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Abstract
Consider a set V of voters, represented by a multiset in a metric space (X , d). The
voters have to reach a decision—a point in X . A choice p ∈ X is called a β-plurality
point for V , if for any other choice q ∈ X it holds that |{v ∈ V | β · d(p, v) ≤
d(q, v)}| ≥ |V |

2 . In other words, at least half of the voters “prefer” p over q, when an
extra factor ofβ is taken in favor of p. Forβ = 1, this is equivalent toCondorcetwinner,
which rarely exists. The concept of β-plurality was suggested by Aronov, de Berg,
Gudmundsson, and Horton [TALG 2021] as a relaxation of the Condorcet criterion.
Let β∗

(X ,d) = sup{β | every finite multiset V in X admits a β-plurality point}. The
parameter β∗ determines the amount of relaxation required in order to reach a stable

decision. Aronov et al. showed that for the Euclidean plane β∗
(R2,‖·‖2) =

√
3
2 , and more

generally, for d-dimensional Euclidean space, 1√
d

≤ β∗
(Rd ,‖·‖2) ≤

√
3
2 . In this paper,

we show that 0.557 ≤ β∗
(Rd ,‖·‖2) for any dimension d (notice that 1√

d
< 0.557 for

any d ≥ 4). In addition, we prove that for every metric space (X , d) it holds that√
2 − 1 ≤ β∗

(X ,d), and show that there exists a metric space for which β∗
(X ,d) ≤ 1

2 .
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1 Introduction

When a group of agents wants to reach a joint decision, it is often natural to embed
their preferences in some metric space. The preferences of each agent are represented
by a metric point (also referred to as a voter). Each point in the metric space is a
potential choice, where an agent/voter prefers choices closer to its point over farther
choices. The goal is to reach a stable decision, in the sense that no alternative choice is
preferred by amajority of the voters. Such a decision is often referred to as a Condorcet
winner.

More formally, consider ametric space (X , d), and a finitemultiset of points V from
X , called voters. A voter v prefers a choice p ∈ X over a choice q ∈ X if d(p, v) <

d(q, v). Specifically, a point p ∈ X is a plurality point if for any other point q ∈ X ,
the number of voters preferring p over q is at least the number of voters preferring q
over p, i.e., |{v ∈ V | d(p, v) < d(q, v)}| ≥ |{v ∈ V | d(p, v) > d(q, v)}|.1

The special case where (X , d) is the Euclidean space, i.e., (Rd , ‖ · ‖2), is called
spatial voting games, and was studied in the political economy context [3, 5, 7, 21].
When X = R is the real line, a plurality point always exist, in fact, it is simply the
median of V (for even V , there are two plurality points). When (X , d) is induced by
the shortest path metric of a tree graph, then again a plurality point always exists, as
any separator vertex2 is a plurality point. However, already inR2 a plurality point does
not always exist, and moreover, it exists only for a negligible portion of the point sets.
Indeed, for any d ≥ 2, a plurality point for a multiset V in Rd exists if and only if all
median hyperplanes3 for V have a common intersection point (see [7, 21]). Wu et al.
[25] and de Berg et al. [4] presented algorithms that determine whether such a point
exist.

Recently, Aronov, de Berg, Gudmundsson, and Horton [1], introduced a relax-
ation for the concept of plurality points, by defining a point p ∈ X to be a
β-plurality point, for β ∈ (0, 1], if for every other point q ∈ X , it holds
that |{v ∈ V | β · d(p, v) < d(q, v)}| ≥ |{v ∈ V | β · d(p, v) > d(q, v)}|. In other
words, if we scale distances towards p by a factor of β, then for every choice q, the
number of voters preferring p over q is at least the number of voters preferring q over
p. Set

β(X ,d)(p, V ) := sup{β | p is a β-plurality point in X w.r.t. V },
β(X ,d)(V ) := sup

p∈X
{β(X ,d)(p, V )}, (1.1)

β∗
(X ,d) := inf{β(X ,d)(V ) | V is a multiset in X}.

1 Amore accurate name for such a point, which is also used in the literature, isCondorcet winner However,
as this work is mainly concerned with the term β-plurality point defined in [1], we choose to keep their
terminology.
2 If T is the tree inducing (X , d), a separator vertex is a vertex z ∈ X , the removal of which will break the
graph T into connected components, each containing at most |V |

2 voters. Every tree contains a separator
vertex [15].
3 3A median hyperplane for V is a hyperplane such that both open half-spaces defined by it contain less
than |V |

2 voters.
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Table 1 Summary of current and previous results on β∗
X for different metric spaces

Space Lower bound Upper bound Ref

R and tree metric 1 1

(R2, ‖ · ‖2)
√
3/2 ≈ 0.866

√
3/2 [1]

(R3, ‖ · ‖2) 1/
√
3 ≈ 0.577

√
3/2 [1]

(Rd , ‖ · ‖2) for d ≥ 4 ≈ 0.557
√
3/2 Theorem 3.1, [1]

General metric space
√
2 − 1 ≈ 0.414 1/2 Theorem 2.2, Theorem2.3

A natural question is to find or estimate these parameters for a given metric space.
Notice that asβ becomes larger, aβ-plurality point becomesmore similar to a “normal”
plurality point, and for β = 1 the two concepts are the same. Therefore, it is interesting
to knowwhat values of β are required for a givenmetric space in order to reach a stable
decision. These bounds give an indication on the amount of relaxation that might be
needed, and how reasonable it is.

