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PRIORITIZED METRIC STRUCTURES AND EMBEDDING∗

MICHAEL ELKIN† , ARNOLD FILTSER† , AND OFER NEIMAN†

Abstract. Metric data structures (distance oracles, distance labeling schemes, routing schemes)
and low-distortion embeddings provide a powerful algorithmic methodology, which has been success-
fully applied for approximation algorithms [N. Linial, E. London, and Y. Rabinovich, Combinatorica,
15 (1995), pp. 215–245], online algorithms [N. Bansal et al., Proceedings of the 52th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’08, IEEE Computer Society, Washing-
ton, DC, 2011, pp. 267–276], distributed algorithms [M. Khan et al., Distrib. Comput., 25 (2012),
pp. 189–205], and for computing sparsifiers [Y. Shavitt and T. Tankel, IEEE/ACM Trans. Netw., 12
(2004), pp. 993–1006]. However, this methodology appears to have a limitation: the worst-case per-
formance inherently depends on the cardinality of the metric, and one could not specify in advance
which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension)
than that given by the worst-case guarantee. In this paper we alleviate this limitation by devising a
suite of prioritized metric data structures and embeddings. We show that given a priority ranking
(x1, x2, . . . , xn) of the graph vertices (resp., metric points) one can devise a metric data structure
(resp., embedding) in which the stretch (resp., distortion) incurred by any pair containing a vertex
xj will depend on the rank j of the vertex. We also show that other important parameters, such as
the label size and (in some sense) the dimension, may depend only on j. In some of our metric data
structures (resp., embeddings) we achieve both prioritized stretch (resp., distortion) and label size
(resp., dimension) simultaneously. The worst-case performance of our metric data structures and
embeddings is typically asymptotically no worse than of their nonprioritized counterparts.
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1. Introduction. The celebrated distance oracle of Thorup and Zwick [TZ05]
enables one to preprocess an undirected weighted n-vertex graph G = (V,E) so as to
produce a data structure (also known as distance oracle) of size O(t · n1+1/t) (for a
parameter t = 1, 2, . . .) that supports distance queries between pairs u, v ∈ V in time
O(t) per query. (The query time was recently improved to O(1) by [Che14, Wul13],
and the size to O(n1+1/t) by [Che15].) The distance estimates provided by the oracle
are within a factor of 2t− 1 from the actual distance dG(u, v) between u and v in G.
The approximation factor (2t − 1 in this case) is called the stretch. Distance oracles
can serve as an example of a metric data structure; other very well-studied examples
include distance labeling [Pel99, GPPR01] and routing [TZ01, AP92]. Thorup–Zwick’s
oracle can also be converted into a distance-labeling scheme: each vertex is assigned
a label of size O(n1/t · log1−1/t n) so that given labels of u and v the query algorithm
can provide a (2t− 1)-approximation of dG(u, v). Moreover, the oracle also gives rise
to a routing scheme [TZ01] that exhibits a similar trade-off.

A different but closely related thread of research concerns low-distortion embed-
dings. A celebrated theorem of Bourgain [Bou86] asserts that any n-point metric
(X, d) can be embedded into an O(log n)-dimensional Euclidean space with distortion
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830 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

O(log n). (Roughly speaking, distortion and stretch are the same thing. See section 2
for formal definitions.) Fakcharoenphol, Rao, and Talwar [FRT04] (following Bartal
[Bar96, Bar98]) showed that any metric (X, d) embeds into a distribution over trees
(in fact, ultrametrics) with expected distortion O(log n).

These (and many other) important results are not only appealing from a mathe-
matical perspective, but they also were found extremely useful for numerous applica-
tions in theoretical computer science and beyond [LLR95, BBMN11, KKM+12, ST04].
A natural disadvantage is the dependence of all the relevant parameters on n, the car-
dinality of the input graph/metric. However, all these results are either completely
tight, or very close to being completely tight. In order to address this issue, metric
data structures and embeddings in which some pairs of vertices/points enjoy better
stretch/distortion or with improved label size/dimension were developed. Specifi-
cally, [KSW09, ABC+05, ABN11, CDG06] studied embeddings and distance oracles
in which the distortion/stretch of at least 1 − ε fraction of the pairs is improved
as a function of ε, either for a fixed ε or for all ε ∈ [0, 1] simultaneously (e.g., for
a fixed ε, embeddings into Euclidean space of dimension O(log 1/ε) with distortion

O(log(1/ε)), or a distance oracle with stretch 2dt · log(2/ε)
logn e + 1 for 1 − ε fraction

of the pairs). Also, [ABN07, SS09, AC14] devised embeddings and distance oracles
that provide distortion/stretch O(log k) for all pairs (x, y) of points such that y is
among the k closest points to x, and distance labeling schemes that support queries
only between k-nearest neighbors, in which the label size depends only on k rather
than n.

