
The Complexity of Second-Order HyperLTL
Hadar Frenkel #

Bar-Ilan University, Ramat Gan, Israel

Martin Zimmermann #

Aalborg University, Denmark

Abstract
We determine the complexity of second-order HyperLTL satisfiability, finite-state satisfiability, and
model-checking: All three are equivalent to truth in third-order arithmetic.

We also consider two fragments of second-order HyperLTL that have been introduced with
the aim to facilitate effective model-checking by restricting the sets one can quantify over. The
first one restricts second-order quantification to smallest/largest sets that satisfy a guard while
the second one restricts second-order quantification further to least fixed points of (first-order)
HyperLTL definable functions. All three problems for the first fragment are still equivalent to truth
in third-order arithmetic while satisfiability for the second fragment is Σ1

1-complete, i.e., only as hard
as for (first-order) HyperLTL and therefore much less complex. Finally, finite-state satisfiability and
model-checking are in Σ2

2 and are Σ1
1-hard, and thus also less complex than for full second-order

HyperLTL.

2012 ACM Subject Classification Theory of computation → Verification by model checking; Theory
of computation → Logic and verification

Keywords and phrases HyperLTL, Satisfiability, Model-checking

Digital Object Identifier 10.4230/LIPIcs.CSL.2025.10

Related Version Full Version: https://arxiv.org/abs/2311.15675 [21]

Funding Martin Zimmermann: Supported by DIREC – Digital Research Centre Denmark.

Acknowledgements This work was initiated by a discussion at Dagstuhl Seminar 23391 “The
Futures of Reactive Synthesis” and some results were obtained at Dagstuhl Seminar 24111 “Logics
for Dependence and Independence: Expressivity and Complexity”. We are grateful to Gaëtan Regaud
for finding and fixing a bug in the proof of Theorem 18 and to the reviewers for their detailed and
valuable feedback, which improved the paper considerably.

1 Introduction

The introduction of hyperlogics [11] for the specification and verification of hyperproper-
ties [12] – properties that relate multiple system executions, has been one of the major
success stories of formal verification during the last decade. Logics like HyperLTL and
HyperCTL∗ [11], the extensions of LTL [32] and CTL∗ [14] (respectively) with trace quantifi-
cation, are natural specification languages for information-flow and security properties, have
a decidable model-checking problem [17], and hence found many applications in program
verification.

However, while expressive enough to express common information-flow properties, they
are unable to express other important hyperproperties, e.g., common knowledge in multi-
agent systems and asynchronous hyperproperties (witnessed by a plethora of asynchronous
extensions of HyperLTL, e.g., [1, 2, 3, 6, 9, 10, 23, 26, 27, 28]). These examples all have in
common that they are second-order properties, i.e., they naturally require quantification over
sets of traces, while HyperLTL (and HyperCTL∗) only allows quantification over traces.

© Hadar Frenkel and Martin Zimmermann;
licensed under Creative Commons License CC-BY 4.0

33rd EACSL Annual Conference on Computer Science Logic (CSL 2025).
Editors: Jörg Endrullis and Sylvain Schmitz; Article No. 10; pp. 10:1–10:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hadar.frenkel@biu.ac.il
https://orcid.org/0000-0002-3566-0338
mailto:mzi@cs.aau.dk
https://orcid.org/0000-0002-8038-2453
https://doi.org/10.4230/LIPIcs.CSL.2025.10
https://arxiv.org/abs/2311.15675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 The Complexity of Second-Order HyperLTL

In light of this situation, Beutner et al. [4] introduced the logic Hyper2LTL, which extends
HyperLTL with second-order quantification, i.e., quantification over sets of traces. They
show that the resulting logic, Hyper2LTL, is indeed able to capture common knowledge,
asynchronous extensions of HyperLTL, and many other applications.

Consider, e.g., common knowledge in multi-agent systems where each agent i only observes
some parts of the system. The agent knows that a statement φ holds if it holds on all traces
that are indistinguishable in the agent’s view. We write π ∼i π

′ if the traces π and π′ are
indistinguishable for agent i. A property φ is common knowledge among all agents if all agents
know φ, all agents know that all agents know φ, and so on, i.e., one takes the infinite closure
of knowledge among all agents. This infinite closure cannot be expressed using first-order
quantification over traces [8], like the one used in HyperLTL. The second-order quantification
suggested by Beutner et al. allows us to express common knowledge, as demonstrated by the
formula φck , which states that φ is common knowledge on all traces of the system (we use a
simplified syntax for readability):

φck = ∀π.∃X. π ∈ X ∧
(

∀π′ ∈ X.∀π′′.
(∨n

i=1
π′ ∼i π

′′) → π′′ ∈ X
)

∧ ∀π′ ∈ X. φ(π′)

The formula φck expresses that for every trace t (instantiating π), there exists a set T (an
instantiation of the second-order variable X) such that t is in T , T is closed under the
observations of all agents (if t′ is in T and t′′ is indistinguishable from t′ for some agent i,
then also t′′ is in T), and all traces in T satisfy φ.

However, Beutner et al. also note that this expressiveness comes at a steep price: model-
checking Hyper2LTL is highly undecidable, i.e., Σ1

1-hard. Thus, their main result is a partial
model-checking algorithm for a fragment of Hyper2LTL where second-order quantification
degenerates to least fixed point computations of HyperLTL definable functions. Their
algorithm over- and underapproximates these fixed points and then invokes a HyperLTL
model-checking algorithm on these approximations. A prototype implementation of the
algorithm is able to model-check properties capturing common knowledge, asynchronous
hyperproperties, and distributed computing.

However, one question has been left open: Just how complex is Hyper2LTL verification?

Complexity Classes for Undecidable Problems. The complexity of undecidable problems
is typically captured in terms of the arithmetical and analytical hierarchy, where decision
problems (encoded as subsets of N) are classified based on their definability by formulas of
higher-order arithmetic, namely by the type of objects one can quantify over and by the
number of alternations of such quantifiers. We refer to Roger’s textbook [35] for fully formal
definitions and refer to Figure 1 for a visualization.

Σ0
0

=
Π0

0

Σ0
1

Π0
1

Σ0
2

Π0
2

Σ0
3

Π0
3

· · ·

· · ·

Σ1
0

=
Π1

0

Σ1
1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

· · ·

· · ·

Σ2
0

=
Π2

0

Σ2
1

Π2
1

Σ2
2

Π2
2

Σ2
3

Π2
3

· · ·

· · ·

Decidable UndecidableRecursively enumerable

arithmetical hierarchy
≡

first-order arithmetic

analytical hierarchy
≡

second-order arithmetic

“the third hierarchy”
≡

third-order arithmetic

Figure 1 The arithmetical hierarchy, the analytical hierarchy, and beyond.

H. Frenkel and M. Zimmermann 10:3

The class Σ0
1 contains the sets of natural numbers of the form

{x ∈ N | ∃x0. · · · ∃xk. ψ(x, x0, . . . , xk)}

where quantifiers range over natural numbers and ψ is a quantifier-free arithmetic formula.
Note that this is exactly the class of recursively enumerable sets. The notation Σ0

1 signifies
that there is a single block of existential quantifiers (the subscript 1) ranging over natural
numbers (type 0 objects, explaining the superscript 0). Analogously, Σ1

1 is induced by
arithmetic formulas with existential quantification of type 1 objects (sets of natural numbers)
and arbitrary (universal and existential) quantification of type 0 objects. So, Σ0

1 is part of
the first level of the arithmetical hierarchy while Σ1

1 is part of the first level of the analytical
hierarchy. In general, level Σ0

n (level Π0
n) of the arithmetical hierarchy is induced by formulas

with at most n− 1 alternations between existential and universal type 0 quantifiers, starting
with an existential (universal) quantifier. Similar hierarchies can be defined for arithmetic
of any fixed order by limiting the alternations of the highest-order quantifiers and allowing
arbitrary lower-order quantification. In this work, the highest order we are concerned with is
three, i.e., quantification over sets of sets of natural numbers.

HyperLTL satisfiability is Σ1
1-complete [19], HyperLTL finite-state satisfiability is Σ0

1-
complete [16, 20], and, as mentioned above, Hyper2LTL model-checking is Σ1

1-hard [4], but,
prior to this current work, no upper bounds were known for Hyper2LTL.

Another yardstick is truth for order k arithmetic, i.e., the question whether a given
sentence of order k arithmetic evaluates to true. In the following, we are in particular
interested in the case k = 3, i.e., we consider formulas with arbitrary quantification over
type 0 objects, type 1 objects, and type 2 objects (sets of sets of natural numbers). Note that
these formulas span the whole third hierarchy, as we allow arbitrary nesting of existential
and universal third-order quantification.

Our Contributions. In this work, we determine the exact complexity of Hyper2LTL satisfi-
ability, finite-state satisfiability, and model-checking, for the full logic and the two fragments
introduced by Beutner et al. [4], as well as for two variations of the semantics.

An important stepping stone for us is the investigation of the cardinality of models of
Hyper2LTL. It is known that every satisfiable HyperLTL sentence has a countable model,
and that some have no finite models [18]. This restricts the order of arithmetic that can
be simulated in HyperLTL and explains in particular the Σ1

1-completeness of HyperLTL
satisfiability [19]. We show that (unsurprisingly) second-order quantification allows to write
formulas that only have uncountable models by generalizing the lower bound construction
of HyperLTL to Hyper2LTL. Note that the cardinality of the continuum is a trivial upper
bound on the size of models, as they are sets of traces.

With this tool at hand, we are able to show that Hyper2LTL satisfiability is equivalent to
truth in third-order arithmetic, i.e., much harder than HyperLTL satisfiability. This increase
in complexity is not surprising, as second-order quantification can be expected to increase the
complexity considerably. But what might be surprising at first glance is that the problem is
not Σ2

1-complete, i.e., at the same position of the third hierarchy that HyperLTL satisfiability
occupies in one full hierarchy below (see Figure 1). However, arbitrary second-order trace
quantification corresponds to arbitrary quantification over type 2 objects, which allows to
capture the full third hierarchy. Furthermore, we also show that Hyper2LTL finite-state
satisfiability is equivalent to truth in third-order arithmetic, and therefore as hard as general
satisfiability. This should be contrasted with the situation for HyperLTL described above,
where finite-state satisfiability is Σ0

1-complete (i.e., recursively enumerable) and thus much
simpler than general satisfiability, which is Σ1

1-complete.

