Scattering and Sparse Partitions, and their Applications

Arnold Filtser

Columbia University

January 17, Simons A&G collaboration

Arnold Filtser

G = (V, E, w) weighted graph,

G = (V, E, w) weighted graph,

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

$$\operatorname{stretch}(T) = \max_{K \subseteq V} \frac{I(K)}{\operatorname{opt}(K)}$$

Theorem ([Jia, Lin, Noubir, Rajaraman, Sundaram 05]) Suppose G admits (σ, τ) -sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

Arnold Filtser

G = (V, E, w) - a weighted graph. $K \subseteq V$ - a terminal set of size k.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in \mathcal{K}, \ \ d_G(t,t')\leq d_{\mathcal{M}}(t,t')\leq lpha\cdot d_G(t,t') \;.$$

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in \mathcal{K}, \ \ d_G(t,t')\leq d_{\mathcal{M}}(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• M is a graph **minor** of G.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• *M* is a graph **minor** of *G*.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• *M* is a graph **minor** of *G*.

Theorem ([**Fil** 19] (improving [Kamma, Krauthgamer, Nguyen 15], [Cheung 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$\forall t,t' \in K, \ \ d_G(t,t') \leq d_M(t,t') \leq lpha \cdot d_G(t,t') \;.$$

• *M* is a graph **minor** of *G*.

Theorem ([**Fil** 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

The only known lower bound is 8 [Chan, Xia, Konjevod, Richa 06].

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$\forall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• *M* is a graph **minor** of *G*.

Theorem ([**Fil** 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

The only known lower bound is 8 [CXKR 06].

What about special graph families?

- *M* has small **distortion**: $\forall t, t' \in K, \ d_G(t, t') \leq d_M(t, t') \leq \alpha \cdot d_G(t, t')$.
- M is a graph **minor** of G.

Theorem ([**Fil** 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

The only known lower bound is 8 [CXKR 06].

What about special graph families?

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (σ, τ) -scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O(\tau^3 \sigma^3)$.

\mathcal{P} is a (σ, τ, Δ) -sparse partition if:

• The diameter of each cluster $\leq \Delta$.

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

\mathcal{P} is a (σ, τ, Δ) -sparse partition if:

 (σ, τ) -sparse partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -sparse partition.

\mathcal{P} is a (σ, τ, Δ) -sparse partition if:

 (σ, τ) -sparse partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -sparse partition.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -sparse partition scheme,

 \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, Weak Diameter of $A := \max_{v,u \in A} d_G(v, u)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, Weak Diameter of $A := \max_{v,u \in A} d_G(v, u)$. Strong Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

Given a subset $A \subseteq V$, Weak Diameter of $A := \max_{v,u \in A} d_G(v, u)$. Strong Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u,v)=2$$

Given a subset $A \subseteq V$, Weak Diameter of $A := \max_{v,u \in A} d_G(v, u)$. Strong Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$
$$d_{G[A]}(u, v) = 6$$

Arnold Filtser

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$
$$d_{G[A]}(u, v) = 6$$

Weak diameter of A = 4. Strong diameter of A = 6.

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$

 $d_{G[A]}(u, v) = \infty$

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$

 $d_{G[A]}(u, v) = \infty$

Weak diameter of A = 4. Strong diameter of $A = \infty$.

 \mathcal{P} is a (σ, τ, Δ) -strong/weak sparse partition if:

- The strong/weak diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

 \mathcal{P} is a (σ, τ, Δ) -strong/weak sparse partition if:

- The strong/weak diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-weak sparse partition scheme,

 \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -weak sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

[JLNRS 05] produces a non-subgraph solution to the UST problem.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -weak sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

[JLNRS 05] produces a non-subgraph solution to the UST problem.

[BDRRS 12]: subgraph solution using hierarchy of strong sparse partitions.

Scattering partitions \mathcal{P} is a (σ, τ, Δ) -scattering partition if:

Scattering partitions \mathcal{P} is a (σ, τ, Δ) -scattering partition if:

• Each cluster is connected.

Scattering partitions \mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions \mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -scattering partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -scattering partition.

Scattering partitions \mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -scattering partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -scattering partition.