An inherent shortcoming of these results is, however, that the pairs that enjoy
better than worst-case distortion cannot be specified in advance. In this paper we
alleviate this shortcoming and devise a suite of prioritized metric data structures
and low-distortion embeddings. Specifically, we show that one can order the graph
vertices V = (x1, . . . , xn) arbitrarily in advance, and devise metric data structures
(i.e., oracles/labelings/routing schemes) that, for a parameter t = 1, 2, . . . , provide
stretch 2dt · log j

logne − 1 (instead of 2t − 1) for all pairs involving xj ,
1 while using the

same space as corresponding nonprioritized data structures! In some cases the label
size can be simultaneously improved for the high priority points, as described in the
following.

The same phenomenon occurs for low-distortion embeddings. We devise an em-
bedding of general metrics into an O(log n)-dimensional Euclidean space that provides
prioritized distortion O(log j · (log log j)1/2+ε), for any constant ε > 0 (i.e., the distor-
tion for all pairs containing xj is O(log j · (log log j)1/2+ε)). Similarly, our embedding
into a distribution of trees provides prioritized expected distortion O(log j).

We introduce a novel notion of improved dimension for high priority points. In
general we cannot expect that the dimension of a Euclidean embedding with low
distortion (even prioritized) will be small (as Euclidean embedding into dimension
D has worst-case distortion of Ω(n1/D · log n) for some metrics [ABN11]). What we
can offer is an embedding in which the high ranked points have only a few “active”
coordinates. That is, only the firstO(poly(log j)) coordinates in the image of xj will be
nonzero, while the distortion is also bounded by O(poly(log j)). This could be useful
in a setting where the high ranked points participate in numerous computations, then
since representing these points requires very few coordinates, we can store many of

1In the case j = 1, the stretch is 1. For ease of presentation, we ignore this special case in the
statement of the results—the stretch/distortion for x1 will always be at most the value guaranteed
for x2. (In the technical sections we do provide a separate analysis for x1 when needed.)
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PRIORITIZED METRIC STRUCTURES AND EMBEDDING 831

them in the cache or other high speed memory. We remark that our framework is the
first which allows simultaneously improved distortion and dimension (or improved
stretch and label size) for the high priority points, while providing a meaningful
guarantee for all pairs.

We have a construction of prioritized distance oracles that exhibits a qualita-
tively different behavior than our aforementioned oracles. Specifically, we devise a
distance oracle with space O(n log log n) (resp., O(n log∗ n)) and prioritized stretch

O( logn
log(n/j) ) (resp., 2O( logn

log(n/j)
)). Observe that as long as j < n1−ε for any fixed

ε > 0, the prioritized stretch of both these oracles is O(1). The query time is
O(1). These oracles are, however, not path reporting (a path-reporting oracle can
return an actual approximate shortest path in the graph, in time proportional to
its length). We also devise a path-reporting prioritized oracle, which was men-
tioned above: it has space O(t · n1+1/t), stretch 2dt · log j

logne − 1, and query time

O(t · log jlogn ).
This second oracle can be distributed as a labeling scheme, in which not only the

stretch 2dt · log jlogne − 1 is prioritized, but also the label size is smaller for high priority

points: it is O(n1/t · log j) rather than the nonprioritized O(n1/t · log n). Our routing
scheme has prioritized stretch 4dt · log jlogne−1 (instead of 4t−5), the routing tables have

size O(n1/t · log j) (instead of O(n1/t · log n)), and labels have size O(log j · dt log jlogne)
(instead of O(t · log n)).

We also consider the dual setting in which the stretch is fixed, and label size λ(j)
of xj is smaller when j � n. The function λ(j) will be called prioritized label size.
Specifically, with prioritized label size O(j1/t · log j) we can have stretch 2t − 1. For
certain points on the trade-off curve we can even have both stretch and label size
prioritized simultaneously! In particular, a variant of our distance labeling scheme
provides a prioritized stretch 2dlog je−1 and prioritized label sizeO(log j). For routing
we have similar guarantees independent of n. We also devise a distance labeling
scheme for graphs that exclude a fixed minor with stretch 1 + ε and prioritized label
size O(1/ε · log j) (extending [AG06, Tho01]).

