Scattering and Sparse Partitions, and their Applications

Arnold Filtser

Columbia University

ICALP 2020 online presentation

Arnold Filtser

G = (V, E, w) weighted graph,

G = (V, E, w) weighted graph,

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

G = (V, E, w) weighted graph, cost = w(T) opt = Minimal Steiner tree

$$\operatorname{stretch}(T) = \max_{K \subseteq V} \frac{I(K)}{\operatorname{opt}(K)}$$

Theorem ([Jia, Lin, Noubir, Rajaraman, Sundaram 05]) Suppose G admits (σ, τ) -sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

Arnold Filtser

G = (V, E, w) - a weighted graph. $K \subseteq V$ - a terminal set of size k.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in \mathcal{K}, \ \ d_G(t,t')\leq d_{\mathcal{M}}(t,t')\leq lpha\cdot d_G(t,t') \;.$$

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$\forall t,t' \in K, \ d_G(t,t') \leq d_M(t,t') \leq \alpha \cdot d_G(t,t') \;.$$

• M is a graph **minor** of G.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• *M* is a graph **minor** of *G*.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$orall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• *M* is a graph **minor** of *G*.

Theorem ([**Fil** 19] (improving [Kamma, Krauthgamer, Nguyen 15], [Cheung 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$\forall t,t' \in K, \ \ d_G(t,t') \leq d_M(t,t') \leq lpha \cdot d_G(t,t') \;.$$

• *M* is a graph **minor** of *G*.

Theorem ([**Fil** 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

The only known lower bound is 8 [Chan, Xia, Konjevod, Richa 06].

G = (V, E, w) - a **weighted** graph. $K \subseteq V$ - a **terminal** set of size k. Construct a new graph $M = (K, E', w_M)$ such that:

• *M* has small **distortion**:

$$\forall t,t'\in K, \ \ d_G(t,t')\leq d_M(t,t')\leq lpha\cdot d_G(t,t') \ .$$

• *M* is a graph **minor** of *G*.

Theorem ([**Fil** 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

The only known lower bound is 8 [CXKR 06].

What about special graph families?

- *M* has small **distortion**: $\forall t, t' \in K, \ d_G(t, t') \leq d_M(t, t') \leq \alpha \cdot d_G(t, t')$.
- M is a graph **minor** of G.

Theorem ([Fil 19] (improving [KKN 15] [Che 18]))

Given G with k terminals, there is a solution to the SPR problem

with distortion $O(\log k)$.

The only known lower bound is 8 [CXKR 06].

What about special graph families?

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (σ, τ) -scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O(\tau^3 \sigma^3)$.

\mathcal{P} is a (σ, τ, Δ) -sparse partition if:

• The diameter of each cluster $\leq \Delta$.

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- The diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

\mathcal{P} is a (σ, τ, Δ) -sparse partition if:

 (σ, τ) -sparse partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -sparse partition.

\mathcal{P} is a (σ, τ, Δ) -sparse partition if:

 (σ, τ) -sparse partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -sparse partition.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -sparse partition scheme,

 \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, Weak Diameter of $A := \max_{v,u \in A} d_G(v, u)$.

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

Strong Vs. Weak Diameter

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u,v)=2$$

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$
$$d_{G[A]}(u, v) = 6$$

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$
$$d_{G[A]}(u, v) = 6$$

Weak diameter of A = 4. Strong diameter of A = 6.

Given a subset $A \subseteq V$, **Weak** Diameter of $A := \max_{v,u \in A} d_G(v, u)$. **Strong** Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$

 $d_{G[A]}(u, v) = \infty$

Given a subset $A \subseteq V$, Weak Diameter of $A := \max_{v,u \in A} d_G(v, u)$. Strong Diameter of $A := \max_{v,u \in A} d_{G[A]}(v, u)$.

(induced subgraph)

$$d_G(u, v) = 2$$

 $d_{G[A]}(u, v) = \infty$

Weak diameter of A = 4. Strong diameter of $A = \infty$.

 \mathcal{P} is a (σ, τ, Δ) -strong/weak sparse partition if:

- The strong/weak diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -**strong/weak** sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -**strong/weak** sparse partition for all $\Delta > 0$.

 \mathcal{P} is a (σ, τ, Δ) -strong/weak sparse partition if:

- The strong/weak diameter of each cluster $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ)-weak sparse partition scheme,

 \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -weak sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

[JLNRS 05] produces a non-subgraph solution to the UST problem.

 (σ, τ) -strong/weak sparse partition scheme: $\exists (\sigma, \tau, \Delta)$ -strong/weak sparse partition for all $\Delta > 0$.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -weak sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

[JLNRS 05] produces a non-subgraph solution to the UST problem.

[BDRRS 12]: subgraph solution using hierarchy of strong sparse partitions.

• Each cluster is connected.

