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Abstract

It was conjectured by Gupta et al. [Combinator-
ica04] that every planar graph can be embedded into
`1 with constant distortion. However, given an n-vertex
weighted planar graph, the best upper bound on the
distortion is only O(

√
log n), by Rao [SoCG99]. In this

paper we study the case where there is a set K of ter-
minals, and the goal is to embed only the terminals into
`1 with low distortion. In a seminal paper, Okamura
and Seymour [J.Comb.Theory81] showed that if all the
terminals lie on a single face, they can be embedded
isometrically into `1. The more general case, where the
set of terminals can be covered by γ faces, was stud-
ied by Lee and Sidiropoulos [STOC09] and Chekuri et
al. [J.Comb.Theory13]. The state of the art is an up-
per bound of O(log γ) by Krauthgamer, Lee and Rika
[SODA19]. Our contribution is a further improvement
on the upper bound to O(

√
log γ). Since every planar

graph has at most O(n) faces, any further improvement
on this result, will be a major breakthrough, directly im-
proving upon Rao’s long standing upper bound. More-
over, it is well known that the flow-cut gap equals to
the distortion of the best embedding into `1. There-
fore, our result provides a polynomial time O(

√
log γ)-

approximation to the sparsest cut problem on planar
graphs, for the case where all the demand pairs can be
covered by γ faces.

1 Introduction

Metric embeddings is a widely used algorithmic tech-
nique that have numerous applications, notably in ap-
proximation, online and distributed algorithms. In par-
ticular, embeddings into `1 have implications to graph
partitioning problems. Specifically, the ratio between
the Sparsest Cut and the maximum multicommodity
flow (also called flow cut gap) is upper bounded by
the distortion of the optimal embedding into `1 (see
[LLR95, GNRS04]).

Given a weighted graph G = (V,E,w) with the
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Figure 1: The terminal vertices colored in red. The size of the
face cover is 4. The faces in the cover are encircled by a blue
dashed lines.

shortest path metric dG, and embedding f : V → `1,
the contraction and expansion of f are the smallest τ, ρ,
respectively, such that for every pair u, v ∈ V ,

1

τ
· dG(u, v) ≤ ‖f(u)− f(v)‖1 ≤ ρ · dG(u, v) .

The distortion of the embedding is τ · ρ. If τ = 1 (resp.
ρ = 1) we say that the embedding is non-contractive
(expansive). If ρ = O(1), we say that the embedding is
Lipschitz.

In this paper we focus on embeddings of planar
graphs into `1. Rao [Rao99] showed that every n-vertex
planar graph can be embedded into `1 with distortion
O(
√

log n). The best known lower bound is 2 by Lee
and Raghavendra [LR10]. A long standing conjecture
by Gupta et al. [GNRS04] states that every graph family
excluding a fixed minor, and in particular planar graphs,
can be embedded into `1 with constant distortion.

Consider the case where there is a set K ⊆ V
of terminals, and we are only interested in embedding
the terminals into `1. This version is sufficient for the
flow cut-gap equivalence, where the terminals are the
vertices with demands. Better embeddings might be
constructed when K has a special structure. A face
cover of G is a set of faces such that every terminal
belongs to some face from the set (see Figure 1 for an
illustration). Given a drawing of G in the plane, denote
by γ(G,K) the minimal size of a face cover. It was
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shown by Hurkens, Schrijver and Tardos [HST86], that
the result of Okamura and Seymour [OS81] implies that
if γ(G,K) = 1, that is, all the terminals lie on a single
face, then K embeds isometrically into `1 (a special case
is when G is outerplanar). For the general case, where
γ(G,K) = γ ≥ 1, the methods of Lee and Sidiropoulos
[LS09] imply distortion of 2O(γ). Chekuri, Shepherd
and Weibel [CSW13] constructed an embedding with
distortion of 3γ. Recently, Krauthgamer, Lee and Rika
[KLR19] managed to construct an embedding into `1
with O(log γ) distortion by first applying a stochastic
embedding into trees. This method has benefits, since
trees are very simple to work with. Additionally, the
result of [KLR19] is tight w.r.t stochastic embedding
into trees. We improve upon [KLR19] by embedding
directly into `1.

Theorem 1.1. Let G = (V,E,w) be a weighted planar
graph with a given drawing in the plane and K ⊆ V a set
of terminals. There is an embedding of K into `1 with
distortion O(

√
log γ(G,K)). Moreover, this embedding

can be constructed in polynomial time.

Since every n-vertex graph has O(n) faces, by setting
K = V , Theorem 1.1 re-proves the celebrated result
of Rao [Rao99]. Moreover, any improvement upon
Theorem 1.1 will be a major breakthrough.

In addition, Theorem 1.1 has implication on the
sparsest cut problem. Let c : E → R+ be an assignment
of capacities to the edges, and d :

(
K
2

)
→ R+ assignment

of demands to terminal pairs. The sparsity of a cut S is
the ratio between the capacity of the edges crossing the
cut to the demands crossing the cut. The sparsest cut
is the cut with minimal sparsity. Theorem 1.1 implies:

Corollary 1.1. Let G = (V,E) be a weighted planar
graph with a given drawing in the plane, K ⊆ V a
set of terminals, capacities c : E → R+ and demands
d :

(
K
2

)
→ R+. Let γ(G,K) = γ. Then there is a

polynomial time O(
√

log γ)-approximation algorithm for
the sparsest-cut problem.

