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Abstract. Counterfactual reasoning is an approach to infer what causes
an observed effect by analyzing the hypothetical scenarios where a sus-
pected cause is not present. The seminal works of Halpern and Pearl
have provided a workable definition of counterfactual causality for finite
settings. In this paper, we propose an approach to check causality that
is tailored to reactive systems, i.e., systems that interact with their envi-
ronment over a possibly infinite duration. We define causes and effects as
trace properties which characterize the input and observed output behav-
ior, respectively. We then instantiate our definitions for ω-regular prop-
erties and give automata-based constructions for our approach. Checking
that an ω-regular property qualifies as a cause can then be encoded as a
hyperproperty model-checking problem.

1 Introduction

Causality plays an increasingly important role in computer science, e.g., to ex-
plain the behavior of a system [3,4,9,7], to establish accountability in multi-
agent systems [10], or to solve challenging algorithmic problems [21,2]. These
approaches commonly draw upon the rich philosophical literature that has laid
the foundation for counterfactual reasoning [23,19], a method of establishing
causal relationships between events. According to this line of reasoning, a cause
is an event such that, if it had not happened, the effect would not have happened
either. A rigorous formalization of counterfactual causality has been proposed
by Halpern and Pearl [16]. This formalization is first and foremost concerned
with models that can be described by a finite set of variables. When naively ap-
plying it to reactive systems that interact with their environment continuously,
however, the analysis may infer that an infinite number of events (variable val-
uation at time step) are causes for an observed effect, falling short of providing
the intended comprehensible explanation [17].

In this paper, we therefore propose an approach to causal analysis in reactive
systems that provides a symbolic description of causes. We define counterfactual
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causality on the basis of trace properties (Section 4), i.e., causes are properties
of a given input sequence, and effects are properties of the corresponding output
sequence, and apply this definition to ω-regular properties to obtain concrete
automata-based constructions (Section 5). As one of our building blocks, we
adapt counterfactual automata [9] so they generate all relevant counterfactual
traces in our setting. Our definitions are sufficiently general to be instantiated
by a variety of temporal logics, such as LTL [25] or QPTL [27]. This general
approach allows us to leverage the significant previous work on temporal logics
and for the usual trade-off between expressiveness and decidability.

Our notion of causality is an actual kind of causality in the spirit of Halpern
and Pearl [16]. This means we provide a precise description of the temporal
behavior responsible for the effect on a given, actual trace of the reactive system.
This actual trace can, for example, be provided as a counterexample by a model
checker, where the effect then is the violation of the specification. We define
what it means to intervene on the cause property of an actual trace, i.e., how to
modify the trace such that the property is not satisfied anymore, but the resulting
counterfactual trace is still sufficiently close to the actual trace to comply with
the closest possible worlds principle [23]. We then further allow for contingencies
as introduced by Halpern and Pearl [16], to isolate the exact causal behavior in
case of preemption of other potential causes.

Previous approaches to provide symbolic descriptions of counterfactual causes
use an event-based logic [22,6], which allows reasoning about the order of events,
but cannot, e.g., specify at which time step a causal input occurs. In contrast,
our framework is only limited by the expressiveness of the logic used to describe
the causal trace properties. We study a decidable instantiation of our defini-
tions with Quantified Propositional Temporal Logic (QPTL), an extension of
LTL with quantified atomic propositions. Causes can be identified as a temporal
property (see Section 3 for an example). Moreover, the event-based approaches
are restricted to finitely observable effects [22] or define a system-level causality
that does not consider the causal dependencies on a given, actual trace [6]. In
comparison, our approach allows for a significantly more precise description of
the temporal causal behavior on an observed system trace.

As an intriguing theoretical result, we show that when a candidate cause for
an effect is given as a trace property, checking whether it is indeed the actual
cause on a trace of a system cannot be stated as a trace property, which formal-
izes previous observations on counterfactual causality [10]. The result motivates
us to consider causality as a hyperproperty [8] in our approach. In particular, we
show that verifying ω-regular causality on lasso-shaped traces is decidable via
HyperQPTL model checking.

2 Preliminaries

Systems and Traces. We model a reactive system as a (nondeterministic)
Moore machine [24] T = (S, s0,AP , δ, l) where S is a finite set of states, s0 ∈ S
is the initial state, AP = I ∪· O is the set of atomic propositions consisting of
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inputs I and outputs O , δ : S×2I → 2S is the transition function determining a
set of successor states for a given state and input, and l : S → 2O is the labeling
function mapping each state to a set of outputs. A path s = s0s1 . . . ∈ Sω of T
is an infinite sequence with si+1 ∈ δ(si, Ii) for all i ∈ N and for some Ii ⊆ I, we
assume there exists such s′ ∈ δ(s, Y ) for all s ∈ S and Y ⊆ I. The corresponding
trace is π = π0π1π2 . . . ∈ (2AP )ω, such that πi = Ii ∪ l(si) for the Ii used by δ.
With traces(T ), we denote the set of all traces of T . For two subsets of atomic
propositions V ,W ⊆ AP , let V |W = V ∩W and π|W = π0|W π1|W . . . for some
trace π. We say a trace π is lasso-shaped, if there exist i, j = i + 1, k ∈ N such
that π = π0 . . . πi · (πj . . . πk)ω. For some subset A ⊆ AP , we call a set of traces
P ⊂ (2A)ω a trace property. A trace π satisfies P, denoted by π ⊨ P iff π|A ∈ P.