CSL 2025

10:4 The Complexity of Second-Order HyperLTL

Finally, our techniques for Hyper2LTL satisfiability also shed light on the exact complexity
of Hyper2LTL model-checking, which we show to be equivalent to truth in third-order
arithmetic as well, i.e., all three problems we consider have the same complexity. In
particular, this increases the lower bound on Hyper2LTL model-checking from Σ1

1 to truth
in third-order arithmetic. Again, this has be contrasted with the situation for HyperLTL,
where model-checking is decidable, albeit Tower-complete [33, 31].

So, quantification over arbitrary sets of traces makes verification very hard. However,
Beutner et al. [4] noticed that many of the applications of Hyper2LTL described above do
not require full second-order quantification, but can be expressed with restricted forms of
second-order quantification. To capture this, they first restrict second-order quantification
to smallest/largest sets satisfying a guard (obtaining the fragment Hyper2LTLmm)1 and
then further restrict those to least fixed points induced by HyperLTL definable operators
(obtaining the fragment lfp-Hyper2LTLmm). By construction, these least fixed points are
unique, i.e., second-order quantification degenerates to least fixed point computation.

As an example, consider again φck above. The internal constraint

∀π′ ∈ X.∀π′′.
(∨n

i=1
π′ ∼i π

′′) → π′′ ∈ X

defines a condition on what traces have to be in the set X, and how they are added gradually
to X, a behavior that can be captured by a fixed point computation for the (monotone)
operator induced by the formula above. Since the last part ∀π′ ∈ X. φ(π′) of φck universally
quantifies over all traces in X, and since X is existentially quantified, it is enough to consider
the minimal set that satisfies the internal constraint: if some set satisfies a universal condition,
then so does the minimal set. This minimal set is exactly the least fixed point of the operator
induced by the formula above. Similar behavior is exhibited by many other applications of
the logic, which gives the motivation to explore the fragment lfp-Hyper2LTLmm.

Nevertheless, we show that Hyper2LTLmm retains the same complexity as Hyper2LTL,
i.e., all three problems are still equivalent to truth in third-order arithmetic: Just restricting
to guarded second-order quantification does not decrease the complexity.

For all results mentioned so far, it is irrelevant whether we allow second-order quantifiers
to range over sets of traces that may contain traces that are not in the model (standard
semantics) or whether we restrict these quantifiers to subsets of the model (closed-world
semantics). But if we consider lfp-Hyper2LTLmm satisfiability under closed-world semantics,
the complexity finally decreases to Σ1

1-completeness. Stated differently, one can add least fixed
points of HyperLTL definable operators to HyperLTL without increasing the complexity
of the satisfiability problem. Finally, for lfp-Hyper2LTLmm finite-state satisfiability and
model-checking, we prove Σ2

2-membership and Σ1
1 lower bounds for both semantics, thereby

confining the complexity to the second level of the third hierarchy.
Table 1 lists our results and compares them to LTL and HyperLTL. Recall that Beutner

et al. showed that lfp-Hyper2LTLmm yields (partial) model checking and monitoring algo-
rithms [4, 5]. Our results confirm the usability of the lfp-Hyper2LTLmm fragment also from
a theoretical point of view, as all problems relevant for verification have significantly lower
complexity (albeit, still highly undecidable).

Proofs omitted due to space restrictions can be found in the full version [21].

1 In [4] this fragment is termed Hyper2LTLfp. For clarity, since it is not fixed point based, but uses
minimality/maximality constraints, we use the subscript “mm” instead of “fp”.

H. Frenkel and M. Zimmermann 10:5

Table 1 List of our results (in bold) and comparison to related logics. “T3A-equivalent” stands
for “equivalent to truth in third-order arithmetic”. Entries marked with an asterisk only hold for
closed-world semantics, all others hold for both semantics.

Logic Satisfiability Finite-state satisfiability Model-checking

LTL PSpace-complete PSpace-complete PSpace-complete
HyperLTL Σ1

1-complete Σ0
1-complete Tower-complete

Hyper2LTL T3A-equivalent T3A-equivalent T3A-equivalent
Hyper2LTLmm T3A-equivalent T3A-equivalent T3A-equivalent
lfp-Hyper2LTLmm Σ1

1-complete∗ Σ1
1-hard/in Σ2

2 Σ1
1-hard/in Σ2

2

2 Preliminaries

We denote the nonnegative integers by N. An alphabet is a nonempty finite set. The
set of infinite words over an alphabet Σ is denoted by Σω. Let AP be a nonempty finite
set of atomic propositions. A trace over AP is an infinite word over the alphabet 2AP.
Given a subset AP′ ⊆ AP, the AP′-projection of a trace t(0)t(1)t(2) · · · over AP is the
trace (t(0) ∩ AP′)(t(1) ∩ AP′)(t(2) ∩ AP′) · · · over AP′.

A transition system T = (V,E, I, λ) consists of a finite nonempty set V of vertices, a
set E ⊆ V ×V of (directed) edges, a set I ⊆ V of initial vertices, and a labeling λ : V → 2AP

of the vertices by sets of atomic propositions. We assume that every vertex has at least
one outgoing edge. A path ρ through T is an infinite sequence ρ(0)ρ(1)ρ(2) · · · of vertices
with ρ(0) ∈ I and (ρ(n), ρ(n+ 1)) ∈ E for every n ≥ 0. The trace of ρ is defined as λ(ρ) =
λ(ρ(0))λ(ρ(1))λ(ρ(2)) · · · . The set of traces of T is Tr(T) = {λ(ρ) | ρ is a path through T}.

Hyper2LTL. Let V1 be a set of first-order trace variables (i.e., ranging over traces) and V2
be a set of second-order trace variables (i.e., ranging over sets of traces) such that V1 ∩V2 = ∅.
We typically use π (possibly with decorations) to denote first-order variables and X,Y, Z

(possibly with decorations) to denote second-order variables. Also, we assume the existence of
two distinguished second-order variables Xa, Xd ∈ V2 such that Xa refers to the set (2AP)ω

of all traces, and Xd refers to the universe of discourse (the set of traces the formula is
evaluated over).

The formulas of Hyper2LTL are given by the grammar

φ ::= ∃X. φ | ∀X. φ | ∃π ∈ X. φ | ∀π ∈ X. φ | ψ ψ ::= pπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ranges over AP, π ranges over V1, X ranges over V2, and X (next) and U (until)
are temporal operators. Conjunction (∧), exclusive disjunction (⊕), implication (→), and
equivalence (↔) are defined as usual, and the temporal operators eventually (F) and
always (G) are derived as Fψ = ¬ψUψ and Gψ = ¬ F ¬ψ. We measure the size of a
formula by its number of distinct subformulas.

The semantics of Hyper2LTL is defined with respect to a variable assignment, i.e., a
partial mapping Π: V1 ∪ V2 → (2AP)ω ∪ 2(2AP)ω such that

if Π(π) for π ∈ V1 is defined, then Π(π) ∈ (2AP)ω and
if Π(X) for X ∈ V2 is defined, then Π(X) ∈ 2(2AP)ω .

Given a variable assignment Π, a variable π ∈ V1, and a trace t, we denote by Π[π 7→ t] the
assignment that coincides with Π on all variables but π, which is mapped to t. Similarly,
for a variable X ∈ V2, and a set T of traces, Π[X 7→ T] is the assignment that coincides
with Π everywhere but X, which is mapped to T . Furthermore, Π[j,∞) denotes the variable

CSL 2025

10:6 The Complexity of Second-Order HyperLTL

assignment mapping every π ∈ V1 in Π’s domain to Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · , the
suffix of Π(π) starting at position j (the assignment of variables X ∈ V2 is not updated).

For a variable assignment Π we define
Π |= pπ if p ∈ Π(π)(0),
Π |= ¬ψ if Π ̸|= ψ,
Π |= ψ1 ∨ ψ2 if Π |= ψ1 or Π |= ψ2,
Π |= Xψ if Π[1,∞) |= ψ,
Π |= ψ1 Uψ2 if there is a j ≥ 0 such that Π[j,∞) |= ψ2 and for all 0 ≤ j′ < j we have
Π[j′,∞) |= ψ1 ,
Π |= ∃π ∈ X. φ if there exists a trace t ∈ Π(X) such that Π[π 7→ t] |= φ ,
Π |= ∀π ∈ X. φ if for all traces t ∈ Π(X) we have Π[π 7→ t] |= φ,
Π |= ∃X. φ if there exists a set T ⊆ (2AP)ω such that Π[X 7→ T] |= φ, and
Π |= ∀X. φ if for all sets T ⊆ (2AP)ω we have Π[X 7→ T] |= φ.

Throughout the paper, we use the following shorthands to simplify our formulas:
We write π =AP′ π′ for a set AP′ ⊆ AP for the formula G

∧
p∈AP′(pπ ↔ pπ′) expressing

that the AP′-projection of π and the AP′-projection of π′ are equal.
We write π ▷ X for the formula ∃π′ ∈ X. π =AP π′ expressing that the trace π is in X.
Note that this shorthand cannot be used under the scope of temporal operators, as we
require formulas to be in prenex normal form.

A sentence is a formula in which only the variables Xa, Xd can be free. The variable
assignment with empty domain is denoted by Π∅. We say that a set T of traces satisfies a
Hyper2LTL sentence φ, written T |= φ, if Π∅[Xa 7→ (2AP)ω, Xd 7→ T] |= φ, i.e., if we assign
the set of all traces to Xa and the set T to the universe of discourse Xd. In this case, we say
that T is a model of φ. A transition system T satisfies φ, written T |= φ, if Tr(T) |= φ.

Although Hyper2LTL sentences are required to be in prenex normal form, Hyper2LTL
sentences are closed under Boolean combinations, which can easily be seen by transforming
such a sentence into an equivalent one in prenex normal form (which might require renaming
of variables). Thus, in examples and proofs we will often use Boolean combinations of
Hyper2LTL sentences.

▶ Remark 1. HyperLTL is the fragment of Hyper2LTL obtained by disallowing second-order
quantification and only allowing first-order quantification of the form ∃π ∈ Xd and ∀π ∈ Xd,
i.e., one can only quantify over traces from the universe of discourse. Hence, we typically
simplify our notation to ∃π and ∀π in HyperLTL formulas.