Aronov et al. [1] studiedβ-plurality for the case of Euclidean space, i.e., (Rd , ‖·‖2).
Given a specific instance V , they presented an EPTAS to approximate β(Rd ,‖·‖2)(V ).

For the case of the Euclidean plane (d = 2), they showed that β∗
(R2,‖·‖2) =

√
3
2 .

Specifically, they showed that for every multiset of voters V in R
2, there exists a

point p ∈ R
2 such that β(R2,‖·‖2)(V , p) ≥

√
3
2 . Furthermore, they showed that for

the case where V consist of the three vertices of an equilateral triangle, it holds that

β(R2,‖·‖2)(V ) ≤
√
3
2 . For the general d-dimensional Euclidean space (Rd , ‖ · ‖2),

Aronov et al. showed a lower bound of β∗
(R2,‖·‖2)(V ) ≥ 1√

d
. The problem of closing

the gap between 1√
d
and

√
3
2 was left by Aronov et al. as a “main open problem”. In

addition, they asked what bound on β∗ could be proved in other metric spaces.
Our Contribution We prove that for every metric space (X , d), it holds that

β∗
(X ,d) ≥ √

2 − 1. Note that Aronov et al. [1] gave a lower bound of 1√
d
for the

Euclidean metric, while our result shows a constant lower bound for any metric space.
In addition, we provide an example of a metric space (X , d) for which β∗

(X ,d) = 1
2 . In

fact, we show that β∗
(X ,d) ≤ 1

2 for any (continuous) graph metric (X , d) that contains
a cycle (in contrast to tree metrics, for which β∗

(X ,d) = 1). Finally, for the case of
Euclidean space of arbitrary dimension d, we show that β∗

(Rd ,‖·‖2) ≥ 0.557. Note that

this lower bound is larger than 1√
d
for d ≥ 4. All the current and previous results are

summarized in Table 1.
Related Work A well known relaxation for the concept of plurality points in

Euclidean space is the yolk [9, 12, 17, 19, 20], which is the smallest ball intersecting
everymedian hyperplane 3 ofV . The center of the yolk is a good heuristic for a plurality
point (see [18] for a list of properties the yolk posses). Notice that the definition of
β-plurality applies for any metric space, not necessarily Euclidean as in the concept
of yolk.
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Another relaxation studied by Lin et al. [16] is the “minimum cost plurality prob-
lem”. Here, given a set of voters V with some cost function, the goal is to find a set
W of minimum cost such that V \ W contains a plurality point. They prove that the
problem is NP-hard in general. de Berg, Gudmundsson, andMehr [4] (improving over
[16]) provided an O(n4 · d2) time algorithm for the case of equal costs.

A main drawback of the spatial voting model in the realistic political context was
underlinedbyStokes [23].The claim is that thismodel does not take into account the so-
called “valence issues”: qualities of the candidates such as charisma and competence
[6], a strong party support [24], and even the campaign spending [13]. Therefore,
several more realistic models have been proposed (see, e.g., [10, 11, 22]). A common
model is the multiplicative model which was introduced by Hollard and Rossignol
[14], and is defined for two-candidate spatial voting model. This model is closely
related to the concept of β-plurality. In more detail, in [14] there are two candidates
with given valences σ1, σ2, and they need to choose policies x1, x2 ∈ R

d , respectively.
A voter a ∈ R

d prefers the first candidate if 1
σ1

· ‖x1 − a‖2 < 1
σ2

· ‖x2 − a‖2 (and

the second if 1
σ1

· ‖x1 − a‖2 > 1
σ2

· ‖x2 − a‖2). In their study, the valences are fixed,
and the candidates are choosing polices in order to win the election. However, the
information about the preferred policies of the voters (points in R

d ) is not given in
full (e.g., only their distribution is given). In contrast, in our paper all the information
about the voters is known, and we are looking for the minimum valence that will allow
a candidate to choose a single policy, so that he will win the election against any other
policy represented by a candidate with valence 1.

2 General Metric Spaces

We begin by providing a (slightly) alternative definition of β-plurality point.

