
Scattering and Sparse Partitions,
and their Applications

Arnold Filtser

Columbia University

January 17, Simons A&G collaboration

Arnold Filtser Scattering and Sparse Partitions, and their Applications 1 / 15



Universal Steiner tree

G = (V ,E ,w) weighted graph,

cost = w(T ) opt = Minimal Steiner tree

Theorem ([Jia, Lin, Noubir, Rajaraman, Sundaram 05])

Suppose G admits (σ, τ)-sparse partition scheme,
⇒ solution to the UST problem with stretch O(τσ2 logτ n).
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Steiner Point removal problem

G = (V ,E ,w) - a weighted graph.
K ⊆ V - a terminal set of size k .

Construct a new graph M = (K ,E ′,wM) such that:

M has small distortion:

∀t, t ′ ∈ K , dG (t, t ′) ≤ dM(t, t ′) ≤ α · dG (t, t ′) .

M is a graph minor of G .

G,K M
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The distortion is: dM(t,t′)
dG (t,t′)

= 4
2

= 2

Theorem ([Fil 19] ¡6¿(improving [Kamma, Krauthgamer, Nguyen 15],
[Cheung 18]) )

Given G with k terminals, there is a solution to the SPR problem
with distortion O(log k).

The only known lower bound is 8 .

What about special graph families?

Theorem ([Fil 20])

Suppose that every induced subgraph G [A] of G admits (σ, τ)-scattering partition
scheme, ⇒ solution to the SPR problem with distortion O(τ 3σ3).
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Sparse partitions

P is a (σ, τ,∆)-sparse partition if:

• The diameter of each
cluster ≤ ∆.

• Every ball of radius ≤ ∆
σ

intersects at most τ
clusters.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-sparse partition scheme,
⇒ solution to the UST problem with stretch O(τσ2 logτ n).
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Strong Vs. Weak Diameter

Given a subset A ⊆ V ,
Weak Diameter of A := maxv ,u∈A dG (v , u) .

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)–weak sparse partition scheme,
⇒ solution to the UST problem with stretch O(τσ2 logτ n).
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Strong Vs. Weak Diameter

P is a (σ, τ,∆)-strong/weak sparse partition if:

• The strong/weak diameter of
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Scattering partitions
P is a (σ, τ,∆)-scattering partition if:

• Each cluster is
connected.

• The weak-diameter of
each cluster ≤ ∆.

• Every shortest path of
length ≤ ∆

σ
intersects at

most τ clusters.

Theorem ([Fil 20])

Suppose that every induced subgraph G [A] of G admits (σ, τ)-scattering partition
scheme, ⇒ solution to the SPR problem with distortion O(τ 3σ3).
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Theorem ([Fil 20])

Suppose all n-vertex trees admit a (σ, τ)-strong sparse partition scheme.

Then τ ≥ 1
3
· n

2
σ+1 .



Corollary
∀n > 1, there are trees T1, T2 such that,

• T1 do not admit
(

log n
log log n

, log n
)
-strong sparse partition scheme.

• T2 do not admit
(√

log n, 2
√

log n
)
-strong sparse partition scheme.



C3 C5 C7 C9C2 C4 C6 C8

C1

Theorem ([Fil 20])

Every tree is (2, 3)-scatterable.



C1

C2

C3 C5 C7 C8C4 C6 C8 C10

Theorem ([Fil 20])

Every tree admits a (4, 3)-weak sparse partition scheme.
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Doubling Metrics
Metric space has doubling dimension d if
every radius r ball can be covered by 2d balls of radius r

2
.

Packing Property

N ⊆ X set s.t. x , y ∈ N it holds that d(x , y) ≥ δ. Then ∀x ,R ,

|B(x ,R) ∩ N | ≤ (R/δ)O(d ) .

The graph G = (V ,E ,w) has doubling dimension O(d),
if (V , dG ) (the shortest path metric) has doubling dimension O(d).
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δt1 = 4
δt2 = 2

δt3 = 1
δt4 = 4

t1 t2

t3 t4

Inherently connected!

Formally, for v ∈ V set fv (t) = δt − dG (v , t).

v joins the cluster Ct of the center t maximizing fv .
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Definition (∆-net)

Set N s.t.:
• ∀u, v ∈ N , dG (u, v) > ∆.
• ∀v ∈ V there is a net point u ∈ N s.t. dG (u, v) ≤ ∆.
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Consider u ∈ B , for all t ∈ N , |fv (t)− fu(t)| ≤ dG (u, v) ≤ ∆
d

B can intersects center t ′ only if fv (t ′) ≥ fv (t1)− 2∆
d

.
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Algorithm: 1. Let N be a ∆-net.

