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—— Abstract

In the (1 + e,7)-approxzimate near-neighbor problem for curves (ANNC) under some similarity
measure 0, the goal is to construct a data structure for a given set C of curves that supports
approximate near-neighbor queries: Given a query curve @, if there exists a curve C' € C such that
5(Q,C) < r, then return a curve C’ € C with §(Q,C") < (1+&)r. There exists an efficient reduction
from the (1 + ¢)-approzimate nearest-neighbor problem to ANNC, where in the former problem the
answer to a query is a curve C € C with 6(Q,C) < (1 +¢)-6(Q,C"), where C”* is the curve of C
most similar to Q.

Given a set C of n curves, each consisting of m points in d dimensions, we construct a data
structure for ANNC that uses n - O(1)™¢ storage space and has O(md) query time (for a query
curve of length m), where the similarity measure between two curves is their discrete Fréchet or
dynamic time warping distance. Our method is simple to implement, deterministic, and results in
an exponential improvement in both query time and storage space compared to all previous bounds.

Further, we also consider the asymmetric version of ANNC, where the length of the query curves
is k < m, and obtain essentially the same storage and query bounds as above, except that m is
replaced by k. Finally, we apply our method to a version of approximate range counting for curves
and achieve similar bounds.
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Approximate Nearest Neighbor for Curves

1 Introduction

Nearest neighbor search is a fundamental and well-studied problem that has various applica-
tions in machine learning, data analysis, and classification. This important task also arises
in applications where the recorded instances are trajectories or polygonal curves modeling,
for example, epigenetic and surgical processes, market value fluctuations, population growth,
the number of the requests per hour received at some web-page, and even the response of a
football player in a given situation.

Let C be a set of n curves, each consisting of at most m points in d dimensions, and let § be
some distance measure for curves. In the nearest-neighbor problem for curves, the goal is to
construct a data structure for C that supports nearest-neighbor queries, that is, given a query
curve @ of length at most m, return the curve C* € C closest to @ (according to §). The
approximation version of this problem is the (1 + €)-approzimate nearest-neighbor problem,
where the answer to a query @ is a curve C' € C with §(Q,C) < (1+¢)§(Q,C*). We study a
decision version of this approximation problem, which is called the (1 + &, r)-approzimate
near-neighbor problem for curves (ANNC). Here, if there exists a curve in C that lies within
distance r of the query curve @, one has to return a curve in C that lies within distance
(1+¢e)r of Q. Note that there exists a reduction from the (1+¢)-approximate nearest-neighbor
problem to the (1 + e, r)-approximate near-neighbor problem [14, 22, 13], at the cost of an
additional logarithmic factor in the query time and an O(log? n) factor in the storage space.

In practice, it is often the case that the query curves are significantly shorter than the
input curves (e.g., Google-search queries). Thus, we also study the asymmetric setting of
(1+e&,7)-ANNC, where each of the input curves has complexity at most m, while each query
curve has complexity at most k£ < m.

There are many methods that are used in real-world applications for comparing curves,
and one of the most prevalent is the (discrete) Fréchet distance (DFD for short), which
is often described by the following analogy. Two frogs are hopping from vertex to vertex
along two polygonal curves. At each step, one of the frogs or both frogs may advance to the
next vertex on its curve. The discrete Fréchet distance is defined as the smallest maximum
distance between the frogs that can be achieved in such a joint sequence of hops. Another
useful distance measure for curves or time series is the dynamic time warping distance (DTW
for short), in which instead of taking the smallest maximum distance we take the smallest
sum of distances.

In the last several years, a series of papers have been written investigating the approximate
near-neighbor problem for curves (ANNC) and its variants under the Fréchet distance
[15, 6, 10, 7, 1, 12, 2] (see Table 1), and several different approaches and sophisticated
methods were utilized in order to provide efficient data structures. Up to now, all data
structures for ANNC under DFD have either an exponential in m query time, or an infeasible
storage space bound. In this paper, for the first time, we manage to remove the exponential
factor from the query time, while also significantly reducing the space consumption. Our
approach consists of a discretization of space based on the input curves, which allows us to
prepare a small set of curves that captures all possible queries approximately.

Indyk [15] was the first to give a deterministic near-neighbor data structure for curves
under DFD. The data structure achieves an approximation factor of O((logm +loglogn)t~1)
given some trade-off parameter ¢ > 1. Its space consumption is very high, O(m?| X |)tm1/t n?t,
where |X| is the size of the domain on which the curves are defined, and the query time is
(mlogn)®®. In Table 1 we set t = 14 o(1) to obtain a constant approximation factor.
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Later, Driemel and Silvestri [10] presented a locality-sensitive-hashing scheme for curves
under DFD, improving the result of Indyk for short curves. Their data structure uses
O(2*m4nlogn) space and answers queries in O(2™¢logn) time with an approximation factor
of O(dS/ 2). They also provide a trade-off between approximation quality and computational
performance: for d = O(1), and given a parameter k € [m], a data structure of size
O(2%*m*~1Inlogn +mn) is constructed that answers queries in O(2%*mF* logn) time with an
approximation factor of O(m/k). They also show that this result can be applied to DTW,
but only for the extreme of the trade-off which gives an O(m) approximation.

Recently, Emiris and Psarros [12] presented near-neighbor data structures for curves
under both DFD and DTW. Their algorithm provides an approximation factor of (1 + ¢),
at the expense of increased space usage and preprocessing time. They use the idea that
for a fixed alignment between two curves (i.e., a given sequence of hops of the two frogs),
the problem can be reduced to the near-neighbor problem for points in ¢, product of

{5 spaces. Their basic idea is to construct a data structure for every possible alignment.

Once a query is given, they query all these data structures and return the closest curve
found. This approach is responsible for the 2" factor in their query time. Furthermore,
they generalize this approach using randomized projections of £,-products of Euclidean
metrics (for any p > 1), and define the ¢, o-distance for curves (for p > 1), which is exactly
DFD when p = oo, and DTW when p = 1 (see Section 2). The space used by their data
structure is O(n) - (2 + -2 YOm' T/ =dlog(1/2) with query O(dm!*1/c - 24m log n) for DFD

logm
and O(n) - %O(md) space and O(d - 2*™logn) query for DTW.

