On Notions of Distortion and an Almost Minimum Spanning Tree with Constant Average Distortion

Yair Bartal¹

Arnold Filtser² Ofer Neiman²

¹ Hebrew University of Jerusalem ² Ben-Gurion University of the Negev

January 11, 2016

The talk is about an improved version of the paper.

The talk is about an improved version of the paper.

For details: www.cs.bgu.ac.il/~arnoldf/

Embedding

Embedding

 $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \rightarrow (Y, d_Y)$ is called an **embedding**.

Embedding

Embedding

 $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \rightarrow (Y, d_Y)$ is called an **embedding**.

Distortion

f has **distortion** t if for every $x, y \in X$,

$$d_X(x,y) \leq d_Y(f(x),f(y)) \leq t \cdot d_X(x,y)$$
.

Embedding

Embedding

 $(X, d_X), (Y, d_Y)$ metric spaces. $f: (X, d_X) \rightarrow (Y, d_Y)$ is called an **embedding**.

Distortion

f has **distortion** t if for every $x, y \in X$,

$$d_X(x,y) \leq d_Y(f(x),f(y)) \leq t \cdot d_X(x,y)$$
.

Average distortion

$$\frac{1}{\binom{|X|}{2}} \cdot \sum_{v,u \in X} \frac{d_Y(f(v), f(u))}{d_X(v, u)}$$

Y.Bartal, A.Filtser, O.Neiman

On Notions of Distortion

Spanner

Graph spanner

Given a weighted graph G = (V, E, w), a subgraph $H = (V, E_H, w)$ of G is a spanner of G with distortion t if

$$\forall u, v \in V, \quad d_H(u, v) \leq t \cdot d_G(u, v)$$

Spanner

Graph spanner

Given a weighted graph G = (V, E, w), a subgraph $H = (V, E_H, w)$ of G is a spanner of G with distortion t if

$$\forall u, v \in V, \quad d_H(u, v) \leq t \cdot d_G(u, v)$$

The lightness of a H is

$$\Psi(H) = \frac{\sum_{e \in E_H} w(e)}{w(MST)}$$

Spanner

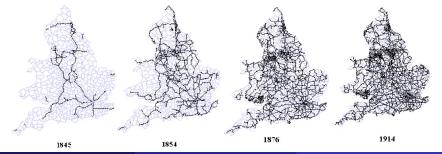
Graph spanner

Given a weighted graph G = (V, E, w), a **subgraph** $H = (V, E_H, w)$ of G is a **spanner** of G with **distortion** t if

$$\forall u, v \in V, \quad d_H(u, v) \leq t \cdot d_G(u, v)$$

The lightness of a H is

$$\Psi(H) = \frac{\sum_{e \in E_H} w(e)}{w(MST)}$$



Y.Bartal, A.Filtser, O.Neiman

On Notions of Distortion

G = (V, E, w) is a weighted graph.

G = (V, E, w) is a weighted graph.

The MST has lightness 1!

G = (V, E, w) is a weighted graph.

The **MST** has **lightness** 1! But unbounded **average distortion**...

G = (V, E, w) is a weighted graph.

The **MST** has **lightness** 1! But unbounded **average distortion**...

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with O(1) average distortion.

G = (V, E, w) is a weighted graph.

The **MST** has **lightness** 1! But unbounded **average distortion**...

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with O(1) average distortion. But unbounded lightness...

For any parameter $0 < \rho < 1$,

every weighted graph contains a spanning tree with

For any parameter $0 < \rho < 1$,

every weighted graph contains a spanning tree with

• $1 + \rho$ lightness.

For any parameter $0 < \rho < 1$,

every weighted graph contains a spanning tree with

- $1 + \rho$ lightness.
- $O(1/\rho)$ average distortion.

For any parameter $0 < \rho < 1$,

every weighted graph contains a spanning tree with

- $1 + \rho$ lightness.
- $O(1/\rho)$ average distortion.

Tight!

$f: (X, d_X) \to (Y, d_Y)$. The **Distortion** of f is $\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x,y)}$.

$$f: (X, d_X) \to (Y, d_Y)$$
. The **Distortion** of f is $\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x,y)}$.

Given a monotone increasing function $\alpha : \mathbb{N} \to \mathbb{R}_+$

 $f: (X, d_X) \to (Y, d_Y)$. The **Distortion** of f is $\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x,y)}$.

