
Approximate Nearest Neighbor for Curves –
Simple, Efficient, and Deterministic
Arnold Filtser
Department of Computer Science, Columbia University, New York, NY, USA
http://www.cs.columbia.edu/~arnoldf/
arnold273@gmail.com

Omrit Filtser
Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA
https://omrit.filtser.com/
omrit.filtser@gmail.com

Matthew J. Katz
Department of Computer Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
matya@cs.bgu.ac.il

Abstract
In the (1 + ε, r)-approximate near-neighbor problem for curves (ANNC) under some similarity
measure δ, the goal is to construct a data structure for a given set C of curves that supports
approximate near-neighbor queries: Given a query curve Q, if there exists a curve C ∈ C such that
δ(Q,C) ≤ r, then return a curve C′ ∈ C with δ(Q,C′) ≤ (1 + ε)r. There exists an efficient reduction
from the (1 + ε)-approximate nearest-neighbor problem to ANNC, where in the former problem the
answer to a query is a curve C ∈ C with δ(Q,C) ≤ (1 + ε) · δ(Q,C∗), where C∗ is the curve of C
most similar to Q.

Given a set C of n curves, each consisting of m points in d dimensions, we construct a data
structure for ANNC that uses n · O(1

ε
)md storage space and has O(md) query time (for a query

curve of length m), where the similarity measure between two curves is their discrete Fréchet or
dynamic time warping distance. Our method is simple to implement, deterministic, and results in
an exponential improvement in both query time and storage space compared to all previous bounds.

Further, we also consider the asymmetric version of ANNC, where the length of the query curves
is k � m, and obtain essentially the same storage and query bounds as above, except that m is
replaced by k. Finally, we apply our method to a version of approximate range counting for curves
and achieve similar bounds.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases polygonal curves, Fréchet distance, dynamic time warping, approximation
algorithms, (asymmetric) approximate nearest neighbor, range counting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.48

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/1902.07562

Funding Arnold Filtser : Supported by the Simons Foundation.
Omrit Filtser : Supported by the Eric and Wendy Schmidt Fund for Strategic Innovation, by the
Council for Higher Education of Israel, and by Ben-Gurion University of the Negev.
Matthew J. Katz: Supported by grant 1884/16 from the Israel Science Foundation.

Acknowledgements We wish to thank Boris Aronov for helpful discussions on the problems studied
in this paper.

EA
T

C
S

© Arnold Filtser, Omrit Filtser, and Matthew J. Katz;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 48; pp. 48:1–48:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.columbia.edu/~arnoldf/
mailto:arnold273@gmail.com
https://omrit.filtser.com/
mailto:omrit.filtser@gmail.com
mailto:matya@cs.bgu.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://arxiv.org/abs/1902.07562
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Approximate Nearest Neighbor for Curves

1 Introduction

Nearest neighbor search is a fundamental and well-studied problem that has various applica-
tions in machine learning, data analysis, and classification. This important task also arises
in applications where the recorded instances are trajectories or polygonal curves modeling,
for example, epigenetic and surgical processes, market value fluctuations, population growth,
the number of the requests per hour received at some web-page, and even the response of a
football player in a given situation.

Let C be a set of n curves, each consisting of at mostm points in d dimensions, and let δ be
some distance measure for curves. In the nearest-neighbor problem for curves, the goal is to
construct a data structure for C that supports nearest-neighbor queries, that is, given a query
curve Q of length at most m, return the curve C∗ ∈ C closest to Q (according to δ). The
approximation version of this problem is the (1 + ε)-approximate nearest-neighbor problem,
where the answer to a query Q is a curve C ∈ C with δ(Q,C) ≤ (1 + ε)δ(Q,C∗). We study a
decision version of this approximation problem, which is called the (1 + ε, r)-approximate
near-neighbor problem for curves (ANNC). Here, if there exists a curve in C that lies within
distance r of the query curve Q, one has to return a curve in C that lies within distance
(1+ε)r of Q. Note that there exists a reduction from the (1+ε)-approximate nearest-neighbor
problem to the (1 + ε, r)-approximate near-neighbor problem [14, 22, 13], at the cost of an
additional logarithmic factor in the query time and an O(log2 n) factor in the storage space.

In practice, it is often the case that the query curves are significantly shorter than the
input curves (e.g., Google-search queries). Thus, we also study the asymmetric setting of
(1 + ε, r)-ANNC, where each of the input curves has complexity at most m, while each query
curve has complexity at most k � m.

There are many methods that are used in real-world applications for comparing curves,
and one of the most prevalent is the (discrete) Fréchet distance (DFD for short), which
is often described by the following analogy. Two frogs are hopping from vertex to vertex
along two polygonal curves. At each step, one of the frogs or both frogs may advance to the
next vertex on its curve. The discrete Fréchet distance is defined as the smallest maximum
distance between the frogs that can be achieved in such a joint sequence of hops. Another
useful distance measure for curves or time series is the dynamic time warping distance (DTW
for short), in which instead of taking the smallest maximum distance we take the smallest
sum of distances.

In the last several years, a series of papers have been written investigating the approximate
near-neighbor problem for curves (ANNC) and its variants under the Fréchet distance
[15, 6, 10, 7, 1, 12, 2] (see Table 1), and several different approaches and sophisticated
methods were utilized in order to provide efficient data structures. Up to now, all data
structures for ANNC under DFD have either an exponential in m query time, or an infeasible
storage space bound. In this paper, for the first time, we manage to remove the exponential
factor from the query time, while also significantly reducing the space consumption. Our
approach consists of a discretization of space based on the input curves, which allows us to
prepare a small set of curves that captures all possible queries approximately.

Indyk [15] was the first to give a deterministic near-neighbor data structure for curves
under DFD. The data structure achieves an approximation factor of O((logm+ log logn)t−1)
given some trade-off parameter t > 1. Its space consumption is very high, O(m2|X|)tm1/t ·n2t,
where |X| is the size of the domain on which the curves are defined, and the query time is
(m logn)O(t). In Table 1 we set t = 1 + o(1) to obtain a constant approximation factor.

A. Filtser, O. Filtser, and M. J. Katz 48:3

Later, Driemel and Silvestri [10] presented a locality-sensitive-hashing scheme for curves
under DFD, improving the result of Indyk for short curves. Their data structure uses
O(24mdn logn) space and answers queries in O(24md logn) time with an approximation factor
of O(d3/2). They also provide a trade-off between approximation quality and computational
performance: for d = O(1), and given a parameter k ∈ [m], a data structure of size
O(22kmk−1n logn+mn) is constructed that answers queries in O(22kmk logn) time with an
approximation factor of O(m/k). They also show that this result can be applied to DTW,
but only for the extreme of the trade-off which gives an O(m) approximation.

Recently, Emiris and Psarros [12] presented near-neighbor data structures for curves
under both DFD and DTW. Their algorithm provides an approximation factor of (1 + ε),
at the expense of increased space usage and preprocessing time. They use the idea that
for a fixed alignment between two curves (i.e., a given sequence of hops of the two frogs),
the problem can be reduced to the near-neighbor problem for points in `∞ product of
`2 spaces. Their basic idea is to construct a data structure for every possible alignment.
Once a query is given, they query all these data structures and return the closest curve
found. This approach is responsible for the 2m factor in their query time. Furthermore,
they generalize this approach using randomized projections of `p-products of Euclidean
metrics (for any p ≥ 1), and define the `p,2-distance for curves (for p ≥ 1), which is exactly
DFD when p = ∞, and DTW when p = 1 (see Section 2). The space used by their data
structure is Õ(n) · (2 + d

logm)O(m1+1/ε·d log(1/ε)) with query Õ(dm1+1/ε · 24m logn) for DFD
and Õ(n) · 1

ε

O(md) space and Õ(d · 24m logn) query for DTW.