Closed-World Semantics. Second-order quantification in Hyper2LTL as defined by Beutner
et al. [4] (and introduced above) ranges over arbitrary sets of traces (not necessarily from
the universe of discourse) and first-order quantification ranges over elements in such sets,
i.e., (possibly) again over arbitrary traces. To disallow this, we introduce closed-world
semantics for Hyper2LTL, only considering formulas that do not use the variable Xa. We
change the semantics of set quantifiers as follows, where the closed-world semantics of atomic
propositions, Boolean connectives, temporal operators, and trace quantifiers is defined as
before:

Π |=cw ∃X. φ if there exists a set T ⊆ Π(Xd) such that Π[X 7→ T] |= φ, and
Π |=cw ∀X. φ if for all sets T ⊆ Π(Xd) we have Π[X 7→ T] |= φ.

We say that T ⊆ (2AP)ω satisfies φ under closed-world semantics, if Π∅[Xd 7→ T] |=cw φ.
Hence, under closed-world semantics, second-order quantifiers only range over subsets of the

H. Frenkel and M. Zimmermann 10:7

universe of discourse. Consequently, first-order quantifiers also range over traces from the
universe of discourse.

▶ Lemma 2. Every Hyper2LTL sentence φ can be translated in polynomial time (in |φ|)
into a Hyper2LTL sentence φ′ such that for all sets T of traces we have that T |=cw φ if and
only if T |= φ′ (under standard semantics).

Thus, all complexity upper bounds we derive for standard semantics also hold for closed-
world semantics and all lower bounds for closed-world semantics hold for standard semantics.
▶ Remark 3. Let φ be an Xa-free Hyper2LTL sentence over AP. We have (2AP)ω |= φ (under
standard semantics) if and only if (2AP)ω |=cw φ, as the second-order quantifiers range in
both cases over subsets of (2AP)ω, which implies that the trace quantifiers in both cases
range over traces from (2AP)ω.

Arithmetic. To capture the complexity of undecidable problems, we consider formulas
of arithmetic, i.e., predicate logic with signature (+, ·, <,∈), evaluated over the struc-
ture (N,+, ·, <,∈). A type 0 object is a natural number in N, a type 1 object is a subset of
N, and a type 2 object is a set of subsets of N.

Our benchmark is third-order arithmetic, i.e., predicate logic with quantification over
type 0, type 1, and type 2 objects. In the following, we use lower-case roman letters
(possibly with decorations) for first-order variables, upper-case roman letters (possibly with
decorations) for second-order variables, and upper-case calligraphic roman letters (possibly
with decorations) for third-order variables. Note that every fixed natural number is definable
in first-order arithmetic, so we freely use them as syntactic sugar. Truth of third-order
arithmetic is the following problem: given a sentence φ of third-order arithmetic, does
(N,+, ·, <,∈) satisfy φ?

Arithmetic formulas with a single free first-order variable define sets of natural numbers.
We are interested in the classes

Σ1
1 containing sets of the form {x ∈ N | ∃X1 ⊆ N. · · · ∃Xk ⊆ N. ψ(x,X1, . . . , Xk)}, where

ψ is a formula of arithmetic with arbitrary quantification over type 0 objects (but no
second-order quantifiers), and
Σ2

2 containing sets of the following form, where ψ is a formula of arithmetic with
arbitrary quantification over type 0 and type 1 objects (but no third-order quantifiers):
{x ∈ N | ∃X1 ⊆ 2N. · · · ∃Xk ⊆ 2N.∀Y1 ⊆ 2N. · · · ∀Yk′ ⊆ 2N. ψ(x,X1, . . . ,Xk,Y1, . . . ,Yk′)}.

3 The Cardinality of Hyper2LTL Models

In this section, we investigate the cardinality of models of satisfiable Hyper2LTL sentences,
i.e., the number of traces in the model.

We begin by stating a (trivial) upper bound, which follows from the fact that models are
sets of traces. Here, c denotes the cardinality of the continuum (equivalently, the cardinality
of 2N and of (2AP)ω for any finite nonempty AP).

▶ Proposition 4. Every satisfiable Hyper2LTL sentence has a model of cardinality at most c.

In this section, we show that this trivial upper bound is tight.
▶ Remark 5. There is a very simple, albeit equally unsatisfactory way to obtain the desired
lower bound: Consider ∀π ∈ Xa. π ▷ Xd expressing that every trace in the set of all traces
is also in the universe of discourse, i.e., (2AP)ω is its only model over AP. However, this
crucially relies on the fact that Xa is, by definition, interpreted as the set of all traces. In
fact, the formula does not even use second-order quantification.

CSL 2025

10:8 The Complexity of Second-Order HyperLTL

We show how to construct a sentence that has only uncountable models, and which
retains that property under closed-world semantics (which in particular means it cannot
use Xa). This should be compared with HyperLTL, where every satisfiable sentence has
a countable model [18]: Unsurprisingly, the addition of (even closed-world) second-order
quantification increases the cardinality of minimal models, even without cheating.

▶ Example 6. We begin by recalling a construction of Finkbeiner and Zimmermann giving
a satisfiable HyperLTL sentence ψ that has no finite models [18]. The sentence intuitively
posits the existence of a unique trace for every natural number n. Our lower bound for
Hyper2LTL builds upon that construction.

Fix AP = {x} and consider the conjunction ψ = ψ1 ∧ ψ2 ∧ ψ3 of the following three
formulas:
1. ψ1 = ∀π. ¬xπ U(xπ ∧ X G ¬xπ): every trace in a model is of the form ∅n{x}∅ω for some

n ∈ N, i.e., every model is a subset of {∅n{x}∅ω | n ∈ N}.
2. ψ2 = ∃π. xπ: the trace ∅0{x}∅ω is in every model.
3. ψ3 = ∀π. ∃π′. F(xπ ∧ X xπ′): if ∅n{x}∅ω is in a model for some n ∈ N, then also

∅n+1{x}∅ω.
Then, ψ has exactly one model (over AP), namely {∅n{x}∅ω | n ∈ N}.

A trace of the form ∅n{x}∅ω encodes the natural number n and ψ expresses that every
model contains the encodings of all natural numbers and nothing else. But we can of course
also encode sets of natural numbers with traces as follows: a trace t over a set of atomic
propositions containing x encodes the set {n ∈ N | x ∈ t(n)}. In the following, we show
that second-order quantification allows us to express the existence of the encodings of all
subsets of natural numbers by requiring that for every subset S ⊆ N (quantified as the set
{∅n{x}∅ω | n ∈ S} of traces) there is a trace t encoding S, which means x is in t(n) if and
only if S contains a trace in which x holds at position n. This equivalence can be expressed
in Hyper2LTL. For technical reasons, we do not capture the equivalence directly but instead
use encodings of both the natural numbers that are in S and the natural numbers that are
not in S.

▶ Theorem 7. There is a satisfiable Xa-free Hyper2LTL sentence that only has models of
cardinality c (both under standard and closed-world semantics).

Proof. We first prove that there is a satisfiable Xa-free Hyper2LTL sentence φallSets whose
unique model (under standard semantics) has cardinality c. To this end, we fix AP =
{+, -, s, x} and consider the conjunction φallSets = φ0 ∧ · · · ∧ φ4 of the following formulas:

φ0 = ∀π ∈ Xd.
∨

p∈{+,-,s} G(pπ ∧
∧

p′∈{+,-,s}\{p} ¬p′
π): In each trace of a model, one of

the propositions in {+, -, s} holds at every position and the other two propositions in
{+, -, s} hold at none of the positions. Consequently, we speak in the following about
type p traces for p ∈ {+, -, s}.
φ1 = ∀π ∈ Xd. (+π ∨ -π) → ¬xπ U(xπ ∧ X G ¬xπ): Type p traces for p ∈ {+, -} in the
model have the form {p}n{x, p}{p}ω for some n ∈ N.
φ2 =

∧
p∈{+,-} ∃π ∈ Xd. pπ ∧ xπ: for both p ∈ {+, -}, the type p trace {p}0{x, p}{p}ω is

in every model.
φ3 =

∧
p∈{+,-} ∀π ∈ Xd. ∃π′ ∈ Xd. pπ → (pπ′ ∧ F(xπ ∧ X xπ′)): for both p ∈ {+, -}, if the

type p trace {p}n{x, p}{p}ω is in a model for some n ∈ N, then also {p}n+1{x, p}{p}ω.

The formulas φ1, φ2, φ3 are similar to the formulas ψ1, ψ2, ψ3 from Example 6. So, every
model of φ0 ∧ · · · ∧ φ3 contains {{+}n{x, +}{+}ω | n ∈ N} and {{-}n{x, -}{-}ω | n ∈ N} as
subsets, and no other type + or type - traces.

H. Frenkel and M. Zimmermann 10:9

Now, consider a set T of traces over AP (recall that second-order quantification ranges
over arbitrary sets, not only over subsets of the universe of discourse). We say that T is
contradiction-free if there is no n ∈ N such that {+}n{x, +}{+}ω ∈ T and {-}n{x, -}{-}ω ∈ T .
Furthermore, a trace t over AP is consistent with a contradiction-free T if
(C1) {+}n{x, +}{+}ω ∈ T implies x ∈ t(n) and
(C2) {-}n{x, -}{-}ω ∈ T implies x /∈ t(n).
Note that T does not necessarily specify the truth value of x in every position of t, i.e., in those
positions n ∈ N where neither {+}n{x, +}{+}ω nor {-}n{x, -}{-}ω are in T . Nevertheless,
for every trace t over {x} there is a contradiction-free T such that the {x}-projection of every
trace t′ over AP that is consistent with T is equal to t. Thus, each of the uncountably many
traces over {x} is induced by some subset of the model.

Hence, we define φ4 as the formula

∀X.
X is contradiction-free︷ ︸︸ ︷

[∀π ∈ X. ∀π′ ∈ X. (+π ∧ -π′) → ¬ F(xπ ∧ xπ′)] →
∃π′′ ∈ Xd. ∀π′′′ ∈ X. sπ′′ ∧ (+π′′′ → F(xπ′′′ ∧ xπ′′))︸ ︷︷ ︸

(C1)

∧ (-π′′′ → F(xπ′′′ ∧ ¬xπ′′))︸ ︷︷ ︸
(C2)

,

expressing that for every contradiction-free set of traces T , there is a type s trace t′′ in
the model (note that π′′ is required to be in Xd) that is consistent with T .

