We sought to examine whether
the social comparison models would account for this behavior.

We created a sidewalk environment as described earlier, but this time with an
elongated rectangular obstacle in the middle. When agents approach this obstacle,
they must select to move to one of its sides. In the experiments, we allowed 100
agents of two colors (red and blue) to move west from their initial positions. Each
agent has the following features: Direction, distance and color (weights: same as in
the individual pedestrian experiments). Agents use comparison at all times, and not
just when stuck. Smax was set at 6.5, Smin at 3.

Figure 9 shows the initial random positions of the agents (9(a)), their positions
after going moving for a while using the individual-choice model (9(b)), and their
positions when moving using the social comparison model (9(c)). The figures show
clearly that the social comparison model causes similarly-colored agents to group
together on one side of the obstacle, passing it together. In contrast, the individual-
choice model has no such effect on the behavior of the agents.

Quantitative analysis again proved challenging, as here no clusters form. We
needed, instead, to measure to what degree agents of the same color stay on one
side of the obstacle. To do this, we defined virtual “gates” on either side of the obsta-
cle, and monitored agents that move through them. Each trial allowed 100 agents to
pass through the gates 10 times (i.e., 10 waves). At the end of each wave, we calcu-
lated (separately) the entropy of each color as its agents are divided between the two
gates. A score of 0 indicates perfect grouping (all agents of same color pass through
same gate). A score of 1 indicates perfect lack of grouping (the agents are evenly split
between the two groups). The final result of each wave is the average entropy value
across the two colors.

Figure 10 shows the average entropy value for each wave, for the ten waves. The
results are averaged over 25 trials. The X-axis shows the wave number (1–10). The
Y-axis measures the entropy. The figure shows that the entropy value of the social-
comparison model quickly goes down from 1 and approaches 0, while it remains
around 1 for the individual-choice model. Indeed, after 10 waves, the average entropy
value for the social comparison model is 0.131, while it is 0.992 for the individual-
choice model.
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Fig. 9 Screen shots, grouped pedestrians’ movement around the obstacle

Fig. 10 Entropy of grouped pedestrians’ movement around the obstacle

5 Validation against human data

In this set of experiments, we compare simulated behavior generated by crowd model-
ing algorithms, to human pedestrian behavior. Unlike in previous experiments where
we concentrated on specific phenomena like lane changes or movement in groups, in
this experiment we focus on much general pedestrian behavior where groups such as
family and friends, couples and individuals are walking with different speeds in bidi-
rectional fashion. Our hypothesis is that generating pedestrian behavior with SCT
model is more in tune with human pedestrian behavior, compared to a base model
from the literature. We also want to examine the impact of the SCT model compo-
nents (SCT bounds, correction order and gain function) on the quality of the simu-
lated behavior.
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Fig. 11 Human pedestrian behavior

There does not exist a standard methodology of evaluation; some researchers gen-
erate accurate behavioral data by engaging crowds in virtual environments (Pelechano
et al. 2008), while others do qualitative comparisons of their models’ predictions
against movies of crowds, i.e., via observation experiments (e.g., Helbing et al. 2000;
Kretz 2007). We follow the same approach. Below, we describe the observation ex-
periment we executed to evaluate the SCT model on general pedestrian behavior.

5.1 Comparing generating pedestrians behavior of SCT model to human pedestrian
behavior

We used human crowd movies where different pedestrian behavior phenomena are
presented (Fig. 11) and created screen-capture movies of different models of the same
behavior (Fig. 12). We rely on experiments with human subjects which compare each
of the resulting simulated behaviors to human crowd behavior. In addition, the sub-
jects also voted for the most similar and dissimilar simulated behavior.

5.1.1 Comparison to human crowd

In order to compare to general behavior and not to be connected to specific video clip,
we used several video clips of human pedestrian behavior and several screen-captured
movies for each model. In the simulated behavior we created three screen-captured
movies for each model that was randomly chosen for each subject. In human behav-
ior we used two sets of video clips that were taken from different locations and in
different times. The first set of movie clips were taken in the morning in downtown
Vancouver, during rush hour. People are mostly walking individually, and only few
are moving in small groups. The second set of movie clips were taken in the after-
noon in a street that leads to the Eiffel tower in Paris, during leisure time. Most of the
pedestrians are moving in small groups with observable mutual relations among them
expressed in body language. Each real-world video clip was cut to be one minute
long. To generate a one-minute clip in the simulated behaviors, each model was exe-
cuted for 5000 cycles (6 minutes), and the last minute was used.