Subsequent work. In a recent manuscript, Driemel, Psarros, and Schmidt [9], study the
asymmetric setting of (1 + ε, r)-ANNC under DFD. They follow our approach of preparing
in advance the answers to all relevant queries on a discretization of the space, to construct
a randomized data structure with space in n ·O

(
kd3/2

ε

)dk
and query time in O(dk). They

also show how to derandomize their data structure, at the cost of increasing the space
to d3/2nkε−1 · O

(
kd3/2

ε

)dk
, and the query time to O(d5/2k2ε−1(logn + kd log kd

ε)). This
provides additional evidence that our approach to ANNC, although quite simple and easy to
implement, seems to produce more efficient data structures than those obtained using tools
such as LSH and randomized projections. Moreover, in this version of our manuscript we
show how to improve upon the results in [9] for the asymmetric setting.

Our results. We present a data structure for the (1 + ε, r)-approximate near-neighbor
problem using a bucketing method. We construct a relatively small set of curves I such that
given a query curve Q, if there exists some curve in C within distance r of Q, then one of
the curves in I must be very close to Q. The points of the curves in I are chosen from a
simple discretization of space, thus, while it is not surprising that we get the best query time,
it is surprising that we achieve a better space bound. Moreover, while the analysis of the
space bounds is rather involved, the implementation of our data structures remain simple in
practice.

See Table 1 for a summary of our results. In the table, we do not state our result for
the general `p,2-distance. Instead, we state our results for the two most important cases, i.e.
DFD and DTW, and compare them with previous work. Note that our results substantially
improve the current state of the art for any p ≥ 1. In particular, we remove the exponential
dependence on m in the query bounds and significantly improve the space bounds.

ICALP 2020

48:4 Approximate Nearest Neighbor for Curves

Our results for the asymmetric setting, where the query curve Q has complexity k � m,
are summarized in Table 2. We show that in the asymmetric setting for DFD, our data
structure can be slightly modified in order to achieve query time and storage space independent
of m. Moreover, the storage space and query time matches those of the symmetric setting,
by replacing m with k.

We also apply our methods to an approximation version of range counting for curves (for
the general `p,2 distance) and achieve bounds similar to those of our ANNC data structure.
Moreover, at the cost of an additional O(n)-factor in the space bound, we can also answer
the corresponding approximation version of range searching, thus answering a question of
Afshani and Driemel [1], with respect to DFD.

We note that our approach with obvious modifications works also in a dynamic setting,
that is, we can construct an efficient dynamic data structure for ANNC as well as for other
related problems such as range counting and range reporting for curves.

Another significant advantage of our approach is that, unlike some of the previous
solutions, our data structure always returns an answer, and never returns a curve at distance
greater than (1 + ε)r from the query curve, i.e., there are no false positives. This is an
important property of our solution, due to the fact that verifying the validity of the answer
(i.e., computing the distance between two curves) cannot be done in strongly subquadratic
time (assuming SETH, see [4]), which is already more than our query time (for d < m).

Table 1 Our approximate near-neighbor data structure under DFD and DTW compared to the
previous results.

Space Query Approx. Comments

DFD

O(m2|X|)m1−o(1)
· n2+o(1) (m logn)O(1) O(1) deterministic, [15]

O(24mdn logn) O(24md logn) O(d3/2) randomized, using LSH [10]

Õ(n) · (2 + d
log m

)O(m1+1/ε·d log(1
ε

))
Õ(dm1+1/ε · 24m log n) 1 + ε randomized, [12]

n ·O(1
ε
)md O(md) 1 + ε deter. (rand. construction),

Theorem 9

DTW

O(n logn+mn) O(m logn) O(m) randomized, using LSH,
d = O(1), [10]

Õ(n) · 1
ε

O(md)
Õ(d · 24m logn) 1 + ε randomized, [12]

n ·O(1
ε
)m(d+1) O(md) 1 + ε deter. (rand. construction),

Theorem 15

More related work. De Berg, Gudmundsson, and Mehrabi [7] described a dynamic data
structure for approximate nearest neighbor for curves (which can also be used for other types
of queries such as range reporting), under the (continuous) Fréchet distance. Their data
structure uses n · O

(1
ε

)2m space and has O(m) query time, but with an additive error of
ε · reach(Q), where reach(Q) is the maximum distance between the start vertex of the query
curve Q and any other vertex of Q. Furthermore, their query procedure might fail when the
distance to the nearest neighbor is relatively large.

Afshani and Driemel [1] studied (exact) range searching under both the discrete and
continuous Fréchet distance. In this problem, the goal is to preprocess C such that given a
query curve Q of length mq and a radius r, all the curves in C that are within distance r from

A. Filtser, O. Filtser, and M. J. Katz 48:5

Table 2 Summary of previous and current results for the asymmetric approximate near-neighbor
data structure for curves. All the results in the table are w.r.t. DFD. The approximation ratio is
1 + ε for ε ∈ (0, 1), and our data structures always succeed. Historic note: [9] is a subsequent work
to the first version of this paper arXiv:1902.07562. In this second version we also apply our counting
techniques to the asymmetric cases.

Space Query Deterministic
construction?

Reference

n ·
(
O(kd3/2

ε
)kd
)

O(kd) no [9]

n ·
(
O(kd3/2

ε
)kd+1

)
O(k2d5/2

ε
(logn+ kd log(kd

ε
))) yes [9]

n ·O(1
ε
)kd O(kd) no Theorem 11

n ·O(1
ε
)kd O(kd log(nkd

ε
)) yes Theorem 18

Q can be found efficiently. For DFD, their data structure uses O(n(log logn)m−1) space and
has O(n1− 1

d · logO(m) n ·mO(d)
q) query time, where mq is limited to logO(1) n. Additionally,

they provide a lower bound in the pointer model, stating that every data structure with
Q(n) +O(k) query time, where k is the output size, has to use roughly Ω

(
(n/Q(n))2) space

in the worst case (even for mq = 1). Afshani and Driemel conclude their paper by asking
whether more efficient data structures might be constructed if one allows approximation.

De Berg, Cook IV, and Gudmundsson [6], considered the following range counting problem
under the continuous Fréchet distance. Given a polygonal curve C with m vertices, they
show how to preprocess it into a data structure of size O(k · polylog(m)), so that, given a
query segment s, one can return a constant approximation of the number of subcurves of C
that lie within distance r of s in O(m√

k
· polylog(m)) time, where k is a parameter between

m and m2.
Aronov et al. [2] managed to obtain practical bounds for two cases of the asymmetric

(1 + ε, r)-ANNC under DFD: (i) when Q is a line segment (i.e., k = 2), or (ii) when C consists
of line segments (i.e., m = 2). The bounds on the size of the data structure and query time
are nearly linear in the size of the input and query curve, respectively. Specifically, for the
case where k = 2, they achieve query time O(log4(nε)) and storage space O(n 1

ε4 log4(nε)).
They also provide efficient data structures for several other variants of the problem: the
(exact) NNC where `∞ is used for interpoint distances, and the case where the location of
the input curves is only fixed up to translation.

1.1 Technical ideas
We use a discretization of the space, by laying a d-dimensional uniform grid with edge length
εr√
d
. The main ingredient in our data structure is then a relatively small set I of curves

defined by grid points, which represents all possible queries. For each curve in I we store an
index of a close enough curve from the input set C. Given a query Q sufficiently close to
some curve in C, we find a representative Q′ in I by simply rounding Q’s vertices and return
the index of the curve stored for Q′.

Given a point x ∈ Rd, the number of grid points that are within distance (1 + ε)r from x

is bounded by O(1
ε)d (Corollary 7). Thus, given a curve C of length m, the total number of

grid points that are within distance (1 + ε)r from one of its vertices is m ·O(1
ε)d. Naively,

the number of curves needed to represent all possible queries of length m within distance

ICALP 2020

https://arxiv.org/abs/1902.07562

48:6 Approximate Nearest Neighbor for Curves

r of C is bounded by the number of ways to choose m points with repetitions from a set
of grid points of size m ·O(1

ε)d, which is bounded by mm ·O(1
ε)md. This infeasible bound

on the storage space might be the reason why more sophisticated solutions for ANNC have
been suggested throughout the years.

One of the main technical contributions of this paper is an analysis leading to a significantly
better bound, if we store only candidate curves that are within distance (1 + ε)r from C.
Actually, in Section 3 we show that for the case of DFD, it is sufficient to store a set of
representative curves of size only O(1

ε)md for each input curve. The basic idea is to bound
the number of representatives that can be obtained by some fixed alignment between C and
the candidate curve (see Claim 8).