While φallSets is not in prenex normal form, it can easily be turned into an equivalent formula
in prenex normal form (at the cost of readability).

Now, the set

TallSets = {{+}n{x, +}{+}ω | n ∈ N} ∪ {{-}n{x, -}{-}ω | n ∈ N}∪

{(t(0) ∪ {s})(t(1) ∪ {s})(t(2) ∪ {s}) · · · | t ∈ (2{x})ω}

of traces satisfies φallSets. On the other hand, every model of φallSets must indeed contain
TallSets as a subset, as φallSets requires the existence of all of its traces in the model. Finally,
due to φ0 and φ1, a model (over AP) cannot contain any traces that are not in TallSets, i.e.,
TallSets is the unique model of φallSets.

To conclude, we just remark that

{(t(0) ∪ {s})(t(1) ∪ {s})(t(2) ∪ {s}) · · · | t ∈ (2{x})ω} ⊆ TallSets

has indeed cardinality c, as (2{x})ω has cardinality c.
Finally, let us consider closed-world semantics. We can restrict the second-order quantifier

in φ4 (the only one in φallSets) to subsets of the universe of discourse, as the set T =
{{+}n{x, +}{+}ω | n ∈ N} ∪ {{-}n{x, -}{-}ω | n ∈ N} of traces (which is a subset of every
model) is already rich enough to encode every subset of N by an appropriate contradiction-
free subset of T . Thus, φallSets has the unique model TallSets even under closed-world
semantics. ◀

4 The Complexity of Hyper2LTL Satisfiability

A Hyper2LTL sentence is satisfiable if it has a model. The Hyper2LTL satisfiability problem
asks, given a Hyper2LTL sentence φ, whether φ is satisfiable. In this section, we determine
tight bounds on the complexity of Hyper2LTL satisfiability and some of its variants.

Recall that in Section 3, we encoded sets of natural numbers as traces over a set of
propositions containing x and encoded natural numbers as singleton sets. The proof of

CSL 2025

10:10 The Complexity of Second-Order HyperLTL

Theorem 7 relies on constructing a sentence that requires each of its models to encode every
subset of N by a trace in the model. Hence, sets of traces can encode sets of sets of natural
numbers, i.e., type 2 objects.

Another important ingredient in the following proof is the implementation of addition
and multiplication in HyperLTL. Let AParith = {arg1, arg2, res, add, mult} and let T(+,·)
be the set of all traces t ∈ (2AParith)ω such that:

there are unique n1, n2, n3 ∈ N with arg1 ∈ t(n1), arg2 ∈ t(n2), and res ∈ t(n3), and
either add ∈ t(n) and mult /∈ t(n) for all n, and n1 + n2 = n3, or mult ∈ t(n) and
add /∈ t(n) for all n, and n1 · n2 = n3.

▶ Proposition 8 (Theorem 5.5 of [20]). There is a satisfiable HyperLTL sentence φ(+,·) such
that the AParith-projection of every model of φ(+,·) is T(+,·).

Combining the capability of quantifying over type 0, type 1, and type 2 objects and the
encoding of addition and multiplication, we show that Hyper2LTL and truth in third-order
arithmetic have the same complexity.

▶ Theorem 9. The Hyper2LTL satisfiability problem is polynomial-time equivalent to truth
in third-order arithmetic. The lower bound holds even for Xa-free sentences.

Proof. We begin with the lower bound by reducing truth in third-order arithmetic to
Hyper2LTL satisfiability: we present a polynomial-time translation from sentences φ of
third-order arithmetic to Hyper2LTL sentences φ′ such that (N,+, ·, <,∈) |= φ if and only if
φ′ is satisfiable.

Given a third-order sentence φ, we define

φ′ = ∃XallSets. ∃Xarith. (φallSets[Xd/XallSets] ∧ φ′
(+,·) ∧ hyp(φ))

where
φallSets[Xd/XallSets] is the Hyper2LTL sentence from the proof of Theorem 7 where every
occurrence of Xd is replaced by XallSets and thus enforces every subset of N to be encoded
in the interpretation of XallSets (as introduced in the proof of Theorem 7),
φ′

(+,·) is the Hyper2LTL formula obtained from the HyperLTL formula φ(+,·) by replacing
each quantifier ∃π (∀π, respectively) by ∃π ∈ Xarith (∀π ∈ Xarith, respectively) and thus
enforces that Xarith is interpreted by a set whose AParith-projection is T(+,·), and

where hyp(φ) is defined inductively as follows:
For third-order variables Y,

hyp(∃Y. ψ) = ∃XY . (∀π ∈ XY . ∃π′ ∈ XallSets. (π ={+,-,s,x} π
′) ∧ sπ) ∧ hyp(ψ).

For third-order variables Y,

hyp(∀Y. ψ) = ∀XY . (∀π ∈ XY . ∃π′ ∈ XallSets. (π ={+,-,s,x} π
′) ∧ sπ) → hyp(ψ).

For second-order variables Y , hyp(∃Y. ψ) = ∃πY ∈ XallSets. sπY
∧ hyp(ψ).

For second-order variables Y , hyp(∀Y. ψ) = ∀πY ∈ XallSets. sπY
→ hyp(ψ).

For first-order variables y,

hyp(∃y. ψ) = ∃πy ∈ XallSets. sπy
∧ [(¬xπy

) U(xπy
∧ X G ¬xπy

)] ∧ hyp(ψ).

For first-order variables y,

hyp(∀y. ψ) = ∀πy ∈ XallSets. (sπy
∧ [(¬xπy

) U(xπy
∧ X G ¬xπy

)]) → hyp(ψ).

H. Frenkel and M. Zimmermann 10:11

hyp(ψ1 ∨ ψ2) = hyp(ψ1) ∨ hyp(ψ2).
hyp(¬ψ) = ¬hyp(ψ).
For second-order variables Y and third-order variables Y,

hyp(Y ∈ Y) = ∃π ∈ XY . πY ={x} π.

For first-order variables y and second-order variables Y , hyp(y ∈ Y) = F(xπy ∧ xπY
).

For first-order variables y, y′, hyp(y < y′) = F(xπy
∧ X F xπy′).

For first-order variables y1, y2, y,

hyp(y1+y2 = y) = ∃π ∈ Xarith. addπ ∧F(arg1π ∧xπy1
)∧F(arg2π ∧xπy2

)∧F(resπ ∧xπy
).

For first-order variables y1, y2, y,

hyp(y1 ·y2 = y) = ∃π ∈ Xarith. multπ ∧F(arg1π ∧xπy1
)∧F(arg2π ∧xπy2

)∧F(resπ ∧xπy).

While φ′ is not in prenex normal form, it can easily be brought into prenex normal form, as
there are no quantifiers under the scope of a temporal operator.

As we are evaluating φ′ w.r.t. standard semantics and the variable Xd (interpreted with
the model) does not occur in φ′, satisfaction of φ′ is independent of the model, i.e., for all
sets T, T ′ of traces, T |= φ′ if and only if T ′ |= φ′. So, let us fix some set T of traces. An
induction shows that (N,+, ·, <,∈) satisfies φ if and only if T satisfies φ′. Altogether we
obtain the desired equivalence between (N,+, ·, <,∈) |= φ and φ′ being satisfiable.

For the upper bound, we conversely reduce Hyper2LTL satisfiability to truth in third-
order arithmetic: we present a polynomial-time translation from Hyper2LTL sentences φ to
sentences φ′ of third-order arithmetic such that φ is satisfiable if and only if (N,+, ·, <,∈) |= φ′.
Here, we assume AP to be fixed, so that we can use |AP| as a constant in our formulas
(which is definable in arithmetic).

Let pair : N × N → N denote Cantor’s pairing function defined as pair(i, j) = 1
2 (i+ j)(i+

j + 1) + j, which is a bijection. Furthermore, fix some bijection e : AP → {0, 1, . . . , |AP| − 1}.
Then, we encode a trace t ∈ (2AP)ω by the set St = {pair(j, e(p)) | j ∈ N and p ∈ t(j)} ⊆ N.
As pair is a bijection, we have that t ̸= t′ implies St ̸= St′ . While not every subset of N
encodes some trace t, the first-order formula

φisTrace(Y) = ∀x. ∀y. y ≥ |AP| → pair(x, y) /∈ Y

checks if a set does encode a trace. Here, we use pair as syntactic sugar, which is possible as
the definition of pair only uses addition and multiplication.

As (certain) sets of natural numbers encode traces, sets of (certain) sets of natural numbers
encode sets of traces. This is sufficient to reduce Hyper2LTL to third-order arithmetic, which
allows the quantification over sets of sets of natural numbers. Before we present the translation,
we need to introduce some more auxiliary formulas:

Let Y be a third-order variable (i.e., Y ranges over sets of sets of natural numbers). Then,
the formula

φonlyTraces(Y) = ∀Y. Y ∈ Y → φisTrace(Y)

checks if a set of sets of natural numbers only contains sets encoding a trace.
Further, the formula

φallTraces(Y) = φonlyTraces(Y) ∧ ∀Y. φisTrace(Y) → Y ∈ Y

checks if a set of sets of natural numbers contains exactly the sets encoding a trace.

CSL 2025

10:12 The Complexity of Second-Order HyperLTL

Now, we are ready to define our encoding of Hyper2LTL in third-order arithmetic. Given
a Hyper2LTL sentence φ, let

φ′ = ∃Ya. ∃Yd. φallTraces(Ya) ∧ φonlyTraces(Yd) ∧ (ar(φ))(0)

where ar(φ) is defined inductively as presented below. Note that φ′ requires Ya to contain
exactly the encodings of all traces (i.e., it corresponds to the distinguished Hyper2LTL
variable Xa in the following translation) and Yd is an existentially quantified set of trace
encodings (i.e., it corresponds to the distinguished Hyper2LTL variable Xd in the following
translation).