QPTL and HyperQPTL. HyperQPTL [26] is a temporal logic that can ex-
press ω-regular hyperproperties. HyperQPTL is derived from linear-time tem-
poral logic (LTL) [25] by adding explicit quantification over atomic propositions
(leading to quantified propositional temporal logic (QPTL) [27]) and explicit
quantification over trace variables (for relating multiple traces):

φ ::= ∀π. φ | ∃π. φ | ∀q. φ | ∃q. φ | ψ
ψ ::= aπ | q | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

for a trace variable π ∈ V, fresh atomic proposition q ̸∈ AP, and atomic propo-
sition a ∈ AP. We also consider the usual derived Boolean (∨, →, ↔) and
temporal operators (φRψ ≡ ¬(¬φU ¬ψ), φ ≡ true U φ, φ ≡ falseRφ).
The semantics of HyperQPTL is defined with respect to a time point i, a set
of traces Tr and a trace assignment Π : V → Tr that maps trace variables
to traces. To update the trace assignment so that it maps trace variable π to
trace t, we write Π[π 7→ t]. HyperQPTL introduces an auxiliary trace variable
πq for every quantified atomic proposition q. The semantics is as follows:

Π, i ⊨Tr aπ iff a ∈ Π(π)[i]
Π, i ⊨Tr q iff q ∈ Π(πq)[i]
Π, i ⊨Tr ¬φ iff Π, i ⊭Tr φ
Π, i ⊨Tr φ ∧ ψ iff Π, i ⊨Tr φ and Π, i ⊨Tr ψ
Π, i ⊨Tr φ iff Π, i+ 1 ⊨Tr φ
Π, i ⊨Tr φU ψ iff ∃j ≥ i.Π, j ⊨Tr ψ ∧ ∀i ≤ k < j.Π, k ⊨Tr φ
Π, i ⊨Tr ∀π. φ iff for all t ∈ Tr it holds that Π[π 7→ t], i ⊨Tr φ
Π, i ⊨Tr ∃π. φ iff there is some t ∈ Tr such that Π[π 7→ t], i ⊨Tr φ
Π, i ⊨Tr ∀q. φ iff for all t ∈ (2{q})ω it holds that Π[πq 7→ t], i ⊨Tr φ
Π, i ⊨Tr ∃q. φ iff there is some t ∈ (2{q})ω it holds that Π[πq 7→ t], i ⊨Tr φ .

The semantics of a QPTL formula φ can be derived from HyperQPTL formula
∀π. φπ, where φπ is obtained by indexing all atomic propositions in φ with π.

Actual Causality. We shortly outline actual causality originally proposed by
Halpern and Pearl [16], in the version modified by Halpern [15]. A causal model
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M = (S,F) is defined by a signature S and set of structural equations F .
A signature S is a tuple (E ,V,R), where E is a set of exogenous variables, V is a
set of endogenous variables, and R defines the range of possible values R(Y ) for
all variables Y ∈ E ∪V. For some context u⃗, the value of an exogenous variable is
determined by factors outside of the model, while the value of some endogenous
variable X is defined by the associated structural equation fX ∈ F .

Definition 1. X⃗ = x⃗ is an actual cause of φ in (M, u⃗), if the following holds.

AC1: (M, u⃗) ⊨ X⃗ = x⃗ and (M, u⃗) ⊨ φ, i.e., both cause and effect are true in
the actual world, and

AC2: There is a set W⃗ of variables in V and a setting x⃗′ of the variables in X⃗
such that if (M, u⃗) ⊨ W⃗ = w⃗, then (M, u⃗) ⊨ [X⃗ ← x⃗′, W⃗ ← w⃗]¬φ, and

AC3: X⃗ is minimal, i.e. no subset of X⃗ satisfies AC1 and AC2.

Intuitively, AC2 means that after intervening on the actual world such that
the cause X⃗ = x⃗ is not satisfied, the effect is not satisfied either. AC2 allows
further modification through the notion of contingencies. The contingency W⃗
can, in the hypothetical world, be reset to the original value it takes in the
actual world, even when the intervention on X⃗ may have altered it.

3 Motivating Example

As an illustration of our approach, we consider the problem of identifying a
spurious arbiter. The purpose of an arbiter is to organize mutually exclusive
access to a shared resource by eventually answering a request of this resource
with a grant. This may be achieved by simply giving grants in a round-robin
strategy, regardless of incoming requests. Such spurious and inefficient behavior
is unwanted in practice but may result from a sub-optimal specification as input
to a reactive synthesis procedure. Our causality-checking approach can identify
it by checking whether, e.g., a request r1 is a cause for a grant g1 by checking
whether the temporal property r1 causes the observed behavior described by
the temporal property g1 on a given trace π.