See [LLR95, GNRS04, KLR19] for further details.

1.1 Technical Ideas In a recent paper of Abraham
et al. [AFGN18], among other results, the authors con-
structed an O(

√
log n)-distortion embedding of planar

graphs into `1. This embedding is based on shortest
path decompositions (SPD ). Even though the distortion
is similar, the new embedding is very different from the
classic embedding of Rao [Rao99]. An SPD is a hier-
archical decomposition of a graph using shortest paths.
The first level of the partition is simply V . In level i,
all the clusters are connected. To construct level i+ 1,
we remove a single shortest path from every cluster of

level i. Level i + 1 consists of the remaining connected
components. This process is repeated until all the ver-
tices are removed. The SPDdepth is the depth of the
hierarchy. Using cycle separators [Mil86] it is possible
to create an SPD of depth O(log n) for every planar
graph. [AFGN18] showed that every graph which ad-
mits an SPD of depth k, can be embedded into `1 with
distortion O(

√
k). In particular O(

√
log n) for planar

graphs.
In this paper we generalize the notion of SPD by

defining partial SPD (PSPD ). The difference is that in
PSPD we do not need all the vertices to be removed.
That is, in PSPD the last level of the hierarchy is
allowed to be non-empty. Given a planar graph G with
a terminal set K and a face cover of size γ(G,K) = γ,
using cycle separators [Mil86] we create a PSPD of depth
O(log γ), such that for every cluster C in the lower level
of the hierarchy, all the remaining terminals K ∩ C lie
on a single face. In other words, each such cluster is an
Okamura-Seymour (O-S) graph.

We invoke the embedding of [AFGN18] on our
PSPD , as a result we get an embedding with expansion
O(
√

log γ), where every pair of terminals v, u that either
was separated by the PSPD , or lie close enough to
some removed shortest path, has constant contraction.
All is left to do is take care of terminal pairs that
remained in the same cluster, and lie far from the
cluster boundary. As each such cluster is O-S graph, it
embeds isometrically to `1. However, we cannot simply
embed each cluster independently of the entire graph.
Such an oblivious embedding will create an unbounded
expansion, as close-by pairs might belong to different
clusters.

Our solution, and the main technical part of the pa-
per, is to create a truncated embedding 1. Specifically,
consider a cluster C where all the terminals lie on a sin-
gle face F . Let B = V \C be the boundary of C, which
is the set of vertices outside C. We construct a Lipschitz
embedding f of F into `1 such that the norm ‖f(v)‖1
of every vertex v ∈ F is bounded by its distance to the
boundary dG(v,B), while f has constant contraction for
pairs far enough from the boundary. Our final embed-
ding is defined as a concatenating of the embedding for
the PSPD with a truncated embedding for every clus-
ter, providing a constant contraction on all pairs and
O(
√

log γ) expansion.
Our truncated embedding does not uses the em-

bedding of [OS81]. As a middle step, given a parameter
t > 0, we provide a uniformly truncated embedding 2

1An embedding f : V → `1 is truncated if for every vertex v,
‖f(v)‖1 is bounded by some formerly specified number.

2In uniformly truncated embedding ‖f(v)‖1 is bounded for all
the vertices by a global single parameter.
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ft such that ft is Lipschitz, the norm ‖ft(v)‖1 of every
vertex v ∈ F is exactly t, and ft provides constant con-
traction for pairs at distance at most t. The construc-
tion of the uniformly truncated embedding goes through
a stochastic embedding into trees. To create the non-
uniformly truncated embedding we combine uniformly
truncated embeddings for all possible truncation scales.

1.2 Related Work The notion of face cover γ(G,K)
was extensively studied in the context of Steiner tree
problem [EMJ87, Ber90, KNvL19], cuts and (multicom-
modity) flows [MNS85, CW04], all pairs shortest path
[Fre91, Fre95, CX00] and cut sparsifiers [KR17, KPZ17].
Given a drawing and a terminal set K, γ(G,K) can
be found in 2O(γ(G,K)) · poly(n) time, but generally it
is known to be NP-hard [BM88]. Frederickson [Fre91]
(Lemma 7.1) presented a polynomial-time approxima-
tion scheme (PTAS) for the problem of finding a face
cover of minimum size. Specifically, given a planar
graph with a drawing, Frederickson’s algorithm finds
a face cover of size at most (1 + ε) ·γ(G,K) in O(2

3
ε ·n)

time. Denote by γ∗(G,K) the minimal size of a face
cover over all planar drawings of G. It is known that
computing γ∗(G,K) is NP-hard [BM88]. Frederickson
[Fre91] presented a 4-approximation for γ∗(G,K) in the
special case where K = V , i.e. the terminals are the en-
tire set V . However, for general K ⊆ V , to the best of
the author’s knowledge, no approximation is known.

It is well known that Euclidean metrics, as well as
distributions over trees, embed isometrically into `1 (See
[Mat02]). Therefore, in order to construct a bounded
distortion embedding to `1, it is enough to embed into
either `2 or a distribution over trees.