In the inductive definition of ar(φ), we will employ a free first-order variable i to denote
the position at which the formula is to be evaluated to capture the semantics of the temporal
operators. As seen above, in φ′, this free variable is set to zero in correspondence with the
Hyper2LTL semantics.

ar(∃X. ψ) = ∃YX . φonlyTraces(YX) ∧ ar(ψ). Here, the free variable of ar(∃X. ψ) is the
free variable of ar(ψ).
ar(∀X. ψ) = ∀YX . φonlyTraces(YX) → ar(ψ). Here, the free variable of ar(∀X. ψ) is the
free variable of ar(ψ).
ar(∃π ∈ X. ψ) = ∃Yπ. Yπ ∈ YX ∧ ar(ψ). Here, the free variable of ar(∃π ∈ X. ψ) is the
free variable of ar(ψ).
ar(∀π ∈ X. ψ) = ∀Yπ. Yπ ∈ YX → ar(ψ). Here, the free variable of ar(∀π ∈ X. ψ) is the
free variable of ar(ψ).
ar(ψ1 ∨ ψ2) = ar(ψ1) ∨ ar(ψ2). Here, we require that the free variables of ar(ψ1) and
ar(ψ2) are the same (which can always be achieved by variable renaming), which is then
also the free variable of ar(ψ1 ∨ ψ2).
ar(¬ψ) = ¬ar(ψ). Here, the free variable of ar(¬ψ) is the free variable of ¬ar(ψ).
ar(Xψ) = ∃i′(i′ = i+ 1) ∧ ar(ψ), where i′ is the free variable of ar(ψ) and i is the free
variable of ar(Xψ).
ar(ψ1 Uψ2) = ∃i2. i2 ≥ i ∧ ar(ψ2) ∧ ∀i1. (i ≤ i1 ∧ i1 < i2) → ar(ψ1), where ij is the free
variable of ar(ψj), and i is the free variable of ar(ψ1 Uψ2).
ar(pπ) = pair(i, e(p)) ∈ Yπ, i.e., i is the free variable of ar(pπ).

Now, an induction shows that Π∅[Xa → (2AP)ω, Xd 7→ T] |= φ if and only if (N,+, ·, <,∈)
satisfies (ar(φ))(0) when the variable Ya is interpreted by the encoding of (2AP)ω and Yd is
interpreted by the encoding of T . Hence, φ is indeed satisfiable if and only if (N,+, ·, <,∈)
satisfies φ′. ◀

In the lower bound proof above, we have turned a sentence φ of third-order arithmetic
into a Hyper2LTL sentence φ′ such that (N,+, ·, <,∈) |= φ if and only if φ′ is satisfiable. In
fact, we have constructed φ′ such that if it is satisfiable, then every set of traces satisfies it,
in particular (2AP)ω. Recall that Remark 3 states that (2AP)ω satisfies φ′ under standard
semantics if and only if (2AP)ω satisfies φ′ under closed-world semantics. Thus, altogether
we obtain that (N,+, ·, <,∈) |= φ if and only if φ′ is satisfiable under closed-world semantics,
i.e, the lower bound holds even under closed-world semantics. Together with Lemma 2, this
settles the complexity of Hyper2LTL satisfiability under closed-world semantics.

▶ Corollary 10. The Hyper2LTL satisfiability problem under closed-world semantics is
polynomial-time equivalent to truth in third-order arithmetic.

The Hyper2LTL finite-state satisfiability problem asks, given a Hyper2LTL sentence φ,
whether there is a finite transition system satisfying φ. Note that we do not ask for a finite

H. Frenkel and M. Zimmermann 10:13

set T of traces satisfying φ. In fact, the set of traces of the finite transition system may
still be infinite or even uncountable. Nevertheless, the problem is potentially simpler, as
there are only countably many finite transition systems (and their sets of traces are much
simpler). However, we show that the finite-state satisfiability problem is as hard as the
general satisfiability problem, as Hyper2LTL allows the quantification over arbitrary (sets
of) traces, i.e., restricting the universe of discourse to the traces of a finite transition system
does not restrict second-order quantification at all (as the set of all traces is represented by a
finite transition system). This has to be contrasted with the finite-state satisfiability problem
for HyperLTL (defined analogously), which is Σ0

1-complete (a.k.a. recursively enumerable),
as HyperLTL model-checking of finite transition systems is decidable [11].

▶ Theorem 11. The Hyper2LTL finite-state satisfiability problem is polynomial-time equiva-
lent to truth in third-order arithmetic. The lower bound holds even for Xa-free sentences.

Proof. For the lower bound under standard semantics, we reduce truth in third-order
arithmetic to Hyper2LTL finite-state satisfiability: we present a polynomial-time translation
from sentences φ of third-order arithmetic to Hyper2LTL sentences φ′ such that (N,+, ·,
<,∈) |= φ if and only if φ′ is satisfied by a finite transition system.

So, let φ be a sentence of third-order arithmetic. Recall that in the proof of Theorem 9,
we have shown how to construct from φ the Hyper2LTL sentence φ′ such that the following
three statements are equivalent:

(N,+, ·, <,∈) |= φ.
φ′ is satisfiable.
φ′ is satisfied all sets T of traces (and in particular by some finite-state transition system).

Thus, the lower bound follows from Theorem 9.
For the upper bound, we conversely reduce Hyper2LTL finite-state satisfiability to truth in

third-order arithmetic: we present a polynomial-time translation from Hyper2LTL sentences φ
to sentences φ′′ of third-order arithmetic such that φ is satisfied by a finite transition system
if and only if (N,+, ·, <,∈) |= φ′′.

Recall that in the proof of Theorem 9, we have constructed a sentence

φ′ = ∃Ya. ∃Yd. φallTraces(Ya) ∧ φonlyTraces(Yd) ∧ (ar(φ))(0)

of third-order arithmetic where Ya represents the distinguished Hyper2LTL variable Xa, Yd

represents the distinguished Hyper2LTL variable Xd, and where ar(φ) is the encoding of φ
in Hyper2LTL.

To encode the general satisfiability problem it was sufficient to express that Yd only
contains traces. Here, we now require that Yd contains exactly the traces of some finite
transition system, which can easily be expressed in second-order arithmetic2 as follows.

We begin with a formula φisTS(n,E, I, ℓ) expressing that the second-order variables E,
I, and ℓ encode a transition system with set {0, 1, . . . , n− 1} of vertices. Our encoding will
make extensive use of the pairing function introduced in the proof of Theorem 9. Formally,
we define φisTS(n,E, I, ℓ) as the conjunction of the following formulas (where all quantifiers
are first-order and we use pair as syntactic sugar):

n > 0: the transition system is nonempty.
∀y. y ∈ E → ∃v. ∃v′. (v < n ∧ v′ < n ∧ y = pair(v, v′)): edges are pairs of vertices.
∀v. v < n → ∃v′. (v′ < n ∧ pair(v, v′) ∈ E): every vertex has a successor.
∀v. v ∈ I → v < n: the set of initial vertices is a subset of the set of all vertices.

2 With a little more effort, and a little less readability, first-order suffices for this task, as finite transition
systems can be encoded by natural numbers.

CSL 2025

10:14 The Complexity of Second-Order HyperLTL

∀y. y ∈ ℓ → ∃v. ∃p. (v < n∧ p < |AP| ∧ y = pair(v, p)): the labeling of v by p is encoded
by the pair (v, p). Here, we again assume AP to be fixed and therefore can use |AP| as a
constant.

Next, we define φisPath(P, n,E, I), expressing that the second-order variable P encodes
a path through the transition system encoded by n, E, and I, as the conjunction of the
following formulas:

∀j. ∃v. (v < n ∧ pair(j, v) ∈ P ∧ ¬∃v′. (v′ ≠ v ∧ pair(j, v′) ∈ P)): the fact that at
position j the path visits vertex v is encoded by the pair (j, v). Exactly one vertex is
visited at each position.
∃v. v ∈ I ∧ pair(0, v) ∈ P : the path starts in an initial vertex.
∀j. ∃v. ∃v′. pair(j, v) ∈ P ∧ pair(j + 1, v′) ∈ P ∧ pair(v, v′) ∈ E: successive vertices in
the path are indeed connected by an edge.

Finally, we define φtraceOf (T, P, ℓ), expressing that the second-order variable T encodes
the trace (using the encoding from the proof of Theorem 9) of the path encoded by the
second-order variable P , as the following formula:

∀j. ∀p. pair(j, p) ∈ T ↔ (∃v. pair(j, v) ∈ P ∧ pair(v, p) ∈ ℓ): a proposition holds in the
trace at position j if and only if it is in the labeling of the j-th vertex of the path.

Now, we define the sentence φ′′ as

∃Ya. ∃Yd. φallTraces(Ya) ∧ φonlyTraces(Yd)∧[
∃n. ∃E. ∃I. ∃ℓ. φisTS(n,E, I, ℓ)︸ ︷︷ ︸

there exists a transition system T

∧

(∀T. T ∈ Yd → ∃P. (φisPath(P, n,E, I) ∧ φtraceOf (T, P, ℓ)))︸ ︷︷ ︸
Yd contains only traces of paths through T

∧

(∀P. (φisPath(P, n,E, I) → ∃T. T ∈ Yd ∧ φtraceOf (T, P, ℓ)))︸ ︷︷ ︸
Yd contains all traces of paths through T.

]
∧ (ar(φ))(0),

which holds in (N,+, ·, <,∈) if and only if φ is satisfied by a finite transition system. ◀

Again, the lower bound proof can easily be extended to the case of closed-world semantics,
using the same arguments as in the case of general satisfiability.

▶ Corollary 12. The Hyper2LTL finite-state satisfiability problem under closed-world seman-
tics is polynomial-time equivalent to truth in third-order arithmetic.

5 The Complexity of Hyper2LTL Model-Checking

The Hyper2LTL model-checking problem asks, given a finite transition system T and a
Hyper2LTL sentence φ, whether T |= φ. Beutner et al. [4] have shown that Hyper2LTL
model-checking is Σ1

1-hard, but there is no known upper bound in the literature. We improve
the lower bound considerably, i.e., also to truth in third-order arithmetic, and show that this
bound is tight. This is the first upper bound on the problem’s complexity.

▶ Theorem 13. The Hyper2LTL model-checking problem is polynomial-time equivalent to
truth in third-order arithmetic. The lower bound already holds for Xa-free sentences.