Definition 2.1 Consider a metric space (X , d), and a multiset V in X of vot-
ers. A point p ∈ X is a β-plurality point if for every q ∈ X , we have
|{v ∈ V | β · d(p, v) ≤ d(q, v)}| ≥ |V |

2 . The rest is similar to [1] (and Equa-
tion1.1): β(X ,d)(p, V ) = sup{β | p is a β-plurality point in X w.r.t. V }, β(X ,d)(V ) =
supp∈X β(p, V ), and β∗

(X ,d) = inf{β(X ,d)(V ) | V is a multiset inX}.
The difference between the definitions is that Definition 2.1 is deciding ties in favor of
p, that is, a voter v for which β · d(p, v) = d(q, v), will choose p over q, while in the
original definition from [1], such voters remain “undecided”. The β(X ,d)(p, V ) param-
eter is equivalent in these two definitions. This happens due to the supremum used in
the definitions which eliminates the difference between strong and weak inequalities
(<,≤). We prove this equivalence formally in Appendix A.

Consider ametric space (X , d), with amultiset V of voters from X , and set |V | = n.
For a point p and radius r , denote by BV (p, r) = {v ∈ V | d(p, v) ≤ r} the (multi)
subset of voters at distance at most r from p (i.e., those that are contained in the
closed ball of radius r centered at p), and let Rp be the minimum radius such that
|BV (p, Rp)| ≥ n

2 .
The following theorem shows that a (

√
2 − 1)-plurality point always exists. The

fact that the lower bound is constant, and even close to 1
2 , demonstrates the strength
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of β-plurality in the sense that for any set of voters and in any metric space, the
multiplication factor needed for the existence of such winner is a fixed constant, and
thus the amount of relaxation is bounded.

Theorem 2.2 For every metric space (X , d), we have β∗
(X ,d) ≥ √

2 − 1.

Proof Let p∗ ∈ X be the point with minimum Rp over all p ∈ X , and
let Bp∗ = BV (p∗, Rp∗). We claim that p∗ is a (

√
2 − 1)-plurality point.

p∗

Bp∗

Rp∗

q

Rq

B̊q

(1 + α)Rp∗

Set β = √
2 − 1, and notice that β = 1

2+β
. Consider some choice q ∈ X , and let

α ≥ −1 be such that d(p∗, q) = (1 + α) · Rp∗ . Let B̊q = {v ∈ V | d(q, v) < Rq}
be the (multi) subset of voters at distance (strictly) smaller than Rq from q (i.e., those
that are contained in the open ball of radius Rq centered at q). Consider the following
cases:

• α ≤ β: For every point v /∈ B̊q , as d(q, v) ≥ Rq ≥ Rp∗ , by the triangle inequality
it holds that

d(p∗, v) ≤ d(p∗, q) + d(q, v) ≤ (2 + α) · d(q, v) ≤ (2 + β) · d(q, v)

= 1

β
· d(q, v) .

• α ≥ β: For every point v ∈ Bp∗ , as d(p∗, q) = (1+α) · Rp∗ ≥ (1+α) ·d(p∗, v),
it holds that

d(q, v) ≥ d(q, p∗) − d(p∗, v) ≥ (1 + α − 1) · d(p∗, v) ≥ β · d(p∗, v) .

The theorem follows as |B̊q | < n
2 ≤ |Bp∗ |. 	


Theorem 2.3 There exist a metric space (X , d) such that β∗
(X ,d) = 1

2 .

Proof Consider the metric space (X , d), where X denotes the set of points on a
circle of perimeter 1 and distances are measured along the arcs. More formally, X
is the segment [0, 1), and given two points x, y ∈ [0, 1), their distance is d(x, y) =
min{(x − y)mod1, (y − x)mod1}.

First we show that β∗
(X ,d) ≤ 1

2 . Consider a set of three voters {v1, v2, v3} =
{0, 1

3 ,
2
3 }, all at distance 1

3 from each other. We will show that β∗
(X ,d)(V ) ≤ 1

2 . Assume

by contradiction that there is a choice pwhich is aβ-plurality point forβ > 1
2 . Assume

w.l.o.g. that p = α ∈ [0, 1
6 ] (see the figure below for illustration), the other cases are

symmetric.
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v1 = 0

v2 = 1
3

v3 = 2
3

p = α

q = 1
2 − α

2

p Rp

q

2
3q

2q

Consider the choice q = 1
2 − α

2 lying on the arc [v2, v3] at distance 1
6 − α

2 from v2,
and 1

6 + α
2 from v3. Then β · d(p, v2) = β · ( 13 − α) > 1

6 − α
2 = d(q, v2) and

β · d(p, v3) = β · ( 13 + α) > 1
6 + α

2 = d(q, v3), which contradicts the assumption
that p is a β-plurality point.