We designed a web-based experiment in which subjects could participate in their
free time. First we presented a brief description of the experiment. The subjects were
told that the purpose of the experiment is to compare each of the simulated behaviors
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Fig. 12 Simulated pedestrian behavior

to human crowd behavior. However, the purpose of the simulation is not to simu-
late each seen pedestrian in the human crowd, but to simulate the general pedestrian
behavior. The experiment was carried out in two phases, a training phase that was
presented to the subjects after the experiment description, and an experiment phase.

The experiment was carried out using 39 adult subjects (males: 28). Additional 6
subjects were dropped due to technical reasons (such as network problems that pre-
vented them from watching all clips). The subjects were asked to watch the human
pedestrian movie that was randomly chosen in each experiment. Then, they were ask
to watch screen-captured movie of each model that was also chosen randomly. After
each simulated movie, the subjects were ask to rank the seen behavior, by answering
the question: To what degree is the seen simulated behavior similar to the previously
seen human behavior? (1—not similar, 6—most similar). Subjects could go back and
forward, revising their answers until they felt comfortable with them. The order of
presentation changed randomly to control for order effects. At the end of the experi-
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Table 2 SCT models

Component SCT-B-2-6.5 SCT-B-5-6.5 SCT-H-L SCT-NoGain

Smax 6.5 6.5 6.5 6.5

Smin 2 5 2 2

Gain Eq. 2 (func.) Eq. 2 (func.) Eq. 2 (func.) 1 (const)

Correction order L-H L-H H-L H-L

Component SCT-G-C2 SCT-G-C3 SCT-G-C4.5

Smax 6.5 6.5 6.5

Smin 2 2 2

Gain 2 (const) 3 (const) 4.5 (const)

Correction order L-H L-H L-H

ment, we asked the subjects additional two questions: What simulated movie was the
most similar to human behavior and what simulated movie was the most dissimilar.

We wanted to examine the impact of the SCT model components on the quality of
the simulated pedestrian behavior. In particular, we wanted to examine the impact of
SCT bounds (Smin and Smax ), gain function, and correction order on the generated
behavior. We define seven models, each emphasizing a different SCT component.
The models are explained below, and summarized in Table 2.

First we wanted to examine the impact of SCT bounds on the generated pedes-
trian behavior. We hypothesize that more narrow bounds will provide more similar
behavior to individual model. To examine this hypothesis, we define the following
models:

– SCT-B-2-6.5 We set Smax to 6.5 (practically: no agent too similar) and Smin to 2
(which means that agents that differ only in distance and in X-axis are not consider
similar). The gain is calculated according to (2) and the correction order is from the
low weight features (distance) to high weigh features. In this domain agents cannot
change their color, thus, the last corrected feature is direction. Our hypothesis that
this model will provide most similar behavior to human pedestrians.

– SCT-B-5-6.5 We set the Smin to 5 which mean that agents that similar at least in
color and direction are consider to be similar. Thus, in this model only agents with
same color and direction will move together.

Another component that we want to examine is the impact of correction order on
simulated pedestrian behavior. In the SCT-H-L model we define the correction order
to be from high to low. Our agents cannot change their colors, and in this model if the
selected agent is moving in opposite direction, the agent will first change it direction
and then will try to close the distance gap.

Finally, we wanted to evaluate the importance of the gain in the model. We define
the following models:

– SCT-NoGain. is SCT without the gain function (i.e., gain is constant 1).
– SCT-G-C2. The gain function is constant (2).
– SCT-G-C3. The gain function is constant (3).
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Fig. 13 Comparing to human
pedestrian—results

– SCT-G-C4.5. The gain function is constant (4.5).

Initially we wanted to compare eight different simulated behaviors to human
pedestrian behavior, the individual choice model and seven SCT models. We run a
short pilot in which we presented to three subjects the experiment and afterwards ask
their opinion. All subjects claimed that the experiment was too long. Moreover, they
claimed that SCT-B-2-6.5 model provide very similar behavior to that of SCT-H-L
model, and also that models SCT-NoGain, SCT-G-C2, SCT-G-C3 and SCT-G-C4.5
produced similar behavior. Thus, we reduced the number of different models that pre-
sented to the subjects. In the experiment phase we compared between four simulated
behaviors. We used the Individual-choice model, SCT-B-2-6.5, SCT-B-5-6.5 and one
of randomly chosen SCT-NoGain, SCT-G-C3 and SCT-G-C4.5 models. The models
SCT-H-L and SCT-G-C2 were used only in the training phase, and their results were
not used.

5.2 Results

We first wanted to examine the ranking of the models in comparison to the actual
crowd. The results are summarized in Fig. 13. The categories in the X-axis correspond
to different models. The Y-axis correspond to grades of the compared models. Each
set of bar shows the mean and median results. A higher result indicates improved
fidelity, i.e., greater similarity to human pedestrian behavior.