Outerplanar graphs are 1-outerplanar. A graph is
called k-outerplanar, if by removing all the vertices on
the outer face, the graph becomes k − 1-outerplanar.
Chekuri et al. [CGN+06] proved that k-outerplanar
graphs embed into distribution over trees with 2O(k)

distortion.
Next consider minor-closed graph families. Follow-

ing [GNRS04], Chakrabarti et al. [CJLV08] showed
that every graph with treewidth-2 (which excludes K4

as a minor) embeds into `1 with distortion 2 (which
is tight, as shown by [LR10]). Already for treewidth-3
graphs, it is unknown whether they embed into `1 with a
constant distortion. Abraham et al. [AFGN18] showed
that every graph with pathwidth k embeds into `1 with
distortion O(

√
k) (through `2), improving a previous

result of Lee and Sidiropoulos [LS13] who showed a

(4k)k
3+1 distortion (via embedding into trees). Graphs

with treewidth k are embeddable into `2 with distor-
tion O(

√
k log n) [KLMN05]. For genus g graphs, [LS10]

showed an embedding into Euclidean space with distor-

tion O(log g+
√

log n). Finally, for H-minor-free graphs,
combining the results of [AGG+14, KLMN05] provides
Euclidean embeddings with O(

√
|H| log n) distortion.

For other notions of distortion, Abraham et
al. [ABN11] showed that β-decomposable metrics
(which include planar graphs as well as all other fam-
ilies mentioned in this section), for fixed β, embed

into `2 with scaling distortion O(
√

log 1
ε ). This means

that for every ε ∈ (0, 1) all but an ε fraction of the

pairs in
(
V
2

)
have distortion at most O(

√
log 1

ε ). Bar-

tal et al. [BFN16] proved that β-decomposable met-
rics (for fixed β) embed into `2 with prioritized distor-
tion O(

√
log j). In more detail, given a priority order

{v1, . . . , vn} over the vertices, the pair {vi, vj} for j ≤ i,
will have distortion at most O(

√
log j)

2 Preliminaries

Graphs. We consider connected undirected graphs G =
(V,E) with edge weights w : E → R≥0. Let dG denote
the shortest path metric in G. For a vertex x ∈ V
and a set A ⊆ V , let dG(x,A) := mina∈A d(x, a), where
dG(x, ∅) :=∞. For a subset of vertices A ⊆ V , let G[A]
denote the induced graph on A. Let G \A := G[V \A]
be the graph after deleting the vertex set A from G.

See Section 1 for definitions of embedding, distor-
tion, contraction, expansion and Lipschitz. We say that
an embedding is dominating if it is non-contractive.
Given a graph family F , a stochastic embedding of G
into F is a distribution D over pairs (H, fH) where
H ∈ F and fH is an embedding of G into H. We say
that D is dominating if for every (H, fH) ∈ supp(D),
fH is dominating. We say that a dominating stochastic
embedding D has expected distortion t, if for every pair
u, v ∈ V it holds that

E(H,fH)∼D [dH (fH(u), fH(v))] ≤ t · dG(u, v) .

A terminated planar graph G = (V,E,w,K) is
a planar graph (V,E,w), with a subset of terminals
K ⊆ V . A graph G is outerplanar if there is a drawing
of G in the plane such that all the vertices lie on the
unbounded face. A face cover is a set of faces such that
every terminal lies on at least one face from the cover.
Given a graph G with a drawing in the plane, denote by
γ(G,K) the minimal size of a face cover. In the special
case where all the terminals are covered by a single face,
i.e. γ(G,K) = 1, we say that G is an Okamura-Seymour
graph, or O-S graph for short.

A tree decomposition of a graph G = (V,E) is a
tree T with nodes B1, . . . , Bs (called bags) where each
Bi is a subset of V such that: (1) For every edge
{u, v} ∈ E, there is a bag Bi containing both u and v.
(2) For every vertex v ∈ V , the set of bags containing
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v form a connected subtree of T . The width of a tree
decomposition is maxi{|Bi| − 1}. The treewidth of G
is the minimal width of a tree decomposition of G. It
is straightforward to verify that every tree graph has
treewidth 1.

Given a set of s embeddings fi : V → Rdi for
i ∈ {1, . . . , s}, the concatenation of f1, . . . , fs, denoted
by ⊕si=1fi, is a function f : V → R

∑
i di , where

the coordinates from 1 to d1 correspond to f1, the
coordinates from d1 + 1 to d1 + d2 correspond to f2,
etc.

3 Partial Shortest Path Decomposition

Abraham et al. [AFGN18] defined shortest path decom-
positions (SPD s ) of “low depth”. Every (weighted)
path graph has an SPDdepth 1. A graph G has an
SPDdepth k if there exist a shortest path P , such that ev-
ery connected component inG\P has an SPDdepth k−1.
In other words, given a graph, in SPD we hierarchi-
cally delete shortest paths from each connected compo-
nent, until no vertices remain. In this paper we define a
generalization called partial shortest path decomposition
(PSPD ), where we remove the requirement that all the
vertices will be deleted. See the formal definition below.
In Section 6 we will argue that every terminated planar
graph with face cover of size γ has a PSPD of depth
O(log γ) such that in each connected component in the
lower level of the hierarchy, all the terminals lie on a
single face.

A partial partition X of a set X, is a disjoint set of
subsets of X. In other words, for every A ∈ X , A ⊆ X,
and for every different subsets A,B ∈ X , A ∩B = ∅.

Definition 3.1. (PSPD ) Given a weighted graph
G = (V,E,w), a PSPD of depth k is a pair {X ,P},
where X is a collection X1, . . . ,Xk+1 of partial parti-
tions of V , P is a collection of sets of paths P1, . . . ,Pk,
and:

1. X1 = {V }.

2. For every 1 ≤ i ≤ k and every cluster X ∈ Xi,
there exist a unique path PX ∈ Pi such that PX is
a shortest path in G[X].