The causal analysis utilizes counterfactual reasoning: if on the traces π′ of
the system that are similar to π, but where the cause-property r1 is not sat-
isfied, the effect-property g1 also does not occur, we can infer a causal re-
lationship between the two properties on input and output sequence. As an
example, consider the following trace of the system depicted on the left in Fig-
ure 1: π1 = ({r1, g1}{r0, g0})ω. Counterfactual reasoning now requires us to
consider similar traces where no r1 occurs, i.e., the negation of the cause prop-
erty, which is ¬r1, holds. In particular, since we consider sequences that are
still sufficiently similar to π, we require that the sequence does not change the
occurrences of r0. Consequently, the counterfactual trace we are interested in is
given by π′

1 = ({g1}{r0, g0})ω.
As we can see, the effect still occurs on π′

1, therefore r1 is not a cause
for g1 on π1 in the spurious arbiter. In contrast, consider the arbiter depicted
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{g1}

{g0}

⊤⊤

∅

{g1} {g0}

{g1}
r0 ∧ r1

r0 ∧ ¬r1
¬r0 ∧ r1

¬r0 ∧ ¬r1

⊤¬r1

r1

¬r0

r0

Fig. 1: The models of a spurious (left) and non-spurious arbiter (right). Here,
edges are labeled with symbolic constraints, e.g., ¬r1 for all sets without r1.

on the right in Figure 1, which works as expected, i.e., only gives out grants
upon receiving a request. Let us check whether the causal relationship between
the properties from above holds on the trace π2 = {r1} · ({r0, g1}{r1, g0})ω.
Here, applying the same counterfactual reasoning technique from before actually
yields the following trace, which does not satisfy the effect property: π′

2 = {} ·
({r0}{g0})ω. Hence, we can infer that r1 is a cause for g1 on π2.

Even in correct systems, our causal analysis allows further insight into which
exact behavior is responsible for a certain observed effect. In particular, con-
tingencies allow to isolate a cause in the presence of multiple potential causes
on the trace that were preempted. To illustrate, consider again the right arbiter
from Figure 1 and the following trace: π3 = {r1}{r1, g1} · {}ω. We may now ask
whether it is the first or the second r1 that causes the effect g1 on π3. When
considering only the naive counterfactual trace π′

3 = {}{r1}{g1} · {}ω during
analysis of formula r1 a problem occurs. In π′

3, the second request takes effect
even though it had no effect in π3. Contingencies now allow us to reset certain
parts of the counterfactual trace back to the actual trace. In particular, we are
allowed to change the state and outputs at the third position to their value
in π3, which yields the following counterfactual trace under the contingency:
π′′
3 = {}{r1} · {}ω. Since π′′

3 does not satisfy the effect, the analysis establishes
a causal relationship between the property r1 of the input sequence and the
property g1 of the output sequence. Note that considering the alternative, in-
tuitively more precise effect-property g1 leads to the same result without the
need for contingencies. Hence, contingencies allow us to precisely infer the causal
behavior even if the effect is described in a more general manner.

4 Property Causality

In this section we lift the definitions of Halpern and Pearl to the setting of causes
and effects given as general trace properties. We define when some temporal
behavior on the input sequence of a reactive system is considered a cause for
some temporal behavior observed on the output sequence. We assume a cause
C ⊆ (2I )ω to be a trace property reasoning only over the input variables of the
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system and an effect E ⊆ (2O)ω to be a trace property ranging over the output
variables. We call such properties cause property and effect property, respectively.
In an abuse of notation, we will sometimes use QPTL formulas for C and E in
this section when we interpret their language as a trace property.

In order to lift Definition 1 to the setting of both infinite traces and infinite
sets of traces for cause and effect, we need to be able to reason about inter-
ventions (Section 4.1), i.e., how to modify the actual trace such that the cause
property does not hold anymore; and contingencies (Section 4.2), that allow to
infer the exact causal behavior when it preempts other potential causes. We then
can introduce our full definition for temporal causality in Section 4.3.

4.1 Interventions

Recall that at the core of counterfactual reasoning lies the idea that if the cause
had not appeared on the given trace, then the effect would not have happened
either. Hence, as a first step we need to define how the counterfactual traces,
i.e., the traces that are just like our given trace, but where the cause-property C
is not satisfied, look like. We follow the classic theory of closest possible worlds
introduced by Lewis [23] to characterize a set of counterfactual traces that lie
just outside of C. For that, we are interested in defining the minimal sets that
modify the given trace such that some cause-property C is not satisfied anymore.
We call such a set an intervention. Following Halpern and Pearl definition, a set
is minimal if none of its subsets alone suffice to change the evaluation of C on π.
However, for the case of general trace properties as cause and effect, this notion
would not allow us to find any minimal interventions.

Example 2. Consider again the non-spurious arbiter from Figure 1 (right), the
cause C = r1 and the effect E = g1, and the trace π = {r1} · {r1, g1}ω.
Traces that falsify the effect are traces with only finitely many occurrences of
r1. However, if we follow the subset definition for minimal interventions (see
Definition 1), and values of atomic propositions at time point as the respec-
tive variables, we get that each trace of the form {r1}{r1, g1}k{g1} · {}ω has
a trace with less changes with respect to π, that also falsify the effect, e.g.,
{r1}{r1, g1}k+1{g1} · {}ω. Therefore, if we look for minimal interventions using
this naive reasoning, we will never find counterfactual traces.

As a solution, we link the satisfaction of the cause property to a distance
measure that partially orders counterfactual traces with respect to π. Because
this concept is applicable beyond the models and logics considered in this paper,
we give a general definition that can be applied to other domains as well.

Formally, we require the existence of a distance measure <C
π that conforms

with the underlying logic to detect minimal intervention traces. Such traces σ
are the closest to π according to <C

π that do not satisfy C, i.e., there is no ρ /∈ C
such that ρ <C

π σ. Generally, multiple traces might satisfy this criterion, so we
define a set of minimal interventions.
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Definition 3 (Intervention Set). Let C be a cause property, let π ⊨ C be a
trace, and let <C

π be a distance measure that partially orders traces with respect
to π. The set V C

π of interventions on C with respect to π contains exactly all
minimal interventions with respect to π according to <π

C. That is

V C
π = {σ /∈ C | ∀ρ /∈ C. ρ ̸<C

π σ} .

