Scattering and Sparse Partitions, and their Applications

Arnold Filtser

Columbia University

January 17, Simons A\&G collaboration

Universal Steiner tree

$G=(V, E, w)$ weighted graph,

Universal Steiner tree

$G=(V, E, w)$ weighted graph,

Universal Steiner tree

$G=(V, E, w)$ weighted graph,

Universal Steiner tree

$G=(V, E, w)$ weighted graph, \quad cost $=w(T)$

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, \quad cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, \quad cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

Universal Steiner tree

$G=(V, E, w)$ weighted graph, cost $=w(T) \quad$ opt $=$ Minimal Steiner tree

$$
\operatorname{stretch}(T)=\max _{K \subseteq V} \frac{T(K)}{\operatorname{opt}(K)}
$$

Theorem ([Jia, Lin, Noubir, Rajaraman, Sundaram 05])
Suppose G admits (σ, τ)-sparse partition scheme, \Rightarrow solution to the UST problem with stretch $O\left(\tau \sigma^{2} \log _{\tau} n\right)$.

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

- M has small distortion:

$$
\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right)
$$

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

- M has small distortion:

$$
\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right) .
$$

- M is a graph minor of G.

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size \boldsymbol{k}.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

- M has small distortion:

$$
\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right)
$$

- M is a graph minor of G.

The distortion is: $\frac{d_{M}\left(t, t^{\prime}\right)}{d_{G}\left(t, t^{\prime}\right)}=\frac{4}{2}=2$

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

- M has small distortion:

$$
\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right)
$$

- M is a graph minor of G.

Theorem ([Fil 19] (improving [Kamma, Krauthgamer, Nguyen 15], [Cheung 18]))
Given G with k terminals, there is a solution to the SPR problem with distortion $O(\log k)$.

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

- M has small distortion:

$$
\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right)
$$

- M is a graph minor of G.

Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

The only known lower bound is $\mathbf{8}$ [Chan, Xia, Konjevod, Richa 06].

Steiner Point removal problem

$G=(V, E, w)-$ a weighted graph.
$K \subseteq V$ - a terminal set of size k.
Construct a new graph $M=\left(K, E^{\prime}, w_{M}\right)$ such that:

- M has small distortion:

$$
\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right)
$$

- M is a graph minor of G.

Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem
with distortion $O(\log k)$.
The only known lower bound is $\mathbf{8}$ [CXKR 06].
What about special graph families?

Steiner Point removal problem

- M has small distortion: $\forall t, t^{\prime} \in K, \quad d_{G}\left(t, t^{\prime}\right) \leq d_{M}\left(t, t^{\prime}\right) \leq \boldsymbol{\alpha} \cdot d_{G}\left(t, t^{\prime}\right)$.
- M is a graph minor of G.

Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

$$
\text { with distortion } O(\log k) \text {. }
$$

The only known lower bound is $\mathbf{8}$ [CXKR 06].

What about special graph families?

Theorem ([Fil 20])

Suppose that every induced subgraph $G[A]$ of G admits (σ, τ)-scattering partition scheme, \qquad

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

- The diameter of each cluster $\leq \Delta$.

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
(σ, τ)-sparse partition scheme: $\forall \Delta>0 \quad \exists(\sigma, \tau, \Delta)$-sparse partition.

Sparse partitions

\mathcal{P} is a (σ, τ, Δ)-sparse partition if:

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
(σ, τ)-sparse partition scheme: $\forall \Delta>0 \quad \exists(\sigma, \tau, \Delta)$-sparse partition.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-sparse partition scheme,
\Rightarrow solution to the UST problem with stretch $O\left(\tau \sigma^{2} \log _{\tau} n\right)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

$$
d_{G}(u, v)=2
$$

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

$$
\begin{aligned}
& d_{G}(u, v)=2 \\
& d_{G[A]}(u, v)=6
\end{aligned}
$$

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

$$
\begin{aligned}
& d_{G}(u, v)=2 \\
& d_{G[A]}(u, v)=6
\end{aligned}
$$

Weak diameter of $A=4$.
Strong diameter of $A=6$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

$$
\begin{aligned}
& d_{G}(u, v)=2 \\
& d_{G[A]}(u, v)=\infty
\end{aligned}
$$

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$,
Weak Diameter of $A:=\max _{v, u \in A} d_{G}(v, u)$.
Strong Diameter of $A:=\max _{v, u \in A} d_{G[A]}(v, u)$.

$$
\begin{aligned}
& d_{G}(u, v)=2 \\
& d_{G[A]}(u, v)=\infty
\end{aligned}
$$

Weak diameter of $A=4$.
Strong diameter of $A=\infty$.