Given a monotone increasing function $\alpha : \mathbb{N} \to \mathbb{R}_+$ Priority $\pi = (x_1, \dots, x_n)$.

$$f: (X, d_X) \to (Y, d_Y)$$
. The **Distortion** of f is $\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x, y)}$.

Given a monotone increasing function $\alpha : \mathbb{N} \to \mathbb{R}_+$ Priority $\pi = (x_1, \dots, x_n)$.

Priority Distortion

 $f: X \to Y$ has priority distortion α w.r.t. π if

 $\forall x_j, y \in X \ d_X(x_j, y) \leq d_Y(f(x_j), f(y)) \leq \alpha(j) \cdot d_X(x_j, y)$

$$f: (X, d_X) \to (Y, d_Y)$$
. The **Distortion** of f is $\max_{x,y} \frac{d_Y(f(x), f(y))}{d_X(x,y)}$.

Given a monotone increasing function $\alpha : \mathbb{N} \to \mathbb{R}_+$ Priority $\pi = (x_1, \dots, x_n)$.

Priority Distortion

 $f: X \to Y$ has priority distortion α w.r.t. π if

$$\forall x_j, y \in X \ d_X(x_j, y) \leq d_Y(f(x_j), f(y)) \leq \alpha(j) \cdot d_X(x_j, y)$$

Theorem (Prioritized Spanner (This work))

Given a graph G = (V, E), parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Scaling Distortion

Scaling Distortion

Embedding $f : X \to Y$ has scaling distortion $\beta : (0,1) \to \mathbb{R}_+$ if $\forall \epsilon \in (0,1)$ at least $(1 - \epsilon)$ -fraction of the pairs suffer distortion at most $\beta(\epsilon)$.

Scaling Distortion

Scaling Distortion

Embedding $f : X \to Y$ has scaling distortion $\beta : (0,1) \to \mathbb{R}_+$ if $\forall \epsilon \in (0,1)$ at least $(1 - \epsilon)$ -fraction of the pairs suffer distortion at most $\beta(\epsilon)$.

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Scaling Distortion

Scaling Distortion

Embedding $f : X \to Y$ has scaling distortion $\beta : (0,1) \to \mathbb{R}_+$ if $\forall \epsilon \in (0,1)$ at least $(1 - \epsilon)$ -fraction of the pairs suffer distortion at most $\beta(\epsilon)$.

Theorem (Abraham, Bartal and Neiman 2006)

Every weighted graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Scaling Distortion implies constant average distortion

If f has scaling distortion $O(\frac{1}{\epsilon^{1-\delta}})$ for $\delta > 0$ then

Average Distortion = O(1).

Y.Bartal, A.Filtser, O.Neiman

On Notions of Distortion

Given a metric space (X, d_X) ,

Given a metric space (X, d_X) , there exists a **priority ranking** $\pi = (x_1, \ldots, x_n)$

Given a metric space (X, d_X) , there exists a priority ranking $\pi = (x_1, \ldots, x_n)$

s.t. every embedding with priority distortion α w.r.t π into (Y, d_Y)

Given a metric space (X, d_X) , there exists a priority ranking $\pi = (x_1, \ldots, x_n)$ s.t. every embedding with priority distortion α w.r.t π into (Y, d_Y) has scaling distortion $O(\alpha(4/\epsilon))$.

Given a metric space (X, d_X) , there exists a priority ranking $\pi = (x_1, \ldots, x_n)$ s.t. every embedding with priority distortion α w.r.t π into (Y, d_Y) has scaling distortion $O(\alpha(4/\epsilon))$.

Scaling also implies priority!

Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Theorem (Priority implies Scaling)

Priority distortion α w.r.t π implies scaling distortion $O(\alpha(4/\epsilon))$.

Theorem (Prioritized Spanner)

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Theorem (Priority implies Scaling)

Priority distortion α w.r.t π implies scaling distortion $O(\alpha(4/\epsilon))$.

Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log(1/\epsilon))/\rho$.

Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log(1/\epsilon))/\rho$.

Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log(1/\epsilon))/\rho$.

Theorem (Abraham, Bartal and Neiman 2006)

Any w.graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log(1/\epsilon))/\rho$.