For the general case of `p,2-distance (including DTW), we are minimizing the sum of
distances instead of the maximum distance (as in DFD). Thus, we have to use a more dense
grid (with edge length εr

(2m)1/p
√
d
), and the situation becomes more complicated. First, unlike

DFD, the triangle inequality does not hold for `p,2-distance in general (including DTW).
Second, since DFD is a min-max measure, the choice of different vertices for a representative
curve is “independent” in a sense, whereas for `p,2-distance in general, the choice of different
vertices depends on their sum of distances from the input curve. Using more careful counting
arguments and analysis of the alignment between two curves, we are able to show that in
this case the number of representative curves that our data structure has to store per input
curve is bounded by O(1

ε)m(d+1) (see Claim 13).
To store the set I we simply use a dictionary, which can be implemented using a hash table

and guarantees a query time linear in the size of the query. To obtain a fully deterministic
solution, one can use a search tree instead. However, a naive implementation using a binary
search tree results in an additional factor of O(log |I|) = O(md log(nε)) to the query time,
i.e., in a query time of O(m2d2 log(nε)). We show how to implement the dictionary using a
prefix tree, exploiting the fact that the vertices of the curves in I are from a relatively small
set of grid points, which improves the query time to O(md log(nmdε)).

For the asymmetric setting (where the length of a query is k � m), we use simplifications
of the input curves in order to obtain bounds that are independent of m. Given a curve C of
length m, a simplification Π of C is a curve of length k � m that is relatively close to C.
Simplifications were used in order to provide approximate solutions in several asymmetric
versions of problems on curves, such as clustering [5], and distance oracles [8, 9].

By the triangle inequality for DFD, every query curve Q within distance r from an input
curve C is at distance at most 2r from the simplification Π (where Π is within distance r
from C). Thus, it is enough to prepare for query curves at distance at most 2r from Π,
which follows from previous arguments. Note that the query time and storage space are
independent of m.

2 Preliminaries

To simplify the presentation, we assume throughout the paper that all the input curves have
exactly the same size, m, and all the query curves have exactly the same size, either m or
k, depending on whether we are considering the standard or the asymmetric version. This
assumption can be easily removed (see Remark 16 at the end of Section 5).

Let C be a set of n curves, each consisting of m points in d dimensions, and let δ be some
distance measure for curves.

I Problem 1 ((1 + ε)-approximate nearest-neighbor for curves). Given a parameter 0 < ε ≤ 1,
preprocess C into a data structure that given a query curve Q, returns a curve C ′ ∈ C, such
that δ(Q,C ′) ≤ (1 + ε) · δ(Q,C), where C is the curve in C closest to Q.

A. Filtser, O. Filtser, and M. J. Katz 48:7

I Problem 2 ((1 + ε, r)-approximate near-neighbor for curves). Given a parameter r and
0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, if there exists a
curve Ci ∈ C such that δ(Q,Ci) ≤ r, returns a curve Cj ∈ C such that δ(Q,Cj) ≤ (1 + ε)r.

I Problem 3 (Asymmetric (1 + ε, r)-approximate near-neighbor for curves). Given parameters
r,k, and 0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q of length
k, if there exists a curve Ci ∈ C such that δ(Q,Ci) ≤ r, returns a curve Cj ∈ C such that
δ(Q,Cj) ≤ (1 + ε)r.

Curve alignment. Given two integers m1,m2, let τ := 〈(i1, j1), . . . , (it, jt)〉 be a sequence
of pairs where i1 = j1 = 1, it = m1,jt = m2, and for each 1 < k ≤ t, one of the following
conditions holds:
(i) ik = ik−1 + 1 and jk = jk−1,
(ii) ik = ik−1 and jk = jk−1 + 1, or
(iii) ik = ik−1 + 1 and jk = jk−1 + 1.
We call such a sequence τ an alignment of two curves.

Let P = (p1, . . . , pm1) and Q = (q1, . . . , qm2) be two curves of lengthsm1 andm2, respectively,
in d dimensions. We say that an alignment τ w.r.t. P and Q matches pi and pj if (i, j) ∈ τ .

Discrete Fréchet distance (DFD). The Fréchet cost of an alignment τ w.r.t. P and Q is
σdF (τ(P,Q)) := max(i,j)∈τ ‖pi − qj‖2. The discrete Fréchet distance is defined over the set
T of all alignments as

ddF (P,Q) = min
τ∈T

σdF (τ(P,Q)).

Dynamic time wrapping (DTW). The time warping cost of an alignment τ w.r.t. P and
Q is σDTW (τ(P,Q)) :=

∑
(i,j)∈τ ‖pi − qj‖2. The DTW distance is defined over the set T of

all alignments as

dDTW (P,Q) = min
τ∈T

σDTW (τ(P,Q)).

`p,2-distance for curves. The `p,2-cost of an alignment τ w.r.t. P and Q is σp,2(τ(P,Q)) :=(∑
(i,j)∈τ ‖pi − qj‖

p
2

)1/p
. The `p,2-distance between P and Q is defined over the set T of all

alignments as

dp,2(P,Q) = min
τ∈T

σp,2(τ(P,Q)).

Notice that `p,2-distance is a generalization of DFD and DTW, in the sense that σdF =
σ∞,2 and ddF = d∞,2, σDTW = σ1,2 and dDTW = d1,2. Also note that DFD satisfies the
triangle inequality, but DTW and `p,2-distance (for p 6=∞) do not (see Section 5 for details).

Emiris and Psarros [12] showed that the number of all possible alignments of two curves
is in O(m · 22m). We reduce this bound by counting only alignments that can determine
the `p,2-distance between two curves.1 More formally, let τ be an alignment. If there

1 Since our storage space is already in O(1
ε)md, and m · 22m ≤ 32m is in O(1)md, we could have used this

larger upper bound. However, in Lemma 4 we show a tight upper bound on the number of relevant
alignments, which may be useful for other applications.

ICALP 2020

48:8 Approximate Nearest Neighbor for Curves

exists an alignment τ ′ such that τ ′ ⊂ τ , then clearly σp,2(τ ′(P,Q)) ≤ σp,2(τ(P,Q)), for any
1 ≤ p ≤ ∞ and for any two curves P and Q. In this case, we say that τ cannot determine
the `p,2-distance between two curves.

I Lemma 4. The number of different alignments that can determine the `p,2-distance between
two m-curves (for any 1 ≤ p ≤ ∞) is at most O(22m

√
m

).

Proof. Let τ = 〈(i1, j1), . . . , (it, jt)〉 be an alignment. Notice that m ≤ t ≤ 2m − 1. By
definition, τ has 3 types of (consecutive) subsequences of length two:
(i) 〈(ik, jk), (ik + 1, jk)〉,
(ii) 〈(ik, jk), (ik, jk + 1)〉, and
(iii) 〈(ik, jk), (ik + 1, jk + 1)〉.

Denote by T1 the set of all alignments that do not contain any subsequence of type
(iii). Then, any τ1 ∈ T1 is of length exactly 2m− 1. Moreover, τ1 contains exactly 2m− 2
subsequences of length two, of which m−1 are of type (i) and m−1 are of type (ii). Therefore,
|T1| =

(2m−2
m−1

)
= O(22m

√
m

).
Assume that an alignment τ contains a subsequence of the form (ik, jk − 1), (ik, jk), (ik +

1, jk), for some 1 < k ≤ t− 1. Notice that removing the pair (ik, jk) from τ results in a legal
alignment τ ′, such that σp,2(τ ′(P,Q)) ≤ σp,2(τ(P,Q)), for any 1 ≤ p ≤ ∞ and two curves
P,Q. We call the pair (ik, jk) a redundant pair. Similarly, if τ contains a subsequence of the
form (ik − 1, jk), (ik, jk), (ik, jk + 1), for some 1 < k ≤ t− 1, then the pair (ik, jk) is also a
redundant pair. Therefore we only care about alignments that do not contain any redundant
pairs. Denote by T2 the set of all alignments that do not contain any redundant pairs, then
any τ2 ∈ T2 contains at least one subsequence of type (iii).