The results clearly demonstrate that the SCT-B-2-6.5 model provide higher results
than the compared models. While it may seem that the SCT-B-2-6.5 model results
is close to Individual and SCT-B-5-6.5 models results, according to a t-test (two-
tailed) SCT-B-2-6.5 was found to be significantly different than the Individual model
(p = 0.001) and significantly different than SCT-B-5-6.5 (p = 0.03).

Another hypothesis underlying the experiment is that SCT model with narrower
bounds (Smin, Smax ) will provide closer behavior to individual model behavior, but
not the same. Indeed, the results demonstrate that SCT-B-5-6.5 lies in between the
SCT-B-2-6.5 and individual models. According to t-test (two-tailed) SCT-B-5-6.5
was found to be significantly different than SCT-B-2-6.5 (p = 0.03) and significantly
different than the Individual model (p = 0.017).

Our last hypothesis was that SCT models without the gain function will provide
less similar behavior to human pedestrian behavior. The results clearly demonstrates
that SCT-NoGain, SCT-G-C3 and SCT-G-C4.5 models in which the gain is fixed, get
the lowest results.
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Fig. 14 Most
similar/dissimilar: results

When we ask the subjects: “What simulated behavior was the most similar to
human behavior?” The SCT-B-2-6.5 model gets the highest number of votes. To the
question: “What simulated behavior was the most dissimilar to human behavior?”,
the subjects answered with the SCT-NoGain, SCT-G-C3 and SCT-G-C4.5 models.
The answers to these two questions are shown in Fig. 14.

6 Discussion

The SCT model, described and evaluated above, stands on two conceptual cogni-
tive science legs. First, it draws a connection between social comparison theory and
crowd behavior. Second, it interprets social comparison theory as admitting superfi-
cial comparisons, i.e., at the level of visible differences between agents, in addition
to cognitive differences (e.g., intentions). We address these two issues below.

Social comparison in crowds To the best of our knowledge, social comparison the-
ory has never been connected to crowd behavior phenomena. However, we believe
that social comparison theory may account for some important characteristics of
crowd behavior, as it clearly addresses processes in groups, and no limit is placed
on group size.

We focus here on one of the primary characteristics of crowds is the similar-
ity between individuals’ behaviors. This is explained by a process of imitation (Le
Bon 1895), convergence of like-minded individuals (Allport 1924), or emerging
norms (Turner and Killian 1972).

Social comparison processes can give rise to this phenomenon. Festinger writes
(Festinger 1954, p. 124): “The existence of a discrepancy in a group with respect to
opinions or abilities will lead to action on the part of members of that group to reduce
the discrepancy”. Indeed, one implication of SCT is the formation of homogeneous
groups. Festinger notes (Festinger 1954, p. 135): “The drive for self evaluation is a
force acting on persons to belong to groups, to associate with others. People, then,
tend to move into groups which, in their judgment, hold opinions which agree with
their own”. This quote, in particular, seems to be compatible with Allport (1924).

Do people engage in surface comparisons? Festinger hypothesizes (Festinger 1954,
p. 117): “There exists, in the human organism, a drive to evaluate his opinions and
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his abilities”. Thus a question that emerges with respect to the mechanisms described
here is whether in fact the type of surface comparisons are admitted by social com-
parison theory.

There has been extensive research clarifying the concepts “abilities” and “opin-
ions”. Smith and Arnkelsson (2000) explain that ability evaluation refers to person
performance at specific task. Festinger himself provided a link between ability and
performance: “abilities are of course manifested only through performance which
is assumed to depend upon the particular ability” (Festinger 1954, p. 118). He then
provide an example: “Thus, if a person evaluates his running ability, he will do so
by comparing his time to run some distance with the times that other persons have
taken.” (Festinger 1954, p. 118).

Moreover, the meaning of opinion comparison, was also extensively investi-
gated during the years since the publication of Festinger (1954). Goethals and Dar-
ley (1977) relate this concept to “Related Attributes Hypothesis” meaning people
will prefer to compare with others similar to them on attributes that are related to
their opinion or performance. Festinger provide the basis for this research claiming:
“If persons who are divergent from one’s own opinion or ability are perceived as dif-
ferent from oneself on attributes consistent with the divergent, the tendency to narrow
the range of comparability becomes stronger” (Festinger 1954, p. 133). Goethals and
Klein provide an example which directly admit surface comparisons: “An individual
evaluating his or her tennis-playing ability. He or she might compare with others who
are about the same age, who have the same degree of recent practice and comparable
equipment, and who are the same sex” (Goethals and Klein 2000, p. 25).