Strong Vs. Weak Diameter

\mathcal{P} is a (σ, τ, Δ)-strong/weak sparse partition if:

- The strong/weak diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
(σ, τ)-strong/weak sparse partition scheme: $\exists(\sigma, \tau, \Delta)$-strong/weak sparse partition for all $\Delta>0$.

Strong Vs. Weak Diameter

\mathcal{P} is a (σ, τ, Δ)-strong/weak sparse partition if:

- The strong/weak diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
(σ, τ)-strong/weak sparse partition scheme: $\exists(\sigma, \tau, \Delta)$-strong/weak sparse partition for all $\Delta>0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-weak sparse partition scheme, \Rightarrow solution to the UST problem with stretch $O\left(\tau \sigma^{2} \log _{\tau} n\right)$.

Strong Vs. Weak Diameter

(σ, τ)-strong/weak sparse partition scheme: $\exists(\sigma, \tau, \Delta)$-strong/weak sparse partition for all $\Delta>0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-weak sparse partition scheme, \Rightarrow solution to the UST problem with stretch $O\left(\tau \sigma^{2} \log _{\tau} n\right)$.
[JLNRS 05] produces a non-subgraph solution to the UST problem.

Strong Vs. Weak Diameter

(σ, τ)-strong/weak sparse partition scheme: $\exists(\sigma, \tau, \Delta)$-strong/weak sparse partition for all $\Delta>0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-weak sparse partition scheme, \Rightarrow solution to the UST problem with stretch $O\left(\tau \sigma^{2} \log _{\tau} n\right)$.
[JLNRS 05] produces a non-subgraph solution to the UST problem.
[BDRRS 12]: subgraph solution using hierarchy of strong sparse partitions.

Scattering partitions
\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

Scattering partitions
\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.

Scattering partitions
\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.

Scattering partitions
\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions
\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions
\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
(σ, τ)-scattering partition scheme: $\forall \Delta>0 \quad \exists(\sigma, \tau, \Delta)$-scattering partition.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ)-scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
(σ, τ)-scattering partition scheme: $\forall \Delta>0 \quad \exists(\sigma, \tau, \Delta)$-scattering partition.

Theorem ([Fil 20])

Suppose that every induced subgraph $G[A]$ of G admits (σ, τ)-scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O\left(\tau^{3} \sigma^{3}\right)$.

Observations

$$
(\sigma, \tau, \Delta) \text {-strong sparse } \quad \Rightarrow \quad(\sigma, \tau, \Delta) \text {-weak sparse . }
$$

- Each cluster strong diameter $\leq \Delta$. - Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.
- Each cluster weak diameter $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Observations

$$
(\sigma, \tau, \Delta) \text {-strong sparse } \quad \Rightarrow \quad(\sigma, \tau, \Delta) \text {-scattering. }
$$

Observations

$$
(\sigma, \tau, \Delta) \text {-strong sparse } \quad \Rightarrow \quad(\sigma, \tau, \Delta) \text {-scattering. }
$$

Theorem ([Fil 20])
Suppose all n-vertex trees admit a (σ, τ)-strong sparse partition scheme.

$$
\text { Then } \boldsymbol{\tau} \geq \frac{1}{3} \cdot n^{\frac{2}{\sigma+1}}
$$

Corollary

$\forall n>1$, there are trees T_{1}, T_{2} such that,

- T_{1} do not admit $\left(\frac{\log n}{\log \log n}, \log n\right)$-strong sparse partition scheme.
- T_{2} do not admit $\left(\sqrt{\log n}, 2^{\sqrt{\log n}}\right)$-strong sparse partition scheme.