H. Frenkel and M. Zimmermann 10:15

Proof. For the lower bound, we reduce truth in third-order arithmetic to the Hyper2LTL
model-checking problem: we present a polynomial-time translation from sentences φ of
third-order arithmetic to pairs (T, φ′) of a finite transition system T and a Hyper2LTL
sentence φ′ such that (N,+, ·, <,∈) |= φ if and only if T |= φ′.

In the proof of Theorem 9 we have, given a sentence φ of third-order arithmetic, con-
structed a Hyper2LTL sentence φ′ such that (N,+, ·, <,∈) |= φ if and only if every set T of
traces satisfies φ′ (i.e., satisfaction is independent of the model). Thus, we obtain the lower
bound by mapping φ to φ′ and T∗, where T∗ is some fixed transition system.

For the upper bound, we reduce the Hyper2LTL model-checking problem to truth in
third-order arithmetic: we present a polynomial-time translation from pairs (T, φ) of a finite
transition system and a Hyper2LTL sentence φ to sentences φ′ of third-order arithmetic such
that T |= φ if and only if (N,+, ·, <,∈) |= φ′.

In the proof of Theorem 11, we have constructed, from a Hyper2LTL sentence φ, a
sentence φ′ of third-order arithmetic that expresses the existence of a finite transition system
that satisfies φ. We obtain the desired upper bound by modifying φ′ to replace the existential
quantification of the transition system by hardcoding T instead. ◀

Again, the lower bound proof can easily be extended to closed-world semantics, using the
same arguments as in the case of satisfiability.

▶ Corollary 14. The Hyper2LTL model-checking problem under closed-world semantics is
polynomial-time equivalent to truth in third-order arithmetic.

6 Hyper2LTLmm

As we have seen, unrestricted second-order quantification makes Hyper2LTL very expressive
and therefore highly undecidable. But restricted forms of second-order quantification are
sufficient for many application areas. Beutner et al. [4] introduced Hyper2LTLmm, a fragment3

of Hyper2LTL in which second-order quantification ranges over smallest/largest sets that
satisfy a given guard. For example, the formula ∃(X,⋎, φ1). φ2 expresses that there is a set T
of traces that satisfies both φ1 and φ2, and T is a smallest set that satisfies φ1 (i.e., φ1 is
the guard). This fragment is expressive enough to express common knowledge, asynchronous
hyperproperties, and causality in reactive systems [4].

The formulas of Hyper2LTLmm are given by the grammar

φ ::= ∃(X,⋎⋏, φ). φ | ∀(X,⋎⋏, φ). φ | ∃π ∈ X. φ | ∀π ∈ X. φ | ψ
ψ ::= pπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ranges over AP, π ranges over V1, X ranges over V2, and ⋎⋏ ∈ {⋎,⋏}, i.e., the only
modification concerns the syntax of second-order quantification.

Accordingly, the semantics of Hyper2LTLmm is similar to that of Hyper2LTL but for the
second-order quantifiers, for which we define (for ⋎⋏ ∈ {⋎,⋏}):

Π |= ∃(X,⋎⋏, φ1). φ2 if there exists a set T ∈ sol(Π, (X,⋎⋏, φ1)) such that Π[X 7→ T] |= φ2

Π |= ∀(X,⋎⋏, φ1). φ2 if for all sets T ∈ sol(Π, (X,⋎⋏, φ1)) we have Π[X 7→ T] |= φ2

3 In [4] this fragment is termed Hyper2LTLfp.

CSL 2025

10:16 The Complexity of Second-Order HyperLTL

Here, sol(Π, (X,⋎⋏, φ1)) is the set of all minimal/maximal models of the formula φ1, which is
defined as follows:

sol(Π, (X,⋎, φ1)) = {T ⊆ (2AP)ω | Π[X 7→ T] |= φ1 and Π[X 7→ T ′] ̸|= φ1 for all T ′ ⊊ T}
sol(Π, (X,⋏, φ1)) = {T ⊆ (2AP)ω | Π[X 7→ T] |= φ1 and Π[X 7→ T ′] ̸|= φ1 for all T ′ ⊋ T}

Note that sol(Π, (X,⋎⋏, φ1)) may be empty, may be a singleton, or may contain multiple sets,
which then are pairwise incomparable.

Let us also define closed-world semantics for Hyper2LTLmm. Here, we again disallow the
use of the variable Xa and change the semantics of set quantification to

Π |=cw ∃(X,⋎⋏, φ1). φ2 if there exists a set T ∈ solcw(Π, (X,⋎⋏, φ1)) such that Π[X 7→
T] |= φ2, and
Π |=cw ∀(X,⋎⋏, φ1). φ2 if for all sets T ∈ solcw(Π, (X,⋎⋏, φ1)) we have Π[X 7→ T] |= φ2,

where solcw(Π, (X,⋎, φ1)) and solcw(Π, (X,⋏, φ1)) are defined as follows:

solcw(Π, (X,⋎, φ1)) = {T ⊆ Π(Xd) | Π[X 7→ T] |=cw φ1

and Π[X 7→ T ′] ̸|=cw φ1 for all T ′ ⊊ T}
solcw(Π, (X,⋏, φ1)) = {T ⊆ Π(Xd) | Π[X 7→ T] |=cw φ1

and Π[X 7→ T ′] ̸|=cw φ1 for all Π(Xd) ⊇ T ′ ⊋ T}.

Note that solcw(Π, (X,⋎⋏, φ1)) may still be empty, may be a singleton, or may contain multiple
sets, but all sets in it are now incomparable subsets of Π(Xd).

A Hyper2LTLmm formula is a sentence if it does not have any free variables except for
Xa and Xd (also in the guards). Models are defined as for Hyper2LTL.

▶ Proposition 15 (Proposition 1 of [4]). Every Hyper2LTLmm sentence φ can be translated
in polynomial time (in |φ|) into a Hyper2LTL sentence φ′ such that for all sets T of traces
we have that T |= φ if and only if T |= φ′.4

The same claim is also true for closed-world semantics, using the same proof.

▶ Remark 16. Every Hyper2LTLmm sentence φ can be translated in polynomial time (in |φ|)
into a Hyper2LTL sentence φ′ such that for all sets T of traces we have that T |=cw φ if and
only if T |=cw φ′.

Thus, every complexity upper bound for Hyper2LTL also holds for Hyper2LTLmm and
every lower bound for Hyper2LTLmm also holds for Hyper2LTL. In the following, we show
that lower bounds can also be transferred in the other direction, i.e., from Hyper2LTL to
Hyper2LTLmm. Thus, contrary to the design goal of Hyper2LTLmm, it is in general not more
feasible than full Hyper2LTL.

We begin again by studying the cardinality of models of Hyper2LTLmm sentences, which
will be the key technical tool for our complexity results. Again, as such formulas are evaluated
over sets of traces, whose cardinality is bounded by c, there is a trivial upper bound. Our
main result is that this bound is tight even for the restricted setting of Hyper2LTLmm. The
proof is similar to the one of Theorem 7, we just have to modify φ4 so that the universal
second-order quantifier only ranges over maximal contradiction-free sets.

4 The polynomial-time claim is not made in [4], but follows from the construction when using appropriate
data structures for formulas.

H. Frenkel and M. Zimmermann 10:17

▶ Theorem 17. There is a satisfiable Xa-free Hyper2LTLmm sentence that only has models
of cardinality c (under standard and closed-world semantics).

Now, let us describe how we settle the complexity of Hyper2LTLmm satisfiability and
model-checking: Recall that Hyper2LTL allows set quantification over arbitrary sets of traces
while Hyper2LTLmm restricts quantification to minimal/maximal sets of traces that satisfy a
guard formula. By using a sentence φc as guard that has only models of cardinality c, the
minimal sets satisfying the guard have cardinality c. Thus, we can obtain every possible set
over propositions not used by φc as the projection of a subset of a minimal set satisfying the
guard φc. Thus, quantification of arbitrary sets of traces can be mimicked by quantification
of minimal and maximal sets satisfying a guard.

▶ Theorem 18. Hyper2LTLmm satisfiability, finite-state satisfiability, and model-checking
are polynomial-time equivalent to truth in third-order arithmetic. The lower bounds hold even
for Xa-free sentences.

Let us conclude by mentioning that Theorem 18 can again be extended to Hyper2LTLmm
under closed-world semantics, using the same arguments as for full Hyper2LTL.

▶ Corollary 19. Hyper2LTLmm satisfiability, finite-state satisfiability, and model-checking
under closed-world semantics are polynomial-time equivalent to truth in third-order arithmetic.

7 The Least Fixed Point Fragment of Hyper2LTLmm

We have seen that even restricting second-order quantification to smallest/largest sets that
satisfy a guard formula is essentially as expressive as full Hyper2LTL, and thus as difficult.
However, Beutner et al. [4] note that applications like common knowledge and asynchronous
hyperproperties do not even require quantification over smallest/largest sets satisfying a
guard, they “only” require quantification over least fixed points of HyperLTL definable
functions. This finally yields a fragment with (considerably) lower complexity: we show
that satisfiability under closed-world semantics is Σ1

1-complete while finite-state satisfiability
and model-checking are in Σ2

2 and Σ1
1-hard (under both semantics). For satisfiability under

closed-world semantics, this matches the complexity of HyperLTL satisfiability.
A Hyper2LTLmm sentence using only minimality constraints has the form

φ = γ1. Q1(Y1,⋎, φ
con
1). γ2. Q2(Y2,⋎, φ

con
2). . . . γk. Qk(Yk,⋎, φ

con
k). γk+1. ψ

satisfying the following properties:
Each γj is a block γj = Qℓj−1+1πℓj−1+1 ∈ Xℓj−1+1 · · ·Qℓjπℓj ∈ Xℓj of trace quanti-
fiers (with ℓ0 = 0). As φ is a sentence, this implies that we have {Xℓj+1, . . . , Xℓj

} ⊆
{Xa, Xd, Y1, . . . , Yj−1}.
The free variables of ψcon

j are among the trace variables quantified in the γj′ and
Xa, Xd, Y1, . . . , Yj .
ψ is a quantifier-free formula. Again, as φ is a sentence, the free variables of ψ are among
the trace variables quantified in the γj .