We claim that for any alignment τ2 ∈ T2, there exists a unique alignment τ1 ∈ T1.
Indeed, if we add the redundant pair (il, jl + 1) between (il, jl) and (il + 1, jl + 1) for each
subsequence of type (iii) in τ2, we obtain an alignment τ1 ∈ T1. Moreover, since τ2 does
not contain any redundant pairs, the reverse operation on τ1 results in τ2. Thus we obtain
|T2| ≤ |T1| = O(22m

√
m

). J

Points and balls. Given a point x ∈ Rd and a real number R > 0, we denote by Bdp(x,R)
the d-dimensional ball under the `p norm with center x and radius R, i.e., a point y ∈ Rd

is in Bdp(x,R) if and only if ‖x − y‖p ≤ R, where ‖x − y‖p =
(∑d

i=1 |xi − yi|p
)1/p

. Let
Bdp(R) = Bdp(0, R), and let V dp (R) be the volume (w.r.t. Lebesgue measure) of Bdp(R), then

V dp (R) = 2dΓ(1 + 1/p)d

Γ(1 + d/p) Rd,

where Γ(·) is Euler’s Gamma function (an extension of the factorial function). For p = 2 and
p = 1, we get

V d2 (R) = πd/2

Γ(1 + d/2)R
d and V d1 (R) = 2d

d!R
d.

Our approach consists of a discretization of the space using lattice points, i.e., points
from Zd.

I Lemma 5. The number of lattice points in the d-dimensional ball of radius R under the
`p norm (i.e., in Bdp(R)) is bounded by V dp (R+ d1/p).

A. Filtser, O. Filtser, and M. J. Katz 48:9

Proof. With each lattice point z = (z1, z2, . . . , zd), zi ∈ Z, we match the d-dimensional
lattice cube C(z) = [z1, z1 + 1]× [z2, z2 + 1]× · · ·× [zd, zd + 1]. Notice that z ∈ C(z), and the
`p-diameter of a lattice cube is d1/p. Therefore, the number of lattice points in the `dp-ball
of radius R is bounded by the number of lattice cubes that are contained in a `dp-ball with
radius R+ d1/p. This number is bounded by V dp (R+ d1/p) divided by the volume of a lattice
cube, which is 1d = 1. J

I Remark 6. In general, in all our data structures we do not assume any bound on the
dimension d. However, using dimension reduction techniques, we may assume that d ≤
O(log(nm)

ε2). See Section 9 for details.

3 Discrete Fréchet distance (DFD)

Consider the infinite d-dimensional grid with edge length εr√
d
. Given a point x in Rd, by

rounding one can find in O(d) time the grid point x′ closest to x, and ‖x− x′‖2 ≤
εr
2 . Let

G(x,R) denote the set of grid points that are contained in Bd2 (x,R).

I Corollary 7. |G(x, (1 + ε)r)| = O(1
ε)d.

Proof. We scale our grid so that the edge length is 1, hence we are looking for the number
of lattice points in Bd2 (x, 1+ε

ε

√
d). By Lemma 5 we get that this number is bounded by the

volume of the d-dimensional ball of radius 1+ε
ε

√
d+
√
d ≤ 3

√
d
ε . Using Stirling’s formula we

conclude that

V d2

(
3
√
d

ε

)
= π

d
2

Γ(d2 + 1)
·

(
3
√
d

ε

)d
≤
(α
ε

)d
,

where α is a constant. For example, if d is even, then

V d2

(
3
√
d

ε

)
= π

d
2

(d2)!
·

(
3
√
d

ε

)d
≤ π

d
2

√
2π(d/2)d/2+1/2e−d/2

·

(
3
√
d

ε

)d
≤
(

12.4
ε

)d
= O

(
1
ε

)d
.

J

Denote by pij the j’th point of Ci, and let Gi =
⋃

1≤j≤mG(pij , (1+ε)r) and G =
⋃

1≤i≤nGi,
then by the above corollary we have |Gi| = m ·O(1

ε)d and |G| = mn ·O(1
ε)d. Let Ii be the

set of all curves Q = (x1, x2, . . . , xm) with points from Gi, such that ddF (Ci, Q) ≤ (1 + ε
2)r.

B Claim 8. |Ii| = O(1
ε)md and it can be computed in O(1

ε)md time.

Proof. Let Q ∈ Ii and let τ be an alignment with σdF (τ(Ci, Q)) ≤ (1 + ε
2)r. For each

1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In other words, jk is the
smallest index that is matched to k by the alignment τ . Since ddF (Ci, Q) ≤ (1+ ε

2)r, we have
xk ∈ Bd2(pijk

, (1 + ε
2)r), for k = 1, . . . ,m. This means that for any curve Q ∈ Ii such that

σdF (τ(Ci, Q)) ≤ (1 + ε
2)r, we have xk ∈ G(pijk

, (1 + ε
2)r), for k = 1, . . . ,m. By Corollary 7,

the number of ways to choose a grid point xk from G(pijk
, (1 + ε

2)r) is bounded by O(1
ε)d.

We conclude that given an alignment τ , the number of curves Q with m points from Gi
such that σdF (τ(Ci, Q)) ≤ (1 + ε

2)r is bounded by O(1
ε)md. Finally, by Lemma 4, the total

number of curves in Ii is bounded by 22m ·O(1
ε)md = O(1

ε)md.
To construct Ii we compute, for each of the O(1

ε)md candidates, its discrete Fréchet dis-
tance to Ci. Thus, we construct Ii in total time O(1

ε)md · O(m2) = O(1
ε)md. (The latter

equality is true, since clearly (αε)md · O(m2) ≤ (cαε)md, i.e., O(m2) ≤ cmd, where α is the
constant from Corollary 7 and c > 1 is a sufficiently large constant.) C

ICALP 2020

48:10 Approximate Nearest Neighbor for Curves

The data structure. Denote I =
⋃

1≤i≤n Ii, so |I| ≤ n · O(1
ε)md and we construct I in

total time n ·O(1
ε)md. Next, we would like to store the set I in a dictionary (a hash table

or a lookup table) D, such that given a query curve Q, one can find Q in D (if it exists) in
O(md) time. We use Cuckoo Hashing [21] to construct a (dynamic) dictionary of linear space,
constant worst-case query and deletion time, and constant expected amortized insertion time.
We insert the curves of I into the dictionary D as follows. For each 1 ≤ i ≤ n and curve
Q ∈ Ii, if Q /∈ D, insert Q into D, and set C(Q)← Ci. The storage space required for D is
O(|I|), and to construct it we perform |I| insertions and look-up operations which take in
total O(|I| ·md) = O(|I|) expected time.

The query algorithm. Let Q = (q1, . . . , qm) be the query curve. The query algorithm is
as follows: For each 1 ≤ k ≤ m find the grid point q′k (not necessarily from G) closest to qk.
This can be done in O(md) time by rounding. Then, search for the curve Q′ = (q′1, . . . , q′m)
in the dictionary D. If Q′ is in D, return C(Q′), otherwise, return NO. The total query time
is then O(md).

Correctness. Consider a query curve Q = (q1, . . . , qm). Assume that there exists a curve
Ci ∈ C such that ddF (Ci, Q) ≤ r. We show that the query algorithm returns a curve C∗ with
ddF (C∗, Q) ≤ (1 + ε)r.

Consider a point qk ∈ Q. Denote by q′k ∈ G the grid point closest to qk, and let
Q′ = (q′1, . . . , q′m). We have ‖qk − q′k‖2 ≤

εr
2 , so ddF (Q,Q′) ≤ εr

2 . By the triangle inequality,

ddF (Ci, Q′) ≤ ddF (Ci, Q) + ddF (Q,Q′) ≤ r + εr

2 = (1 + ε

2)r,

so Q′ is in Ii ⊆ I. This means that D contains Q′ with a curve C(Q′) ∈ C such that
ddF (C(Q′), Q′) ≤ (1 + ε

2)r, and the query algorithm returns C(Q′). Now, again by the
triangle inequality,

ddF (C(Q′), Q) ≤ ddF (C(Q′), Q′) + ddF (Q′, Q) ≤ (1 + ε

2)r + εr

2 = (1 + ε)r.