4.2 Contingencies

Next, we discuss the treatment of contingencies in reactive systems. The moti-
vation behind contingencies is to isolate the truly causal behavior when there
is preemption of other potential causes on the actual trace. Contingencies al-
low certain variables in the counterfactual trace to be reset to their value in
the actual trace, in this way mimicking the fact that the second potential cause
was preempted in the actual trace. To fully account for this preemption, it is
not sufficient that only the output value at a single position is changed to the
value in the actual trace: the future dynamics have to respect the contingency
by additionally changing the state the trace is in when a contingency is evoked.

For a given counterfactual trace, we inductively define the resulting contin-
gencies. Here, we assume a transition relation for the system that is not neces-
sarily memoryless, as we consider general trace logics for now. However, we do
assume that transitions only depend on the history of the trace and not on its
future. This corresponds to the non-recursive models assumed by Halpern and
Pearl. We thus extend the definition of transition function for Moore machines,
given in Section 2, to a transition function that relies on the whole sequence of
inputs and outputs observed so far.

Definition 4 (Contingency Set). Let δ∗ : (2I × 2O)∗ × 2I → 2O be a func-
tion that returns the possible next outputs (2O) according to the history of the
trace and the current input (2I), modeling the behavior of the system. Given an
intervention trace σ and an original trace π, we define the contingency set Cσ

π

where π′ = π′
0π

′
1 . . . ∈ (2I × 2O)ω is in Cσ

π if the following two conditions hold:

1. ∀j ∈ N : π′
j ∩ 2I = σj ∩ 2I ; That is, π′ has the same input sequence as σ.

2. ∀j ∈ N : (o ∈ π′
j ↔ o ∈ δ∗(π′

0 · · ·π′
j−1 · (π′

j ∩ 2I))) ∨ (o ∈ πj); That
is, the output sequence of π′ is determined according to the behavior of the
system, together with“jumps” to the original trace π. Note that since the
input sequence of σ and π′ is the same, it holds that until the first jump to
π, the output sequence of σ and π′ is also the same.

Since a contingency only allows to reset outputs to their value in the ac-
tual trace, the set of traces under a contingency is defined relative to the actual
trace π. The trace under the counterfactual input sequence σ, without modifica-
tions, is always part of the contingency set. Starting from this trace, contingencies
can be enforced at infinitely many positions.
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4.3 Actual Causality for Trace Properties

Minimality of the cause is defined simply based on strict set inclusion, and pro-
vides the last condition for our following definition of property-based causality.

Definition 5 (Property Causality). Let T be a system, π ∈ traces(T ) a
trace, C ⊆ (2I)ω a cause property, and E ⊆ (2O)ω an effect property. We say
that C is a cause of E on π in T if the following three conditions hold:

PC1: π ⊨ C and π ⊨ E, i.e., cause property and effect property are satisfied by
the actual trace.

PC2: For every counterfactual input sequence σ ∈ V C
π , there is some contin-

gency π′ ∈ Cσ
π s.t. π′ ⊭ E, i.e., the counterfactual trace under contingency

does not satisfy the effect property.

PC3: There is no C′ s.t. C′ ⊂ C and C′ satisfies PC1 and PC2.

As a consequence of our treatment of minimality, there is always a maximal
cause-property Cmax = (2I)ω that trivially satisfies PC1 and PC2. On the other
hand, the minimal relevant cause property for a given trace π is Cmin = {π|I},
i.e., the input sequence of the trace itself. This is because the empty set will
never qualify for PC1. However, this does not imply that there is a well-defined
minimal cause in all cases, because if the considered properties are expressive
enough, it may be possible to find a subset that satisfies PC1 and PC2 for any
candidate cause property, thus falsifying PC3.

It has been conjectured before that finding causes cannot be stated as a
trace property [10]. This hypothesis has intuitive appeal because most notions
of causality relate the actual world with counterfactual worlds based on certain
similarity metrics. For our proposed notion of trace-based causality, we answer
this intriguing question affirmatively in the following theorem and show that
even deciding whether a cause candidate is an actual cause cannot be stated as
a trace property.

Theorem 6. Given a cause-property C, an effect-property E, and some trace π,
there is no trace-property P such that for all systems T with π ∈ traces(T ) it
holds that T ⊨ P iff C is a cause for E on π in T .

∅

{e}

T1 :

∅

∅

∅

∅{e}

T2 :

{a}∅

∅, {a}∅, {a}

Fig. 2: The systems T1 and T2 used in the proof of Theorem 6.
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Proof. By contradiction. Assume there is such a trace-property P for the cause-
property C = ¬a, the effect-property E = e, and the trace π = {}{e}ω. Now,
consider the two systems depicted in Figure 2: T1 with I1 = {} and T2 with
I2 = {a}, and O1 = O2 = {e}. We have that C is a cause for E on π in T2,
because we can avoid E in this system with the counterfactual input sequence
σ = {a}{}ω ∈ V C

π . Note that contingencies do not matter in both systems
because they can only set the trace to a state which immediately satisfies E.
In T1, however, E cannot be avoided at all, hence C is not a cause for E in T1.
However, since traces(T1) ⊂ traces(T2), we have that T2 ⊨ P implies T1 ⊨ P. It
follows that C has to be a cause in T1, which contradicts the assumption. ⊓⊔

In this section, we have presented a general framework that establishes causal
relationships between temporal properties given as sets of traces, on a given ac-
tual trace. The key idea is to link satisfaction of the property to a distance
measure over potential counterfactual traces to obtain meaningful interventions,
and to allow for contingencies based on relaxing the dynamics of the model such
that it can jump back to states of the actual trace. The proposed concept can
conceivably be applied to a variety of models and corresponding logics with a
linear-time semantics. However, to allow algorithmic reasoning about the pro-
posed property causality, it is of course necessary to fix a finite representation
of the infinite traces and infinite sets, as we do in the following section.