3. For every 2 ≤ i ≤ k+1, Xi consists of all connected
components of G[X \ PX ] over all X ∈ Xi−1.

The remainder of the PSPD {X ,P} is a pair {C,B}
where C = Xk+1 is the set of connected components in

the final level of the PSPD , and B =
⋃k
i=1 ∪Pi is the

set of all the vertices in the removed paths. B is also
called the boundary.

Under Definition 3.1 SPD is a special case of
PSPD where C = ∅ (and B = V ). The main theo-

rem in [AFGN18] states that if a graph G has SPD of
depth k, then it is embeddable into `1 with distortion
O(
√
k) 3. [AFGN18] construct a different embedding for

each level of the decomposition. Each such embedding is
Lipschitz, while for every pair of vertices u, v ∈ V there
is some level i such that the embedding for this level has
constant contraction w.r.t. u, v. Specifically, the level
i with the bounded contraction guarantee is the first
level in which either u, v are separated or the distance

between {u, v} to a deleted path is at most dG(u,v)
12 . In

particular, given a PSPD , by using the exact same em-
bedding from [AFGN18] (w.r.t. the existing levels in
the decomposition), we get the following theorem.

Theorem 3.1. (Embedding using PSPD ) Let G =
(V,E,w) be a weighted graph, and let {X ,P} be a
PSPD of depth k with remainder {C,B}. There is an
embedding f : V → `1 with the following properties:

1. For every u, v ∈ V , ‖f(v)− f(u)‖1 ≤ O(
√
k) ·

dG(u, v).

2. For every u, v ∈ V which are either separated by C
(that is u, v do not belong to the same cluster in C),

or such that min {dG(v,B), dG(u,B)} ≤ dG(u,v)
12 , it

holds that ‖f(v)− f(u)‖1 ≥ dG(u, v).

4 Uniformly Truncated Embedding

In this section we construct a uniformly truncated em-
bedding for O-S graphs into `1. Specifically, given a
truncation parameter t, we show how to embed O-S
graphs into `1 via a Lipschitz map such that the norm
of all the vectors is exactly t, and it is non-contractive
for terminals at distance at most t. We will use two pre-
vious results on stochastic embeddings. The following
theorem was proven by Englert et al. [EGK+14] (Thm.
12) in a broader sense. Lee et al. [LMM15] (Thm. 4.4)
observed that it implies embedding of O-S graphs into
outerplanar graphs.

Theorem 4.1. Consider a weighted planar graph G =
(V,E,w) with F ⊆ V being a face. There is a stochastic
embedding of F into dominating outerplanar graphs with
expected distortion O(1).

The following theorem was proven by Gupta et
al. [GNRS04] (Thm. 5.4).

3In fact [AFGN18] proved a more general result, stating
that G is embeddable into `p for p ∈ [1,∞], with distortion

O(k
min{ 1

2
, 1
p
}
). Similarly, in Theorem 3.1 can replace `1 with `p

and the expansion
√
k with k

min{ 1
2
, 1
p
}
. The contraction condition

and values remains the same.
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Theorem 4.2. Consider a weighted outerplanar graph
G = (V,E,w). There is a stochastic embedding of G
into dominating trees with expected distortion O(1).

As it was already observed in [KLR19], we conclude (the
proof is to Appendix A):

Corollary 4.1. Consider a planar graph G =
(V,E,w) with a face F . There is a stochastic embed-
ding of F into dominating trees with expected distortion
O(1).

A first step towards truncated embedding of O-S
graphs will be a truncated embedding of trees.

Lemma 4.1. Let T = (V,E,w) be some tree and let
t > 0 be a truncation parameter. There exists an
embedding f : T → `1 such that the following holds:

1. Sphere surface: for every v ∈ V , ‖f(v)‖1 = t.

2. Lipschitz: for every u, v ∈ V ,
. ‖f(v)− f(u)‖1 ≤ 4 · dT (v, u).

3. Bounded contraction: for every u, v ∈ V ,
‖f(v)− f(u)‖1 ≥ min {dT (v, u), t}.

Proof. Add a new vertex vt to T with edges of weight t
2

to all the other vertices. Call the new graph Tt. Notice
that Tt has treewidth 2. According to Chakrabarti et
al. [CJLV08], there is an embedding ftw of Tt into `1
with distortion 2. By rescaling, we can assume that
the contraction is 1 (and the expansion is at most 2).
Additionally, by shifting, we can assume that ftw(vt) =
~0. Let f be the embedding ftw with an additional
coordinate. The value of every v ∈ V in the new
coordinate equals to t − ‖ftw(v)‖1. We argue that f
has the desired properties.

The first property follows as for every vertex v ∈
V , the distance in T to vt is exactly t

2 , therefore
‖ftw(v)‖1 = ‖ftw(v)− ftw(vt)‖1 ≤ 2 · dTt(v, vt) = t.
Therefor ‖f(v)‖1 = ‖ftw(v)‖1 + |t− ‖ftw(v)‖1| = t.

The second property follows as ftw has expansion
2, and distances in Tt can only decrease w.r.t. distances
in T . Thus for every u, v ∈ V , ‖ftw(v)− ftw(u)‖1 ≤
2 · dTt(v, u) ≤ 2 · dT (v, u). By the triangle inequality,

‖f(v)− f(u)‖1 = ‖ftw(v)− ftw(u)‖1
+ |(t− ‖ftw(v)‖1)− (t− ‖ftw(u)‖1)|
≤ 2 · ‖ftw(v)− ftw(u)‖
≤ 4 · dT (v, u) .