We obtain the following theorem.

I Theorem 9. There exists a data structure for the (1 + ε, r)-ANNC under DFD, with
n ·O(1

ε)md space, n ·O(1
ε)md expected preprocessing time, and O(md) query time.

Table 3 Comparing our ANN data structure to previous structures, for a fixed ε (say ε = 1/2).

m Reference Space Query Approx.

logn

[10] O(n4d+1 logn) Õ(n4d) d
√
d

[12] nΩ(d log n) Õ(dn4) 1 + ε

Theorem 9 nO(d) O(d logn) 1 + ε

O(1)

[10] 2O(d)n logn 2O(d) · logn d
√
d

[12] dO(d)Õ(n) O(d logn) 1 + ε

Theorem 9 2O(d)n O(d) 1 + ε

A. Filtser, O. Filtser, and M. J. Katz 48:11

4 The asymmetric setting under DFD

In this section, we show how to easily adapt our data structure to the asymmetric setting,
by using simplifications of length at most k instead of the original input curves.

Bereg et al. [3] showed that given a curve C consisting of m points in 3D, and a parameter
r > 0, there is an algorithm that runs in O(m logm) time and returns a simplification Π
with minimum number of vertices such that ddF (C,Π) ≤ r. Their algorithm generalizes
to higher dimensions, using an approximation algorithm for the minimum enclosing ball
problem (see Kumar et al. [17]). In this section, we use the following generalization of their
original approach ([3], Theorem 1). More details are given in Section 8.

I Lemma 10. Let C be a curve consisting of m points in Rd. Given parameters k ≤ m,
r > 0, and ε ∈ (0, 1], there is an algorithm that runs in O

(
d·m logm

ε +m · poly 1
ε

)
time that

either returns a simplification Π consisting of k points such that ddF (C,Π) ≤ (1 + ε)r, or
declares that for every simplification Π with k points, it holds that ddF (C,Π) > r.

For each Ci ∈ C, using Lemma 10 with parameter ε = 1, we find a curve Πi of length k
such that ddF (Ci,Πi) ≤ 2r. If we fail to find such a curve, then we can ignore Ci, because it
means that ddF (Q,Ci) > r for any curve Q of length k.

To reduce the space consumption of our data structure, we only store candidate curves of
length k that are close enough to the simplifications Πi. However, since the distance between
the simplification Πi and the input curve Ci could be up to 2r, storing the answers for the
set of candidate curves that are within distance (1 + ε

2)r from Πi is not enough, because a
query Q that is within distance (1 + ε)r from Ci might be as far as (3 + ε)r from Πi. Thus,
instead, we insert into our data structure all the curves that are within distance 4r from Πi.
This allows us to capture all query curves that are within distance r from Ci.

The data structure. We construct our data structure for the original (symmetric) version,
with the following modifications. The set of input curves is P = {Π1, . . . ,Πn} (instead of
C), and the radius parameter is 4r (instead of r), but the grid edge length remains εr√

d
. In

addition, we let I ′i be the set of all curves Q with k points from Gi, such that ddF (Q,Πi) ≤ 4r,
and Ii will be the set of all curves Q ∈ I ′i such that ddF (Q,Ci) ≤ (1 + ε

2)r. We insert the
curves in Ii into the database D as before: For each Q ∈ Ii, if Q /∈ D, insert Q into D and
set C(Q)← Ci.

Notice that using 4r instead of r, increases the ratio between the radius and the grid edge
length by only a factor of 4, and therefore the bound on |I ′i| does not change, except that
m is replaced by k. Therefore, the bounds on the storage space and query time are similar
to those of the original data structure, where m is replaced by k. Thus, the storage space
is in n · O(1

ε)kd and the query time is in O(kd). As for the preprocessing time, we get an
additional term of O(nmd logm) for computing the simplifications Π1, . . . ,Πn. We also need
to compute the distances ddF (Ci, Q) in the construction of Ii, for 1 ≤ i ≤ n, which takes
n · O(1

ε)kd · O(mkd) = nm · O(1
ε)kd time in total (as kd ≤ 2kd). Thus the total expected

preprocessing time is O(nmd logm) + nm ·O(1
ε)kd = nm ·

(
O(d logm) +O(1

ε)kd
)
.

Correctness. Consider a query curve Q, and assume that there exists a curve Ci ∈ C such
that ddF (Ci, Q) ≤ r. Then, Πi is a curve of length k and ddF (Ci,Πi) ≤ 2r. As in the
previous section, let Q′ be the curve computed by the query algorithm, then ddF (Q′, Q) ≤ εr

2 .
By the triangle inequality, we have ddF (Q′, Ci) ≤ ddF (Q′, Q) + ddF (Q,Ci) ≤ (1 + ε

2)r, and

ddF (Q′,Πi) ≤ ddF (Q′, Ci) + ddF (Ci,Πi) ≤ (1 + ε

2)r + 2r ≤ 4r.

ICALP 2020

48:12 Approximate Nearest Neighbor for Curves

Therefore our data structure contains Q′, and the query algorithm returns C(Q′), where
ddF (C(Q′), Q′) ≤ (1 + ε

2)r. Finally, again by the triangle inequality, we have

ddF (C(Q′), Q) ≤ ddF (C(Q′), Q′) + ddF (Q′, Q) ≤ (1 + ε

2)r + εr

2 = (1 + ε)r.

We obtain the following theorem.

I Theorem 11. There exists a data structure for the asymmetric (1 + ε, r)-ANNC under
DFD, with n · O(1

ε)dk space, nm ·
(
O(d logm) +O(1

ε)kd
)
expected preprocessing time, and

O(kd) query time.

5 `p,2-distance of polygonal curves

For the near-neighbor problem under the `p,2-distance, we use the same basic approach as in
Section 3, but with two small modifications. The first is that we set the grid’s edge length to

εr
(2m)1/p

√
d
, and redefine G(x,R), Gi, and G, as in Section 3 but with respect to the new edge

length of our grid. The second modification is that we redefine Ii to be the set of all curves
Q = (x1, x2, . . . , xm) with points from G, such that dp,2(Ci, Q) ≤ (1 + ε

2)r.
We assume without loss of generality from now and to the end of this section that r = 1

(we can simply scale the entire space by 1/r), so the grid’s edge length is ε
(2m)1/p

√
d
. The

following corollary is respective to Corollary 7.

I Corollary 12. |G(x,R)| = O
(

1 + m1/p

ε R
)d

.

Proof. We scale our grid so that the edge length is 1, hence we are looking for the number
of lattice points in Bd2 (x, (2m)1/p

√
d

ε R). By Lemma 5 we get that this number is bounded by
the volume of the d-dimensional ball of radius (1 + (2m)1/p

ε R)
√
d. Using Stirling’s formula

we conclude,

V d2

((
1 + (2m)1/p

ε
R

)√
d

)
= π

d
2

Γ(d2 + 1)
·
((

1 + (2m)1/p

ε
R

)√
d

)d
= αd ·

(
1 + m1/p

ε
R

)d
where α is a constant (approximately 4.13 · 21/p). J

In the following claim we bound the size of Ii, which, surprisingly, is independent of p.

B Claim 13. |Ii| = O(1
ε)m(d+1) and it can be computed in O(1

ε)m(d+1) time.

Proof. Let Q = (x1, x2, . . . , xm) ∈ Ii, and let τ be an alignment with σp,2(τ(Ci, Q)) ≤ (1+ ε
2).

For each 1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In other words, jk is
the smallest index that is matched to k by the alignment τ .

Set Rk = ‖xk − pijk
‖2, then we have ‖(R1, . . . , Rm)‖p ≤ σp,2(τ(Ci, Q)) ≤ (1 + ε

2).
Let αk =

⌈
m1/p

ε Rk

⌉
. By triangle inequality,

‖(α1, α2, . . . , αm)‖p ≤
m1/p

ε
‖(R1, R2, . . . , Rm)‖p +m1/p

≤ m1/p

ε

(
1 + ε

2

)
+m1/p <

(
2 + 1

ε

)
m1/p.