Subsequent work. In a recent manuscript, Driemel, Psarros, and Schmidt [9], study the
asymmetric setting of (1 + &,7)-ANNC under DFD. They follow our approach of preparing

in advance the answers to all relevant queries on a discretization of the space, to construct
dk

a randomized data structure with space in n- O (kdgi/z) and query time in O(dk). They
also show how to derandomize their data structure, at the cost of increasing the space

to d3/2nke=1 - O (@)dk and the query time to O(d*/2k*~!(logn + kdlog £)). This
provides additional evidence that our approach to ANNC, although quite simple and easy to
implement, seems to produce more efficient data structures than those obtained using tools
such as LSH and randomized projections. Moreover, in this version of our manuscript we

show how to improve upon the results in [9] for the asymmetric setting.

Our results. We present a data structure for the (1 4 ¢, r)-approximate near-neighbor
problem using a bucketing method. We construct a relatively small set of curves Z such that
given a query curve @, if there exists some curve in C within distance r of ), then one of
the curves in Z must be very close to ). The points of the curves in Z are chosen from a
simple discretization of space, thus, while it is not surprising that we get the best query time,
it is surprising that we achieve a better space bound. Moreover, while the analysis of the
space bounds is rather involved, the implementation of our data structures remain simple in
practice.

See Table 1 for a summary of our results. In the table, we do not state our result for
the general £, o-distance. Instead, we state our results for the two most important cases, i.e.
DFD and DTW, and compare them with previous work. Note that our results substantially
improve the current state of the art for any p > 1. In particular, we remove the exponential
dependence on m in the query bounds and significantly improve the space bounds.
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Our results for the asymmetric setting, where the query curve @ has complexity k& < m,
are summarized in Table 2. We show that in the asymmetric setting for DFD, our data
structure can be slightly modified in order to achieve query time and storage space independent
of m. Moreover, the storage space and query time matches those of the symmetric setting,
by replacing m with k.

We also apply our methods to an approximation version of range counting for curves (for
the general £, o distance) and achieve bounds similar to those of our ANNC data structure.
Moreover, at the cost of an additional O(n)-factor in the space bound, we can also answer
the corresponding approximation version of range searching, thus answering a question of
Afshani and Driemel [1], with respect to DFD.

We note that our approach with obvious modifications works also in a dynamic setting,
that is, we can construct an efficient dynamic data structure for ANNC as well as for other
related problems such as range counting and range reporting for curves.

Another significant advantage of our approach is that, unlike some of the previous
solutions, our data structure always returns an answer, and never returns a curve at distance
greater than (1 + €)r from the query curve, i.e., there are no false positives. This is an
important property of our solution, due to the fact that verifying the validity of the answer
(i-e., computing the distance between two curves) cannot be done in strongly subquadratic
time (assuming SETH, see [4]), which is already more than our query time (for d < m).

Table 1 Our approximate near-neighbor data structure under DFD and DTW compared to the
previous results.

Space Query Approx. | Comments
o(m?|1X mt o . TL2+O(1> mlogn oM O(1 deterministic, [15
( g  [15]
0(24mdn log n) O(24md log n) O(d3/2) randomized, using LSH [10]
DFD
O(n) - (2 + logm )0(7,11+1/5.d10g(%)) O(dmlTl/e . 24m j5g ) 1+e¢ randomized, [12]
n- O(i)Md O(md) 14+¢ deter. (rand. construction),
Theorem 9
O(nlogn + mn) O(mlogn) O(m) randomized, using LSH,
d=0(1), [10]
DTW O(n) . %O(Md) O(d . gim logn) 1+4+¢ randomized, [12]
n- O(é)m(d+1) O(md) 14+¢ deter. (rand. construction),
Theorem 15

More related work. De Berg, Gudmundsson, and Mehrabi [7] described a dynamic data
structure for approximate nearest neighbor for curves (which can also be used for other types
of queries such as range reporting), under the (continuous) Fréchet distance. Their data
structure uses n - O (%)2771 space and has O(m) query time, but with an additive error of
e -reach(Q), where reach(Q) is the maximum distance between the start vertex of the query
curve Q and any other vertex of . Furthermore, their query procedure might fail when the
distance to the nearest neighbor is relatively large.

Afshani and Driemel [1] studied (exact) range searching under both the discrete and
continuous Fréchet distance. In this problem, the goal is to preprocess C such that given a
query curve @ of length m, and a radius r, all the curves in C that are within distance r from
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Table 2 Summary of previous and current results for the asymmetric approximate near-neighbor
data structure for curves. All the results in the table are w.r.t. DFD. The approximation ratio is
1+ ¢ for € € (0,1), and our data structures always succeed. Historic note: [9] is a subsequent work
to the first version of this paper arXiv:1902.07562. In this second version we also apply our counting
techniques to the asymmetric cases.

Space Query Deterministic Reference
construction?

n- (o&«i;ﬂ)kd) O(kd) no 9]

n- (O(RL2)1) | (42 (logn + kdlog(24) | yes 9]

n- O(%)kd O(kd) no Theorem 11

n-O(1)k O(kdlog(™k4)) yes Theorem 18

Q can be found efficiently. For DFD, their data structure uses O(n(loglogn)™~!) space and
has O(nl_% : logo(m) n- qu(d)) query time, where m, is limited to logo(l) n. Additionally,
they provide a lower bound in the pointer model, stating that every data structure with
Q(n) 4+ O(k) query time, where k is the output size, has to use roughly 2 ((n/Q(n))Q) space
in the worst case (even for m, = 1). Afshani and Driemel conclude their paper by asking
whether more efficient data structures might be constructed if one allows approximation.

De Berg, Cook IV, and Gudmundsson [6], considered the following range counting problem
under the continuous Fréchet distance. Given a polygonal curve C' with m vertices, they
show how to preprocess it into a data structure of size O(k - polylog(m)), so that, given a
query segment s, one can return a constant approximation of the number of subcurves of C
that lie within distance r of s in O(% - polylog(m)) time, where k is a parameter between
m and m?2.

Aronov et al. [2] managed to obtain practical bounds for two cases of the asymmetric
(14&,7)-ANNC under DFD: (i) when @ is a line segment (i.e., k = 2), or (ii) when C consists
of line segments (i.e., m = 2). The bounds on the size of the data structure and query time
are nearly linear in the size of the input and query curve, respectively. Specifically, for the
case where k = 2, they achieve query time O(log4(§)) and storage space O(nZ log4(g)).
They also provide efficient data structures for several other variants of the problem: the
(exact) NNC where £, is used for interpoint distances, and the case where the location of
the input curves is only fixed up to translation.

1.1 Technical ideas

We use a discretization of the space, by laying a d-dimensional uniform grid with edge length
5—2. The main ingredient in our data structure is then a relatively small set Z of curves
defined by grid points, which represents all possible queries. For each curve in Z we store an
index of a close enough curve from the input set C. Given a query @ sufficiently close to
some curve in C, we find a representative Q' in Z by simply rounding )’s vertices and return
the index of the curve stored for Q’.