Nextwe show thatβ∗
(X ,d) ≥ 1

2 .Consider an arbitrary (multi) subset of votersV ⊆ X ,
and let p ∈ X be the choice with minimal radius Rp such that |BV (p, Rp)| ≥ n

2 .
Note that the length of the smallest arc containing n

2 voters is 2Rp. In particular, by
averaging arguments 2Rp ≤ 1

2 , and thus Rp ≤ 1
4 . Assume w.l.o.g. that p = 0. We

show that p is a 1
2 -plurality point. Let q ∈ X be any other point. We assume that

q ∈ (0, 1
2 ], the case q ∈ [ 12 , 1) is symmetric. Let v be a voter that prefers q over p,

then 1
2d(p, v) > d(q, v). If v < q then 1

2d(p, v) = 1
2v and d(q, v) = q − v, and

thus v > 2
3q. Else, we have v > q, and so 1

2d(p, v) ≤ 1
2v and d(q, v) = v − q (as

otherwise the shortest path from v to q goes through p, implying d(p, v) < d(q, v)),
and therefore v < 2q. We conclude that only voters in the arc ( 23q, 2q) prefer q over
p. The rest is case analysis:

• If q < 3
2 Rp, then the arc containing the set of the voters preferring q over p is of

length 4
3q < 2Rp. By the minimality of Rp, it contains less than n

2 voters.
• If q ≥ 3

2 Rp, then the arc [0, Rp] is disjoint from the arc ( 23q, 2q). Moreover, as
q < 1

2 , all the voters in the arc [1 − Rp, 1) ⊆ [ 34 , 1) will prefer p over q. In
particular there are at least n

2 voters preferring p over q.

	

Given a weighted graph G = (V , E, w), consider its continuous counterpart,

denoted G̃: each edge e = (v, u) in G is represented in G̃ by a an interval of length
w(e), equipped with the line metric with endpoints u, v. The distance between two
points u, v ∈ G̃, denoted dG̃(u, v), is the shortest length of a geodesic path connecting
u to v.

If G contains a cycle, then we can generalize Theorem 2.3 to G̃. This shows a
separation between metric spaces obtained by acyclic graphs (trees) which always
contain a plurality point (that is, β∗

(X ,d) = 1), and metric spaces obtained by all other

graphs, for which β∗
(X ,d) ≤ 1

2 .

Theorem 2.4 For every weighted graph G = (V , E, w) containing a cycle, it holds
that β∗

(G̃,dG̃ )
≤ 1

2 .
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v3 = 2
3

p= α

q = 1
2 − α

2

(1)

v1 = 0

v3 = 2
3

(2)
v1 = 0

v3 = 2
3

(3)

q = 1
2

p

p

α

≥ 2
3 − α

q

1
3 − α

2

α
2

v2 = 1
3

v1 = 0

v2 = 1
3 v2 = 1

3

Fig. 1 Illustration of the three cases in the proof of Theorem 2.4

Proof Let C be a cycle in G of minimum length. Assume w.l.o.g. that the length of
C is 1. We place 3 voters v1, v2, v3 on C̃ at equal distance (of 1

3 ) from each other.
Assume by contradiction that there is a choice pwhich is aβ-plurality point forβ > 1

2 .
Furthermore, assume w.l.o.g. that v1 is the voter closest to p, and let dG̃(p, v1) = α.
We proceed by case analysis, see Fig. 1 for an illustration:

• Case (1). p lies on the cycle C̃ . As C is a cycle of minimum length in G, C̃
contains the shortest paths between all v1, v2, v3 in G̃ (otherwise there would’ve
been a shorter cycle). Following the same argument as in Theorem 2.3, for every
possible placement of p, there is a choice q ∈ C̃ that will win over 2 voters, a
contradiction.

• Case (2). p /∈ C̃ , and v1 lies on the shortest paths from p to both v2, v3. Then we
have dG̃(p, v2) ≥ 1

3 and dG̃(p, v3) ≥ 1
3 . Consider the choice q lying at distance

1
6 from both v2, v3. Then q will win two voters over p, a contradiction.

• Case (3). p /∈ C̃ , and v1 does not lies on the shortest paths from p to both v2, v3.
Suppose w.l.o.g. that the shortest path from p to v2 does not go through v1, and let
κ = dG(p, v2). Since v1 is the voter closest to p, there are two different paths in
G̃ from p to v2 of lengths κ and 1

3 + α. In particular, G contains a cycle of length
at most κ + 1

3 +α. As C is the minimum cycle in G, and it is of length 1, it follow
that κ ≥ 2

3 − α. Let q be the point on C at distance α
2 from v1 and 1

3 − α
2 from v2.

Note that q wins both the votes of v1 and v2 over p, a contradiction.

	


3 Euclidean Space

In this section we consider the case of the Euclidean metric space, and give a bound on
β∗

(Rd ,‖·‖2) which is independent of d and greater than
1√
d
for any d ≥ 4, thus improving

the lower bound of [1] for d ≥ 4. As this entire section deals only with Euclidean
space, in order to simplify notation, in this section (and the related Appendices B and
C) we will drop the subscript from ‖ · ‖2 (writing ‖ · ‖), and from BRd (�x, r) (writing
B(�x, r)).
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Theorem 3.1 For Euclidean space of arbitrary dimension, β∗
(Rd ,‖·‖2) ≥ β, for β =

1
2

√
1
2 + √

3 − 1
2

√
4
√
3 − 3 ≈ 0.557.

We begin with the following structural observation regarding the Euclidean space.