Theorem ([Fil 20])
Every tree is (2, 3)-scatterable.

Theorem ([Fil 20])
Every tree admits a (4,3)-weak sparse partition scheme.

Doubling Metrics

Metric space has doubling dimension \boldsymbol{d} if every radius r ball can be covered by 2^{d} balls of radius $\frac{r}{2}$.

Doubling Metrics

Metric space has doubling dimension \boldsymbol{d} if every radius r ball can be covered by 2^{d} balls of radius $\frac{r}{2}$.

Example: Every d-dimensional Euclidean space has doubling dimension $O(d)$.

Doubling Metrics

Metric space has doubling dimension \boldsymbol{d} if every radius r ball can be covered by 2^{d} balls of radius $\frac{r}{2}$.

Packing Property
$N \subseteq X$ set s.t. $x, y \in N$ it holds that $d(x, y) \geq \delta$. Then $\forall x, R$,

$$
|B(x, R) \cap N| \leq(R / \delta)^{O(\boldsymbol{d})} .
$$

Doubling Metrics

Metric space has doubling dimension \boldsymbol{d} if every radius r ball can be covered by 2^{d} balls of radius $\frac{r}{2}$.

Packing Property

$N \subseteq X$ set s.t. $x, y \in N$ it holds that $d(x, y) \geq \delta$. Then $\forall x, R$,

$$
|B(x, R) \cap N| \leq(R / \delta)^{O(d)}
$$

The graph $G=(V, E, w)$ has doubling dimension $O(\boldsymbol{d})$, if $\left(V, d_{G}\right)$ (the shortest path metric) has doubling dimension $O(\boldsymbol{d})$.

Theorem ([JLNRS 05])
Every graph with doubling dimension d admits a
$\left(1,2^{O(d)}\right)$-weak sparse partition scheme.

Theorem ([JLNRS 05])
Every graph with doubling dimension d admits a $\left(1,2^{O(d)}\right)$-weak sparse partition scheme.

Theorem ([Fil 20])
Every graph with doubling dimension \boldsymbol{d} admits a $(O(d), \tilde{O}(d))$-strong sparse partition scheme.

Theorem ([Fil 20])
Every graph with doubling dimension \boldsymbol{d} admits a $(O(d), \tilde{O}(d))$-strong sparse partition scheme.

MPX [Miller, Peng, Xu 2013]

MPX [Miller, Peng, Xu 2013]

MPX [Miller, Peng, Xu 2013]

MPX [Miller, Peng, Xu 2013]

Inherently connected!

MPX [Miller, Peng, Xu 2013]

Inherently connected!
Formally, for $v \in V$ set $\boldsymbol{f}_{\mathbf{v}}(t)=\delta_{t}-d_{G}(v, t)$.
v joins the cluster C_{t} of the center t maximizing f_{v}.

Partition Algorithm
Algorithm: 1. Let N be a Δ-net.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.

Definition (Δ-net)

Set N s.t.:

- $\forall u, v \in N, d_{G}(u, v)>\Delta$.
- $\forall v \in V$ there is a net point $u \in N$ s.t. $d_{G}(u, v) \leq \Delta$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathrm{d}, 4 \Delta)$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathrm{d}, 4 \Delta)$.

Definition (Betailed exponential distribution $\operatorname{BExp}\left(\lambda, \lambda_{T}\right)$)
$X=\min \left\{X^{\prime}, \lambda_{T}\right\}$ where $X^{\prime} \sim \operatorname{Exp}(\lambda)$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / d, 4 \Delta)$.
3. Run [MPX 13] (v goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

Definition (Betailed exponential distribution $\operatorname{BExp}\left(\lambda, \lambda_{T}\right)$)
$X=\min \left\{X^{\prime}, \lambda_{T}\right\}$ where $X^{\prime} \sim \operatorname{Exp}(\lambda)$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathrm{d}, 4 \Delta)$.
3. Run $\left[\right.$ MPX 13] $\left(v\right.$ goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathbf{d}, 4 \Delta)$.
3. Run [MPX 13] (v goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