Given a point 2 € R?, the number of grid points that are within distance (1 + ¢)r from z
is bounded by O(2)? (Corollary 7). Thus, given a curve C of length m, the total number of
grid points that are within distance (1 + ¢)r from one of its vertices is m - O(1)9. Naively,
the number of curves needed to represent all possible queries of length m within distance
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r of C is bounded by the number of ways to choose m points with repetitions from a set
of grid points of size m - O(1)4, which is bounded by m™ - O(1)™¢. This infeasible bound
on the storage space might be the reason why more sophisticated solutions for ANNC have
been suggested throughout the years.

One of the main technical contributions of this paper is an analysis leading to a significantly
better bound, if we store only candidate curves that are within distance (1 + &)r from C.
Actually, in Section 3 we show that for the case of DFD, it is sufficient to store a set of
representative curves of size only O(%)md for each input curve. The basic idea is to bound
the number of representatives that can be obtained by some fixed alignment between C' and
the candidate curve (see Claim 8).

For the general case of ¢, o-distance (including DTW), we are minimizing the sum of
distances instead of the maximum distance (as in DFD). Thus, we have to use a more dense
grid (with edge length m), and the situation becomes more complicated. First, unlike
DFD, the triangle inequality does not hold for ¢, o-distance in general (including DTW).
Second, since DFD is a min-max measure, the choice of different vertices for a representative
curve is “independent” in a sense, whereas for ¢, o-distance in general, the choice of different
vertices depends on their sum of distances from the input curve. Using more careful counting
arguments and analysis of the alignment between two curves, we are able to show that in
this case the number of representative curves that our data structure has to store per input
curve is bounded by O(é)m(‘”l) (see Claim 13).

To store the set Z we simply use a dictionary, which can be implemented using a hash table
and guarantees a query time linear in the size of the query. To obtain a fully deterministic
solution, one can use a search tree instead. However, a naive implementation using a binary
search tree results in an additional factor of O(log |Z]) = O(mdlog(%Z)) to the query time,
i.e., in a query time of O(m?d> log(%)). We show how to implement the dictionary using a
prefix tree, exploiting the fact that the vertices of the curves in Z are from a relatively small
set of grid points, which improves the query time to O(md log(%md)).

For the asymmetric setting (where the length of a query is k < m), we use simplifications
of the input curves in order to obtain bounds that are independent of m. Given a curve C of
length m, a simplification IT of C is a curve of length k < m that is relatively close to C.
Simplifications were used in order to provide approximate solutions in several asymmetric
versions of problems on curves, such as clustering [5], and distance oracles [8, 9].

By the triangle inequality for DFD, every query curve @ within distance r from an input
curve C' is at distance at most 2r from the simplification IT (where II is within distance r
from C). Thus, it is enough to prepare for query curves at distance at most 2r from II,
which follows from previous arguments. Note that the query time and storage space are
independent of m.

2 Preliminaries

To simplify the presentation, we assume throughout the paper that all the input curves have
exactly the same size, m, and all the query curves have exactly the same size, either m or
k, depending on whether we are considering the standard or the asymmetric version. This
assumption can be easily removed (see Remark 16 at the end of Section 5).

Let C be a set of n curves, each consisting of m points in d dimensions, and let § be some
distance measure for curves.

» Problem 1 ((1 + ¢)-approximate nearest-neighbor for curves). Given a parameter 0 < e <1,
preprocess C into a data structure that given a query curve Q, returns a curve C' € C, such
that 0(Q,C") < (14¢)-6(Q,C), where C is the curve in C closest to Q.
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» Problem 2 ((1 + ¢,r)-approximate near-neighbor for curves). Given a parameter r and
0 < e <1, preprocess C into a data structure that given a query curve Q, if there exists a
curve C; € C such that 6(Q, C;) <, returns a curve C; € C such that 6(Q,C;) < (1+¢)r.

» Problem 3 (Asymmetric (1 + ¢, r)-approximate near-neighbor for curves). Given parameters
r,k, and 0 < e < 1, preprocess C into a data structure that given a query curve @ of length
k, if there exists a curve C; € C such that §(Q,C;) < r, returns a curve C; € C such that
3(Q,Cj) < (1+¢)r.

Curve alignment. Given two integers mq, ms, let 7:= ((i1,71), ..., (it,jt)) be a sequence
of pairs where iy = j; = 1, iy = mq,j: = mo, and for each 1 < k < ¢, one of the following
conditions holds:

(i) ix = ixg—1 + 1 and jp = jr_1,

(ii) ix = dp—1 and jr = jr—1 +1, or

(iii) ik =1k—1 + 1 and jp = jr_1 + 1.
We call such a sequence 7 an alignment of two curves.

Let P = (p1,...,Pm,) and @ = (q1,- - -, @m,) be two curves of lengths m; and mo, respectively,

in d dimensions. We say that an alignment 7 w.r.t. P and @ matches p; and p; if (4, j) € 7.

Discrete Fréchet distance (DFD). The Fréchet cost of an alignment 7 w.r.t. P and @ is
oqr(7(P,Q)) := max(; j)er [[Pi — ¢jll2- The discrete Fréchet distance is defined over the set
T of all alignments as

dar(P,Q) = ITrggUdF(T(Pv Q))-

Dynamic time wrapping (DTW). The time warping cost of an alignment 7 w.r.t. P and
Qis oprw (7(P,Q)) := 32, jyer [IPi — qjll2. The DTW distance is defined over the set 7 of
all alignments as

dprw (P, Q) = f_rgglaDTW(T(Pv Q))-

£y 2-distance for curves. The ¢}, 5-cost of an alignment 7 w.r.t. P and Q is 0, 2(7(P, Q)) :=

1/p
(Z(i,j)ef lpi — qj||§) . The ¢, »-distance between P and () is defined over the set 7 of all

alignments as

4y2(P,Q) = min o (r(P,Q)).

TE

Notice that ¢, »-distance is a generalization of DFD and DTW, in the sense that oqr =
Ooo,2 and dgr = doo,2, opTw = 01,2 and dprw = di,2. Also note that DFD satisfies the

triangle inequality, but DTW and ¢, o-distance (for p # 0o) do not (see Section 5 for details).

Emiris and Psarros [12] showed that the number of all possible alignments of two curves

is in O(m - 2%™). We reduce this bound by counting only alignments that can determine

1

the £, o-distance between two curves.” More formally, let 7 be an alignment. If there

1 Since our storage space is already in O(é)md, and m - 22™ < 32™ is in O(1)™¢, we could have used this

larger upper bound. However, in Lemma 4 we show a tight upper bound on the number of relevant
alignments, which may be useful for other applications.