Now, φ is an lfp-Hyper2LTLmm sentence5, if additionally each φcon
j has the form

φcon
j = π̇1 ▷ Yj ∧ · · · ∧ π̇n ▷ Yj ∧ ∀π̈1 ∈ Z1. . . . ∀π̈n′ ∈ Zn′ . ψstep

j → π̈m ▷ Yj

5 Our definition here differs slightly from the one of [4] in that we allow to express the existence of some
traces in the fixed point (via the subformulas π̇i ▷ Yj). All examples and applications of [4] are also of
this form.

CSL 2025

10:18 The Complexity of Second-Order HyperLTL

for some n ≥ 0, n′ ≥ 1, where 1 ≤ m ≤ n′, and where we have
{π̇1, . . . , π̇n} ⊆ {π1, . . . , πℓj

},
{Z1, . . . , Zn′} ⊆ {Xa, Xd, Y1, . . . , Yj}, and
ψstep

j is quantifier-free with free variables among π̈1, . . . , π̈n′ , π1, . . . , πℓj .
As always, φcon

j can be brought into the required prenex normal form.
Let us give some intuition for the definition. To this end, fix some j ∈ {1, 2, . . . , k} and a

variable assignment Π whose domain contains at least all variables quantified before Yj , i.e.,
all Yj′ and all variables in the γj′ for j′ < j, as well as Xa and Xd. Then,

φcon
j = π̇1 ∈ Yj ∧ · · · ∧ π̇n ∈ Yj ∧

(
∀π̈1 ∈ Z1. . . . ∀π̈n′ ∈ Zn′ . ψstep

j → π̈m ▷ Yj

)
induces the monotonic function fΠ,j : 2(2AP)ω → 2(2AP)ω defined as

fΠ,j(S) = S ∪ {Π(π̇1), . . . ,Π(π̇n)} ∪ {Π′(π̈m) | Π′ = Π[π̈1 7→ t1, . . . , π̈n′ 7→ tn′]
for ti ∈ Π(Zi) if Zi ̸= Yj and ti ∈ S if Zi = Yj s.t. Π′ |= ψstep

j }.

We define S0 = ∅, Sℓ+1 = fΠ,j(Sℓ), and

lfp(Π, j) =
⋃

ℓ∈N
Sℓ,

which is the least fixed point of fΠ,j . Due to the minimality constraint on Yj in φ, lfp(Π, j) is
the unique set in sol(Π, (Yj ,⋎, φcon

j)). Hence, an induction shows that lfp(Π, j) only depends
on the values Π(π) for trace variables π quantified before Yj as well as the values Π(Xd) and
Π(Xa), but not on the values Π(Yj′) for j′ < j (as they are unique).

Thus, as sol(Π, (Yj ,⋎, φcon
j)) is a singleton, it is irrelevant whether Qj is an existential or

a universal quantifier. Instead of interpreting second-order quantification as existential or
universal, here one should understand it as a deterministic least fixed point computation:
choices for the trace variables and the two distinguished second-order variables uniquely
determine the set of traces that a second-order quantifier assigns to a second-order variable.
▶ Remark 20. Note that the traces that are added to a fixed point assigned to Yj either come
from another Yj′ with j′ < j, from the model (via Xd), or from the set of all traces (via Xa).
Thus, for Xa-free formulas, all second-order quantifiers range over (unique) subsets of the
model, i.e., there is no need for an explicit definition of closed-world semantics. The analogue
of closed-world semantics for lfp-Hyper2LTLmm is to restrict oneself to Xa-free sentences.

In the remainder of this section, we study the complexity of lfp-Hyper2LTLmm. For
satisfiability, the key step is again to study the size of models of satisfiable sentences. For Xa-
free lfp-Hyper2LTLmm, as for HyperLTL, we are able to show that each satisfiable sentence
has a countable model. The following result is proven by generalizing the proof for the
analogous result for HyperLTL [18] showing that every model T of a HyperLTL sentence φ
contains a countable R ⊆ T that is closed under the application of Skolem functions. This
implies that R is also a model of φ.

▶ Lemma 21. Every satisfiable Xa-free lfp-Hyper2LTLmm sentence has a countable model.

Proof Sketch. Let φ = γ1Q1(Y1,⋎, φcon
1). γ2Q2(Y2,⋎, φcon

2). . . . γkQ2(Yk,⋎, φcon
k). γk+1. ψ

be a satisfiable lfp-Hyper2LTLmm sentence where

φcon
j = π̇1 ▷ Yj ∧ · · · ∧ π̇n ▷ Yj ∧ ∀π̈1 ∈ Z1. . . . ∀π̈n′ ∈ Zn′ . ψstep

j → π̈m ▷ Yj .

We assume w.l.o.g. that each trace variable is quantified at most once in φ. This implies that
for each trace variable π quantified in some γj or in some φcon

j , there is a unique second-order
variable Xπ such that π ranges over Xπ.

H. Frenkel and M. Zimmermann 10:19

Membership of traces in least fixed points assigned to the variables Yj can be characterized
by trees labeled by traces that make the inductive construction of the stages of the least fixed
points explicit. Intuitively, consider the formula φcon

j above inducing the unique least fixed
point lfp(Π, j) that Yj ranges over. It expresses that a trace t is in the fixed point either
because it is of the form Π(π̇i) for some i ∈ {1, . . . , n} where π̇i is a trace variable quantified
before the quantification of Yj , or t is in the fixed point because there are traces t1, . . . , tn′

such that assigning them to the π̈i satisfies ψstep
j and t = tm. Thus, the traces t1, . . . , tn′

witness that t is in the fixed point. However, each ti must be selected from Π(Zi), which,
if Zi = Yj′ for some j′, again needs witnesses. Thus, a witness is in general a tree whose
vertices are labeled by traces and indexes in {1, 2,′ ldots, k} indicating in which fixed point
the trace is in.

As φ is satisfiable, there exists a set T of traces such that T |= φ. We show that there is
a countable R ⊆ T with R |= φ. Intuitively, we show that the smallest set R that is closed
under the application of the Skolem functions and that contains the traces labeling witness
trees (for the fixed points computed w.r.t. T) for the traces in R has the desired properties.

The full proof requires additional notation, e.g., a formalization of the notion of witness
trees, and can be found in the full version [21]. ◀

Before we continue with our complexity results, let us briefly mention that the formula
from Remark 5 on Page 7 shows that the restriction to Xa-free sentences is essential to
obtain the upper bound above.

With this upper bound, we can express the existence of (w.l.o.g.) countable models of a
given Xa-free sentence φ via arithmetic formulas that only use existential quantification of
type 1 objects (sets of natural numbers), which are rich enough to express countable sets T
of traces and objects (e.g., Skolem functions and more) witnessing that T satisfies φ. This
places satisfiability in Σ1

1 while the matching lower bound already holds for HyperLTL [19].

▶ Theorem 22. lfp-Hyper2LTLmm satisfiability for Xa-free sentences is Σ1
1-complete.

Proof Sketch. The Σ1
1 lower bound already holds for HyperLTL satisfiability [19], as

HyperLTL is a fragment of Xa-free lfp-Hyper2LTLmm (see Remark 1). Hence, we focus
in the following on the upper bound, which is a generalization of the corresponding upper
bound for HyperLTL [19].

Let φ be an Xa-free lfp-Hyper2LTLmm sentence. From Lemma 21, φ is satisfiable if and
only if it has a countable model T . Thus, to prove that the lfp-Hyper2LTLmm satisfiability
problem for Xa-free sentences is in Σ1

1, we express the existence of a countable set T of traces
and a witness that T is indeed a model of φ.

As we want to show a Σ1
1 upper bound, we have to express the existence of a countable

model by a sentence of arithmetic with existential quantification over sets of natural numbers
and existential and universal quantification over natural numbers. A bit more in detail, since
we only have to work with countable sets (as second-order quantifiers in φ range over subsets
of the countable model), we can use natural numbers to “name” traces. Thus, a countable set
of traces is a mapping from N × N (names and positions) to 2AP, which can be encoded by a
set of natural numbers. Then, we can encode the existence of the following type 1 objects:

Variable assignments, such that membership of their assigned traces into respective fixed
point sets can be captured in first-order arithmetic.
Functions for the existentially quantified first-order variables of φ, which can be verified
to be Skolem functions (in first-order arithmetic).
Functions expressing the satisfaction of subformulas of φ.

CSL 2025

10:20 The Complexity of Second-Order HyperLTL

Furthermore, first-order arithmetic can express that the variable assignments indeed map set
variables to least fixed points.

Altogether, this allows us to capture the satisfiability of lfp-Hyper2LTLmm in Σ1
1. ◀

Finally, we consider finite-state satisfiability and model-checking. Note that we have to
deal with uncountable sets of traces in both problems, as the sets of traces of finite transition
systems may be uncountable. The lower bounds are proven by reductions from a variant of
the recurrent tiling problem [24] while the upper bounds are obtained by expressing least
fixed points in second-order arithmetic.

▶ Theorem 23. lfp-Hyper2LTLmm finite-state satisfiability and model-checking are both in
Σ2

2 and Σ1
1-hard, where the lower bounds already hold for Xa-free sentences.

8 Related Work

As mentioned in Section 1, the complexity problems for HyperLTL were thoroughly studied [16,
19, 20]. For Hyper2LTL, Beutner et al. mainly focused on the algorithmic aspects by providing
model checking [4] and monitoring [5] algorithms, and did not study the respective complexity
problems in depth.

Logics related to Hyper2LTL are asynchronous and epistemic logics. Much research has
been done regarding epistemic properties [13, 15, 29, 36] and their relations to hyperproper-
ties [8]. However, most of this work concerns expressiveness and decidability results (e.g., [7]),
and not complexity analysis for the undecidable fragments. This is similar for asynchronous
hyperlogics [1, 2, 3, 6, 9, 10, 23, 26, 27, 28], where most work concerns decidability results
and expressive power, but not complexity analysis.

Another related logic is TeamLTL [28], a hyperlogic for the specification of dependence
and independence. Lück [30] studied similar problems to those we study in this paper and
showed that, in general, satisfiability and model checking of TeamLTL with Boolean negation
is equivalent to truth in third-order arithmetic. Kontinen and Sandström [25] generalize this
result and show that any logic between TeamLTL with Boolean negation and second-order
logic inherits the same complexity results. Kontinen et al. [26] study set semantics for
asynchronous TeamLTL, and provide positive complexity and decidability results. Gutsfeld
et al. [22] study an extension of TeamLTL to express refined notions of asynchronicity and
analyze the expressiveness and complexity of their logic, proving it also highly undecidable.
While TeamLTL is closely related to Hyper2LTL, the exact relation between them is still
unknown.