Theorem (Abraham, Bartal and Neiman 2006)

Any w.graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Lemma (Scaling embeddings Composition)

If $\mathbf{f} : (X, d_X) \to (Y, d_Y)$ (respectively, $\mathbf{g} : (Y, d_Y) \to (Z, d_Z)$) has scaling distortion α (resp., β). Then $\mathbf{f} \circ \mathbf{g}$ has scaling distortion $\alpha(\epsilon/2) \cdot \beta(\epsilon/2)$.

Theorem (Scaling Spanner)

Spanner with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\log(1/\epsilon))/\rho$.

Theorem (Abraham, Bartal and Neiman 2006)

Any w.graph contains a spanning tree with scaling distortion $O(1/\sqrt{\epsilon})$.

Lemma (Scaling embeddings Composition)

If $\mathbf{f} : (X, d_X) \to (Y, d_Y)$ (respectively, $\mathbf{g} : (Y, d_Y) \to (Z, d_Z)$) has scaling distortion α (resp., β). Then $\mathbf{f} \circ \mathbf{g}$ has scaling distortion $\alpha(\epsilon/2) \cdot \beta(\epsilon/2)$.

$$\bigcirc$$
 \bigcirc \bigcirc

Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Scaling distortion $O(\frac{1}{e^{1-\delta}})$ implies O(1) average distortion.

Theorem

Spanning tree with lightness $1 + \rho$ and scaling distortion $\tilde{O}(\sqrt{1/\epsilon})/\rho$.

Scaling distortion $O(\frac{1}{e^{1-\delta}})$ implies O(1) average distortion.

Corollary (Main result)

Spanning tree with lightness $1 + \rho$ and average distortion $O(1/\rho)$.

BRACEVORSEVES

ECHNICAL DETAILS ARE COMING Y.Bartal, A.Filtser, O.Neiman January 11, 2016 13 / 21

On Notions of Distortion

Theorem (Priority implies scaling)

Given a metric space (X, d_X) , there exists a priority ranking $\pi = (x_1, \ldots, x_n)$ s.t. every embedding with priority distortion α w.r.t π into (Y, d_Y) has scaling distortion $O(\alpha(4/\epsilon))$.

Given $x \in X$ and $\epsilon \in (0,1)$, $R(x,\epsilon)$ is the **minimal** radius r such that $|B_X(x,r)| \ge \epsilon \cdot n$

Given $x \in X$ and $\epsilon \in (0, 1)$, $R(x, \epsilon)$ is the **minimal** radius r such that $|B_X(x,r)| \ge \epsilon \cdot n$ U $R(x,\epsilon)$

ϵ -Density Net

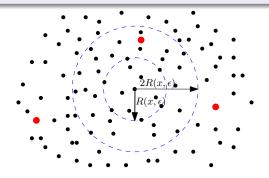
ϵ -Density Net is a subset $N \subseteq X$ such that:

- $\forall x \in X$ there exists $y \in N$ such that $d_X(x, y) \leq 2R(x, \epsilon)$.
- $|N| \leq 1/\epsilon$.

ϵ -Density Net

 ϵ -Density Net is a subset $N \subseteq X$ such that:

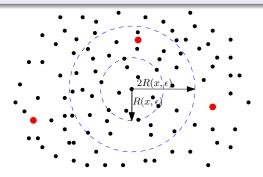
- $\forall x \in X$ there exists $y \in N$ such that $d_X(x, y) \leq 2R(x, \epsilon)$.
- $|N| \leq 1/\epsilon$.



ϵ -Density Net

 ϵ -Density Net is a subset $N \subseteq X$ such that:

- $\forall x \in X$ there exists $y \in N$ such that $d_X(x, y) \leq 2R(x, \epsilon)$.
- $|N| \leq 1/\epsilon$.



Theorem (H.Chan, M.Dinitz and A.Gupta 2006)

For every metric space and $\epsilon \in (0, 1)$ there **exists** an ϵ -density-net.

Y.Bartal, A.Filtser, O.Neiman

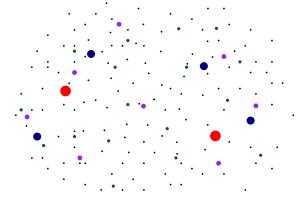
On Notions of Distortion

Priority implies Scaling - Proof

For $1 \le i \le \lceil \log n \rceil$ set $\epsilon_i = 2^{-i}$. Let N_i be an ϵ_i -density net.