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (σ, τ) -scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O(\tau^3 \sigma^3)$.

Observations

$$(\sigma, au, \Delta)$$
-strong sparse \Rightarrow (σ, au, Δ) -weak sparse .

- Each cluster strong diameter $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- Each cluster weak diameter $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Observations

$$(\sigma, \tau, \Delta)$$
-strong sparse \Rightarrow (σ, τ, Δ) -scattering.

Observations

$$(\sigma, \tau, \Delta)$$
-strong sparse \Rightarrow (σ, τ, Δ) -scattering.

Arnold Filtser

Theorem ([Fil 20])

Suppose all n-vertex trees admit a (σ, τ) -strong sparse partition scheme.

Then
$$au \geq rac{1}{3} \cdot n^{rac{2}{\sigma+1}}$$
.

Corollary

 $\forall n > 1$, there are trees T_1 , T_2 such that,

- T₁ do not admit (^{log n}/_{log log n}, log n)-strong sparse partition scheme.
 T₂ do not admit (√log n, 2^{√log n})-strong sparse partition scheme.

Theorem ([Fil 20])

Every tree is (2,3)-scatterable.

Theorem ([Fil 20])

Every tree admits a (4,3)-weak sparse partition scheme.

Metric space has **doubling dimension** d if every radius r ball can be **covered** by 2^d balls of radius $\frac{r}{2}$.

Metric space has **doubling dimension** d if every radius r ball can be **covered** by 2^d balls of radius $\frac{r}{2}$.

Example: Every d-dimensional Euclidean space has doubling dimension O(d).

Metric space has **doubling dimension** d if every radius r ball can be **covered** by 2^d balls of radius $\frac{r}{2}$.

Packing Property $N \subseteq X$ set s.t. $x, y \in N$ it holds that $d(x, y) \ge \delta$. Then $\forall x, R$, $|B(x, R) \cap N| \le (R/\delta)^{O(d)}$.

Metric space has **doubling dimension** d if every radius r ball can be **covered** by 2^d balls of radius $\frac{r}{2}$.

```
Packing Property

N \subseteq X set s.t. x, y \in N it holds that d(x, y) \ge \delta. Then \forall x, R,

|B(x, R) \cap N| \le (R/\delta)^{O(d)}.
```

The graph G = (V, E, w) has doubling dimension O(d), if (V, d_G) (the shortest path metric) has doubling dimension O(d).

Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a

 $(1, 2^{O(d)})$ -weak sparse partition scheme.

Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a

 $(1, 2^{O(d)})$ -weak sparse partition scheme.

Theorem ([Fil 20])

Every graph with doubling dimension d admits a $(O(d), \tilde{O}(d))$ -strong sparse partition scheme.

Theorem ([Fil 20])

Every graph with doubling dimension d admits a $(O(d), \tilde{O}(d))$ -strong sparse partition scheme.

MPX [Miller, Peng, Xu 2013] $\delta_{t_1} = 4$ $\delta_{t_1} = 4$

 $\delta_{t_2} = 2$

Inherently connected!

Inherently connected!

Formally, for $v \in V$ set $f_v(t) = \delta_t - d_G(v, t)$.

v joins the cluster C_t of the center *t* maximizing f_v .

Partition Algorithm Algorithm: 1. Let N be a Δ -net. Partition Algorithm Algorithm: 1. Let N be a Δ -net.

Definition (Δ -net)

Set N s.t.:

- $\forall u, v \in N, d_G(u, v) > \Delta$.
- $\forall v \in V$ there is a net point $u \in N$ s.t. $d_G(u, v) \leq \Delta$.

Algorithm: 1. Let N be a Δ -net.

2. For each center $t \in N$ sample $\delta_t \sim \text{BExp}(\Delta/d, 4\Delta)$.

Algorithm: 1. Let N be a Δ -net.

2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.

Definition (*Betailed* exponential distribution $BExp(\lambda, \lambda_T)$) $X = min\{X', \lambda_T\}$ where $X' \sim Exp(\lambda)$.

Algorithm: 1. Let N be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

Definition (*Betailed* exponential distribution $BExp(\lambda, \lambda_T)$) $X = min\{X', \lambda_T\}$ where $X' \sim Exp(\lambda)$.