There is much evidence that people perform surface comparison in their everyday
tasks even when they are walking in the street. For example, people use SCT whether
to decide to return a lost wallet (Hornstein et al. 1968). Here is another example:
A well-known experiment in social sciences was performed by Milgram et al. (1969).
The experiment involves one participant who stood in the middle of a busy street and
stared into an empty spot in the sky. The experiments purpose was to examine group
pressure. The results showed that when there was only one participant, there were
only a few people that passed and briefly glanced up. However, when there were
several participants, almost 80 percent of the passers by also stopped and stared into
the sky. It thus seems that the application of social comparison theory to explaining
crowd behavior is justified.

7 Summary and future work

This paper presented a model proscribing crowd behavior, inspired by Festinger’s so-
cial comparison theory (Festinger 1954). The model intuitively matches many of the
characteristic observations made of human crowd behavior, and was shown to cover
several distinct pedestrian crowd phenomena. Moreover, we presented validation of
SCT model (and competing models) against human crowd behavior. We evaluate the
SCT on pedestrian phenomena and showed that SCT model generated pedestrian be-
havior more in tune to human pedestrian behavior. We are currently exploring the use
of SCT in this and other domains.
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In our future work we plan to provide quantitative validation of the SCT model
against human data by using machine vision algorithms for data analysis. These can
be used to provide different quantitative metrics calculated from the video stream
such as group formation, density or crowd flow. We plan to compare the metrics
received from human crowd video to the ones received from simulated behavior. It
will also be interested to consider comparisons against additional models than the
base-line (Pelechano et al. 2008).

Moreover, we plan to extend the SCT model to include repelling forces. Thus, each
agent should not only be attracted to the similar but also should avoid the dissimilar.
We also plan to explore the expression of leadership in social comparison theory, and
expand our model to simulate collective behaviors with the influence of leaders. Our
main goal that with SCT model we will be able to simulate crowd behaviors with and
without leadership influence.

References

Allport FH (1924) Social psychology. Houghton Mifflin, Boston
Balch T (1998) Behavioral diversity in learning robot teams. PhD thesis, Georgia Institute of Technology
Berk R (1974) A gaming approach to crowd behavior. Am Sociol Rev
Blue VJ, Adler JL (2000) Cellular automata microsimulation of bidirectional pedestrian flows. Trans Res

Rec 135–141
Blumer HG (1939) Collective behavior. Princ Sociol
Braun A, Musse SR, de Oliveira LPL, Bodmann BEJ (2003) Modeling individual behaviors in crowd

simulation. CASA
Braun A, Musse SR, de Oliveira LPL, Bodmann BEJ (2003) Modeling individual behaviors in crowd

simulation. In: Computer animation and social agents, pp 143–148
Carley K, Newell A (1994) The nature of the social agent. J Math Sociol
Daamen W, Hoogendoorn SP (2003) Experimental research of pedestrian walking behavior. Transp Res

Rec 20–30
Festinger L (1954) A theory of social comparison processes. Human Relat 117–140
Fridman N (2007) Modeling crowd behavior based on social comparison theory. Master’s thesis, Bar Ilan

University
Fridman N, Kaminka GA (2009) Comparing human and synthetic group behaviors: A model based on

social psychology. In: International conference on cognitive modeling ICCM-09)
Fridman N, Kaminka GA (2011) Towards a computational model of social comparison: Some implications

for the cognitive architecture. Cogn Systems Res
Goethals GR, Darley JM (1977) Social comparison theory: an attributional approach. In: Social compari-

son processes: theoretical and empirical perspectives. Hemisphere, Washington, DC
Goethals GR, Klein WMP (2000) Interpreting and inventing social reality: attributional and constructive

elements in social comparison. In: Handbook of social comparison: theory and research. Plenum,
New York

Helbing D (1993) Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral
models. Physica A 196:546–573

Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73
Helbing D, Farkas IJ, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–

490
Helbing D, Molnar P (1997) Self-organization phenomena in pedestrian crowds. In: Schweitzer F (ed)

Self-organization of complex structures: from individual to collective dynamics. Gordon and Breach,
New York, pp 569–577

Helbing D, Molnar P, Farkas IJ, Bolay K (2001) Self-organizing pedestrian movement. Environment and
Planning B 28:361–384

Henderson LF (1971) The statistics of crowd fluids. Nature 229:381–383
Henderson LF (1974) On the fluid mechanics of human crowd motion. Transp Res 8:505–515