For the third property, consider some pair u, v ∈ V .
As every shortest path containing the new vertex vt
will be of weight at least t, it holds that dTt(v, u) =
min{dT (v, u), t}. We conclude that ‖f(v)− f(u)‖1 ≥
‖ftw(v)− ftw(u)‖1 ≥ dTt(v, u) = min{dT (v, u), t}.

Next, we construct an embedding of O-S graphs into
the sphere of radius t in `1.

Corollary 4.2. Let G = (V,E,w) be a planar graph,
F a face, and t > 0 a truncation parameter. There
exists an embedding f : F → `1 such that the following
holds:

1. Sphere surface: for every v ∈ F , ‖f(v)‖1 = t.

2. Lipschitz: for every u, v ∈ F , ‖f(v)− f(u)‖1 ≤
O(d(v, u)).

3. Bounded Contraction: for every u, v ∈ F ,
‖f(v)− f(u)‖1 ≥ min {dG(v, u), t}.

Proof. Let D be the distribution over dominating trees
guaranteed in Corollary 4.1. For every T ∈ supp(D),
let fT be the embedding of T into `1 from Lemma 4.1
with parameter t. Our embedding is constructed by
concatenating all fT , scaled by their probabilities. That
is, f = ⊕{Pr [T ] · fT | T ∈ supp(D)}.

The first property follows as for every v ∈ X and fT ,
‖f(v)‖1 = t. Similarly, the third property follows as for
every u, v ∈ F and T ∈ supp(D), ‖fT (v)− fT (u)‖1 ≥
min {dT (v, u), t} ≥ min {d(v, u), t}.

The second property follows as for every v, u ∈ V ,

‖f(v)− f(u)‖1 =
∑
T

Pr [T ] · ‖fT (v)− fT (u)‖1

≤
∑
T

Pr [T ] · 4 · dT (v, u)

= 4 · ET∼D [dT (v, u)]

= O(dG(v, u)) .

Remark 4.2. Efficient construction: the support of the
distribution D might be of exponential size. Neverthe-
less, we can bypass this barrier by carefully sampling
polynomially many trees.
Denote by m the number of vertices on F . For a
pair v, u, by Markov inequality, the probability that a
sampled tree has distortion larger than m3 on u, v is
O(m−3). We say that a tree is bad if it has distor-
tion m3 on some pair, otherwise it is good. By the
union bound, the probability for sampling a bad tree is
O(1/m). Let D′ be the distribution D restricted to good
trees only. D′ is a distribution over dominating trees
with constant expected distortion, and worst case dis-
tortion m3. Sample m6 trees T1, . . . , Tm6 from D′. By
Hoeffding 4 and union inequalities, w.h.p. the average

4See https://sarielhp.org/misc/blog/15/09/03/chernoff.

pdf, Theorem 7.4.3 .
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distortion of all pairs will be constant. Define the em-

bedding f = ◦
{
m−6 · fTi

}m6

i=1
. The proof above still goes

through.

5 Non-Uniformly Truncated Embedding

In this section we generalize Corollary 4.2. Instead of a
uniform truncation parameter t for all the vertices, we
will allow a somewhat customized truncation .

Lemma 5.1. Let G = (V,E,w) be a planar graph with
a given drawing on the plane. Let F, I,B ⊆ V such that
F ⊆ I, I ∪ B = V , I ∩ B = ∅, and F is a face in G[I].
Then there is an embedding f : F → `1 such that the
following holds:

1. For every v ∈ F , ‖f(v)‖1 = dG(v,B).

2. Lipschitz: for every u, v ∈ F ,
. ‖f(v)− f(u)‖1 ≤ O(dG(v, u)).

3. Bounded Contraction: for every c ≥ 1, and every
u, v ∈ F such that min {dG(v,B), dG(u,B)} ≥
dG(u,v)

c it holds that ‖f(v)− f(u)‖1 ≥
dG(v,u)
12·c .

Proof. We will construct the non-uniformly truncated
embedding by a smooth combination of uniformly trun-
cated embeddings for all possible truncation scales. A
similar approach was applied in [AFGN18]. Assume (by
scaling) w.l.o.g. that the minimal weight of an edge in
G is 1. Let M ∈ N be minimal integer such that the
diameter of G is strictly bounded by 2M .

Consider the graph G[I] induced by I. Note that
G[I] is an O-S graph w.r.t. F . For every distance
scale t ∈ {0, 1, . . . ,M} let ft be the embedding of F
w.r.t. the shortest path metric induced by G[I] from
Corollary 4.2 with truncation parameter 2t. For a vertex
v ∈ I, let tv ∈ N be such that dG(v,B) ∈ [2tv , 2tv+1).

Set λv = dG(v,B)−2tv
2tv . Note that 0 ≤ λv < 1. For

t ∈ {0, . . . ,M} we define a function f̃t : F → `1,

f̃t(v)
.
=


λv · ft(v) if t = tv + 1,

(1− λv) · ft(v) if t = tv,
~0 otherwise.