Claim 3.2 Fixapair of choices �a, �b ∈ R
d . For anyβ ∈ (0, 1), the set of all voters �v ∈ V

that do not β-prefer �a over �b, i.e.,
{
�v ∈ V | β · ‖�a − �v‖ > ‖�b − �v‖

}
, is contained in

the open ball centered at �o = �a + 1
1−β2 · (�b − �a) with radius β · ‖�o − �a‖.

This claim was previously known (in fact, the ball is the “bisector” used in a multi-
plicatively weighted Voronoi diagram, see [2]). For completeness, we provide a full
proof of the claim in Appendix B, using the notations of our paper.

By the above claim we can conclude:

Corollary 3.3 For any β ∈ (0, 1), �a is a β-plurality point if and only if, for every other
point �o ∈ R

d , the open ball of radius β · ‖�o− �a‖ around �o contains at most n
2 voters.

For the remainder of the section, β is the number defined in Theorem 3.1 and not
a general parameter.

Proof of Theorem 3.1 Consider a multiset V ⊆ R
d of voters. Let �p be the point that

minimizes R �p. By scaling and shifting, we can assumew.l.o.g. that R �p = 1 and �p = �0.
If �p is a β-plurality point, then we are done. Otherwise, by Corollary 3.3 there is a
point �q such that the open ball B (�q, β · ‖ �p − �q‖) contains strictly more than n

2 voters.

Let q = ‖�q‖. Set �w =
(
1
2 (1 − β2)q − β + 3

2q

)
· �q

‖�q‖ . We claim that �w is a β-plurality

point.
First, notice that q > 1

β
, as otherwise the open ball of radius βq ≤ 1 around �q

contains more than n
2 voters, a contradiction to the fact that R �p = 1 is the minimum

radius of a closed ball containing at least n
2 voters. Second, it must hold that q < 1

1−β
,

because otherwise βq + 1 ≤ q, implying that the ball B( �p, R �p) and the open ball
B(�q, βq) are disjoint, a contradiction to the fact that the open ball B(�q, βq) contains
more than n

2 voters. Therefore, we conclude that

1

β
< q <

1

1 − β
(3.1)

Notice that �p is a 1
2 -plurality point. Indeed, we could’ve fixed β = 1

2 and have the
exact same discussion leading to Equation3.1. However, as no q satisfies 1

2 < q < 1
2 ,

it follows that �p is a 1
2 -plurality point.

To prove that �w is a β-plurality point, we will show that for every other point
�z ∈ R

d , the open ball of radius β · ‖�z − �w‖ around �z contains at most n
2 voters. We

will use the following lemma.
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�p �q
1
β

1
1− β

1
βq

�w

�t 1

1
1

√4 − w2

Bp
Bq

Fig. 2 The points �p = (0, 0), �q = (q, 0), and �w = (w, 0) for w = 1
2 (1−β2)q −β + 3

2q are on the x-axis.

Bp is the circle of radius 2 around �p, while Bq is the circle of radius 1 + βq around �q. The balls Bp and

Bq intersect at �t = (w,
√
4 − w2) and �t ′ = (w, −

√
4 − w2). The ball of radius 1 around �t is tangent to

both Bp and Bq . It holds that ‖ �w − �t‖ =
√
4 − w2 ≤ 1

β (Equation (3.2))

Lemma 3.4 For any point �z ∈ R
d , let z = ‖�z − �w‖. Then at least one of the following

hold:

1. z ≤ 1
β
.

2. ‖�z − �p‖ ≥ 1 + βz.
3. ‖�z − �q‖ ≥ βq + βz.

Before proving Lemma 3.4, we show how it implies that �w is a β-plurality point.
For any �z ∈ R

d :

• If z ≤ 1
β
, then βz ≤ 1 = R �p, and thus the open ball B(�z, βz) contains at most n

2
voters.

• If ‖�z − �p‖ ≥ 1 + βz, then the balls B( �p, 1) and B(�z, βz) are disjoint, and thus
B(�z, βz) contains at most n

2 voters.
• If ‖�z − �q‖ ≥ βq +βz, then the balls B(�q, βq) and B(�z, βz) are disjoint, and thus

B(�z, βz) contains at most n
2 voters.

We conclude that for every �z ∈ R
d , the ball B(�z, β · z) contains at most n

2 voters, and
thus by Corollary 3.3, �w is a β-plurality point. 	

Proof of Lemma 3.4 The points �p, �q, �w lie on a single line. Given an additional point
�z, the four points lie on a single plane. Thus, w.l.o.g. we can restrict the analysis to the
Euclidean plane. Moreover, we can assume that �p = (0, 0), �q = (q, 0), �w = (w, 0)
for w = 1

2 (1−β2)q −β + 3
2q , and that �z = (zx , zy) where zy ≥ 0 (the case of zy ≤ 0

is symmetric).
Let Bp = B( �p, 2) and Bq = B(�q, 1 + βq) (see Fig. 2). The boundaries of Bp and

Bq intersect at the points (w,±√
4 − w2) (this is the reason for our choice of w). Let

�t = (w,
√
4 − w2), and notice that 0 < w < q for any q ≥ 1

β
(this can be verified by

straightforward calculations). Lemma 3.4 follows by the two following claims:
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Claim 3.5 If �z ∈ Bp ∩ Bq then ‖�z − �w‖ ≤ 1
β
.