48:7
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exists an alignment 7’ such that 7/ C 7, then clearly o, 2(7'(P, Q)) < 0p2(7(P,Q)), for any
1 < p < oo and for any two curves P and (. In this case, we say that 7 cannot determine
the £, o-distance between two curves.

» Lemma 4. The number of different alignments that can determine the £, 2-distance between
22771

two m-curves (for any 1 < p < 00) is at most O(ﬁ)

Proof. Let 7 = ((é1,41),. .-, (i, j¢)) be an alignment. Notice that m < ¢ < 2m — 1. By
definition, 7 has 3 types of (consecutive) subsequences of length two:

(i) (i, Jr), (e + 1, k),

(1) ((ik:dr), (i, Jr + 1)), and

(i) ((iks gr)s (ik + 1, ji + 1))

Denote by 77 the set of all alignments that do not contain any subsequence of type
(iii). Then, any 71 € 77 is of length exactly 2m — 1. Moreover, 71 contains exactly 2m — 2
subsequences of length two, of which m —1 are of type (i) and m—1 are of type (ii). Therefore,

2m—2 22m
Th| = (m—l) = O(ﬁ)

Assume that an alignment 7 contains a subsequence of the form (ig, jx — 1), (ix, J&), (ix +
1, k), for some 1 < k <t — 1. Notice that removing the pair (ix, jx) from 7 results in a legal
alignment 7/, such that o, (7 (P, Q)) < 0p2(7(P,Q)), for any 1 < p < co and two curves
P, Q. We call the pair (ig, jx) a redundant pair. Similarly, if 7 contains a subsequence of the
form (ix — 1,Jk), (i, jx), (ik, jk + 1), for some 1 < k <t — 1, then the pair (i, jr) is also a
redundant pair. Therefore we only care about alignments that do not contain any redundant
pairs. Denote by 72 the set of all alignments that do not contain any redundant pairs, then
any 7o € T contains at least one subsequence of type (iii).

We claim that for any alignment 75 € 73, there exists a unique alignment 7, € 7T7.
Indeed, if we add the redundant pair (i;, j; + 1) between (i;, j;) and (¢; + 1, j; + 1) for each
subsequence of type (iii) in 72, we obtain an alignment 7 € 7;. Moreover, since 7o does
not contain any redundant pairs, the reverse operation on 71 results in 75. Thus we obtain

22771.

Points and balls. Given a point z € R? and a real number R > 0, we denote by Bg(x, R)
the d-dimensional ball under the ¢, norm with center x and radius R, i.e., a point y € R?

1/
is in Bf(z, R) if and only if ||z — y||, < R, where ||z —y|, = (Z?Zl |z; — y¢|p> " Let
d(p) — pd d d
By(R) = By(0, R), and let V'(R) be the volume (w.r.t. Lebesgue measure) of Bj(R), then

21+ 1/p)f
VIR = aa)

where T'(+) is Euler’s Gamma function (an extension of the factorial function). For p = 2 and
p =1, we get
d/2 9d
7r
Vs{R) = =———=R"* and V{(R)= =R"
2 (B) = rarap® awd R =7
Our approach consists of a discretization of the space using lattice points, i.e., points
from Z2.

» Lemma 5. The number of lattice points in the d-dimensional ball of radius R under the
t, norm (i.e., in BY(R)) is bounded by V(R + d\/r).
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Proof. With each lattice point z = (21, 22,...,24), 2i € Z, we match the d-dimensional
lattice cube C(z) = [21, 21 + 1] X [22, 22 + 1] X - - X [24, 24 + 1]. Notice that z € C(z), and the
¢,-diameter of a lattice cube is d'/P. Therefore, the number of lattice points in the 4-ball
of radius R is bounded by the number of lattice cubes that are contained in a ég—ball with
radius R+ d'/?. This number is bounded by Vpd(R + d'/?) divided by the volume of a lattice
cube, which is 19 =1. <

» Remark 6. In general, in all our data structures we do not assume any bound on the
dimension d. However, using dimension reduction techniques, we may assume that d <
O(lelnm)y Gee Section 9 for details.

2

3 Discrete Fréchet distance (DFD)

Consider the infinite d-dimensional grid with edge length E—Td. Given a point z in R?, by
rounding one can find in O(d) time the grid point ' closest to z, and ||z — 2'||, < 5. Let
G(z, R) denote the set of grid points that are contained in BY(z, R).

» Corollary 7. |G(z, (1+¢)r)| = O(1)".

Proof. We scale our grid so that the edge length is 1, hence we are looking for the number
of lattice points in B¢(x, 1£1/d). By Lemma 5 we get that this number is bounded by the

volume of the d-dimensional ball of radius %\/& +Vd < ?’T‘/g. Using Stirling’s formula we
conclude that

3vd 7t 3\/&61 a9
V2d< £ >:I‘(g+1)'< € ) S(E) ’

where « is a constant. For example, if d is even, then

svad\ _ xt (3vd)' 8 sva)'  (12.4\ e
" <E> - (Czi)!( € > = \/ﬁ(d/g)d/zﬂpe—d/z'( - ) < <5> =O(€> )

|

Denote by p the j’th point of C;, and let G; = Ui<j<m G(pl, (1+e)r) and G = U, <<, Gis
then by the above corollary we have |G;| =m - O(1)% and |G| = mn - O(2)?. Let Z; be the

set of all curves Q = (x1, 22, ..., %) with points from G;, such that dgr(C;, Q) < (1 + S)r.
> Claim 8. |Z;| = O(2)™? and it can be computed in O()™? time.

Proof. Let @ € Z; and let 7 be an alignment with o4r(7(C;,Q)) < (1 + 5)r. For each
1 < k < m let ji be the smallest index such that (ji, k) € 7. In other words, j; is the
smallest index that is matched to k by the alignment 7. Since dyr(C;, Q) < (1+ $)r, we have
T € Bg(pék_, (1+5)r), for k=1,...,m. This means that for any curve Q@ € T; such that
oqr(7(Ci,Q)) < (14 5)r, we have x € G(p;k7 (14 5)r), for k=1,...,m. By Corollary 7,
the number of ways to choose a grid point x) from G(pj, , (14 5)r) is bounded by O(£)<.

We conclude that given an alignment 7, the number of curves @@ with m points from G;
such that o4r(7(C;, Q)) < (14 £)r is bounded by O(2)™?. Finally, by Lemma 4, the total
number of curves in Z; is bounded by 22™ . O(1)™d = O(L)™.