Define f to be the concatenation of f̃0(v), . . . , f̃M (v).
For every v ∈ F , according to Corollary 4.2 it holds

that

‖f(v)‖1

(5.1)

= (1− λv) ·
∥∥∥f̃tv (v)

∥∥∥
1

+ λv ·
∥∥∥f̃tv+1

(v)
∥∥∥
1

= (1− λv) · 2tv + λv · 2tv+1

=
2tv+1 − dG(v,B)

2tv
· 2tv +

dG(v,B)− 2tv

2tv
· 2tv+1

= dG(v,B) .

Next we prove that f is Lipschitz. Consider a pair
of vertices u, v ∈ F . If dG(u, v) < dG[I](u, v), then
the shortest path from u to v in G has to go through
the boundary B. It follows that dG(u,B) + dG(v,B) ≤
dG(u, v). We conclude

‖f(v)− f(u)‖1 ≤ ‖f(v)‖1 + ‖f(u)‖1
(5.1)
= dG(v,B) + dG(u,B)

≤ dG(v, u) .

Otherwise, dG(u, v) = dG[I](u, v). It follows from
Corollary 4.2 that for every scale parameter t,
‖ft(v)− ft(u)‖ ≤ O

(
dG[I](u, v)

)
= O (dG(u, v)). We

will prove a similar inequality for f̃t. As f̃t(u) and f̃t(v)
combined might be nonzero in at most 4 different scales,
the bound on expansion will follow.

Denote by pt the scaling factor of v in f̃t(v). That is,
ptv+1 = λv, ptv = 1−λv, and pt = 0 for t /∈ {tv, tv + 1}.
Similarly, define qt for u. First, observe that for every
t,∥∥∥f̃t(v)− f̃t(u)

∥∥∥
1

= ‖pt · ft(v)− qt · ft(u)‖1
≤ min {pt, qt} · ‖ft(v)− ft(u)‖1
+ |pt − qt| ·max {‖ft(v)‖1 , ‖ft(u)‖1}
≤ O(dG(u, v)) + |pt − qt| · 2t .

It suffice to show that |pt − qt| = O(dG(u, v)/2t).
Indeed, for indices t /∈ {tu, tu + 1, tv, tv + 1}, pt = qt =
0, and in particular |pt − qt| = 0. Let us consider the
other cases. W.l.o.g. assume that dG (v,B) ≥ dG (u,B)
and hence tv ≥ tu. We proceed by case analysis.

• tu = tv : In this case, |ptv − qtv | =
|(1− λv)− (1− λu)| = |λv − λu| = |ptv+1 − qtv+1|.
The value of this quantity is bounded by

λv − λu =
dG (v,B)− 2tv

2tv
− dG (u,B)− 2tv

2tv

=
dG (v,B)− dG (u,B)

2tv

≤ dG(u, v)

2tv
.
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Hence, we get that |pt − qt| = O(dG(u, v)/2t) for
all t ∈ {tv, tv + 1}.

• tu = tv − 1 : It holds that

λv + (1− λu)

≤ 2 · dG (v,B)− 2tv

2tv
+

2tu+1 − dG (u,B)

2tu

=
(dG (v,B)− 2tv )−

(
2tu+1 − dG (u,B)

)
2tu

≤ dG(u, v)

2tu
.

We conclude:

|ptv+1 − qtv+1| = λv = O(dG(u, v)/2tv+1)

|ptv − qtv | = |1− λv − λu| = O(dG(u, v)/2tv )

|ptu − qtu | = 1− λu = O(dG(u, v)/2tu)

• tu < tv − 1 : By the definition of tv and tu,
dG(v, u) ≥ dG(v,B) − dG(u,B) ≥ 2tv − 2tu+1 ≥
2tv−1. It follows that for every t ≤ tv+1, |pt − qt| ≤
1 ≤ dG(u,v)

2tv−1 = O
(
dG(u,v)

2t

)
.

Next we argue that f has small contraction for
pairs far enough form the boundary. Consider a
pair of vertices u, v ∈ F , and let c ≥ 1 such that

min {dG(v,B), dG(u,B)} ≥ dG(u,v)
c . It holds that 2tv >

1
2 · dG(v,B) ≥ 1

2c · dG(u, v). For every t ≥ tv, by the
contraction property of Corollary 4.2, it holds that
(5.2)

‖ft(v)− ft(u)‖1 ≥ min
{
dG[I](v, u), 2t

}
≥ dG(v, u)

2c
,

where the last inequality follows as c ≥ 1. Assume
w.l.o.g. that dG(v,B) ≥ dG(u,B), thus tv ≥ tu and
let t ∈ {tv, tv + 1} such that pt ≥ 1

2 . Set S = 12 · c. We
consider two cases:

• If |pt − qt| > dG(v,u)
2t·S then

‖f(v)− f(u)‖1 ≥ ‖pt · ft(v)− qt · ft(u)‖1
≥ |‖pt · ft(v)‖1 − ‖qt · ft(u)‖1|

= |pt − qt| · 2t >
dG(v, u)

S
.

• Else |pt − qt| ≤ dG(v,u)
2t·S . First, assume that pt ≥ qt.

As dG(v,u)
2t·S ≤ 2c

S = 1
6 , it holds that qt ≥ 1

3 . We
conclude

‖f(v)− f(u)‖1
≥ ‖pt · ft(v)− qt · ft(u)‖1
≥ qt · ‖ft(v)− ft(u)‖1 − |pt − qt| · ‖ft(v)‖
(5.2)

≥ 1

3
· dG(v, u)

2c
− dG(v, u)

S
=

dG(v, u)

S
.