Claim 3.6 If �z /∈ Bp ∩ Bq then either ‖�z − �p‖ ≥ 1 + βz or ‖�z − �q‖ ≥ βq + βz.

	

Proof of Claim 3.5 The boundaries of Bp and Bq intersect at the points �t =
(w,

√
4 − w2) and �t ′ = (w,−√

4 − w2).
We claim that for every q ∈ ( 1

β
, 1
1−β

), it holds that

‖�t − �w‖ =
√
4 − w2 ≤ 1

β
. (3.2)

In fact, β was chosen to be the maximum number satisfying Equation (3.2). A
calculation showing that Equation (3.2) holds is deferred to Appendix C..

Consider the ball Bw = B( �w, ‖�t − �w‖). Bw has radius at most 1
β
, and the segment

[�t, �t ′] is a diameter of Bw. Furthermore, [�t, �t ′] is a chord in both Bp and Bq .

BqBp

�t

� �q�wp

�t′

�z

Recall that we assume that �z = (zx , zy) ∈ Bp ∩ Bq . If zx ≥ w, then the chord [�t, �t ′]
of Bp separates the point �z from the center �p, because 0 < w < q (see illustration on
the right). It follows that the angle ∠�t�z�t ′ is larger than π

2 , which implies that �z ∈ Bw

(as [�t, �t ′] is a diameter, for any point �z /∈ Bw, the angle ∠�t�z�t ′ is smaller than π
2 ).

If the zx < w, a symmetric argument (using Bq ) will imply that �z ∈ Bw.
We conclude that in any case �z ∈ Bw. ByEquation (3.2), it follows that‖�z− �w‖ ≤ 1

β
.

	


�z

�z′

‖� − �z‖2p

�p �w

Proof of Claim 3.6 Assume that �z = (zx , zy) /∈ Bp ∩ Bq . Recall that z = ‖�z − �w‖. We
show that if zx ≥ w then ‖�z − �p‖ ≥ 1 + βz, and otherwise ‖�z − �q‖ ≥ βq + βz.
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First, consider the case when zx ≥ w. Notice that �z /∈ Bp, because the boundaries
of Bp and Bq intersect only at �t, �t ′, and thus the intersection of Bp with the half plane
x ≥ w is contained in Bq . Let �z′ = (z′x , z′y) be a point on the ball with radius ‖�z − �p‖
around �p such that z′x = w and z′y ≥ 0, and notice that z′y ≥ zy (see illustration on the

right). Notice that ‖�z′ − �w‖ ≥ ‖�z − �w‖, because z2x + z2y = ‖�z − �p‖2 = ‖�z′ − �p‖2 =
w2 + z′y

2 and zx ≥ w, so we get

‖�z − �w‖2 = z2y + (zx − w)2 = z2y + z2x − 2wzx + w2

= 2w2 − 2wzx + z′y
2 ≤ z′y

2 = ‖�z′ − �w‖2 .

Since ‖�z − �p‖ = ‖�z′ − �p‖, it is enough to show that ‖�z′ − �p‖ ≥ 1 + β‖�z′ − �w‖.
From here on, we will abuse notation and refer to z′ as z. Thus we simply assume
�z = (w, z).

As Bp and Bq intersect at �t , and �z /∈ Bp ∩ Bq , it must hold that z ≥ √
4 − w2.

Note that ‖ �p − �t‖ = 2 (because �t is on the boundary of Bp), and by Equation (3.2),
β ·‖�t− �w‖ ≤ 1. It thus follows that 1+β‖ �w−�t‖ ≤ 2 = ‖ �p−�t‖, implying that the claim
holds for �z = �t . It remains to prove that the claim holds for �z = (w,

√
4 − w2 + δ)

for all δ ≥ 0. It holds that

‖�z − �p‖2 = w2 + (
√
4 − w2 + δ)2 = ‖�t − �p‖2 + 2δ

√
4 − w2 + δ2 .

(1 + β · ‖�z − �w‖)2 = (
1 + β · ‖�t − �w‖ + β · ‖�z − �t‖)2

= (
1 + β · ‖�t − �w‖)2 + 2β‖�z − �t‖ (

1 + β · ‖�t − �w‖)

+ β2‖�z − �t‖2

= (
1 + β · ‖�t − �w‖)2 + 2βδ

(
1 + β

√
4 − w2

)
+ β2δ2 .