Set $N_{v}=N \cap B_{G}(v, 6 \Delta)$. By packing argument: $\left|N_{v}\right|=2^{O(d)}$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathbf{d}, 4 \Delta)$.
3. Run [MPX 13] (v goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

Set $N_{v}=N \cap B_{G}(v, 6 \Delta)$. By packing argument: $\left|N_{v}\right|=2^{O(d)}$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathbf{d}, 4 \Delta)$.
3. Run [MPX 13] (v goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

Consider $u \in B$, for all $t \in N, \quad\left|f_{v}(t)-f_{u}(t)\right| \leq d_{G}(u, v) \leq \frac{\Delta}{d}$

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathbf{d}, 4 \Delta)$.
3. Run [MPX 13] (v goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

Consider $u \in B$, for all $t \in N, \quad\left|f_{v}(t)-f_{u}(t)\right| \leq d_{G}(u, v) \leq \frac{\Delta}{d}$ B can intersects center t^{\prime} only if $f_{v}\left(t^{\prime}\right) \geq f_{v}\left(t_{1}\right)-\frac{2 \Delta}{d}$.

Partition Algorithm

Algorithm: 1. Let N be a Δ-net.
2. For each center $t \in N$ sample $\delta_{t} \sim \operatorname{BExp}(\Delta / \mathbf{d}, 4 \Delta)$.
3. Run [MPX 13] (v goes to $\left.\arg \max f_{v}(t)=\delta_{t}-d_{G}(v, t)\right)$.

For how many $t \in N_{v}$,

$$
f_{v}(t) \in\left[f_{v}\left(t_{1}\right)-\frac{2 \Delta}{\boldsymbol{d}}, f_{v}\left(t_{1}\right)\right] ?
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$
$\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta.\right)$

$\xrightarrow{\left[f_{v}\left(t_{1}\right)-\frac{2 \Delta}{d}, f_{v}\left(t_{1}\right)\right]}$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$
$\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{\mathbf{v}}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$ $\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta.\right)$ Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$
$\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$
$\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$
$\left(\lambda=\Delta / d, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}. By Memorylessness

$$
\operatorname{Pr}\left[\left.f_{v}^{\prime}(t)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}} \right\rvert\, f_{v}^{\prime}(t) \geq f_{v}^{\prime}\left(t_{s}^{\prime}\right)\right] \geq \operatorname{Pr}\left[\delta_{t}^{\prime}>\frac{2 \Delta}{\boldsymbol{d}}\right]=e^{-\frac{2 \Delta}{d} / \lambda}=\Omega(1) .
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$ $\left(\lambda=\Delta / d, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $f_{v}^{\prime}(t)=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}. By Memorylessness

$$
\operatorname{Pr}\left[\left.f_{v}^{\prime}(t)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}} \right\rvert\, f_{v}^{\prime}(t) \geq f_{v}^{\prime}\left(t_{s}^{\prime}\right)\right] \geq \operatorname{Pr}\left[\delta_{t}^{\prime}>\frac{2 \Delta}{\boldsymbol{d}}\right]=e^{-\frac{2 \Delta}{\boldsymbol{d}} / \lambda}=\Omega(1) .
$$

Using Chernoff, for $\tilde{s}=\frac{1}{\Omega(1)} s=\Omega(\boldsymbol{d}), f_{v}^{\prime}\left(t_{s}^{\prime}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$.

$\xrightarrow{\left[f_{v}\left(t_{1}\right)-\frac{2 \Delta}{d}, f_{v}\left(t_{1}\right)\right]}$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta\right.$.)
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}. By Memorylessness

$$
\operatorname{Pr}\left[\left.f_{v}^{\prime}(t)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}} \right\rvert\, f_{v}^{\prime}(t) \geq f_{v}^{\prime}\left(t_{s}^{\prime}\right)\right] \geq \operatorname{Pr}\left[\delta_{t}^{\prime}>\frac{2 \Delta}{\boldsymbol{d}}\right]=e^{-\frac{2 \Delta}{\boldsymbol{d}} / \lambda}=\Omega(1) .
$$