To construct Z; we compute, for each of the O(%)md candidates, its discrete Fréchet dis-
tance to C;. Thus, we construct Z; in total time O(2)™? - O(m?) = O(1)™?. (The latter
equality is true, since clearly (2)™?®.O(m?) < (2)™4, ie., O(m?) < ¢™?, where a is the
constant from Corollary 7 and ¢ > 1 is a sufficiently large constant.) <
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The data structure. Denote Z = {J,,., Z;, so |Z| < n- O(2)™? and we construct Z in
total time n - O(%)md. Next, we would like to store the set Z in a dictionary (a hash table
or a lookup table) D, such that given a query curve @, one can find @ in D (if it exists) in
O(md) time. We use Cuckoo Hashing [21] to construct a (dynamic) dictionary of linear space,
constant worst-case query and deletion time, and constant expected amortized insertion time.
We insert the curves of Z into the dictionary D as follows. For each 1 < i < n and curve
Q €T, if Q ¢ D, insert Q into D, and set C(Q) + C;. The storage space required for D is
O(|Z]), and to construct it we perform |Z| insertions and look-up operations which take in
total O(|Z] - md) = O(|Z|) expected time.

The query algorithm. Let Q = (¢1,...,¢n) be the query curve. The query algorithm is
as follows: For each 1 < k < m find the grid point g}, (not necessarily from G) closest to gy.
This can be done in O(md) time by rounding. Then, search for the curve Q' = (¢4, ...,¢,,)
in the dictionary D. If @’ is in D, return C(Q’), otherwise, return NO. The total query time
is then O(md).

Correctness. Consider a query curve Q = (q1,...,qm). Assume that there exists a curve
C; € C such that dgp(C;, Q) < r. We show that the query algorithm returns a curve C* with
dar(C*,Q) < (1 +¢)r.

Consider a point ¢, € Q. Denote by ¢, € G the grid point closest to g, and let
Q" = (q1,---,4q,) Wehave |lgx —qll, < 5, 50 dar(Q, Q") < 5. By the triangle inequality,

dar(Ci, Q') < dar(Ci, Q) + dar (@, Q") <7+ %T = (1+ %)r,

so @' is in Z; C Z. This means that D contains Q' with a curve C(Q’) € C such that
dar(C(Q"),Q") < (1 + 5)r, and the query algorithm returns C(Q’). Now, again by the
triangle inequality,

dar(C(Q),Q) < dar(C(Q), Q") +dar(Q',Q) < (1+ %)7“ + %T = (1+¢)r.

We obtain the following theorem.

» Theorem 9. There exists a data structure for the (1 + e,7)-ANNC under DFD, with
n- O(%)’”d space, m - O(%)’”d expected preprocessing time, and O(md) query time.

Table 3 Comparing our ANN data structure to previous structures, for a fixed ¢ (say € = 1/2).

m Reference Space Query Approx.
[10] O(n**logn) | O(n*?) dvd

logn | [12] pfHdlogn) O(dn*) 1+e¢
Theorem 9 | n%@® O(dlogn) 1+¢
[10] 20 plogn 20 logn | dvd

o) | 2] d°@DO(n) O(dlogn) | 1+¢
Theorem 9 | 2°@p O(d) 1+e
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4 The asymmetric setting under DFD

In this section, we show how to easily adapt our data structure to the asymmetric setting,
by using simplifications of length at most k instead of the original input curves.

Bereg et al. [3] showed that given a curve C' consisting of m points in 3D, and a parameter
r > 0, there is an algorithm that runs in O(mlogm) time and returns a simplification II
with minimum number of vertices such that dqp(C,II) < r. Their algorithm generalizes
to higher dimensions, using an approximation algorithm for the minimum enclosing ball
problem (see Kumar et al. [17]). In this section, we use the following generalization of their
original approach ([3], Theorem 1). More details are given in Section 8.

» Lemma 10. Let C be a curve consisting of m points in R%. Given parameters k < m,

r >0, and ¢ € (0,1], there is an algorithm that runs in O M

+m- poly%) time that
either returns a simplification I1 consisting of k points such that dgp(C,II) < (14 €)r, or

declares that for every simplification I1 with k points, it holds that dqp(C,II) > r.

For each C; € C, using Lemma 10 with parameter € = 1, we find a curve II; of length &
such that dgp(C;, II;) < 2r. If we fail to find such a curve, then we can ignore C;, because it
means that dqp(Q, C;) > r for any curve @ of length k.

To reduce the space consumption of our data structure, we only store candidate curves of
length k that are close enough to the simplifications II;. However, since the distance between
the simplification II; and the input curve C; could be up to 2r, storing the answers for the
set of candidate curves that are within distance (1 + §)r from II; is not enough, because a
query @ that is within distance (1 + €)r from C; might be as far as (3 + ¢)r from II;. Thus,

instead, we insert into our data structure all the curves that are within distance 4r from II;.

This allows us to capture all query curves that are within distance r from C;.

The data structure. We construct our data structure for the original (symmetric) version,
with the following modifications. The set of input curves is P = {II;,...,II,} (instead of

ET

C), and the radius parameter is 4r (instead of r), but the grid edge length remains i In

addition, we let Z/ be the set of all curves Q with k points from G, such that dyp(Q,IL;) < 4r,
and Z; will be the set of all curves Q € Z! such that dyr(Q,C;) < (1+ 5)r. We insert the
curves in Z; into the database D as before: For each @ € Z;, if Q) ¢ D, insert ) into D and
set C(Q) + C;.

Notice that using 4r instead of r, increases the ratio between the radius and the grid edge
length by only a factor of 4, and therefore the bound on |Z]| does not change, except that
m is replaced by k. Therefore, the bounds on the storage space and query time are similar
to those of the original data structure, where m is replaced by k. Thus, the storage space
isinn - O(%)kd and the query time is in O(kd). As for the preprocessing time, we get an
additional term of O(nmdlogm) for computing the simplifications Iy, . .., II,,. We also need
to compute the distances dgr(C;, Q) in the construction of Z;, for 1 < i < n, which takes
n-O(2)* . O(mkd) = nm - O(2)*? time in total (as kd < 2*?). Thus the total expected
preprocessing time is O(nmdlogm) + nm - O(2)* = nm - (O(dlogm) + O(2)*4).
Correctness. Consider a query curve (), and assume that there exists a curve C; € C such
that dgp(C;,Q) < r. Then, II; is a curve of length k and dgr(C;,II;) < 2r. As in the

previous section, let @' be the curve computed by the query algorithm, then dyr(Q’, Q) < 5.