The case where qt > pt is symmetric.

Remark 5.2. In Lemma 5.1 we used uniformly trun-
cated embeddings in order to create a non-uniformly
truncated embedding. Such a transformation might be
relevant in other contexts as well. Consider a case where
each vertex v has some truncation parameter sv, and
there exists a uniformly truncated embedding for every
parameter t. As long as for every v, u, |sv − su| =
O(dG(u, v)), following the same construction as above,
one can create a similar non-uniformly truncated em-
bedding where ‖f(v)‖ = sv.

6 Embedding Parametrized by Face Cover:
Proof of Theorem 1.1

We will use the following separator theorem in order to
create a PSPD .

Theorem 6.1. Let G = (V,E,w,K) be a weighted
terminated planar graph. Suppose that γ(G,K) = γ.
Then there are two shortest paths P1, P2 in G, such that
for every connected component C in G\{P1∪P2} it holds
γ(G[C],K ∩ C) ≤ 2

3γ + 1.

We defer the proof of Theorem 6.1 to Appendix B.
If the size of the face cover is 2, we can reduce this
size to 1 by removing a single shortest path containing
vertices from both faces, the remaining graph will be
O-S. Similarly, if the size of the face cover is 3 we can
reduce to 1 by removing a pair of shortest paths. We can
invoke Theorem 6.1 repeatedly in order to hierarchically
partition G, reducing the size of the face cover in each
iteration. After O(log γ) iterations, the size of the face
cover in each connected component will be at most 1.

Corollary 6.1. Let G = (V,E,w,K) be a weighted
terminated planar graph such that γ(G,K) = γ. Then
there is an PSPD {X ,P} of depth O(log γ) and re-
mainder {C,B}, such that for every cluster C ∈ C,
all the terminals in C lie on a single face (i.e. ∀C ∈
C, γ(C,K ∩ C) ≤ 1).

Given the PSPD {X ,P} above, with remainder
{C,B}, we are ready to define the embedding of The-
orem 1.1. Let fPSPD be the embedding of G into `1
from Theorem 3.1, restricted to K. For every cluster
C ∈ C let BC = V \ C and FC be the outer face of C.
Let fC be the embedding from Lemma 5.1 with param-
eters FC , C,BC . Let f̂C be the embedding fC restricted
to K∩C, and extended to K by sending every v ∈ K\C
to ~0. The final embedding f will be a concatenation of
fPSPD with f̂C for all C ∈ C.

Expansion Consider a pair of vertices v, u ∈
V . By Theorem 3.1, ‖fPSPD (v)− fPSPD (u)‖1 =
O
(√

log γ
)
· dG(v, u). On the other hand, for ev-

ery C ∈ C, using Lemma 5.1, if u, v ∈ C then
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‖fC(v)− fC(u)‖1 = O (1) · dG(v, u). Otherwise if v ∈
C, u /∈ C ‖fC(v)− fC(u)‖ = dG(v,B) ≤ dG(v, u) (simi-
larly for v /∈ C, u ∈ C). As each vertex is nonzero only
in a single function fC , the O(

√
log γ) bound on the

expansion follows.
Contraction Consider a pair of terminal ver-

tices v, u. If either u, v are separated by C or

min {dG(v,B), dG(u,B)} ≤ dG(u,v)
12 , it holds that

‖fPSPD (v)− fPSPD (u)‖1 ≥ dG(u, v) and we are done.
Otherwise, there must exist a cluster C ∈ C such
that u, v ∈ FC and min {dG(v,BC), dG(u,BC)} ≥
dG(u,v)

12 . By Lemma 5.1
∥∥∥f̂C(v)− f̂C(u)

∥∥∥
1

=

‖fC(v)− fC(u)‖1 ≥
dG(u,v)
12·12 .

Theorem 1.1 now follows. Bellow we discuss the
implementation details of the embedding.

6.1 Polynomial Implementation Given a planar
graph with a drawing in the plane, using the PTAS
of Frederickson [Fre91] we can find a face cover of size
2 · γ(G,K) in linear time (see Section 1.2). Note that
using a cover of size 2 · γ(G,K) instead of γ(G,K) is
insignificant for our O(

√
log(γ(G,K)) ) upper bound.

Next, construct a PSPD for this face cover using cycle
separators. Since we construct at most n separators,
the construction of the PSPD also takes polynomial
time. Given a PSPD , the embedding of [AFGN18] is
efficiently computed.

After the creation of fPSPD we are left with a re-
mainder {C,B}. For every C ∈ C we start by comput-
ing uniformly truncated embeddings (see Remark 4.2).
Given an O-S graph with k terminals, there are at most
2k truncation scales (as each terminal participates in
two scales only). Thus in polynomial time we can com-
pute the embedding for all truncation scales, and thus
compute the non-uniformly truncated embedding.
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Tardos. On fractional multicommodity flows and
distance functions. Discrete Mathematics, 73:99–109,
1986. 2

[KLMN05] Robert Krauthgamer, James R. Lee, Manor
Mendel, and Assaf Naor. Measured descent: a new
embedding method for finite metrics. Geometric and
Functional Analysis, 15(4):839–858, 2005. 3

[KLR19] Robert Krauthgamer, James R. Lee, and Havana
Rika. Flow-cut gaps and face covers in planar graphs.
In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 525–
534, 2019. 2, 5