Algorithm: 1. Let N be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

Algorithm: 1. Let N be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

Set $N_{\nu} = N \cap B_{G}(\nu, 6\Delta)$. By packing argument: $|N_{\nu}| = 2^{O(d)}$.

Algorithm: 1. Let N be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

Set $N_v = N \cap B_G(v, 6\Delta)$. By packing argument: $|N_v| = 2^{O(d)}$.

Algorithm: 1. Let N be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

Algorithm: 1. Let *N* be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

Consider $u \in B$, for all $t \in N$, $|f_v(t) - f_u(t)| \le d_G(u, v) \le \frac{\Delta}{d}$ B can intersect center t' only if $f_v(t') \ge f_v(t_1) - \frac{2\Delta}{d}$.

Algorithm: 1. Let N be a Δ -net.

- 2. For each center $t \in N$ sample $\delta_t \sim \operatorname{BExp}(\Delta/d, 4\Delta)$.
- 3. Run [MPX 13] (*v* goes to arg max $f_v(t) = \delta_t d_G(v, t)$).

For how many $t \in N_{\nu}$, $f_{\nu}(t) \in [f_{\nu}(t_1) - \frac{2\Delta}{d}, f_{\nu}(t_1)]$?

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$)

Let
$$\delta'_t \sim \text{Exp}(\lambda)$$
, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$)
Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$.

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$.

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$.

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_s .

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_s . By Memorylessness

$$\Pr\left[f_{v}'(t)>f_{v}'(t_{s}')+rac{2\Delta}{d}\mid f_{v}'(t)\geq f_{v}'(t_{s}')
ight]\geq \Pr\left[\delta_{t}'>rac{2\Delta}{d}
ight]=e^{-rac{2\Delta}{d}/\lambda}=\Omega(1)\;.$$

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$) $(\lambda = \Delta/d, \lambda_T = 4\Delta)$ Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_c . By Memorylessness

$$\mathsf{Pr}\left[f_{\mathsf{v}}'(t)>f_{\mathsf{v}}'(t_s')+rac{2\Delta}{d}\mid f_{\mathsf{v}}'(t)\geq f_{\mathsf{v}}'(t_s')
ight]\geq \mathsf{Pr}\left[\delta_t'>rac{2\Delta}{d}
ight]=e^{-rac{2\Delta}{d}/\lambda}=\Omega(1)\;.$$

Using Chernoff, for $\tilde{s} = \frac{1}{\Omega(1)}s = \Omega(d)$, $f'_{\nu}(t'_{\tilde{s}}) > f'_{\nu}(t'_{s}) + \frac{2\Delta}{d}$.

$$\underbrace{\geq \frac{2\Delta}{d}}_{f_{v}(t_{1}) - \frac{2\Delta}{d}, f_{v}(t_{1})]}$$

$$\underbrace{f_{v}(t_{1}) - \frac{2\Delta}{d}, f_{v}(t_{1})]}_{f_{v}(t_{3}) - f_{v}'(t_{3}') - f_{v}'(t_{2}') - f_{v}'(t_{1}')}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}_{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}_{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}_{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}_{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{1})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{2}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3}) - f_{v}(t_{3})}_{f_{v}(t_{3})}$$

$$\underbrace{f_{v}(t_{3}) - f_{v}(t_{3}) -$$

$$\Pr\left[f_{v}'(t) > f_{v}'(t_{s}') + \frac{2\Delta}{d} \mid f_{v}'(t) \geq f_{v}'(t_{s}')\right] \geq \Pr\left[\delta_{t}' > \frac{2\Delta}{d}\right] = e^{-\frac{2\Delta}{d}/\lambda} = \Omega(1) \; .$$

Using Chernoff, for $\tilde{s} = \frac{1}{\Omega(1)}s = \Omega(d)$, $f'_{\nu}(t'_{\tilde{s}}) > f'_{\nu}(t'_{s}) + \frac{2\Delta}{d}$.