372 N. Fridman, G.A. Kaminka

Hornstein HA, Fisch E, Holmes M (1968) Influence of a model’s feeling about his behavior and his rele-
vance as a comparison other on observers’ helping behavior. J Pers Soc Psychol

Kretz T (2007) Pedestrian traffic: simulation and experiments. PhD thesis, Universität Duisburg-Essen
Le Bon G (1895) The crowd: a study of the popular mind. Dunwoody, Ga., N.S. Berg, 1968 edition
Milgram S, Bickman L, Berkowitz L (1969) Note on the drawing power of crowds of different size. J Pers

Soc Psychol 13(2):79–82
Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge
Pelechano N, Allbeck JM, Badler NI (2008) Virtual crowds: methods, simulation, and control. Morgan

and Claypool
Pelechano N, Stocker C, Allbeck J, Badler N (2008) Being a part of the crowd: towards validating vr

crowds using presence. In: Autonomous agents and multiagent systems (AAMAS)
Reynolds CW (1987) Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the

14th annual conference on computer graphics and interactive techniques (SIGGRAPH-87). ACM
Press, New York, pp 25–34

Reynolds CW (1999) Steering behavior for autonomous character. In: Proceedings of the game developers
conference, pp 763–782

Rymill SJ, Dodgson NA (2005) A psychologically-based simulation of human behaviour. In: Theory and
practice of computer graphics, pp 35–42

Smith WP, Arnkelsson GB (2000) Stability of related attributes and the inference of ability through social
comparison. In: Handbook of social comparison: theory and research. Plenum, New York

Thalmann D (2001) The foundations to build a virtual human society. In: Proceedings of intelligent virtual
actors (IVA-2001). Springer, Berlin, pp 1–14

Tissera PC, Printista M, Errecalde ML (2007) Evacuation simulations using cellular automata. J Comput
Sci Technol

Toyama MC, Bazzan ALC, da Silva R (2006) An agent-based simulation of pedestrian dynamics: from
lane formation to auditorium evacuation. In: Autonomous agents and multiagent systems (AAMAS)

Tu X, Terzopoulos D (1994) Artificial fishes: physics, locomotion, perception, behavior. In: SIGGRAPH
’94’: proceedings of the 21st annual conference on computer graphics and interactive techniques.
ACM Press, New York, pp 43–50

Turner R, Killian LM (1972) Collective Behavior, 1993 edition. Prentice Hall, New York
Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling—Northwestern

University; http://ccl.northwestern.edu/netlogo/
Wolff M (1973) Notes on the behaviour of pedestrians. In: People in places: the sociology of the familiar,

pp 35–48

Natalie Fridman is a Ph.D. student at Bar Ilan University under the supervision of Prof. Gal A. Kaminka.
Her research interest is in social cognition, where she is exploring the social processes within an individual
when he or she is part of a crowd, a group or collective. Currently, she is concentrating on modeling crowd
behaviors in a variety of domains, applications and modeling paradigms. She has 3 years of industry
experience.

Gal A. Kaminka is an associate professor at the Computer Science Department, and the Brain Sciences
Research Center, at Bar Ilan University (Israel). His research expertise includes multi-agent and multi-
robot systems, teamwork and coordination, behavior and plan recognition, and modeling social behavior.
He has received his Ph.D. from the University of Southern California, and spent two years as a post-
doctorate fellow at Carnegie Mellon University. Today, Prof. Kaminka leads the MAVERICK research
group at Bar Ilan, supervising over a dozen M.Sc. and Ph.D. students. He was awarded an IBM faculty
award and top places at international robotics competitions. He served as the program chair of the 2008 Is-
raeli Conference on Robotics, and the program co-chair of the 2010 Int’l Joint Conference on Autonomous
Agents and Multi-Agent Systems. He is currently serving on the international executive bodies of IFAA-
MAS (International Foundation of Autonomous Agents and Multi-Agent Systems) and AAAI (Association
for Advancement of Artificial Intelligence).

http://ccl.northwestern.edu/netlogo/

	Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory
	Abstract
	Introduction
	Background and motivation
	Social psychology
	Computational models

	A model of social comparison
	Festinger's social comparison theory
	An SCT algorithm

	Modeling pedestrian movement
	Experiment 1: independent pedestrians
	Experiment 2: independent pedestrians with varying gain
	Experiment 3: pedestrians in groups
	Experiment 4: groups and obstacles

	Validation against human data
	Comparing generating pedestrians behavior of SCT model to human pedestrian behavior
	Comparison to human crowd

	Results

	Discussion
	Social comparison in crowds
	Do people engage in surface comparisons?

	Summary and future work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