By the triangle inequality, we have dyr(Q', C;) < dgr(Q', Q) + dar(Q,C;) < (14 5)r, and

dar(Q',1IL) < dar(Q', C;) + dar(Cy, IL;) < (1 + %)7‘ +2r < A4r.
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Therefore our data structure contains @', and the query algorithm returns C(Q’), where
dar(C(Q'), Q") < (14 5)r. Finally, again by the triangle inequality, we have

Er

dar(C(Q"),Q) < dgr(C(Q"), Q") + dar(Q', Q) < (1 + %)7‘ +o = (1+¢)r.

We obtain the following theorem.

» Theorem 11. There exists a data structure for the asymmetric (1 + e,r)-ANNC under
DFD, with n - O(%)dk space, nm - (O(dlog m) + O(é)kd) expected preprocessing time, and
O(kd) query time.

5 £, ,-distance of polygonal curves

For the near-neighbor problem under the ¢, o-distance, we use the same basic approach as in
Section 3, but with two small modifications. The first is that we set the grid’s edge length to

m, and redefine G(x, R), G;, and G, as in Section 3 but with respect to the new edge

length of our grid. The second modification is that we redefine Z; to be the set of all curves
Q = (z1,22,...,Ty) with points from G, such that d, 2(Cy, Q) < (1 + s)r.

We assume without loss of generality from now and to the end of this section that r =1
(we can simply scale the entire space by 1/r), so the grid’s edge length is m. The

following corollary is respective to Corollary 7.

€

1/p d
> Corollary 12. |Gz, R)| = O (1+ 2 R) .

Proof. We scale our grid so that the edge length is 1, hence we are looking for the number

(Qm)l/P\/ER

of lattice points in B(w, ). By Lemma 5 we get that this number is bounded by

the volume of the d-dimensional ball of radius (1 + %R)\/ﬁ Using Stirling’s formula
we conclude,

o9m)1/» 4 o9m)1/p d 1p \¢
vi((1+ @Ry va) = (14 @R va) —at (14 ™R
€ 1“(5 +1) € 15
where « is a constant (approximately 4.13 - 21/ Py, <

In the following claim we bound the size of Z;, which, surprisingly, is independent of p.
> Claim 13.  [Z;| = O(2)™(@+D) and it can be computed in O(2)™(@+1) time.

Proof. Let @ = (21,22, ..., %) € Z;, and let 7 be an alignment with o}, 2(7(C;, Q)) < (1+35).
For each 1 < k < m let ji be the smallest index such that (ji, k) € 7. In other words, jj is
the smallest index that is matched to k by the alignment 7.

Set Ry, = ||zx — p’, [l2, then we have [[(Ry, ..., Rm)llp < 0p2(7(Ci,Q)) < (14 5).

Let af = {ml/p Rk—‘. By triangle inequality,

€

ml/p
H(aha?a"'vam)HP < c ”(Rl,R%"WRm)HP—’_ml/Z)
1/p
<X (1+5>+ml/P< (2+1) ml/.
€ 2 €

Clearly, xj, € Bg(pz-k,akﬁ).
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We conclude that for each curve Q = (x1,%a,...,2m) € Z; there exists an alignment
7 such that 0,2(7(C;,Q)) < 1+ 5, and a sequence of integers (a1,...,q,) such that
(a1, 02,...,am)llp < (2+ L)m!/? and ), € BY(pt, ,ar—57), for k= 1,...,m. Therefore,

the number of curves in Z; is bounded by the multiplication of three numbers:

1. The number of alignments that can determine the distance, which is at most 22™ by

Lemma 4.
2. The number of ways to choose a sequence of m positive integers aq, ..., a,, such that
(a1, as,...,am)|lp, < (2+ L)m!/P, which is bounded by the number of lattice points in

B™((2+ L)m!/?) (the m-dimensional £,-ball of radius (2 + 1)m!/?). By Lemma 5, this
number is bounded by

1 amt/?  2mD(1+1/p)™ [4m/P\" 1
V™2 - 1/p 1/p <ym _ — O(=)™
b (( +E)m i) <V € T'(14+m/p) € (5) ’
. mm'/p _ m
where the last equality follows as w7 = 0(1)
3. The number of ways to choose a curve (z1,2,..., ), such that xj, € G(péwak#),
for k = 1,...,m. By Corollary 12, the number of grid points in G(pj, ,ar—i7) is
O(1+ay)?, so the number of ways to choose (x1, T2, . .., Zy,) is at most II7L O(1+ay,)? =

Oo(1)™d (T, (1 + ak))d. By the inequality of arithmetic and geometric means we have

m m/p m
m 21 (14 o)P 11 +a1,..., 1+ an)|
(I, (14 ag)?) 7 < (m = i

< <||1||p + (al,...,am)Hp)m

ml/p
1/p 1 1/p m
< <m + (21+ E)m ) = O(l)m7
ml/p c
s0 1T, 01 + ) = O(1)™0(L)™ = Oy
Finally, [Z;] < 2% - O(2)™ - O(2)™ < O(2)™+V). <

The data structure and query algorithm are similar to those we described for DFD, and
the size of Z; and Z is roughly the same (here there is an additional O(1)™ factor in the
space bound). Therefore, the query time, storage space, and preprocessing time are roughly
similar, but we still need to show that the algorithm is correct.

Correctness. Consider a query curve Q = (q1,. - .,qm). Assume that there exists a curve
C; € C such that dj, 2(C;, Q) < 1. We will show that the query algorithm returns a curve C*
with d, 2(C*,Q) <1+e.

Consider a point ¢; € Q. Denote by ¢, € G the grid point closest to ¢, and let
Q = (q,...,¢,). Wehave |lgx — ¢i|2 < W Let 7 be an alignment such that the
l, o-cost of 7 w.r.t. C; and @ is at most 1. Unlike the Fréchet distance, £, »-distance for
curves does not satisfy the triangle inequality. However, by the triangle inequality under ¢
and ¢,, we get that the £, o-cost of 7 w.r.t. C; and @’ is
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1/p 1/p
opa(r(C, @) = | Y It =als ] < | Do (P} — all2+ llae — afll2)
(g, t)er (g, t)eT
1/p 1/p
< > —alb) D e —dlb
Ger Gyer

c p\ 1/p c
<1+ (o2m(—"t <14°%.
= +<m<2<zm)w>> =ty

So dp2(Ci, Q") <14 5, and thus Q' is in I; € Z. This means that 7 contains @’ with a
curve C(Q') € C such that d, 2(C(Q’), Q") <1+ §, and the query algorithm returns C(Q").