Another notable result in this context is our prioritized embedding into a sin-
gle tree. It is well known that any metric can be embedded into a single domi-
nating tree with linear distortion, and that it is tight [RR98]. We show that any
n-point metric (X, d) enjoys an embedding into a single dominating tree with pri-
oritized distortion α(j) if and only if the sum of reciprocals

∑∞
j=1 1/α(j) converges.

In particular, prioritized distortion α(j) = j · log j · (log log j)1.01 is admissible, while
α(j) = j · log j · log log j is not, i.e., both our upper and lower bounds are tight.
This lower bounds stands out as it shows that it is not always possible to replace
nonprioritized distortion of α(n) by a prioritized distortion α(j). For single-tree em-
bedding the nonprioritized distortion is linear, while the prioritized one is provably
superlinear.

1.1. Overview of techniques. We elaborate briefly on the methods used to
obtain our results.

Distance oracles, distance labeling, and routing. We have two basic techniques
for obtaining distance oracles with prioritized stretch. The first one is manifested in
Theorem 5, and the idea is as follows: partition the vertices into sets according to
their priority, and for each set K ⊆ V , apply as a black box a known distance oracle
on K, while for the other vertices store the distance to their nearest neighbor in K.
We show that the stretch of pairs in K × V is only a factor of 2 worse than the one
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832 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

guaranteed for K × K. Furthermore, we exploit the fact that for sets K of small
size, we can afford a very small stretch and still maintain a small space. The exact
choice of the partitions enables a range of trade-offs between space and prioritized
stretch.

Our second technique for an oracle with prioritized stretch, used in Theorem 6,
is based on a non-black-box variation of the [TZ05] oracle. In their construction for
stretch 2t−1, a (nonincreasing) sequence of t−1 sets is generated by repeated random
sampling. We show that if a vertex is chosen i times, then the query algorithm can be
changed to improve the stretch from 2t−1 to 2(t−i)−1, for any pair containing such a
vertex. This observation only shows that there exists a priority ranking for which the
oracle has the required prioritized stretch. In order to handle any given ranking, we
alter the construction by forcing high ranked elements to be chosen numerous times,
and show that this increases the space usage by at most a factor of 2.

In order to build a distance labeling scheme out of their distance oracle, [TZ05] pay

an overhead of O(log1−1/t n) in the label size (which essentially comes from applying
concentration bounds). Attempting to circumvent this logarithmic dependence on n,
in Theorem 7 we give a different bound on the deviation probability that depends on
the priority ranking of the point. Thus the overhead in the label size for the jth point
in the ranking is only O(log j). To derive our result in Theorem 8, which has fixed
stretch 2t − 1 for all pairs, but fully prioritized label size O(j1/t log j), we combine
this probabilistic argument with an iterative application of a source restricted distance
labeling of [RTZ05].

Most results on distance labeling for bounded treewidth graphs, planar graphs,
and graphs excluding a fixed minor, are based on recursively partitioning the graph
into small pieces using small separators (as in [LT79]). The label of a vertex essentially
consists of the distances to (some of) the vertices in the separator. In order to obtain
prioritized label size, such as those given in Theorems 10 and 11, high ranked vertices
should participate in few iterations. To this end, we define multiple phases of applying
separators, where each phase tries to separate only a certain subset of the vertices
(starting with the highest ranked, and finishing in the lowest). This way high ranked
vertices will belong to a separator after a few levels, thus their label will be short.

Tree routing of [TZ01] is based on categorizing tree vertices as either heavy or
light, depending on the size of their subtree. Our prioritized tree routing assigns
each vertex a weight which depends on its priority, and a vertex is heavy if the sum
of weights of its descendants is sufficiently large. This idea paves the way to our
prioritized routing scheme for general graphs as well.

Embeddings. It is folklore that a metric minimum spanning tree (henceforth,
MST) achieves distortion n − 1. For our prioritized embedding of general metrics
(X, d) into a single tree we consider a complete graph G = (X,

(
X
2

)
) with weight func-

tion that depends on the priority ranking. Specifically, edges incident on high priority
points get higher weights. We then compute an MST in this (generally nonmetric)
graph, and show that, given a certain convergence condition on the priority ranking,
this MST provides a desired prioritized single-tree embedding. Remarkably, we also
show that when this condition is not met, no such an embedding is possible even for
the metric induced by Cn. Hence this embedding is tight.