L

$$\geq \frac{2\Delta}{d}$$

$$f_{v}(t_{1}) - \frac{2\Delta}{d}, f_{v}(t_{1})$$

$$f_{v}(t_{s}) = f_{v}'(t_{s}') = f_{v}'(t_{s}') = f_{v}'(t_{s}') = f_{v}'(t_{s}') = f_{v}'(t_{s}') = f_{v}(t_{s}) = f$$

$$\mathsf{Pr}\left[f_{\mathsf{v}}'(t)>f_{\mathsf{v}}'(t_{s}')+rac{2\Delta}{d}\mid f_{\mathsf{v}}'(t)\geq f_{\mathsf{v}}'(t_{s}')
ight]\geq\mathsf{Pr}\left[\delta_{t}'>rac{2\Delta}{d}
ight]=e^{-rac{2\Delta}{d}/\lambda}=\Omega(1)\;.$$

Using Chernoff, for $\tilde{s} = \frac{1}{\Omega(1)}s = \Omega(d)$, $f'_{\nu}(t'_{\tilde{s}}) > f'_{\nu}(t'_{s}) + \frac{2\Delta}{d}$.

F

 $t \in N_{\nu}$ is **betailed** with probability $\Pr[\delta_t = \lambda_T] = \Pr[\delta'_t \ge \lambda_T] = e^{-\frac{\lambda_T}{\lambda}} = e^{-4d}$.

$$\geq \frac{2\Delta}{d}$$

$$f_{v}(t_{1}) - \frac{2\Delta}{d}, f_{v}(t_{1})$$

$$f_{v}(t_{s}) = f_{v}(t_{s}) = f_{v}($$

$$\mathsf{Pr}\left[f_{\mathsf{v}}'(t)>f_{\mathsf{v}}'(t_{s}')+rac{2\Delta}{d}\mid f_{\mathsf{v}}'(t)\geq f_{\mathsf{v}}'(t_{s}')
ight]\geq\mathsf{Pr}\left[\delta_{t}'>rac{2\Delta}{d}
ight]=e^{-rac{2\Delta}{d}/\lambda}=\Omega(1)\;.$$

Using Chernoff, for $\tilde{s} = \frac{1}{\Omega(1)}s = \Omega(d)$, $f'_{\nu}(t'_{\tilde{s}}) > f'_{\nu}(t'_{s}) + \frac{2\Delta}{d}$.

 $t \in N_{v}$ is **betailed** with probability $\Pr[\delta_{t} = \lambda_{T}] = \Pr[\delta'_{t} \ge \lambda_{T}] = e^{-\frac{\lambda_{T}}{\lambda}} = e^{-4d}$. The probability that at least \tilde{s} centers in N_{v} are betailed bounded by $|N_{v}|^{\tilde{s}} \cdot (e^{-4d})^{\tilde{s}} = 2^{O(d\tilde{s})} \cdot (e^{-4d\tilde{s}}) = e^{-\Omega(d\tilde{s})}$

$$\geq \frac{2\Delta}{d}$$
 Not betailed
$$\begin{array}{c} f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1) \\ f_v(t_s) & f_v'(t_s') f_v'(t_m') = f_v(t_m') \\ f_v'(t_s') & f_v'(t_s') f_v'(t_m') = f_v(t_m') \\ f_v'(t_s') & f_v(t_s) f_v'(t_s') f_v'(t_s') \\ f_v(t_s) & f_v'(t_s) f_v'(t_s) \\ f_v(t_s) & f_v(t_s) f_v(t_s) \\ f_v(t_s) & f_v(t_s) \\ f_v(t_s) & f_v(t_s) f_v(t_s) \\ f_v(t_s) & f_v(t$$

Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$.

Fix $s = \Theta(d)$ and t'_s . By Memorylessness

$$\mathsf{Pr}\left[f_{\mathsf{v}}'(t)>f_{\mathsf{v}}'(t_s')+rac{2\Delta}{d}\mid f_{\mathsf{v}}'(t)\geq f_{\mathsf{v}}'(t_s')
ight]\geq \mathsf{Pr}\left[\delta_t'>rac{2\Delta}{d}
ight]=e^{-rac{2\Delta}{d}/\lambda}=\Omega(1)\;.$$

Using Chernoff, for $\tilde{s} = \frac{1}{\Omega(1)}s = \Omega(d)$, $f'_{\nu}(t'_{\tilde{s}}) > f'_{\nu}(t'_{s}) + \frac{2\Delta}{d}$.