Using Chernoff, for $\tilde{s}=\frac{1}{\Omega(1)} s=\Omega(\boldsymbol{d}), f_{v}^{\prime}\left(t_{s}^{\prime}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta\right.$.)
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{\mathbf{v}}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}. By Memorylessness

$$
\operatorname{Pr}\left[\left.f_{v}^{\prime}(t)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}} \right\rvert\, f_{v}^{\prime}(t) \geq f_{v}^{\prime}\left(t_{s}^{\prime}\right)\right] \geq \operatorname{Pr}\left[\delta_{t}^{\prime}>\frac{2 \Delta}{\boldsymbol{d}}\right]=e^{-\frac{2 \Delta}{d} / \lambda}=\Omega(1)
$$

Using Chernoff, for $\tilde{s}=\frac{1}{\Omega(1)} s=\Omega(\boldsymbol{d}), f_{v}^{\prime}\left(t_{\tilde{s}}^{\prime}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$.
$t \in N_{v}$ is betailed with probability $\operatorname{Pr}\left[\delta_{t}=\lambda_{T}\right]=\operatorname{Pr}\left[\delta_{t}^{\prime} \geq \lambda_{T}\right]=e^{-\frac{\lambda_{T}}{\lambda}}=e^{-4 \boldsymbol{d}}$.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$

Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{\mathbf{v}}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}. By Memorylessness

$$
\operatorname{Pr}\left[\left.f_{v}^{\prime}(t)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}} \right\rvert\, f_{v}^{\prime}(t) \geq f_{v}^{\prime}\left(t_{s}^{\prime}\right)\right] \geq \operatorname{Pr}\left[\delta_{t}^{\prime}>\frac{2 \Delta}{\boldsymbol{d}}\right]=e^{-\frac{2 \Delta}{d} / \lambda}=\Omega(1)
$$

Using Chernoff, for $\tilde{s}=\frac{1}{\Omega(1)} s=\Omega(\boldsymbol{d}), f_{v}^{\prime}\left(t_{\tilde{s}}^{\prime}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$.
$t \in N_{v}$ is betailed with probability $\operatorname{Pr}\left[\delta_{t}=\lambda_{T}\right]=\operatorname{Pr}\left[\delta_{t}^{\prime} \geq \lambda_{T}\right]=e^{-\frac{\lambda_{T}}{\lambda}}=e^{-4 \boldsymbol{d}}$. The probability that at least \tilde{s} centers in N_{v} are betailed bounded by

$$
\left|N_{v}\right|^{\tilde{s}} \cdot\left(e^{-4 \boldsymbol{d}}\right)^{\tilde{s}}=2^{O(\boldsymbol{d} \tilde{s})} \cdot\left(e^{-4 \boldsymbol{d} \tilde{s}}\right)=e^{-\Omega(\boldsymbol{d} \tilde{\boldsymbol{s}})}
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$

Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{\mathbf{v}}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}. By Memorylessness

$$
\operatorname{Pr}\left[\left.f_{v}^{\prime}(t)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}} \right\rvert\, f_{v}^{\prime}(t) \geq f_{v}^{\prime}\left(t_{s}^{\prime}\right)\right] \geq \operatorname{Pr}\left[\delta_{t}^{\prime}>\frac{2 \Delta}{\boldsymbol{d}}\right]=e^{-\frac{2 \Delta}{d} / \lambda}=\Omega(1)
$$

Using Chernoff, for $\tilde{s}=\frac{1}{\Omega(1)} s=\Omega(\boldsymbol{d}), f_{v}^{\prime}\left(t_{\tilde{s}}^{\prime}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$.
$t \in N_{v}$ is betailed with probability $\operatorname{Pr}\left[\delta_{t}=\lambda_{T}\right]=\operatorname{Pr}\left[\delta_{t}^{\prime} \geq \lambda_{T}\right]=e^{-\frac{\lambda_{T}}{\lambda}}=e^{-4 \boldsymbol{d}}$. The probability that at least \tilde{s} centers in N_{v} are betailed bounded by

$$
\left|N_{v}\right|^{\tilde{s}} \cdot\left(e^{-4 \boldsymbol{d}}\right)^{\tilde{s}}=2^{O(\boldsymbol{d} \tilde{s})} \cdot\left(e^{-4 \boldsymbol{d} \tilde{s}}\right)=e^{-\Omega(\boldsymbol{d} \tilde{\boldsymbol{s}})}
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta\right.$.)
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta\right.$.)
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that