5 Checking ω-Regular Causality

In this section we provide a decision procedure that allows us to check ω-regular
causes with respect to ω-regular effects, i.e., verify whether a given candidate
cause property is indeed a cause for an observed effect property on an actual
trace. We use causes and effects given in the logic QPTL (see Section 2), which
is equivalent to the class of ω-regular properties. Note that Linear Temporal
Logic (LTL), which is one of the standard specification languages for specifying
temporal properties in reactive systems, is subsumed by QPTL. We further as-
sume that our actual trace π is given in a finite, lasso-shaped representation (as
defined in Section 2). This is a common assumption when verifying LTL proper-
ties, since if there exists a violation, in particular there exists also a lasso-shaped
violation. Model-checking tools (e.g. [18]) usually return such a structured trace.
Due to space constraints, we omit language-theoretic definitions in this section
and provide definitions directly as HyperQPTL properties, as this allows us to
directly reason about their decidability.

5.1 Interventions

We now formalize our discussion of interventions from Section 4.1 for QPTL. Our
distance measure closely mirrors the original minimality criterion of Halpern and
Pearl over sets of variables (see Definition 1), i.e., a trace ρ is closer to the actual
trace π than some other trace σ if the events differing between π and ρ are a
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strict subset of the events differing between π and σ. We can formalize this with
the following HyperQPTL property.

ψmin(π, ρ, σ) =
( ∧

a∈I

(
(aρ ̸↔ aπ)→ (aσ ̸↔ aπ)

))
∧
( ∨

a∈I

(aρ ̸↔ aσ)
)

However, to avoid the issue discussed in Example 2, we only order counter-
factual traces that share the same rejection structure with respect to the cause-
property C, i.e., if they satisfy the right-hand subformulas of every U (and the
derived temporal operators and ) appearing in ¬C at the same positions.3 To
formalize this requirement as a HyperQPTL property, let φU1

¬C(π), . . . , φ
Un

¬C(π) be
these subformulas appearing in ¬C, with their atomic propositions indexed by
the parameterized π. The two traces σ and ρ have the same rejection structure
with respect to C if they satisfy the following HyperQPTL property ψC

struct(ρ, σ).

ψC
struct(ρ, σ) =

∧
i∈[1,n]

(
φUi

¬C(ρ)↔ φUi

¬C(σ)
)

Finally, we obtain an instantiation of the partial order <C
π for QPTL such

that for two traces σ, ρ: ρ <C
π σ iff ψmin(π, ρ, σ) ∧ ψC

struct(ρ, σ) holds. Note that
since we only compare traces with the same rejection structure, we can always
find minimal interventions, except if the cause property is a tautology.

Example 7. To illustrate how the above solves the problem raised in Example 2,
consider the traces σ = {r0, r1}k · {r0}ω and ρ = {r0, r1}k+1 · {r0}ω, both in
relation to π = {r0, r1}ω and the cause-property C = r1. While we still
have that ψmin(π, ρ, σ) holds, we have that ψC

struct(ρ, σ) does not hold because
σ and ρ satisfy ¬r1 at different positions. Hence, σ, ρ are not ordered by <C

π so
both are in V C

π . However, minimality still plays a key role such that we cannot
manipulate r0 in any valid intervention. Consider σ′ = {r1}k · {}ω. We have
that ψC

struct(σ
′, σ) holds since both traces have the same rejection structure with

respect to ¬C. However, the changes in σ imply changes in σ′, but not in the
other direction. Hence, ψmin(π, σ, σ

′) and σ <C
π σ

′, so only σ is in V C
π .

5.2 Contingencies

We formalize the behavior of contingencies for ω-regular properties using a gen-
eralization of counterfactual automata as introduced by Coenen et al. [9]. In
the original definition, they are restricted to systems whose states are uniquely
labeled and which have a state for every output combination. We avoid this re-
striction by leveraging Halpern and Pearl’s thoughts on models in which there
exists no unique solution to the structural equations [16]. In these cases, they

3 This is related to the notion of acceptance for words in nondeterministic Büchi
automata [5], which recognize the class of ω-regular languages.
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⊤

¬a ∨ eC

a ∨ eC

¬eC

eC

¬a ∧ ¬eC

a ∧ ¬eC

⊤

¬a ∨ eC

Fig. 3: System T and the counterfactual automaton CTπ for π = {} · ({a}{a, e})ω.

propose to use existential quantification over the solutions. In the same manner,
we allow changing the underlying state of the trace to any state that is labeled
with the right outputs. Since this means there might be several successor states
for a given input and contingency combination, we formalize the counterfactual
automaton as a nondeterministic Moore machine.