 $t \in N_v$ is **betailed** with probability $\Pr[\delta_t = \lambda_T] = \Pr[\delta'_t \ge \lambda_T] = e^{-\frac{\lambda_T}{\lambda}} = e^{-4d}$. The probability that at least \tilde{s} centers in N_v are betailed bounded by $|N_v|^{\tilde{s}} \cdot (e^{-4d})^{\tilde{s}} = 2^{O(d\tilde{s})} \cdot (e^{-4d\tilde{s}}) = e^{-\Omega(d\tilde{s})}$

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{1})$ $f_{v}(t_{3}) = f_{v}(t_{2}) = f_{v}(t_{1})$ $f'_{v}(t'_{a})$ $f'_{u}(t'_{\tilde{z}}) f'_{u}(t'_{m}) = f_{v}(t'_{m})$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{s} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed.

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{1})$ $f_{v}(t_{3}) = f_{v}(t_{2}) = f_{v}(t_{1})$ $f'_{v}(t'_{a})$ $f'_{u}(t'_{\tilde{z}}) f'_{u}(t'_{m}) = f_{v}(t'_{m})$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{s} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \ldots, t'_r\}$, it holds that

 $f_{v}'(t) \leq f_{v}'(t_{s}')$

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{1})$ $f_{v}(t_{3}) = f_{v}(t_{2}) = f_{v}(t_{1})$ $f'_{v}(t'_{a})$ $f'_{u}(t'_{\tilde{z}}) f'_{u}(t'_{m}) = f_{v}(t'_{m})$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{s} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \ldots, t'_r\}$, it holds that

 $f_v(t) \leq f_v'(t) \leq f_v'(t_s')$

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{1})$ $f_{v}(t_{3}) = f_{v}(t_{2}) = f_{v}(t_{1})$ $f'_{v}(t'_{a})$ $f'_{u}(t'_{\tilde{z}}) f'_{u}(t'_{m}) = f_{v}(t'_{m})$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{s} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \ldots, t'_s\}$, it holds that

$$f_{\mathrm{v}}(t) \leq f_{\mathrm{v}}'(t) \leq f_{\mathrm{v}}'(t_s') < f_{\mathrm{v}}'(t_m') - rac{2\Delta}{d}$$

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{1})$ $f_{v}(t_{3}) = f_{v}(t_{2}) = f_{v}(t_{1})$ $f'_{v}(t'_{a})$ $f'_{u}(t'_{\tilde{z}}) f'_{u}(t'_{m}) = f_{v}(t'_{m})$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{s} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \ldots, t'_s\}$, it holds that

$$f_{\mathrm{v}}(t) \leq f_{\mathrm{v}}^{\prime}(t) \leq f_{\mathrm{v}}^{\prime}(t_{s}^{\prime}) < f_{\mathrm{v}}^{\prime}(t_{m}^{\prime}) - rac{2\Delta}{d} = f_{\mathrm{v}}(t_{m}^{\prime}) - rac{2\Delta}{d}$$

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{1})$ $f_{v}(t_{3}) = f_{v}(t_{2}) = f_{v}(t_{1})$ $f'_{v}(t'_{a})$ $f'_{u}(t'_{\tilde{z}}) f'_{u}(t'_{m}) = f_{v}(t'_{m})$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{s} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \ldots, t'_s\}$, it holds that

$$f_{\mathrm{v}}(t) \leq f_{\mathrm{v}}'(t) \leq f_{\mathrm{v}}'(t_{\mathrm{s}}') < f_{\mathrm{v}}'(t_{\mathrm{m}}') - rac{2\Delta}{d} = f_{\mathrm{v}}(t_{\mathrm{m}}') - rac{2\Delta}{d} \leq f_{\mathrm{v}}(t_1) - rac{2\Delta}{d}$$