9 Conclusion

We have investigated and settled the complexity of satisfiability, finite-state satisfiabil-
ity, and model-checking for Hyper2LTL and Hyper2LTLmm and (almost) settled it for
lfp-Hyper2LTLmm. For the former two, all three problems are equivalent to truth in third-
order arithmetic, and therefore (not surprisingly) much harder than the corresponding
problems for HyperLTL, which are “only” Σ1

1-complete, Σ0
1-complete, and Tower-complete,

respectively. This shows that the addition of second-order quantification increases the already
high complexity of HyperLTL significantly. However, for the fragment lfp-Hyper2LTLmm,
in which second-order quantification degenerates to least fixed point computations, the

H. Frenkel and M. Zimmermann 10:21

complexity is much lower: satisfiability under closed-world semantics is Σ1
1-complete and

finite-state satisfiability as well as model-checking are in Σ2
2.

Recently, Regaud and Zimmermann [34] have solved several problems left open in this
work, e.g., they settled the complexity of Hyper2LTLmm with only minimality constraints or
only maximality constraints, the complexity of lfp-Hyper2LTLmm under standard semantics,
and closed the gaps in our results for lfp-Hyper2LTLmm finite-state satisfiability and model-
checking. Furthermore, they settled the complexity of all three decision problems we consider
here for HyperQPTL [33].

References

1 Ezio Bartocci, Thomas A. Henzinger, Dejan Nickovic, and Ana Oliveira da Costa. Hypernode
automata. In Guillermo A. Pérez and Jean-François Raskin, editors, CONCUR 2023, volume
279 of LIPIcs, pages 21:1–21:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.CONCUR.2023.21.

2 Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez.
A temporal logic for asynchronous hyperproperties. In Alexandra Silva and K. Rustan M.
Leino, editors, CAV 2021, Part I, volume 12759 of LNCS, pages 694–717. Springer, 2021.
doi:10.1007/978-3-030-81685-8_33.

3 Raven Beutner and Bernd Finkbeiner. HyperATL∗: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput. Sci., 19(2), 2023. doi:10.46298/LMCS-19(2:13)2023.

4 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-order hyper-
properties. In Constantin Enea and Akash Lal, editors, CAV 2023, Part II, volume 13965 of
LNCS, pages 309–332. Springer, 2023. doi:10.1007/978-3-031-37703-7_15.

5 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Monitoring second-order
hyperproperties. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and Virginia
Dignum, editors, AAMAS 2024, pages 180–188. International Foundation for Autonomous
Agents and Multiagent Systems / ACM, 2024. doi:10.5555/3635637.3662865.

6 Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta. Unifying asyn-
chronous logics for hyperproperties. arXiv, 2404.16778, 2024. doi:10.48550/arXiv.2404.
16778.

7 Laura Bozzelli, Bastien Maubert, and Aniello Murano. On the complexity of model checking
knowledge and time. ACM Trans. Comput. Log., 25(1):8:1–8:42, 2024. doi:10.1145/3637212.

8 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic temporal
logics. In Andrew M. Pitts, editor, FoSSaCS 2015, volume 9034 of LNCS, pages 167–182.
Springer, 2015. doi:10.1007/978-3-662-46678-0_11.

9 Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous extensions of HyperLTL. In
LICS 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470583.

10 Laura Bozzelli, Adriano Peron, and César Sánchez. Expressiveness and decidability of temporal
logics for asynchronous hyperproperties. In Bartek Klin, Slawomir Lasota, and Anca Muscholl,
editors, CONCUR 2022, volume 243 of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.27.

11 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and
Steve Kremer, editors, POST 2014, volume 8414 of LNCS, pages 265–284. Springer, 2014.
doi:10.1007/978-3-642-54792-8_15.

12 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–
1210, 2010. doi:10.3233/JCS-2009-0393.

CSL 2025

https://doi.org/10.4230/LIPICS.CONCUR.2023.21
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.46298/LMCS-19(2:13)2023
https://doi.org/10.1007/978-3-031-37703-7_15
https://doi.org/10.5555/3635637.3662865
https://doi.org/10.48550/arXiv.2404.16778
https://doi.org/10.48550/arXiv.2404.16778
https://doi.org/10.1145/3637212
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.4230/LIPIcs.CONCUR.2022.27
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393

10:22 The Complexity of Second-Order HyperLTL

13 Catalin Dima. Revisiting satisfiability and model-checking for CTLK with synchrony and
perfect recall. In Michael Fisher, Fariba Sadri, and Michael Thielscher, editors, CLIMA IX,
volume 5405 of LNCS, pages 117–131. Springer, 2008. doi:10.1007/978-3-642-02734-5_8.

14 E. Allen Emerson and Joseph Y. Halpern. "sometimes" and "not never" revisited: on branching
versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.

15 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995. doi:10.7551/MITPRESS/5803.001.0001.

16 Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In Josée Desharnais and
Radha Jagadeesan, editors, CONCUR 2016, volume 59 of LIPIcs, pages 13:1–13:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.

17 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for Model Checking
HyperLTL and HyperCTL∗. In Daniel Kroening and Corina S. Pasareanu, editors, CAV 2015,
Part I, volume 9206 of LNCS, pages 30–48. Springer, 2015. doi:10.1007/978-3-319-21690-4_
3.

18 Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of Hyperproperties. In
STACS 2017, volume 66 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.30.

19 Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL satisfia-
bility is Σ1

1-complete, HyperCTL* satisfiability is Σ2
1-complete. In Filippo Bonchi and Simon J.

Puglisi, editors, MFCS 2021, volume 202 of LIPIcs, pages 47:1–47:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.MFCS.2021.47.

20 Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL satisfia-
bility is highly undecidable, HyperCTL* is even harder. arXiv, 2303.16699, 2023. Journal
version of [19]. Under submission. doi:10.48550/arXiv.2303.16699.

21 Hadar Frenkel and Martin Zimmermann. The complexity of second-order HyperLTL. arXiv,
2311.15675, 2023. doi:10.48550/arXiv.2311.15675.

22 Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal team
semantics revisited. In Christel Baier and Dana Fisman, editors, LICS 2022, pages 44:1–44:13.
ACM, 2022. doi:10.1145/3531130.3533360.

23 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:
10.1145/3434319.

24 David Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable.
North-Holland Mathematical Studies, 102:51–71, 1985. doi:10.1016/S0304-0208(08)73075-5.

25 Juha Kontinen and Max Sandström. On the expressive power of TeamLTL and first-order
team logic over hyperproperties. In Alexandra Silva, Renata Wassermann, and Ruy J. G. B.
de Queiroz, editors, WoLLIC 2021, volume 13038 of LNCS, pages 302–318. Springer, 2021.
doi:10.1007/978-3-030-88853-4_19.

26 Juha Kontinen, Max Sandström, and Jonni Virtema. Set semantics for asynchronous TeamLTL:
Expressivity and complexity. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors,
MFCS 2023, volume 272 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.MFCS.2023.60.

27 Juha Kontinen, Max Sandström, and Jonni Virtema. A remark on the expressivity of asyn-
chronous TeamLTL and HyperLTL. In Arne Meier and Magdalena Ortiz, editors, FoIKS 2024,
volume 14589 of LNCS, pages 275–286. Springer, 2024. doi:10.1007/978-3-031-56940-1_15.

28 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics for
the specification and verification of hyperproperties. In Igor Potapov, Paul G. Spirakis, and
James Worrell, editors, MFCS 2018, volume 117 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.10.

29 Alessio Lomuscio and Franco Raimondi. The complexity of model checking concurrent programs
against CTLK specifications. In Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss,

https://doi.org/10.1007/978-3-642-02734-5_8
https://doi.org/10.1145/4904.4999
https://doi.org/10.7551/MITPRESS/5803.001.0001
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPICS.MFCS.2021.47
https://doi.org/10.48550/arXiv.2303.16699
https://doi.org/10.48550/arXiv.2311.15675
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1016/S0304-0208(08)73075-5
https://doi.org/10.1007/978-3-030-88853-4_19
https://doi.org/10.4230/LIPICS.MFCS.2023.60
https://doi.org/10.1007/978-3-031-56940-1_15
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

H. Frenkel and M. Zimmermann 10:23

and Peter Stone, editors, AAMAS 2006, pages 548–550. ACM, 2006. doi:10.1145/1160633.
1160733.

30 Martin Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput.
Sci., 837:1–25, 2020. doi:10.1016/j.tcs.2020.04.019.

31 Corto Mascle and Martin Zimmermann. The keys to decidable HyperLTL satisfiability: Small
models or very simple formulas. In Maribel Fernández and Anca Muscholl, editors, CSL 2020,
volume 152 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CSL.2020.29.

32 Amir Pnueli. The temporal logic of programs. In FOCS 1977, pages 46–57. IEEE, October
1977. doi:10.1109/SFCS.1977.32.

33 Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

34 Gaëtan Regaud and Martin Zimmermann. The complexity of fragments of second-order
HyperLTL, 2025. Under preparation.

35 Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

36 Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time in systems with
perfect recall (extended abstract). In C. Pandu Rangan, Venkatesh Raman, and Ramaswamy
Ramanujam, editors, FSTTCS 1999, volume 1738 of LNCS, pages 432–445. Springer, 1999.
doi:10.1007/3-540-46691-6_35.

CSL 2025

https://doi.org/10.1145/1160633.1160733
https://doi.org/10.1145/1160633.1160733
https://doi.org/10.1016/j.tcs.2020.04.019
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1007/3-540-46691-6_35

	1 Introduction
	2 Preliminaries
	3 The Cardinality of Second-order HyperLTL Models
	4 The Complexity of Second-order HyperLTL Satisfiability
	5 The Complexity of Second-order HyperLTL Model-Checking
	6 Second-order HyperLTL with Minimality/Maximality Constraints
	7 Second-order HyperLTL with Least Fixed Points
	8 Related Work
	9 Conclusion