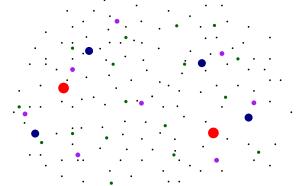
Priority implies Scaling - Proof

For $1 \le i \le \lceil \log n \rceil$ set $\epsilon_i = 2^{-i}$. Let N_i be an ϵ_i -density net.



Priority implies Scaling - Proof

For $1 \le i \le \lceil \log n \rceil$ set $\epsilon_i = 2^{-i}$. Let N_i be an ϵ_i -density net.



Permutation selection:

Given a graph G = (V, E), parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j)/\rho$.

Given a graph G = (V, E), parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j)/\rho$.

Lemma (Terminal light spanner)

Given a graph G = (V, E), a subset $K \subseteq V$ of **terminals** of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:

Given a graph G = (V, E), parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j)/\rho$.

Lemma (Terminal light spanner)

Given a graph G = (V, E), a subset $K \subseteq V$ of **terminals** of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that: **1)** Contains the **MST** of G.

Given a graph G = (V, E), parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j)/\rho$.

Lemma (Terminal light spanner)

Given a graph G = (V, E), a subset $K \subseteq V$ of **terminals** of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:

- **1)** Contains the **MST** of G.
- 2) Has lightness $1 + \delta$.

Given a graph G = (V, E), parameter $0 < \rho < 1$ and any priority ranking π of V, there exists a spanner H with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j)/\rho$.

Lemma (Terminal light spanner)

Given a graph G = (V, E), a subset $K \subseteq V$ of **terminals** of size k, and a parameter $0 < \delta < 1$, there exists a spanner H that:

- 1) Contains the MST of G.
- 2) Has lightness $1 + \delta$.

3) Every pair in $K \times V$ has distortion $O\left(\frac{\log k}{\delta}\right)$.

Theorem (Chechik and Wulff-Nilsen (SODA 16), following Chandra et.al and Elkin et.al.)

For every weighted n-vertex graph G and parameters $t > 1, \epsilon > 0$ there exist a $(2t - 1)(1 + \epsilon)$ spanner of lightness $O_{\epsilon}(n^{1/t})$.

Theorem (Chechik and Wulff-Nilsen (SODA 16), following Chandra et.al and Elkin et.al.)

For every weighted n-vertex graph G and parameters $t > 1, \epsilon > 0$ there exist a $(2t - 1)(1 + \epsilon)$ spanner of lightness $O_{\epsilon}(n^{1/t})$.

For $t = \log n$ and $\epsilon = 1$, they get $O(\log n)$ -spanner with lightness O(1).

Suppose that for every n vertex graph G there is a spanner H that:

- Has lightness ℓ .
- Has distortion t.

Suppose that for every n vertex graph G there is a spanner H that:

- Has lightness ℓ .
- Has distortion t.

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

Suppose that for every n vertex graph G there is a spanner H that:

- Has lightness ℓ .
- **2** Has distortion t.

Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:

- Has lightness $1 + \delta \ell$.
- **2** Has distortion t/δ .
- Ontains the MST.

Suppose that for every n vertex graph G there is a spanner H that:

- Image: Has lightness ℓ .O(1)Image: Has distortion t. $O(\log n)$
- Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:
 - Has lightness $1 + \delta \ell$.
 - **2** Has distortion t/δ .
 - Ontains the MST.

Suppose that for every n vertex graph G there is a spanner H that:

- Image: Has lightness ℓ .O(1)Image: Has distortion t. $O(\log n)$
- Then, for every n vertex graph G and parameter $0 < \delta < 1$, there is a spanner H that:
 - *Has* lightness $1 + \delta \ell$. $1 + \delta$
 - **a** Has distortion t/δ . $O(\log n)/\delta$
 - Ontains the MST.

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Is it possible to get **prioritized distortion** $O(\log j) / \rho$?

Spanner with lightness $1 + \rho$ and prioritized distortion $\tilde{O}(\log j) / \rho$.

Is it possible to get **prioritized distortion** $O(\log j) / \rho$?

Efficient implimintation

While the current implementation is polynomial, it is still far from practical.