 $\left[f_v(t_1) - \frac{2\Delta}{d}, f_v(t_1)\right]$ Not betailed $f'_{v}(t'_{\tilde{s}}) f'_{v}(t'_{m}) = f_{v}(t'_{m}) \qquad f'_{v}(t'_{1})$ $f_{v}(t_{3}) f_{v}(t_{2}) f_{v}(t_{1})$ $f'_n(t'_n)$ Let $\delta'_t \sim \text{Exp}(\lambda)$, $\delta_t = \min\{\delta'_t, \lambda_T\}$ (note $\delta_t \sim \text{BExp}(\lambda, \lambda_T)$ $(\lambda = \Delta/d, \lambda_T = 4\Delta)$) Recall $f_v(t) = \delta_t - d_G(v, t)$. Set $f'_v(t) = \delta'_t - d_G(v, t)$. Fix $s = \Theta(d)$ and t'_{c} . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_{\nu}(t_m) > f'_{\nu}(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \ldots, t'_s\}$, it holds that

$$f_
u(t) \leq f_
u'(t) \leq f_
u'(t_s') < f_
u'(t_m') - rac{2\Delta}{d} = f_
u(t_m') - rac{2\Delta}{d} \leq f_
u(t_1) - rac{2\Delta}{d} \;.$$

Corollary

W.h.p.
$$B = B_G(v, \frac{\Delta}{d})$$
 intersects at most $s = O(d)$ clusters.

Fix $s = \Theta(d)$ and t'_s . There is index $m \leq \tilde{s} \leq s$, s.t. $f'_v(t_m) > f'_v(t'_s) + \frac{2\Delta}{d}$ and t'_m is not betailed. For every $t \notin \{t'_1, t'_2, \dots, t'_s\}$, it holds that $f_v(t) < f_v(t_1) - \frac{2\Delta}{d}$

Corollary

W.h.p.
$$B = B_G(v, rac{\Delta}{d})$$
 intersects at most $s = O(d)$ clusters

Using the Lovász Local Lemma, we conclude

Corollary

W.h.p.
$$B = B_G(v, rac{\Delta}{d})$$
 intersects at most $s = O(d)$ clusters.

Using the Lovász Local Lemma, we conclude

Theorem ([Fil 20])

Every graph with doubling dimension d admits a

 $(O(d), \tilde{O}(d))$ -strong sparse partition scheme.

Every graph with **doubling dimension** d admits a $(O(d), \tilde{O}(d))$ -stre

 $(O(d), \tilde{O}(d))$ -strong sparse partition scheme.

Every graph with pathwidth ρ admits a $(O(\rho), O(\rho^2))$ -strong sparse partition scheme, and a $(8, 5\rho)$ -weak sparse partition scheme.

Every cactus graph admits a (4,5)-scattering partition scheme, and a (O(1), O(1))-weak sparse partition scheme.

Every chordal graph admits a (2,3)-scattering partition scheme, and a (24,3)-weak sparse partition scheme.

Every $K_{r,r}$ -free graph admits an $(O(r^2), 2^r)$ -weak sparse partition scheme.

Every $K_{r,r}$ -free graph admits an $(O(r^2), 2^r)$ -weak sparse partition scheme. What about scattering?

Conjecture

Planar graphs are (O(1), O(1))-scattering.

Conjecture

Planar graphs are (O(1), O(1))-scattering.

Will imply a solution for the **SPR** problem with **distortion** O(1) for **planar** graphs!

• [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.

- [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits (O(log n), O(log n))-scattering partition scheme.

- [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$ -scattering partition scheme.
- [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.

- [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$ -scattering partition scheme.
- [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.
- [Fil 20]: $\exists G$ which **do not** admit $(O(\frac{\log n}{\log \log n}), O(\log n))$ -weak sparse partition scheme.

Conjecture

Every *n* vertex graph admits $(O(1), O(\log n))$ -scattering partition scheme. Furthermore, this is tight.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -weak sparse partition scheme, \Rightarrow solution to the UST problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (σ, τ) -scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O(\tau^3 \sigma^3)$.

Conjecture Planar graphs are (O(1), O(1))-scattering.

Conjecture

General n vertex graph are $(O(1), O(\log n))$ -scattering. Furthermore, this is tight.

Conjecture Planar graphs are (O(1), O(1))-scattering.

Conjecture

General n vertex graph are $(O(1), O(\log n))$ -scattering. Furthermore, this is tight.

Thank you for listening!