As 1 + β‖ �w − �t‖ ≤ ‖ �p − �t‖, it holds that

‖�z − �p‖2 − (1 + β · ‖�z − �w‖)2

≥
(
2δ

√
4 − w2 + δ2

)
−

(
2βδ

(
1 + β

√
4 − w2

)
+ β2δ2

)

= 2δ
√
4 − w2

(
1 − β2

)
+ δ2(1 − β2) − 2βδ ≥ 0 ,

where the last inequality holds4 as by our choice of β, we have
√
4 − w2

(
1 − β2

) ≥ β

for every 1
β

< q < 1
1−β

. The claim follows.
Next, we show that in the symmetric case, when zx ≤ w, it holds that ‖�z − �q‖ ≥

βq + βz. Similarly to the previous case, we can assume that �z = (w, z), where
z ≥ √

4 − w2 (as this is only harder). Now, as �t lies on the boundary of Bq , by
Equation (3.2), it holds that ‖�t − �q‖ = 1 + βq ≥ β‖ �w − �t‖ + βq.

4 See calculation here.
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It remains to prove that the claim holds for �z = (w,
√
4 − w2 + δ) for some δ > 0.

It holds that

‖�z − �q‖2 = (q − w)2 + (
√
4 − w2 + δ)2

= ‖�t − �q‖2 + 2δ
√
4 − w2 + δ2 .

(βq + β · ‖�z − �w‖)2 = (
βq + β · ‖�t − �w‖ + β · ‖�z − �t‖)2

= (
βq + β · ‖�t − �w‖)2

+ 2β‖�z − �t‖ (
βq + β · ‖�t − �w‖) + β2‖�z − �t‖2

≥ (
βq + β‖�t − �w‖)2 + 2βδ

(
βq + β

√
4 − w2

)
+ β2δ2 .

Thus,

‖�z − �q‖2 − (βq + β · ‖�z − �w‖)2

≥
(
2δ

√
4 − w2 + δ2

)
−

(
2βδ

(
βq + β

√
4 − w2

)
+ β2δ2

)

= 2δ
√
4 − w2

(
1 − β2

)
+ δ2(1 − β2) − 2β2qδ ≥ 0 ,

where the last inequality holds5 as by our choice of β, we have
√
4 − w2

(
1 − β2

) ≥
β2q for every 1

β
< q < 1

1−β
. The claim follows. 	


� �q

Bp

Bq

�

�z

�2

Bz

w

p w

Remark 3.7 Our proof of Theorem 3.1 is based on a simple algorithm: choose a point
�p ∈ R

d which minimizes Rp. If it is a β-plurality point - we are done. Otherwise,
there is a ball centered at a point q such that the ball of radius β ·‖ �p− �q‖ contains more
than n

2 voters. We then argue that a choice �w, which is a linear combination of �p and �q
is a β-plurality winner. This algorithm can be naturally extended for another step. Fix
some β ′ > β, and suppose that �w is not a β ′-plurality point. In particular, there is a

5 See calculation here.
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point �z such that the ball B(�z, β ′‖�z − �w‖) contains more than n
2 voter points. We then

can hope to find a new choice point �w2 that will be a β ′-plurality point. Here a natural
choice of �w2 will be the center of the minimal ball containing the intersection of the
three balls Bp = B( �p, 2), Bq = B(�q, β ′‖�q− �p‖+1), and Bz = B(�z, β ′‖�z− �w‖+1).
See illustration on the right. Even though it is indeed possible that this approach will
provide some improvement, it is unlikely to be very significant. The reason is that
even for the simplest symmetric case where �q = ( 1

β ′ , 0), �z = ( 1
2β ′ , 1

β ′ ), one need

β ′ ≤
√

89
256 ≈ 0.59. For the hardest case, it is likely that a much smaller β ′ will be

required.

4 Conclusion

Let β∗ = inf
{
β∗

(X ,d) | (X , d) is a metric space
}
. In this paper we showed that

√
2−

1 ≤ β∗ ≤ 1
2 . Further, in the Euclidean case, for arbitrary dimension d ≥ 4, by

combining our results with [1], we know that 0.557 < β∗
(Rd ,‖·‖2) ≤

√
3
2 . The main

question left open is closing these two gaps. Our conjecture is that the upper bounds
are tight, since when |V | = 3, a plurality point must “win” 2

3 of the overall vote. This
task can only become easier once the number of voters increase.

Conjecture 4.1 β∗ = 1
2 , and β∗

(Rd ,‖·‖2) =
√
3
2 for every d ≥ 2.

If indeed β∗
(Rd ,‖·‖2) =

√
3
2 ≈ 0.866 for every dimension d, then it implies that

the concept of β-plurality might be very useful as a relaxation for Condorcet winner.
Informally, it shows that the amount of “compromise” that we need to make in order
to find a plurality point in any Euclidean space is relatively small.
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Appendix A: Equivalence Between the Definitions ofˇ-Plurality Point

Lemma 4.2 Definition 2.1 for β(p, V ) is equivalent to the definition from Aronov et
al. [1].