Now, again by the same argument (using an alignment with £, o-cost at most 1 + § w.r.t.
py\ 1/
C(Q') and @), we get that dp»(C(Q'), Q) <1+ £ + <2m (W) ) —1te

We obtain the following theorem.

» Theorem 14. There exists a data structure for the (1 +¢,r)-ANNC under ¢, o-distance,
with n - O(%)m(dJrl) space, - O(%)m(”Hl) expected preprocessing time, and O(md) query time.

As mentioned in the preliminaries section, the DTW distance between two curves equals
to their ¢; o-distance, and therefore we obtain the following theorem.

» Theorem 15. There exists a data structure for the (1 + ¢,r)-ANNC under DTW, with
n- O(é)m(d“) space, m - O(%)m(‘”l) expected preprocessing time, and O(md) query time.

» Remark 16 (Dealing with query curves and input curves of varying size). For the case of
DFD, our assumption that all query curves are of length exactly k can be easily removed,
by constructing k data structures Dy, ..., Dy, where D; is our data structure constructed
for query curves of length 7 (instead of k), for 1 < i < k. Clearly, the query time does not
change. The storage space is multiplied by k, so in the case of DFD we have storage space
nk - O(2)* but k < 28, so the storage space remains n - O(1)*.

For the case of dp 2 we can deal with queries of all sizes up to m. Our construction in
Section 5 can be modified in a straightforward manner to deal with queries of size k, the space
guarantee however will depend on m, upper bounded by n - O(%)m(d“)7 as in Theorem 14.

From here, we can use the same approach as above.

6 A deterministic construction using a prefix tree

When implementing the dictionary D as a hash table, the construction of the data structure
is randomized and thus in the worst case we might get higher prepeocessing time. To avoid
this, we can implement D as a prefix tree.

6.1 Discrete Fréchet distance

In this section we describe the implementation of D as a prefix tree in the case of ANNC
under DFD.

We can construct a prefix tree 7 for the curves in Z, where any path in 7 from the root
to a leaf corresponds to a curve that is stored in it. For each 1 <4 < n and curve Q € 7, if
Q ¢ T, insert Q into T, and set C(Q) < C;.
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Each node v € T corresponds to a grid point from G. Denote the set of v’s children by
N(v). We store with v a multilevel search tree on N(v), with a level for each coordinate.
The points in G are the grid points contained in nm balls of radius (1 4 €)r. Thus when
projecting these points to a single dimension, the number of 1-dimensional points is at most
\/EO;;E)QT = O(""’é‘/g). So in each level of the search tree on N(v) we have O(%‘/a)
1-dimensional points, so the query time is O(dlog(™®24)).

Inserting a curve of length m to the tree 7 takes O(md log("md)) time. Since 7 is a
compact representation of |Z| =n - O(1)¥™ curves of length m, the number of nodes in T
is m - |Z| = nm - O(£)?™. Each node v € T contains a search tree for its children of size
O(d- [N(v)]), and >, [N (v)| = nm - O(1)%™ so the total space complexity is O(nmd) -
O(L)md = n-0O(L)m. Constructing T takes O(|Z] - mdlog(”de)) = nlog(”md) O(L)md

€

nm -

time.

» Theorem 17. There exists a data structure for the (14 &,7)-ANNC under DFD, with
n-O(2)4™ space, n-log(2) - O(2)™¢ preprocessing time, and O(mdlog(™24)) query time.

€

Similarly, for the asymmetric case we obtain the following theorem.

» Theorem 18. There exists a data structure for the asymmetric (1 +¢e,r)-ANNC under
DFD, with n - O(2)% space, nmlog(Z) - (O(dlogm) + O(L)*) preprocessing time, and
O(kdlog(™£%)) query time.

6.2 ¢,.-distance

For the case of ANNC under ¢, »-distance, the total number of curves stored in the tree 7 is
roughly the same as in the case of DFD. We only need to show that for a given node v of
the tree T, the upper bound on the size and query time of the search tree associated with it
are similar.

The grid points corresponding to the nodes in N(v) are from n sets of m balls with radius
(1+¢€). When projecting the grid points in one of the balls to a single dimension, the number

/pf

of 1-dimensional points is at most ™ -(1+¢€), so the total number of projected points is

at most M- p\f (1+e).

Thus in each level of the search tree of v we have O(™*™" ¢ f) 1-dimensional points, so
the query time is O(dlog(”md)), and inserting a curve of length m into the tree T takes
O(md log(”md)) time. Note that the size of the search tree of v remains O(d - [N (v)]).

We conclude that the total space complexity is O(%%) L0yt = . O(L)mid+D)
constructing 7 takes O(|Z| - mdlog(nmd/e)) = nlog(%) - O(i)m(d“) time, and the total
query time is O(md log("md))

» Theorem 19. There exists a data structure for the (1 +¢,r)-ANNC under ¢, o-distance,
with n - O(%)m(‘“‘l) space, n - log(2) - O(%)m(d‘*‘l) preprocessing time, and O(mdlog(™24))
query time.

7 Approximate range counting

In the range counting problem for curves, we are given a set C of n curves, each consisting of
m points in d dimensions, and a distance measure for curves §. The goal is to preprocess C
into a data structure that given a query curve @ and a threshold value r, returns the number
of curves that are within distance r from Q.
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In this section we consider the following approximation version of range counting for
curves, in which r is part of the input (see Remark 22). Note that by storing pointers to
curves instead of just counters, we can obtain a data structure for the approximate range
searching problem (at the cost of an additional O(n)-factor to the storage space).

» Problem 20 ((1 + ¢, r)-approximate range-counting for curves). Given a parameter r and
0 < e <1, preprocess C into a data structure that given a query curve Q, returns the number
of all the input curves whose distance to Q is at most r plus possibly additional input curves
whose distance to Q is greater than r but at most (1 + ¢)r.

We construct the dictionary D (implemented as a dynamic hash table, or a prefix tree)
for the curves in Z as in Section 5, as follows. For each 1 < i < n and curve Q € T;, if
Q is not in D, insert it into D and initialize C'(Q) < 1. Otherwise, if Q is in D, update
C(Q) + C(Q) + 1. Notice that C(Q) holds the number of curves from C that are within
distance (14 5)r to Q. Given a query curve @, we compute @’ as in Section 5. If Q' is in D,
we return C(Q’), otherwise, we return 0.