$$
f_{v}^{\prime}(t) \leq f_{v}^{\prime}\left(t_{s}^{\prime}\right)
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta\right.$.)
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that

$$
f_{v}(t) \leq f_{v}^{\prime}(t) \leq f_{v}^{\prime}\left(t_{s}^{\prime}\right)
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\} \quad\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that

$$
f_{v}(t) \leq f_{v}^{\prime}(t) \leq f_{v}^{\prime}\left(t_{s}^{\prime}\right)<f_{v}^{\prime}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}}
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$ $\left(\lambda=\Delta / d, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{\mathbf{v}}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that

$$
f_{v}(t) \leq f_{v}^{\prime}(t) \leq f_{v}^{\prime}\left(t_{s}^{\prime}\right)<f_{v}^{\prime}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}}=f_{v}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}}
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\}\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right)$ $\left(\lambda=\Delta / d, \lambda_{T}=4 \Delta.\right)$
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{\mathbf{v}}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that

$$
f_{v}(t) \leq f_{v}^{\prime}(t) \leq f_{v}^{\prime}\left(t_{s}^{\prime}\right)<f_{v}^{\prime}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}}=f_{v}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}} \leq f_{v}\left(t_{1}\right)-\frac{2 \Delta}{\boldsymbol{d}}
$$

$$
\xrightarrow{\left[f_{v}\left(t_{1}\right)-\frac{2 \Delta}{d}, f_{v}\left(t_{1}\right)\right]}
$$

Let $\delta_{t}^{\prime} \sim \operatorname{Exp}(\lambda), \delta_{t}=\min \left\{\delta_{t}^{\prime}, \lambda_{T}\right\} \quad\left(\right.$ note $\delta_{t} \sim \operatorname{BExp}\left(\lambda, \lambda_{T}\right) \quad\left(\lambda=\Delta / \boldsymbol{d}, \lambda_{T}=4 \Delta\right.$.)
Recall $f_{v}(t)=\delta_{t}-d_{G}(v, t)$. Set $\boldsymbol{f}_{v}^{\prime}(\boldsymbol{t})=\delta_{t}^{\prime}-d_{G}(v, t)$.
Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that

$$
f_{v}(t) \leq f_{v}^{\prime}(t) \leq f_{v}^{\prime}\left(t_{s}^{\prime}\right)<f_{v}^{\prime}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}}=f_{v}\left(t_{m}^{\prime}\right)-\frac{2 \Delta}{\boldsymbol{d}} \leq f_{v}\left(t_{1}\right)-\frac{2 \Delta}{\boldsymbol{d}}
$$

Corollary

W.h.p. $B=B_{G}\left(v, \frac{\Delta}{d}\right)$ intersects at most $s=O(\boldsymbol{d})$ clusters.

Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that $f_{v}(t)<f_{v}\left(t_{1}\right)-\frac{2 \Delta}{\boldsymbol{d}}$

Corollary

W.h.p. $B=B_{G}\left(v, \frac{\Delta}{d}\right)$ intersects at most $s=O(d)$ clusters.

Using the Lovász Local Lemma, we conclude

Fix $s=\Theta(\boldsymbol{d})$ and t_{s}^{\prime}.
There is index $m \leq \tilde{s} \leq s$, s.t. $f_{v}^{\prime}\left(t_{m}\right)>f_{v}^{\prime}\left(t_{s}^{\prime}\right)+\frac{2 \Delta}{\boldsymbol{d}}$ and t_{m}^{\prime} is not betailed.
For every $t \notin\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\}$, it holds that $f_{v}(t)<f_{v}\left(t_{1}\right)-\frac{2 \Delta}{\boldsymbol{d}}$

Corollary

W.h.p. $B=B_{G}\left(v, \frac{\Delta}{\boldsymbol{d}}\right)$ intersects at most $s=O(\boldsymbol{d})$ clusters.