Algorithm:

2. For each center t ∈ N sample δt ∼ BExp (∆/d, 4∆).

Algorithm:
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For how many t ∈ Nv , fv(t) ∈ [fv(t1)− 2∆
d
, fv(t1)] ?
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Corollary

W.h.p. B = BG (v , ∆
d

) intersects at most s = O(d) clusters.
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Theorem ([Fil 20])

Every graph with doubling dimension d admits a
(O(d), Õ(d))-strong sparse partition scheme.
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Theorem ([Fil 20])

Every graph with pathwidth ρ admits a (O(ρ),O(ρ2))-strong sparse partition scheme,
and a (8, 5ρ)-weak sparse partition scheme.
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Theorem ([Fil 20])

Every cactus graph admits a (4, 5)-scattering partition scheme,

Every cactus graphe

and a (O(1),O(1))-weak sparse partition scheme.
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Theorem ([Fil 20])

Every chordal graph admits a (2, 3)-scattering partition scheme,

Every cactus graph admem

and a (24, 3)-weak sparse partition scheme.
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Theorem ([Fil 20])

Suppose that the space
(
Rd , ‖ · ‖2

)
admits a (σ, τ)-weak sparse partition scheme.

Then τ ≥ (1 + 1
2σ

)d (alternatively σ > d
4 ln τ

).
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Theorem ([Fil 20])

The space
(
Rd , ‖ · ‖2

)
admits a (1, 2d)-scattering partition scheme.

(For weak: τ ≥ (1 + 1
2σ

)d ⇒ no (O(1), 2Ω(d))-weak partition scheme).



Scattering Weak

Strong

Doubling

Pathwidth

Trees

Chordal

CactusEuclidean space

Theorem ([Fil 20])

The space
(
Rd , ‖ · ‖2

)
admits a (1, 2d)-scattering partition scheme.

(For weak: τ ≥ (1 + 1
2σ

)d ⇒ no (O(1), 2Ω(d))-weak partition scheme).
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Theorem ([Fil 20])

Every Kr ,r -free graph admits an (O(r 2), 2r )-weak sparse partition scheme.

What about scattering?
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Theorem ([Fil 20])

Every Kr ,r -free graph admits an (O(r 2), 2r )-weak sparse partition scheme.
What about scattering?



Scattering Weak

Strong

Doubling

Pathwidth

Trees

Chordal
Planar, Kr-free

?

CactusEuclidean space

Conjecture

Planar graphs are (O(1),O(1))-scattering.
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CactusEuclidean space

Conjecture

Planar graphs are (O(1),O(1))-scattering.

Will imply a solution for the SPR problem with distortion O(1) for planar graphs!
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Consider a general weighted n vertex graph G :

[JLNRS 05]: G admits (O(log n),O(log n))-weak sparse partition scheme.

[KKN 14] (implicitly): G admits (O(log n),O(log n))-scattering partition scheme.

[Fil 20]: G admits (O(log n),O(log n))-strong sparse partition scheme.

[Fil 20]: ∃G which do not admit (O( log n
log log n

),O(log n))-weak sparse partition
scheme.
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Consider a general weighted n vertex graph G :

[JLNRS 05]: G admits (O(log n),O(log n))-weak sparse partition scheme.

[KKN 14] (implicitly): G admits (O(log n),O(log n))-scattering partition scheme.

[Fil 20]: G admits (O(log n),O(log n))-strong sparse partition scheme.

[Fil 20]: ∃G which do not admit (O( log n
log log n

),O(log n))-weak sparse partition
scheme.
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Conjecture

Every n vertex graph admits (O(1),O(log n))-scattering partition scheme.
Furthermore, this is tight.



Theorem ([JLNRS 05])

Suppose G admits (σ, τ)–weak sparse partition scheme,
⇒ solution to the UST problem with stretch O(τσ2 logτ n).

Theorem ([Fil 20])

Suppose that every induced subgraph G [A] of G admits (σ, τ)-scattering partition
scheme, ⇒ solution to the SPR problem with distortion O(τ 3σ3).

Thank you for listening!
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