Clearly, the storage space, preprocessing time, and query time are similar to those in
Section 5. We claim that the query algorithm returns the number of curves from C that are
within distance r to @ plus possibly additional input curves whose distance to @ is greater
than 7 but at most (1 + €)r. Indeed, let C; be a curve such that dgp(C;, Q) < r. As shown
in Section 5 we get dp, 2(C, Q") < (14 5)r, so Q" is in Z; and Cj is counted in C(Q'). Now
let C; be a curve such that dp2(Ci, Q) > (1 +¢)r. If dy2(Cs, Q") < (1 + 5)r, then by a
similar argument (switching the rolls of @ and Q') we get that dp2(C;, Q") < (1 +¢)r, a
contradiction. So dp2(C;i, Q") > (1 + §)r, and thus C; is not counted in C'(Q’).

We obtain the following theorem.

» Theorem 21. There exists a data structure for the (1 + e, r)-approzimate range-counting
for curves under €, o-distance, with n - O(%)m(d“) space, nlog(%)- O(é)m(d“) preprocessing
time, and O(mdlog(mT”d)) query time. (Under DFD, the exponent in the bounds for the
space and preprocessing time is md rather than m(d +1).)

» Remark 22. When the threshold parameter r is part of the query, we call the problem the
(1+4¢)-approxzimate range-counting problem. Note that the reduction from (1+¢)-approximate
nearest-neighbor to (14 ¢, r)-approximate near-neighbor can be easily adapted to a reduction
from (1 + ¢)-approximate range-counting to (1 + ¢, r)-approximate range-counting, more
details will be given in a full version of this paper.

8 Simplification in d-dimensions

The algorithm of Bereg et al. [3] receives as an input a curve C consisting of m points in R3,
and a parameter r > 0. In O(mlogm) time, it returns a curve II such that dgr(C,II) < r,
and IT has the minimum number of vertices among all curves within distance r from C. The
algorithm is operating in a greedy manner, by repeatedly executing Megiddo’s [19] minimum
enclosing ball (MEB) algorithm for points in R3, which takes linear time.

We generalize the algorithm of Bereg et al. for curves in R?, by using an algorithm
presented by Kumar et al. [17] for approximated minimum enclosing ball (AMEB) in R9.
Formally, given a set A of n points in R? and a parameter ¢ € (0, 1], the goal is to find an
enclosing ball of A with radius r > 0, where the minimum enclosing ball of A has radius at
least 1. The algorithm of [17] can find an AMEB in O("?d +e 45 log %) time. In particular,
given an additional parameter r > 0, this algorithm either returns an enclosing ball of A with
radius (1 + ¢)r, or declares that the minimum enclosing ball of A has radius larger than 7.
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Next, we describe our modified algorithm. Consider a curve C = (21, ..., 2, ), and denote
Cli,j] = (xi,...,x;). The following sub-procedure takes as an input a curve A and returns a
point y and an index s, such that the ball with radius (1 + €)r centered at y covers the prefix
A[l,s], and (if s < |A|) the minimum enclosing ball of A[1, s + 1] has radius larger than .
1. By iterative probing, using an algorithm for AMEB, find some ¢ such that A[l,2¢] can be

covered by a ball of radius (1 + ¢)r, while A[1,2!] cannot be covered by a ball of radius

r. If all the points in A can be enclosed by a single ball of radius (1 + &)r centered at y,

simply return y and |A|.

2. By binary search, again using an algorithm for AMEB, find some s € [2¢,2!*1) such that
A[l, s] can be covered by a ball of radius (1 4 ¢)r, and A[1, s + 1] cannot be covered by a
ball of radius r. Let y € R? be the center of this ball. Return y and s.

Starting from the input A = C[1,m], repeat the above sub-procedure such that in each step

the input is the suffix of C' that was not yet covered by the previous steps (i.e. A[s+ 1,m]).

Let (y1,...,yq) be the sequence of output points.

Lemma 10 is an easy corollary of the following lemma.

» Lemma 23. Let C be a curve consisting of m points in R, Given parameters r > 0,
and € € (0,1], the algorithm above runs in O (

d-mlogm

= +m e *%log é) time and returns a

curve Il = (y1,...,yq) such that dgp(C,II) < (1 + &)r. Furthermore, for every curve II" with
less than q points, it holds that dgr(C,II') > r.

Proof sketch. We start by analyzing the running time for a single iteration of the sub-
procedure, when using the algorithm of [17] to find an AMEB. The total time for the first
step of the sub-procedure (finding t) is

41

2t-d 1 2t . d
ZO( +e 45 1og g) =O(
i=1

1
+t-e 5 1og -).
€ €

In the second step, there are O(t) executions of [17] on a set of size at most 2!71, so the total
time for this step is ¢ - O(Q%d +e *%log ).

Let m; be the length of the subcurve covered by the point y; that was found in
the 7’th iteration of the sub-procedure. The total time spent for finding y; is therefore
logm,; - O(%’d +e 45 ]og %), and the total running time of the algorithm is

a
> logm; -0 (md e log 1) -0 (d OB - log 1) :

prt € € € €
where we used the the concavity of the log function, and the fact Zgzl m; = m.

Next we argue the correctness. Clearly, dgr(C,II) < (14 ¢)r. Let sg =0, 81,...,5 =m
be the sequence of indices (of vertices in C') found during the execution of the algorithm, such
that the ball of radius (14 ¢)r around y; covers C[s,—1 +1, s;]. It follows by a straightforward
induction that every curve I’ with less that i points will be at distance greater than r from
C1,s;—1 + 1]. The lemma now follows. <

90 Remark on dimension reduction

In general, when the dimension d is large, i.e. d >> log(nm), one can use dimension reduction
(using the celebrated Johnson-Lindenstrauss lemma [16]) in order to achieve a better running
time, at the cost of inserting randomness in the prepossessing and query procedure. However,
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such an approach can work only against an oblivious adversary, as it will necessarily fail for
some curves. Recently Narayanan and Nelson [20] (improving [11, 18]) proved a terminal
version of the JL-lemma. Given a set K of k points in R? and ¢ € (0, 1), there is a dimension
reduction function f : R¢ — ROCEY) such that for every z € K and y € R? it holds that
[z —yllz < If(x) = fW)ll2 < (X +2) - lz = yll2-

This version of dimension reduction can be used such that the query remains deterministic
and always succeeds. The idea is to take all the nm points from all the input curves to
be the terminals, and let f be the terminal dimension reduction. We transform each input
curve P = (p1,...,pm) into f(P) = (f(p1),--., f(pm)), a curve in ROCE™). Given a query
Q= (q1,.-.,qm) we transform it to f(Q) = (f(q1),--., f(gm)). Since the pairwise distances
between every query point to all input points are preserved, so is the distance between the

curves. Specifically, the d, o distance w.r.t. any alignment 7 is preserved up to a 1+ ¢ factor,
and therefore we can reliably use the answer received using the transformed curves.
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