Using the Lovász Local Lemma, we conclude

Theorem ([Fil 20])

Every graph with doubling dimension \boldsymbol{d} admits a $(O(\boldsymbol{d}), \tilde{O}(\boldsymbol{d}))$-strong sparse partition scheme.

Theorem ([Fil 20])
Every graph with doubling dimension \boldsymbol{d} admits a
$(O(d), \tilde{O}(d))$-strong sparse partition scheme.

Theorem ([Fil 20])

Every graph with pathwidth ρ admits a $\left(O(\rho), O\left(\rho^{2}\right)\right)$-strong sparse partition scheme, and a $(8,5 \rho)$-weak sparse partition scheme.

Theorem ([Fil 20])

Every cactus graph admits a $(4,5)$-scattering partition scheme, and a $(O(1), O(1))$-weak sparse partition scheme.

Theorem ([Fil 20])
Every chordal graph admits a (2,3)-scattering partition scheme, and a (24,3)-weak sparse partition scheme.

Theorem ([Fil 20])

Suppose that the space $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$ admits a (σ, τ)-weak sparse partition scheme.

$$
\text { Then } \left.\tau \geq\left(1+\frac{1}{2 \sigma}\right)^{d} \text { (alternatively } \sigma>\frac{d}{4 \ln \tau}\right) \text {. }
$$

Theorem ([Fil 20])

The space $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$ admits a (1,2d)-scattering partition scheme.

Theorem ([Fil 20])

The space $\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$ admits a $(1,2 d)$-scattering partition scheme.

$$
\text { (For weak: } \tau \geq\left(1+\frac{1}{2 \sigma}\right)^{d} \Rightarrow \text { no }\left(O(1), 2^{\Omega(d)}\right) \text {-weak partition scheme). }
$$

Theorem ([Fil 20])

Every $K_{r, r}$-free graph admits an $\left(O\left(r^{2}\right), 2^{r}\right)$-weak sparse partition scheme.

Theorem ([Fil 20])

Every $K_{r, r}$-free graph admits an $\left(O\left(r^{2}\right), 2^{r}\right)$-weak sparse partition scheme. What about scattering?

Conjecture

Planar graphs are $(O(1), O(1))$-scattering.

Conjecture

Planar graphs are ($O(1), O(1))$-scattering.
Will imply a solution for the SPR problem with distortion $\mathbf{O (1)}$ for planar graphs!

Consider a general weighted n vertex graph G :

- [JLNRS 05]: G admits $(O(\log n), O(\log n))$-weak sparse partition scheme.

Consider a general weighted n vertex graph G :

- [JLNRS 05]: G admits $(O(\log n), O(\log n))$-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$-scattering partition scheme.

Consider a general weighted n vertex graph G :

- [JLNRS 05]: G admits $(O(\log n), O(\log n))$-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$-scattering partition scheme.
- [Fil 20]: G admits $(O(\log n), O(\log n))$-strong sparse partition scheme.

Consider a general weighted n vertex graph G :

- [JLNRS 05]: G admits $(O(\log n), O(\log n))$-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$-scattering partition scheme.
- [Fil 20]: G admits $(O(\log n), O(\log n))$-strong sparse partition scheme.
- [Fil 20]: $\exists G$ which do not admit $\left(O\left(\frac{\log n}{\log \log n}\right), O(\log n)\right)$-weak sparse partition scheme.

Conjecture

Every n vertex graph admits $(O(1), O(\log n))$-scattering partition scheme. Furthermore, this is tight.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-weak sparse partition scheme, \Rightarrow solution to the UST problem with stretch $O\left(\tau \sigma^{2} \log _{\tau} n\right)$.

Theorem ([Fil 20])

Suppose that every induced subgraph $G[A]$ of G admits (σ, τ)-scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O\left(\tau^{3} \sigma^{3}\right)$.

Conjecture

Planar graphs are

 $(O(1), O(1))$-scattering.
Conjecture

General n vertex graph are $(O(1), O(\log n))$-scattering. Furthermore, this is tight.

Conjecture

Planar graphs are

 $(O(1), O(1))$-scattering.
Conjecture

General n vertex graph are $(O(1), O(\log n))$-scattering. Furthermore, this is tight.

Thank you for listening!