[KNvL19] Sándor Kisfaludi-Bak, Jesper Nederlof, and
Erik Jan van Leeuwen. Nearly eth-tight algorithms for
planar steiner tree with terminals on few faces. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1015–1034,
2019. 3

[KPZ17] Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-
Pawlewicz. An exponential lower bound for cut spar-
sifiers in planar graphs. CoRR, abs/1706.06086, 2017.
3

[KR17] Robert Krauthgamer and Inbal Rika. Re-
fined vertex sparsifiers of planar graphs. CoRR,
abs/1702.05951, 2017. 3

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich.
The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995. 1,
2

[LMM15] James R Lee, Manor Mendel, and Mohammad
Moharrami. A node-capacitated okamura–seymour
theorem. Mathematical Programming, 153(2):381–415,
2015. 4

[LR10] James R. Lee and Prasad Raghavendra. Coarse dif-
ferentiation and multi-flows in planar graphs. Discrete
& Computational Geometry, 43(2):346–362, 2010. 1, 3

[LS09] James R. Lee and Anastasios Sidiropoulos. On
the geometry of graphs with a forbidden minor. In
Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 245–254, 2009.
2

[LS10] James R. Lee and Anastasios Sidiropoulos. Genus
and the geometry of the cut graph. In Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pages 193–201, 2010. 3

[LS13] James R. Lee and Anastasios Sidiropoulos. Path-
width, trees, and random embeddings. Combinatorica,
33(3):349–374, 2013. 3
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A O-S into trees: Proof of Corollary 4.1

Corollary 4.1. Consider a planar graph G =
(V,E,w) with a face F . There is a stochastic embed-
ding of F into dominating trees with expected distortion
O(1).

Proof. Let DOP be the distribution over outerplanar
graphs from Theorem 4.1. For every G′ ∈ supp(DOP ),
let DG′ be the distribution over trees from Theorem 4.2
(w.r.t. G′). We define a distribution D of embeddings
of F into trees as follows. First sample an outerplanar
graph G′ using DOP . Then sample a tree T using
DG′ . We argue that the distribution D has the desired
properties.

All the embeddings in the support of D are domi-
nating metrics as both DOP and DG′ (for all G′) have
this property. Consider v, u ∈ V , it holds that

ET ′∼D [dT (v, u)]

=
∑
G′

Pr
DOP

[G′] ·

(∑
T

Pr
DG

[T | G′] · dT (v, u)

)
=
∑
G

Pr
DOP

[G′] ·O (dG′(v, u)) = O (dG(v, u)) .

B Faces Separator: Proof of Theorem 6.1

Theorem B.1. Let G = (V,E,w,K) be a weighted
terminated planar graph. Suppose that γ(G,K) = γ.
Then there are two shortest paths P1, P2 in G, such that
for every connected component C in G\{P1∪P2} it holds
γ(G[C],K ∩ C) ≤ 2

3γ + 1.

Proof. Even though similar statements to Theorem 6.1
already appeared in the literature, we provide a proof
for completeness. A planar cycle separator theorem for
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vertices have already became folklore [Mil86, Tho04].
Specifically, given a weight function ω : V → R+

over the vertices, and a root vertex v ∈ V , one can
efficiently find a cycle S, that consists of two shortest
paths rooted at v, such that the total weight of the
vertices in each connected component of G[V \ S] is at
most 2

3

∑
v∈V ω(v).

We start by defining a weight function ω. Let F be
a face cover of size γ. For every face F ∈ F , let vF ∈ F
be an arbitrary vertex (not necessarily unique). Initially
the weight of all the vertices is 0. For every F ∈ F , add
a single unit of weight to vF . Note that the total weight
of all the vertices is γ, while for every F ∈ F , the total
weight of the vertices in F is at least 1. See Figure 2
for an illustration.

Let v be an arbitrary vertex on the outer face. We
use the planar cycle separator theorem w.r.t. the weight
function ω and the root vertex v. As a result, we get
a pair of shortest paths P1, P2 rooted in v. Let C be a
connected component in G\{P1∪P2}. The total weight
of all the vertices in C is bounded by 2

3γ. Consider the
drawing of C obtained by removing all other vertices
from the drawing of G. Next we define a face cover FC .
For every F ∈ F , if vF ∈ C then add F to FC (or the
new face containing the remainder of F ). Additionally,
add the outer face in the drawing of C to FC .

It is straightforward that |FC | ≤ 2
3γ + 1. We argue

that FC is a face cover for K∩C. Indeed, let u ∈ K∩C.
Let F ∈ F be some face s.t. u ∈ F . If vF ∈ C, then F
(or its remainder) is in FC , and therefore u is covered.
Otherwise, vF /∈ C. Therefore vF and u were separated
by the deletion of P1, P2. Necessarily some vertex of F
belongs to P1 ∪ P2. We conclude that u is now part of
the outer face, and therefore covered.

v

P1 P2

F1

F2

F3

F4

F5

v4

v3

v1

v2

F6

v5, v6

F1
v1F5

v4

v3

F6

v5, v6

Figure 2: On the top displayed a graph G. The terminals
are colored red. The face cover consist of the faces
F1, . . . , F6, surrounded by blue dashed lines. For each
face Fi let vFi (denoted vi) be some vertex on Fi.
Define a weight function ω by adding a unit of weight to
every vi. The separator consists of shortest paths P1, P2

colored purple.
On the bottom displayed the graph after removing all
separator vertices. In each connected component C, a
new face cover is defined by taking the outer face and
adding a single face for every vi ∈ C.
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