Definition 8 (Counterfactual Automaton [9] for General Systems).
Let T = (S, s0,AP , δ, l) be a system and π = π0 . . . πi · (πj . . . πk)ω ∈ traces(T )
be a lasso-shaped trace. The counterfactual automaton for π and T is a Moore
machine CTπ = (SC , sC0 , I

C ∪O, δC , lC), such that:

– SC = S × {0 . . . k}, we have k copies of the original system;
– sC0 = (s0, 0), paths start in the initial state of the first copy;
– IC = I∪· {oC | o ∈ O}, additional inputs for setting an output as contingency;
– (s′, n′) ∈ δC((s, n), Y ) iff the following holds:

1. if n = k then n′ = j else n′ = n+ 1, and
2. there is some s′′ ∈ δ(s, Y |I) such that for all oC ∈ Y : o ∈ l(s′)↔ o ∈ πn

and for all oC ̸∈ Y : o ∈ l(s′)↔ o ∈ l(s′′);
– lC((s, k)) = l(s), the labeling function is based on the original states.

The counterfactual automaton simulates arbitrary traces of the original sys-
tem T , which additionally can at every position choose to invoke a contingency
through the additional inputs in IC (see Condition 2), i.e., change the subsequent
path to a state whose label is as of the next state determined by the original
transition relation δ, but with all o ∈ O that have their corresponding input
oC ∈ IC enabled set to their value as in π. Since π is of a finite, lasso-shaped
form of length k + 1, we can construct this behavior based on k + 1 copies of
the original system and enforce that a path proceeds from one copy to the next
in every step (see Condition 1). In this way, the traces of the counterfactual
automaton describe the set of all possible counterfactual traces under arbitrary
contingencies. The idea is to then pick the subset of traces whose input behavior
corresponds to interventions as defined in the previous section.

Example 9. To illustrate the idea of counterfactual automata, consider system T
depicted in Figure 3 and the trace π = {} · ({a}{a, e})ω. Since the trace has
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three positions, the counterfactual automaton CTπ consists of three copies of the
original system. It has a single additional input eC . Every step in CTπ moves
through the copies according to π’s lasso structure, e.g., the copies of the prefix
are only visited once on every path. If a trace does not set a contingency, it
directly corresponds to a trace in T , e.g., the trace π′ = {}ω is also a trace of
CTπ . However, setting contingencies allows to build traces in CTπ that do not have
a corresponding trace in T , e.g., π′′ = {} · ({eC}{e})ω ̸∈ traces(T ).

Note that there might be several states that satisfy Condition 2 in Defini-
tion 8. This means that the precision of our causal analysis depends on how much
state information the system exposes via its outputs: If every state is uniquely
labeled, then a contingency can only set the trace to the state as in the actual
trace and there is no ambiguity. Any system can be made amenable to this with
auxiliary output variables for the state space.

5.3 Minimality

Our approach to check the minimality of a given ω-regular cause property is
based on the observation that it suffices to find exactly one trace in C that can
be characterized by an ω-regular language R, which can be removed from C to
obtain a smaller ω-regular cause-property C′. This observation is formalized in
the following lemma.

Lemma 10. Let π be a trace and C a cause property that satisfies PC1 and PC2
for some effect-property E. Then, C satisfies PC3 if and only if ∀σ ∈ C,∀π′ ∈
Cσ

π . π
′ ⊨ E and ∀σ ∈ C,∀σ′ ∈ V C

π . σ
′ ̸<C

π σ.

Proof. “=⇒”: By contraposition. Let us distinguish two cases based on which of
the conjuncts is false. We show that in both cases we can remove some ω-regular
property R from C such that PC1 and PC2 still hold.

For the first case, assume there exist some σ ∈ C and π′ ∈ Cσ
π such that

π′ ̸⊨ E. Since the quantified formula can be expressed as a HyperQPTL property
of CTπ , which encodes Cσ

π , we know that in particular there exists a witness σ that
can be characterized by an ω-regular property R = {σ}. We have σ ̸= π|I because
Cπ

π = {π} and π ⊨ E. Hence C′ = C \ R, which is again an ω-regular property,
satisfies PC1, as π ∈ C′. For PC2, consider the set V ′ = {σ′ ∈ V C

π | σ <C
π σ

′} of
intervention traces that follow the same structure as σ (and are less minimal).
If V ′ is not empty, we have V C′

π = (V C
π \ V ′) ∪ {σ}, as σ is now a more minimal

intervention than traces in V ′. If V ′ is empty, we have V C
π = V C′

π . In both cases,
PC2 is still satisfied (as π′ serves as a contingency for σ in the former case)
which concludes this case.

For the second case, assume there exist some σ ∈ C and σ′ ∈ V C
π such that

σ′ <C
π σ holds. With the same reasoning as before, it follows that C′ = C \ R

with R = {σ} is an ω-regular property. Note that V C
π = V C′

π , because the set V ′

above has to be empty, as there is an intervention trace that is more minimal
than σ. Hence PC2 holds for C′. Also, π|I is by definition most minimal, hence
σ ̸= π|I and PC1 holds for C′.
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In both cases we have found a smaller ω-regular property C′ ⊂ C.
“⇐=”: By contraposition. Assume that there is some C′ ⊂ C that satisfies PC1
and PC2, and let σ ∈ C \ C′. We distinguish between two cases, and show that
in any case one of the conjuncts is false.