Clearly, xk ∈ Bd2 (pijk
, αk

ε
m1/p).

A. Filtser, O. Filtser, and M. J. Katz 48:13

We conclude that for each curve Q = (x1, x2, . . . , xm) ∈ Ii there exists an alignment
τ such that σp,2(τ(Ci, Q)) ≤ 1 + ε

2 , and a sequence of integers (α1, . . . , αm) such that
‖(α1, α2, . . . , αm)‖p ≤ (2 + 1

ε)m1/p and xk ∈ Bd2(pijk
, αk

ε
m1/p), for k = 1, . . . ,m. Therefore,

the number of curves in Ii is bounded by the multiplication of three numbers:

1. The number of alignments that can determine the distance, which is at most 22m by
Lemma 4.

2. The number of ways to choose a sequence of m positive integers α1, . . . , αm such that
‖(α1, α2, . . . , αm)‖p ≤ (2 + 1

ε)m1/p, which is bounded by the number of lattice points in
Bmp ((2 + 1

ε)m1/p) (the m-dimensional `p-ball of radius (2 + 1
ε)m1/p). By Lemma 5, this

number is bounded by

V mp ((2 + 1
ε

)m1/p +m1/p) ≤ V mp (4m1/p

ε
) = 2mΓ(1 + 1/p)m

Γ(1 +m/p)

(
4m1/p

ε

)m
= O(1

ε
)m ,

where the last equality follows as mm/p

Γ(1+m/p) = O(1)m.

3. The number of ways to choose a curve (x1, x2, . . . , xm), such that xk ∈ G(pijk
, αk

ε
m1/p),

for k = 1, . . . ,m. By Corollary 12, the number of grid points in G(pijk
, αk

ε
m1/p) is

O(1+αk)d, so the number of ways to choose (x1, x2, . . . , xm) is at most Πm
k=1O(1+αk)d =

O(1)md (Πm
k=1(1 + αk))d. By the inequality of arithmetic and geometric means we have

(Πm
k=1(1 + αk)p)1/p ≤

(∑m
k=1(1 + αk)p

m

)m/p
=
(
‖(1 + α1, . . . , 1 + αm)‖p

m1/p

)m
≤
(
‖1‖p + ‖(α1, . . . , αm)‖p

m1/p

)m
≤

(
m1/p + (2 + 1

ε)m1/p

m1/p

)m
= O(1

ε
)m,

so Πm
k=1O(1 + αk)d = O(1)mdO(1

ε)md = O(1
ε)md.

Finally, |Ii| ≤ 22m ·O(1
ε)m ·O(1

ε)md ≤ O(1
ε)m(d+1). C

The data structure and query algorithm are similar to those we described for DFD, and
the size of Ii and I is roughly the same (here there is an additional O(1

ε)m factor in the
space bound). Therefore, the query time, storage space, and preprocessing time are roughly
similar, but we still need to show that the algorithm is correct.

Correctness. Consider a query curve Q = (q1, . . . , qm). Assume that there exists a curve
Ci ∈ C such that dp,2(Ci, Q) ≤ 1. We will show that the query algorithm returns a curve C∗
with dp,2(C∗, Q) ≤ 1 + ε.

Consider a point qk ∈ Q. Denote by q′k ∈ G the grid point closest to qk, and let
Q′ = (q′1, . . . , q′m). We have ‖qk − q′k‖2 ≤ ε

2(2m)1/p . Let τ be an alignment such that the
`p,2-cost of τ w.r.t. Ci and Q is at most 1. Unlike the Fréchet distance, `p,2-distance for
curves does not satisfy the triangle inequality. However, by the triangle inequality under `2
and `p, we get that the `p,2-cost of τ w.r.t. Ci and Q′ is

ICALP 2020

48:14 Approximate Nearest Neighbor for Curves

σp,2(τ(Ci, Q′)) =

 ∑
(j,t)∈τ

‖pij − q′t‖
p
2

1/p

≤

 ∑
(j,t)∈τ

(
‖pij − qt‖2 + ‖qt − q′t‖2

)p1/p

≤

 ∑
(j,t)∈τ

‖pij − qt‖
p
2

1/p

+

 ∑
(j,t)∈τ

‖qt − q′t‖
p
2

1/p

≤ 1 +
(

2m
(

ε

2(2m)1/p

)p)1/p

≤ 1 + ε

2 .

So dp,2(Ci, Q′) ≤ 1 + ε
2 , and thus Q′ is in Ii ⊆ I. This means that T contains Q′ with a

curve C(Q′) ∈ C such that dp,2(C(Q′), Q′) ≤ 1 + ε
2 , and the query algorithm returns C(Q′).

Now, again by the same argument (using an alignment with `p,2-cost at most 1 + ε
2 w.r.t.

C(Q′) and Q′), we get that dp,2(C(Q′), Q) ≤ 1 + ε
2 +

(
2m
(

ε
2(2m)1/p

)p)1/p
= 1 + ε.

We obtain the following theorem.

I Theorem 14. There exists a data structure for the (1 + ε, r)-ANNC under `p,2-distance,
with n ·O(1

ε)m(d+1) space, n ·O(1
ε)m(d+1) expected preprocessing time, and O(md) query time.

As mentioned in the preliminaries section, the DTW distance between two curves equals
to their `1,2-distance, and therefore we obtain the following theorem.

I Theorem 15. There exists a data structure for the (1 + ε, r)-ANNC under DTW, with
n ·O(1

ε)m(d+1) space, n ·O(1
ε)m(d+1) expected preprocessing time, and O(md) query time.

I Remark 16 (Dealing with query curves and input curves of varying size). For the case of
DFD, our assumption that all query curves are of length exactly k can be easily removed,
by constructing k data structures D1, . . . ,Dk, where Di is our data structure constructed
for query curves of length i (instead of k), for 1 ≤ i ≤ k. Clearly, the query time does not
change. The storage space is multiplied by k, so in the case of DFD we have storage space
nk ·O(1

ε)kd, but k < 2kd, so the storage space remains n ·O(1
ε)kd.

For the case of dp,2 we can deal with queries of all sizes up to m. Our construction in
Section 5 can be modified in a straightforward manner to deal with queries of size k, the space
guarantee however will depend on m, upper bounded by n ·O(1

ε)m(d+1), as in Theorem 14.
From here, we can use the same approach as above.

6 A deterministic construction using a prefix tree

When implementing the dictionary D as a hash table, the construction of the data structure
is randomized and thus in the worst case we might get higher prepeocessing time. To avoid
this, we can implement D as a prefix tree.

6.1 Discrete Fréchet distance
In this section we describe the implementation of D as a prefix tree in the case of ANNC
under DFD.

We can construct a prefix tree T for the curves in I, where any path in T from the root
to a leaf corresponds to a curve that is stored in it. For each 1 ≤ i ≤ n and curve Q ∈ Ii, if
Q /∈ T , insert Q into T , and set C(Q)← Ci.

A. Filtser, O. Filtser, and M. J. Katz 48:15

Each node v ∈ T corresponds to a grid point from G. Denote the set of v’s children by
N(v). We store with v a multilevel search tree on N(v), with a level for each coordinate.
The points in G are the grid points contained in nm balls of radius (1 + ε)r. Thus when
projecting these points to a single dimension, the number of 1-dimensional points is at most
nm ·

√
d(1+ε)2r
εr = O(nm

√
d

ε). So in each level of the search tree on N(v) we have O(nm
√
d

ε)
1-dimensional points, so the query time is O(d log(nmdε)).

Inserting a curve of length m to the tree T takes O(md log(nmdε)) time. Since T is a
compact representation of |I| = n ·O(1

ε)dm curves of length m, the number of nodes in T
is m · |I| = nm · O(1

ε)dm. Each node v ∈ T contains a search tree for its children of size
O(d · |N(v)|), and

∑
v∈T |N(v)| = nm · O(1

ε)dm so the total space complexity is O(nmd) ·
O(1

ε)md = n · O(1
ε)md. Constructing T takes O(|I| ·md log(nmdε)) = n log(nmdε) · O(1

ε)md
time.