Our probabilistic embedding into trees with prioritized expected distortion in
Theorem 4 is based on the construction of [FRT04]. The method of [FRT04] involves
sampling a random permutation and a random radius, then using these to create a
hierarchical partitioning of the metric from which a tree is built. We make the obser-
vation that, in some sense, the expected distortion of a point depends on its position
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PRIORITIZED METRIC STRUCTURES AND EMBEDDING 833

in the permutation. Rather than choosing a permutation uniformly at random, we
choose one which is strongly correlated with the given priority ranking. One must be
careful to allow sufficient randomness in the permutation choice so that the analysis
can still go through, while guaranteeing that high ranked points will appear in the
first positions of the permutation.

The embedding of Theorem 14 for arbitrary metrics (X, d) into Euclidean space
(or any `p space) with prioritized distortion uses similar ideas. We partition the points
into sets according to the priorities; for every such a subset K apply as a black box
the embedding of [Bou85]. We show that since the embedding has certain properties,
it can be extended in a Lipschitz manner to all of the metric, while having distortion
guarantee for any pair in K ×X.

The result of Theorem 15, which gives prioritized distortion and dimension, is
more technically involved. In order to ensure that high priority points are mapped
to the zero vector in the embeddings tailored for the lower priority points, we change
Bourgain’s embedding, which is defined as distances to randomly chosen sets. Roughly
speaking, when creating the embedding for a setK, we add all the higher ranked points
to the random sets. As a result, the original analysis does not apply directly, and
we turn to a subtle case analysis to bound the distortion; see section 8.2 for more
details.

Subsequent work. Following our work, [BFN16] exhibited a tight connection be-
tween embeddings with prioritized distortion and a certain type of scaling distor-
tion called coarse scaling distortion. Using this connection and a result of [ABN11],
[BFN16] showed an embedding of general metrics into an O(log n)-dimensional Eu-
clidean space (or any `p space) with asymptotically optimal prioritized distortion
O(log j), improving our bound of O(log j(log log j)1/2+ε), for any ε > 0.

1.2. Organization. After a few preliminary definitions, we show the single-tree
prioritized embedding in section 3, and the probabilistic version in section 4. In
section 5 we discuss our prioritized distance oracles, and in section 6 the prioritized
labeling schemes. The prioritized routing is shown in section 7. Finally, in section 8
we present our prioritized embedding results into normed spaces.

2. Preliminaries. Throughout the paper, all logarithms are in base 2. All the
graphs G = (V,E) we consider are undirected and weighted. Let x1, . . . , xn ∈ V be
a priority ranking of the vertices. Let dG be the shortest path metric on G, and let
α, β : [n]→ R+ be a monotone nondecreasing functions.

A distance oracle for a graphG is a succinct data structure that can approximately
report distances between vertices of G. The parameters of this data structure we will
care about are its space, query time, and stretch factor. We always measure the space
of the oracle as the number of words needed to store it (where each word is O(log n)
bits). The oracle has prioritized stretch α(j) if for any 1 ≤ j < i ≤ n, when queried
for xj , xi the oracle reports a distance d̃(xj , xi) such that

dG(xj , xi) ≤ d̃(xj , xi) ≤ α(j) · dG(xj , xi) .

Some oracles can be distributed as a labeling scheme, where each vertex is given a
short label, and the approximate distance between two vertices should be computed
by inspecting their labels alone. We say that a labeling scheme has prioritized label
size β(j) if for every j ∈ [n], the label of xj consists of at most β(j) words. See
section 7 for the precise settings of routing that we consider.
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Fig. 1. An illustration for the algorithm presented during the proof of Theorem 1. We are given
a metric space over X = {x1, x2, x3, x4}, with the function α(1) = 2, α(2) = 4, α(3) = 8, α(4) = 16.
In the first step we assign new weights over the edges, then find an MST in the new graph and,
finally, restore the original weights. For example the original distance between x2, x3 was 2, while
in the returned tree the distance is 7. Hence the pair x2, x3 suffers distortion 3.5 < 4.

Let (X, dX) be a finite metric space, and let x1, . . . , xn be a priority ranking of the
points in X. Given a target metric (Y, dY ), and a noncontractive map f : X → Y ,2

we say that f has priority distortion α(j) if for all 1 ≤ j < i ≤ n,

dY (f(xj), f(xi)) ≤ α(j) · dX(xj , xi) .

Similarly, if f : X → Y is nonexpansive, then it has priority distortion α(j) if for all
1 ≤ j < i ≤ n, dY (f(xj), f(xi)) ≥ dX(xj , xi)/α(j). For probabilistic embedding, we
require that each map in the support of the distribution is noncontractive, and the
prioritized bound on the distortion holds in expectation.