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Scattering partitions

\mathcal{P} is a (σ, τ, Δ) -scattering partition if:

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -scattering partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -scattering partition.

- Each cluster is connected.
- The weak-diameter of each cluster $\leq \Delta$.
- Every shortest path of length $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

 (σ, τ) -scattering partition scheme: $\forall \Delta > 0 \quad \exists \ (\sigma, \tau, \Delta)$ -scattering partition.

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (σ, τ) -scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O(\tau^3 \sigma^3)$.

Observations

$$(\sigma, au, \Delta)$$
-strong sparse \Rightarrow (σ, au, Δ) -weak sparse .

- Each cluster **strong** diameter $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

- Each cluster weak diameter $\leq \Delta$.
- Every ball of radius $\leq \frac{\Delta}{\sigma}$ intersects at most τ clusters.

Observations

$$(\sigma, \tau, \Delta)$$
-strong sparse \Rightarrow (σ, τ, Δ) -scattering.

Arnold Filtser

Observations

$$(\sigma, \tau, \Delta)$$
-strong sparse \Rightarrow (σ, τ, Δ) -scattering.

Arnold Filtser

Suppose all n-vertex trees admit a (σ, τ) -strong sparse partition scheme.

Then
$$au \geq rac{1}{3} \cdot n^{rac{2}{\sigma+1}}$$
.

Corollary

 $\forall n > 1$, there are trees T_1 , T_2 such that,

- T₁ do not admit (^{log n}/_{log log n}, log n)-strong sparse partition scheme.
 T₂ do not admit (√log n, 2^{√log n})-strong sparse partition scheme.

Every tree is (2,3)-scatterable.

Every tree admits a (4,3)-weak sparse partition scheme.

Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a

 $(1, 2^{O(d)})$ -weak sparse partition scheme.

Theorem ([JLNRS 05])

Every graph with doubling dimension d admits a

 $(1, 2^{O(d)})$ -weak sparse partition scheme.

Every graph with doubling dimension d admits a

 $(O(d), \tilde{O}(d))$ -strong sparse partition scheme.

Every graph with **doubling dimension** d admits a $(O(d), \tilde{O}(d))$ -stre

 $(O(d), \tilde{O}(d))$ -strong sparse partition scheme.

Every graph with pathwidth ρ admits a $(O(\rho), O(\rho^2))$ -strong sparse partition scheme, and a $(8, 5\rho)$ -weak sparse partition scheme.

Every cactus graph admits a (4,5)-scattering partition scheme, and a (O(1), O(1))-weak sparse partition scheme.

Every chordal graph admits a (2,3)-scattering partition scheme, and a (24,3)-weak sparse partition scheme.

Every $K_{r,r}$ -free graph admits an $(O(r^2), 2^r)$ -weak sparse partition scheme.

Theorem ([Fil 20])

Every $K_{r,r}$ -free graph admits an $(O(r^2), 2^r)$ -weak sparse partition scheme. What about scattering?

Planar graphs are (O(1), O(1))-scattering.

Planar graphs are (O(1), O(1))-scattering.

Will imply a solution for the **SPR** problem with **distortion** O(1) for **planar** graphs!

• [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.

- [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$ -scattering partition scheme.

- [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$ -scattering partition scheme.
- [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.

- [JLNRS 05]: G admits (O(log n), O(log n))-weak sparse partition scheme.
- [KKN 14] (implicitly): G admits $(O(\log n), O(\log n))$ -scattering partition scheme.
- [Fil 20]: G admits (O(log n), O(log n))-strong sparse partition scheme.
- [Fil 20]: $\exists G$ which **do not** admit $(O(\frac{\log n}{\log \log n}), O(\log n))$ -weak sparse partition scheme.

Every *n* vertex graph admits $(O(1), O(\log n))$ -scattering partition scheme. Furthermore, this is tight.

Theorem ([JLNRS 05])

Suppose G admits (σ, τ) -weak sparse partition scheme, \Rightarrow solution to the **UST** problem with stretch $O(\tau \sigma^2 \log_{\tau} n)$.

Theorem ([Fil 20])

Suppose that every induced subgraph G[A] of G admits (σ, τ) -scattering partition scheme, \Rightarrow solution to the SPR problem with distortion $O(\tau^3 \sigma^3)$.

Planar graphs are (O(1), O(1))-scattering.

Conjecture

Treewidth k graphs are (f(k), g(k))-scattering.

Conjecture

General n vertex graph are $(O(1), O(\log n))$ -scattering. Furthermore, this is tight.

Planar graphs are (O(1), O(1))-scattering.

Conjecture

Treewidth k graphs are (f(k), g(k))-scattering.

Conjecture

General n vertex graph are $(O(1), O(\log n))$ -scattering. Furthermore, this is tight.

Thank you for listening!