I Theorem 17. There exists a data structure for the (1 + ε, r)-ANNC under DFD, with
n ·O(1

ε)dm space, n · log(nε) ·O(1
ε)md preprocessing time, and O(md log(nmdε)) query time.

Similarly, for the asymmetric case we obtain the following theorem.

I Theorem 18. There exists a data structure for the asymmetric (1 + ε, r)-ANNC under
DFD, with n · O(1

ε)dk space, nm log(nε) ·
(
O(d logm) +O(1

ε)kd
)
preprocessing time, and

O(kd log(nkdε)) query time.

6.2 `p,2-distance
For the case of ANNC under `p,2-distance, the total number of curves stored in the tree T is
roughly the same as in the case of DFD. We only need to show that for a given node v of
the tree T , the upper bound on the size and query time of the search tree associated with it
are similar.

The grid points corresponding to the nodes in N(v) are from n sets of m balls with radius
(1 + ε). When projecting the grid points in one of the balls to a single dimension, the number
of 1-dimensional points is at most m1/p

√
d

ε · (1 + ε), so the total number of projected points is

at most nm
1+ 1

p
√
d

ε · (1 + ε).
Thus in each level of the search tree of v we have O(nm

2√d
ε) 1-dimensional points, so

the query time is O(d log(nmdε)), and inserting a curve of length m into the tree T takes
O(md log(nmdε)) time. Note that the size of the search tree of v remains O(d · |N(v)|).

We conclude that the total space complexity is O(nm
2√d
ε) ·O(1

ε)m(d+1) = n ·O(1
ε)m(d+1),

constructing T takes O(|I| ·md log(nmd/ε)) = n log(nε) · O(1
ε)m(d+1) time, and the total

query time is O(md log(nmdε)).

I Theorem 19. There exists a data structure for the (1 + ε, r)-ANNC under `p,2-distance,
with n ·O(1

ε)m(d+1) space, n · log(nε) ·O(1
ε)m(d+1) preprocessing time, and O(md log(nmdε))

query time.

7 Approximate range counting

In the range counting problem for curves, we are given a set C of n curves, each consisting of
m points in d dimensions, and a distance measure for curves δ. The goal is to preprocess C
into a data structure that given a query curve Q and a threshold value r, returns the number
of curves that are within distance r from Q.

ICALP 2020

48:16 Approximate Nearest Neighbor for Curves

In this section we consider the following approximation version of range counting for
curves, in which r is part of the input (see Remark 22). Note that by storing pointers to
curves instead of just counters, we can obtain a data structure for the approximate range
searching problem (at the cost of an additional O(n)-factor to the storage space).

I Problem 20 ((1 + ε, r)-approximate range-counting for curves). Given a parameter r and
0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, returns the number
of all the input curves whose distance to Q is at most r plus possibly additional input curves
whose distance to Q is greater than r but at most (1 + ε)r.

We construct the dictionary D (implemented as a dynamic hash table, or a prefix tree)
for the curves in I as in Section 5, as follows. For each 1 ≤ i ≤ n and curve Q ∈ Ii, if
Q is not in D, insert it into D and initialize C(Q) ← 1. Otherwise, if Q is in D, update
C(Q) ← C(Q) + 1. Notice that C(Q) holds the number of curves from C that are within
distance (1 + ε

2)r to Q. Given a query curve Q, we compute Q′ as in Section 5. If Q′ is in D,
we return C(Q′), otherwise, we return 0.

Clearly, the storage space, preprocessing time, and query time are similar to those in
Section 5. We claim that the query algorithm returns the number of curves from C that are
within distance r to Q plus possibly additional input curves whose distance to Q is greater
than r but at most (1 + ε)r. Indeed, let Ci be a curve such that ddF (Ci, Q) ≤ r. As shown
in Section 5 we get dp,2(Ci, Q′) ≤ (1 + ε

2)r, so Q′ is in Ii and Ci is counted in C(Q′). Now
let Ci be a curve such that dp,2(Ci, Q) > (1 + ε)r. If dp,2(Ci, Q′) ≤ (1 + ε

2)r, then by a
similar argument (switching the rolls of Q and Q′) we get that dp,2(Ci, Q′) ≤ (1 + ε)r, a
contradiction. So dp,2(Ci, Q′) > (1 + ε

2)r, and thus Ci is not counted in C(Q′).
We obtain the following theorem.

I Theorem 21. There exists a data structure for the (1 + ε, r)-approximate range-counting
for curves under `p,2-distance, with n ·O(1

ε)m(d+1) space, n log(nε) ·O(1
ε)m(d+1) preprocessing

time, and O(md log(nmdε)) query time. (Under DFD, the exponent in the bounds for the
space and preprocessing time is md rather than m(d+ 1).)

I Remark 22. When the threshold parameter r is part of the query, we call the problem the
(1+ε)-approximate range-counting problem. Note that the reduction from (1+ε)-approximate
nearest-neighbor to (1 + ε, r)-approximate near-neighbor can be easily adapted to a reduction
from (1 + ε)-approximate range-counting to (1 + ε, r)-approximate range-counting, more
details will be given in a full version of this paper.

8 Simplification in d-dimensions

The algorithm of Bereg et al. [3] receives as an input a curve C consisting of m points in R3,
and a parameter r > 0. In O(m logm) time, it returns a curve Π such that ddF (C,Π) ≤ r,
and Π has the minimum number of vertices among all curves within distance r from C. The
algorithm is operating in a greedy manner, by repeatedly executing Megiddo’s [19] minimum
enclosing ball (MEB) algorithm for points in R3, which takes linear time.

We generalize the algorithm of Bereg et al. for curves in Rd, by using an algorithm
presented by Kumar et al. [17] for approximated minimum enclosing ball (AMEB) in Rd.
Formally, given a set A of n points in Rd and a parameter ε ∈ (0, 1], the goal is to find an
enclosing ball of A with radius r > 0, where the minimum enclosing ball of A has radius at
least r

1+ε . The algorithm of [17] can find an AMEB in O(ndε +ε−4.5 log 1
ε) time. In particular,

given an additional parameter r > 0, this algorithm either returns an enclosing ball of A with
radius (1 + ε)r, or declares that the minimum enclosing ball of A has radius larger than r.

A. Filtser, O. Filtser, and M. J. Katz 48:17

Next, we describe our modified algorithm. Consider a curve C = (x1, . . . , xm), and denote
C[i, j] = (xi, . . . , xj). The following sub-procedure takes as an input a curve A and returns a
point y and an index s, such that the ball with radius (1 + ε)r centered at y covers the prefix
A[1, s], and (if s < |A|) the minimum enclosing ball of A[1, s+ 1] has radius larger than r.
1. By iterative probing, using an algorithm for AMEB, find some t such that A[1, 2t] can be

covered by a ball of radius (1 + ε)r, while A[1, 2t+1] cannot be covered by a ball of radius
r. If all the points in A can be enclosed by a single ball of radius (1 + ε)r centered at y,
simply return y and |A|.

2. By binary search, again using an algorithm for AMEB, find some s ∈ [2t, 2t+1) such that
A[1, s] can be covered by a ball of radius (1 + ε)r, and A[1, s+ 1] cannot be covered by a
ball of radius r. Let y ∈ Rd be the center of this ball. Return y and s.

Starting from the input A = C[1,m], repeat the above sub-procedure such that in each step
the input is the suffix of C that was not yet covered by the previous steps (i.e. A[s+ 1,m]).
Let (y1, . . . , yq) be the sequence of output points.

Lemma 10 is an easy corollary of the following lemma.

I Lemma 23. Let C be a curve consisting of m points in Rd. Given parameters r > 0,
and ε ∈ (0, 1], the algorithm above runs in O

(
d·m logm

ε +m · ε−4.5 log 1
ε

)
time and returns a

curve Π = (y1, . . . , yq) such that ddF (C,Π) ≤ (1 + ε)r. Furthermore, for every curve Π′ with
less than q points, it holds that ddF (C,Π′) > r.