First, assume V C
π = V C′

π . Therefore, as σ ∈ C, we have σ ̸∈ V C
π and thus

σ ̸∈ V C′

π . Now, consider all traces σ′ such that σ′ <C
π σ. There exists at least

one such σ′ with σ′ ̸∈ C′, otherwise σ ∈ V C′

π as a minimal intervention trace for
C′. Let σ′ be such a minimal trace, according to <C

π. Now, if σ′ was in C \ C′,
then σ′ /∈ V C

π , but we would have σ′ ∈ V C′

π as a minimal intervention, again
a contradiction. Therefore, σ′ /∈ C, and since σ′ is minimal, we have σ′ ∈ V C

π .
Hence, we have found a σ for which there exists a σ′ ∈ V C

π such that σ′ <C
π σ,

thus the second conjunct is falsified.
For the second case, assume V C

π ̸= V C′

π . First, consider the case where there
is a trace σ′ ∈ V C′

π with σ′ ̸∈ V C
π . All traces σ′′ <C

π σ
′ are in C′, and so they are

also in C as C′ ⊂ C. Then, σ′ ∈ C, as otherwise, as a minimal intervention for
C′, it would have also been a minimal intervention for C, and thus in V C

π . Then,
since C′ is a cause, there exists some contingency π′ for σ′, π′ ∈ Cσ′

π such that
π′ ̸⊨ E, which concludes this case. For the other case, consider σ′ ∈ V C

π with
σ′ ̸∈ V C′

π . From σ′ ∈ V C
π we have σ′ ̸∈ C and thus σ′ ̸∈ C′. Since σ′ /∈ V C′

π , there
exists a more minimal trace σ′′ such that σ′′ ∈ C but σ′′ ̸∈ C′. Pick σ′′ as the
most minimal, hence we have σ′′ ∈ V C′

π . Since C′ is a cause, there exists some
π′′ ∈ Cσ′′

π such that π′′ ̸⊨ E, which concludes this case. In both cases, we have
found a trace in C that has a contingency that avoids the effect, which falsifies
the first conjunct. ⊓⊔

5.4 Deciding ω-Regular Causality

Putting everything together, we obtain that checking whether some C is a cause
for some E on a trace π in system T can be realized by checking whether the
counterfactual automaton CTπ satisfies a HyperQPTL property, as outlined in
the proof of the following theorem.

Theorem 11. The problem of verifying an ω-regular cause to an ω-regular effect
on a lasso-shaped trace is decidable as a HyperQPTL model-checking problem.

Proof. Assume φC and φE are QPTL formulas characterizing the cause and
effect properties, respectively, and let π be a lasso-shaped trace. We encode
the conditions PC1, PC2 and PC3 directly as a HyperQPTL formula PCC

E (π),
utilizing the insight from Lemma 10. The formula is parameterized by π for
brevity, however this can be translated to a proper HyperQPTL formula with
an additional universal quantifier and a QPTL formula enforcing equality with π.
This is possible because π has a lasso shape and can be characterized in QPTL.

In (1), we encode PC1: Both C and E have to be satisfied by the actual
trace π. In (2), we enforce that σ is a valid intervention trace with respect to π:
All other traces σ′ either satisfy C or are not more minimal with respect to π. We
then enforce PC2 and PC3. In (4) we state that all traces π′ in CTπ that satisfy
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C have to satisfy the effect, and in (3) we enforce that σ is not more minimal
than any trace σ′′ in C. Together this ensures PC3 due to Lemma 10. The left
part of (4) states that there must be a trace π′′ under contingency in CTπ that
violates E with the same input sequence as σ, which corresponds to PC2.

PCC
E (π) = ∀σ∀σ′∀σ′′∀π′∃π′′. φC(π) ∧ φE(π) ∧ (1)(
¬φC(σ) ∧

(
φC(σ

′) ∨ ¬(ψC
struct(σ, σ

′) ∧ ψmin(π, σ
′, σ))

)
→ (2)(

(φC(σ
′′)→ ¬(ψC

struct(σ
′′, σ) ∧ ψmin(π, σ, σ

′′))) ∧ (3)

¬φE(π
′′) ∧

∧
a∈I

(aπ′′ ↔ aσ)
))
∧ (φC(π

′)→ φE(π
′)) (4)

We then model check the formula PCC
E against the counterfactual automaton

CTπ . Since model checking HyperQPTL is decidable [26], the theorem follows. ⊓⊔

We conclude by demonstrating the usefulness of an expressive logic such as
QPTL for describing causes symbolically, as a similar expression of parity as in
the example below would not be possible with previous event-based logics [22].

Example 12. Consider the system T depicted in Figure 3, the actual trace π =
{} · ({a}{a, e})ω, and the effect E = e. Disregarding contingencies, the effect
can only be avoided by never setting input a at all, i.e., with cause candidate C1 =
a and the resulting set of counterfactual traces V C1

π = {∅ω}. However, note
that the input a at every even position in the trace has no influence on the effect:
the system does not discern between the two input sequences {} · ({a}{a})ω and
{} · ({a}{})ω. However, that does not mean that the second a is not a potential
cause: in the input sequence σ = {} · ({}{a})ω it is the input that repeatedly
moves the trace to state labeled with e. In such situations as on the actual
trace π, we say that the second a was preempted by the first. Reasoning about
contingencies now allows us to find a more accurate cause for E on π. Consider
the cause-property C2 = ∃q.¬q ∧ ( q ↔ ¬q) ∧ (q → a), i.e., eventually a
holds at an odd position, we have V C2