6 Following the lines of the proof of Theorem 3.1, for β = 1
2 , the point �p is a 1

2 -plurality point, as no q
satisfies Equation (3.1).
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Proof We will use β(p, V ) to denote the definition given in [1] (and in our introduc-
tion), and β̃(p, V ) to denote our definition from Definition 2.1. We will show that
for every metric space (X , d), voter multiset V in X , and point p ∈ X , it holds that
β(p, V ) = β̃(p, V ). The equivalence between the other parameters will follow. Fix
|V | = n. There are two directions for the proof:

• β(p, V ) ≤ β̃(p, V ). Assume by contradiction that β̃(p, V ) < β(p, V ),
so thus there exists some α ∈ (β̃(p, V ), β(p, V )]. By the definition of
β(p, V ), for every q ∈ X it holds that |{v ∈ V | α · d(p, v) < d(q, v)}| ≥
|{v ∈ V | α · d(p, v) > d(q, v)}|. Clearly, for the weak inequality we get
|{v ∈ V | α · d(p, v) ≤ d(q, v)}| ≥ n

2 , and thus β̃(p, V ) ≥ α, a contradiction.
• β̃(p, V ) ≤ β(p, V ). Assume by contradiction that β(p, V ) < β̃(p, V ),
so there exists ε > 0 such that β(p, V ) + ε < β̃(p, V ). By
the definition of β̃(p, V ), there exists α ≥ β(p, V ) + ε such that
for every q, we have |{v ∈ V | α · d(p, v) ≤ d(q, v)}| ≥ n

2 . Let
α′ = α − ε

2 ∈ (β(p, V ), α). Then for every q �= p, we have∣∣{v ∈ V | α′ · d(p, v) < (q, v)
}∣∣ ≥ |{v ∈ V | α · d(p, v) ≤ d(q, v)}| ≥

n
2 , implying that

∣∣{v ∈ V | α′ · d(p, v) < d(q, v)
}∣∣ ≥∣∣{v ∈ V | α′ · d(p, v) > d(q, v)

}∣∣. Clearly, for q = p, it holds that∣∣{v ∈ V | α′ · d(p, v) < d(q, v)
}∣∣ ≥ ∣∣{v ∈ V | α′ · d(p, v) > d(q, v)

}∣∣. It
follows that p is an α′-plurality point, a contradiction.

	


Appendix B: Proof of Claim 3.2

Proof By translation and rotation, we can assume w.l.o.g. that �a = �0, and �b = ‖�a −
�b‖ · e1 (e1 here is the first standard basis vector). A straightforward calculation shows
that
{
�x ∈ R

d | β · ‖�a − �x‖ > ‖�b − �x‖
}

=
{

�x ∈ R
d |

(
x1 − ‖�a − �b‖

)2 +
d∑

i=2

x2i < β2 ·
d∑

i=1

x2i

}

=
{

�x ∈ R
d |

(
1 − β2

)
x21 − 2x1‖�a − �b‖ + ‖�a − �b‖2 +

(
1 − β2

) d∑
i=2

x2i < 0

}

=
⎧
⎨
⎩�x ∈ R

d |
(
x1 − ‖�a − �b‖

1 − β2

)2

+
d∑

i=2

x2i <
β2‖�a − �b‖2(
1 − β2

)2

⎫
⎬
⎭ .

Thus we indeed obtain a ball with center at �o = ‖�a−�b‖
1−β2 · e1 = �a + 1

1−β2 · (�a − �b), and
radius r =

√
β2‖�a−�b‖2
(1−β2)

2 = β · ‖�o − �a‖. 	
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Appendix C: Proof of Equation (3.2)

Set f (β, q) = ‖�t − �w‖2 = 4 − w2 = 4 −
(
1
2 (1 − β2)q − β + 3

2q

)2
. We will show

that for our choice of β, and for every q ∈ ( 1
β
, 1
1−β

), it holds that
√

f (β, q) ≤ 1
β
, thus

proving Equation (3.2). We have

∂

∂q
f (β, q) = 2

(
1

2
(1 − β2)q − β + 3

2q

) (
1

2
(1 − β2) − 3

2q2

)

which equals to 0 only for q ∈
{
±

√
3

1−β2 ,

√
4β2−3±β

β2−1

}
.7

As we restrict our attention to q ∈ ( 1
β
, 1
1−β

), it follows that once we fixed β, the

functoin f (β, q) has a maximum at
√

3
1−β2 (note that

√
3

1−β2 ∈ ( 1b , 1
1−b ) for every

b ∈ ( 12 , 1)). It thus will be enough to prove that

f (β, q) ≤ f

(
β,

√
3

1 − β2

)
= 1 + 2β2 + 2

√
3
√
1 − β2β ≤ 1

β2 .

This expression could be “massaged” into a degree 4 polynomial. Thus we can obtain

an exact solution. In particular, for every β ∈
(
0, 1

2

√
1
2 + √

3 − 1
2

√
4
√
3 − 3

]
≈

(0, 0.557],8 it holds that √ f (β, q) ≤ 1
β
, as required.
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