Proof sketch. We start by analyzing the running time for a single iteration of the sub-
procedure, when using the algorithm of [17] to find an AMEB. The total time for the first
step of the sub-procedure (finding t) is

t+1∑
i=1

O(2i · d
ε

+ ε−4.5 log 1
ε

) = O(2t · d
ε

+ t · ε−4.5 log 1
ε

).

In the second step, there are O(t) executions of [17] on a set of size at most 2t+1, so the total
time for this step is t ·O(2t·d

ε + ε−4.5 log 1
ε).

Let mi be the length of the subcurve covered by the point yi that was found in
the i’th iteration of the sub-procedure. The total time spent for finding yi is therefore
logmi ·O(mi·d

ε + ε−4.5 log 1
ε), and the total running time of the algorithm is

q∑
i=1

logmi ·O
(
mi · d
ε

+ ε−4.5 log 1
ε

)
= O

(
d ·m logm

ε
+m · ε−4.5 log 1

ε

)
,

where we used the the concavity of the log function, and the fact
∑q
i=1mi = m.

Next we argue the correctness. Clearly, ddF (C,Π) ≤ (1 + ε)r. Let s0 = 0, s1, . . . , sq = m

be the sequence of indices (of vertices in C) found during the execution of the algorithm, such
that the ball of radius (1+ε)r around yi covers C[si−1 +1, si]. It follows by a straightforward
induction that every curve Π′ with less that i points will be at distance greater than r from
C[1, si−1 + 1]. The lemma now follows. J

9 Remark on dimension reduction

In general, when the dimension d is large, i.e. d� log(nm), one can use dimension reduction
(using the celebrated Johnson-Lindenstrauss lemma [16]) in order to achieve a better running
time, at the cost of inserting randomness in the prepossessing and query procedure. However,

ICALP 2020

48:18 Approximate Nearest Neighbor for Curves

such an approach can work only against an oblivious adversary, as it will necessarily fail for
some curves. Recently Narayanan and Nelson [20] (improving [11, 18]) proved a terminal
version of the JL-lemma. Given a set K of k points in Rd and ε ∈ (0, 1), there is a dimension
reduction function f : Rd → RO(log k

ε2) such that for every x ∈ K and y ∈ Rd it holds that
‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε) · ‖x− y‖2.

This version of dimension reduction can be used such that the query remains deterministic
and always succeeds. The idea is to take all the nm points from all the input curves to
be the terminals, and let f be the terminal dimension reduction. We transform each input
curve P = (p1, . . . , pm) into f(P) = (f(p1), . . . , f(pm)), a curve in RO(log nm

ε2). Given a query
Q = (q1, . . . , qm) we transform it to f(Q) = (f(q1), . . . , f(qm)). Since the pairwise distances
between every query point to all input points are preserved, so is the distance between the
curves. Specifically, the dp,2 distance w.r.t. any alignment τ is preserved up to a 1 + ε factor,
and therefore we can reliably use the answer received using the transformed curves.

References
1 Peyman Afshani and Anne Driemel. On the complexity of range searching among curves.

In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 898–917, 2018. doi:10.1137/
1.9781611975031.58.

2 Boris Aronov, Omrit Filtser, Michael Horton, Matthew J. Katz, and Khadijeh Sheikhan.
Efficient nearest-neighbor query and clustering of planar curves. In Algorithms and Data
Structures - 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August
5-7, 2019, Proceedings, pages 28–42, 2019. doi:10.1007/978-3-030-24766-9_3.

3 Sergey Bereg, Minghui Jiang, Wencheng Wang, Boting Yang, and Binhai Zhu. Simplifying 3d
polygonal chains under the discrete Fréchet distance. In LATIN 2008: Theoretical Informatics,
8th Latin American Symposium, Búzios, Brazil, April 7-11, 2008, Proceedings, pages 630–641,
2008. doi:10.1007/978-3-540-78773-0_54.

4 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661–670,
2014. doi:10.1109/FOCS.2014.76.

5 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, l)-center clustering for curves.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2922–2938, 2019. doi:
10.1137/1.9781611975482.181.

6 Mark de Berg, Atlas F. Cook IV, and Joachim Gudmundsson. Fast Fréchet queries. Comput.
Geom., 46(6):747–755, 2013. doi:10.1016/j.comgeo.2012.11.006.

7 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi. A dynamic data structure
for approximate proximity queries in trajectory data. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
GIS 2017, Redondo Beach, CA, USA, November 7-10, 2017, pages 48:1–48:4, 2017. doi:
10.1145/3139958.3140023.

8 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance
with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.

9 Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short
Fréchet queries. CoRR, abs/1907.04420, 2019. arXiv:1907.04420.

10 Anne Driemel and Francesco Silvestri. Locality-Sensitive Hashing of Curves. In Proceedings
of the 33rd International Symposium on Computational Geometry, volume 77, pages 37:1–

https://doi.org/10.1137/1.9781611975031.58
https://doi.org/10.1137/1.9781611975031.58
https://doi.org/10.1007/978-3-030-24766-9_3
https://doi.org/10.1007/978-3-540-78773-0_54
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1016/j.comgeo.2012.11.006
https://doi.org/10.1145/3139958.3140023
https://doi.org/10.1145/3139958.3140023
https://doi.org/10.1137/120865112
http://arxiv.org/abs/1907.04420

A. Filtser, O. Filtser, and M. J. Katz 48:19

37:16, Brisbane, Australia, July 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.SoCG.2017.37.

11 Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci.,
697:1–36, 2017. doi:10.1016/j.tcs.2017.06.021.

12 Ioannis Z. Emiris and Ioannis Psarros. Products of Euclidean metrics and applications
to proximity questions among curves. In 34th International Symposium on Computational
Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary, pages 37:1–37:13, 2018. doi:
10.4230/LIPIcs.SoCG.2018.37.

13 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory of Computing, 8(1):321–350, 2012. doi:10.4086/
toc.2012.v008a014.

14 Piotr Indyk. High-dimensional computational geometry. PhD thesis, Stanford University, 2000.
see here.

15 Piotr Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product
metrics. In Proceedings of the 8th Symposium on Computational Geometry, pages 102–106,
Barcelona, Spain, June 2002. ACM Press. doi:10.1145/513400.513414.

16 William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984. doi:10.1090/conm/026/737400.

17 Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim. Comuting core-sets and
approximate smallest enclosing hyperspheres in high dimensions. In Proceedings of the Fifth
Workshop on Algorithm Engineering and Experiments, Baltimore, MD, USA, January 11,
2003, pages 45–55, 2003.

18 Sepideh Mahabadi, Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn.
Nonlinear dimension reduction via outer bi-Lipschitz extensions. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 1088–1101, 2018. doi:10.1145/3188745.3188828.

19 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM,
31(1):114–127, 1984. doi:10.1145/2422.322418.

20 Shyam Narayanan and Jelani Nelson. Optimal terminal dimensionality reduction in Euclidean
space. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1064–1069, 2019. doi:10.1145/
3313276.3316307.

21 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004. doi:10.1016/j.jalgor.2003.12.002.

22 Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in learning
and vision: theory and practice (neural information processing). The MIT press, 2006. see
here.

ICALP 2020

https://doi.org/10.4230/LIPIcs.SoCG.2017.37
https://doi.org/10.1016/j.tcs.2017.06.021
https://doi.org/10.4230/LIPIcs.SoCG.2018.37
https://doi.org/10.4230/LIPIcs.SoCG.2018.37
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.4086/toc.2012.v008a014
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.3077&rep=rep1&type=pdf
https://doi.org/10.1145/513400.513414
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1145/3188745.3188828
https://doi.org/10.1145/2422.322418
https://doi.org/10.1145/3313276.3316307
https://doi.org/10.1145/3313276.3316307
https://doi.org/10.1016/j.jalgor.2003.12.002
http://people.csail.mit.edu/gregory/annbook/book.html

	Introduction
	Technical ideas

	Preliminaries
	Discrete Fréchet distance (DFD)
	The asymmetric setting under DFD
	l_{p,2}-distance of polygonal curves
	A deterministic construction using a prefix tree
	Discrete Fréchet distance
	l_{p,2}-distance

	Approximate range counting
	Simplification in d-dimensions
	Remark on dimension reduction