π = {σ}. Following the above discussion
we have that the trace corresponding to the inputs of σ still satisfies the effect
property. However, in the counterfactual automaton we find a trace that agrees
with the inputs of σ but avoids the effect: π′ = {} · ({}{a, eC})ω ∈ traces(CTπ ).
We have π′ ̸∈ E. For a short argument why C2 is also minimal and therefore
the cause for E, consider what happens if we require a to appear at multiple
(or all) odd positions with C3 = ∃q.¬q ∧ ( q ↔ ¬q) ∧ (q → a). Now, valid
counterfactuals that negate C3 can be built by simply removing a at some, but
not all odd positions, e.g., σ′ = {}{a} · {}ω ∈ V C3

π . For these sequences, we
cannot find a trace in the counterfactual automaton that avoids the effect of the
remaining a’s at odd positions.
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6 Related Work

The increasing number of applications of causality to the formal analysis and
explanation of systems has been surveyed comprehensively by Baier et al. [3].
There are several works that define causality formally for computing systems.
Gössler and Métayer consider component-based systems and define causality on
the component level [12], which differs from our actual causality on the prop-
erty level. A general framework for counterfactual reasoning in multi-component
systems based on counterfactual builders has also been proposed [13], which in
particular highlights certain desirable properties of causal analyses. Groce et al.
use distance metrics to define the closest trace not producing the effect and de-
fine the cause as the difference between the traces [14], which has similarities to
our definition of minimal interventions.

Related to our approach, Leitner-Fischer and Leue’s causality definitions offer
a symbolic description of counterfactual causes in Event Order Logic [22]. As
effects, they originally considered only violations of safety properties, but their
approach has been extended to LTL-definable effects [6]. In both works, the goal
of the symbolic causes is to give a high-level description of the orderings of events
that lead to a violation in the system, but less to give a precise characterization
of the causal input behavior on an observed, actual trace.

Coenen et al. [9] have considered the problem of identifying the actual cause
of a counterexample violating a hyperproperty. In their setting, the effect is a
hyperproperty while the cause is a concrete set of events appearing in a coun-
terexample. In this work, we consider symbolic causes given as trace properties,
and we adapt the counterfactual automata from this aforementioned work [9].

It has been noted before that probabilistic causality can be expressed as a
hyperproperty [11,1]. The considered version of probabilistic causation is founded
on the probability raising principle. However, this type of probabilistic causation
can also be expressed in branching-time temporal logics, as shown by Kleinberg
and Mishra [20]. For probabilistic systems, there has recently been proposed a
notion of causality that combines probability raising with the counterfactuality
principle [28]. To the best of our knowledge, the observation that counterfactual
causality is not a trace property [10] has not been formalized and proven before.

7 Conclusion

Inspired by Halpern and Pearl’s definition of actual causality, we define causality
for reactive systems that gives symbolic descriptions of causal temporal behavior
as trace properties. We define interventions and contingencies to enable coun-
terfactual reasoning in this infinite setting. The key idea of our work is to link
satisfaction of a property with a distance measure over traces, to define the clos-
est counterfactual traces that do not satisfy the cause. We show that checking
causality for trace properties cannot itself be expressed as a trace property but
as a hyperproperty. Our definitions can be instantiated with explicit logics to
express cause and effect properties. We present a decidable instantiation with
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QPTL along with the corresponding automata-based constructions to verify ac-
tual causes based on HyperQPTL model checking, covering the whole practically
relevant class of ω-regular properties. Future work includes examining ways of
leveraging the existing research on hyperproperties when analyzing causal rela-
tionships, and applying our conceptual framework to other domains.
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13. Gössler, G., Stefani, J.: Causality analysis and fault ascription in component-based

systems. Theor. Comput. Sci. (2020)
14. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance

metrics. Int. J. Softw. Tools Technol. Transf. (2006)
15. Halpern, J.Y.: A modification of the halpern-pearl definition of causality. In: IJCAI

2015
16. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.

part i: Causes. The British Journal for the Philosophy of Science (2005)
17. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.

part ii: Explanations. The British Journal for the Philosophy of Science (2005)
18. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. (1997)
19. Hume, D.: An Enquiry Concerning Human Understanding. London (1748)
20. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: UAI 2009
21. Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs.

In: CAV 2014
22. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:

VMCAI 2013
23. Lewis, D.K.: Counterfactuals. Cambridge, MA, USA: Blackwell (1973)



Temporal Causality in Reactive Systems 17

24. Moore, E.F.: Gedanken-experiments on sequential machines. Aut. stud. (1956)
25. Pnueli, A.: The temporal logic of programs. In: FOCS 1977
26. Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. thesis,

Saarland University (2016)
27. Sistla, A.P.: Theoretical Issues in the Design and Verification of Distributed Sys-

tems. Ph.D. thesis (1983)
28. Ziemek, R., Piribauer, J., Funke, F., Jantsch, S., Baier, C.: Probabilistic causes in

markov chains. Innov. Syst. Softw. Eng. (2022)

Notice This version of the contribution has been accepted for publication, after
peer review but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online
at: https://doi.org/10.1007/978-3-031-19992-9 13. Use of this Accepted Version
is subject to the publisher’s Accepted Manuscript terms of use: https://www.
springernature.com/de/open-research/policies/accepted-manuscript-terms.

https://doi.org/10.1007/978-3-031-19992-9_13
https://www.springernature.com/de/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/de/open-research/policies/accepted-manuscript-terms

	Temporal Causality in Reactive Systems 