In the special case that the target metric is a normed space, we say that the
embedding has prioritized dimension β(j) if for every j ∈ [n], only the first β(j)
coordinates in f(xj) may be nonzero.

3. Single-tree embedding with prioritized distortion. In this section we
show tight bounds on the priority distortion for an embedding into a single tree.
The bounds are somewhat nonstandard, as they are not attained for a single specific
function, but rather for the following family of functions. Define Φ to be the family
of functions α : N→ R+ that satisfy the following properties:

• α is nondecreasing.
•
∑∞
i=1 1/α(i) ≤ 1.

3.1. Upper bound.

Theorem 1. For any finite metric space (X, d) and any α ∈ Φ, there is a (non-
contractive) embedding of X into a single tree with priority distortion 2α(j).

Proof. Let x1, . . . , xn be the priority ranking of X, and let G = (X,E) be the
complete graph on X. For e = {u, v} ∈ E, let `(e) = d(u, v). We also define the
following (prioritized) weights w : E → R, for any 1 ≤ j < i ≤ n the edge e = {xj , xi}
will be given the weight w(e) = α(j) · `(e). Observe that the w weights on G may not
satisfy the triangle inequality. Let T be the MST of (X,E,w) (this tree is formed by
iteratively removing the heaviest edge from a cycle). Finally, return the tree T with
the edges weighted by `. We claim that this tree has priority distortion α(j). See
Figure 1 for an illustration of the algorithm to construct T .

Consider some xj , xi ∈ X, if the edge e = {xj , xi} ∈ E(T ), then clearly this pair
has distortion 1. Otherwise, let P be the unique path between xj and xi in T . Since
e is not in T , it is the heaviest edge on the cycle P ∪ {e}, and for any edge e′ ∈ P we

2The map f is noncontractive if for any u, v ∈ X, dX(u, v) ≤ dY (f(u), f(v)).
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have that w(e′) ≤ w(e) = α(j) · d(xj , xi). Consider some xk ∈ X, and note that there
can be at most 2 edges touching xk in P . If e′ ∈ P is such an edge, and its weight by
w was changed by a factor of α(k), then α(k) · `(e′) ≤ α(j) · d(xj , xi). Summing this
over all the possible values of k we obtain that the length of P is at most

(1)
∑
e′∈P

`(e′) ≤ 2

n∑
k=1

α(j)

α(k)
· d(xj , xi) ≤ 2α(j) · d(xj , xi) .

Corollary 1. For any finite metric space (X, d) and any fixed 0 < ε < 1/2,
there is a (noncontractive) embedding of X into a single tree with priority distortion
O(j(log j)1+ε). Furthermore, the distortion of the pairs containing x1 is only 1 + 3ε.

Proof. Take the function α : N→ R defined by α(1) = 1+ε, and for j ≥ 2, α(j) =
j(ln j)1+ε

c (c is a constant to be determined later). Then
∑
j≥3

1
α(j) ≤

∫∞
2

c
x(ln x)1+ε dx =

−c
ε·lnε x |

∞
2 = c

ε·lnε 2 . In particular,
∑
j≥1

1
α(j) = 1

1+ε+ c
2(ln 2)1+ε

+ c
ε·lnε 2 ≤ 1 for c = O(ε2).

We conclude that α ∈ Φ. The corollary now follows by Theorem 1, except that it only
provides distortion 2(1+ ε) for pairs containing x1. To see the improved distortion for
pairs (x1, xi), consider the proof of Theorem 1. Observe that in the case {x1, xi} /∈ T ,
the first edge of the path P from x1 to xi has weight at most d(x1, xi), while none
of the other edges on P are touching x1. Furthermore, since 1/α(1) > 1− ε, we have
that

∑∞
k=2 1/α(k) < ε, and so we can replace (1) by

∑
e′∈P

`(e′) ≤ d(x1, xi) + 2

n∑
k=2

α(1)

α(k)
· d(x1, xi) ≤ (1 + 3ε) · d(x1, xi) .

3.2. Lower bound. Here we show a matching lower bound (up to a constant),
which is only 2 for trees without Steiner nodes3 on the possible functions admitting an
embedding into a tree with priority distortion. We first show that a (nondecreasing)
function which is not in Φ cannot bound the priority distortion in a spanning tree
embedding. Then using an argument similar to that of [Gup01], we extend this for
arbitrary dominating trees,4 while losing a factor of 8 in the lower bound.

Theorem 2. For any nondecreasing function α : N→ R with α /∈ Φ, there exists
an integer n, a graph G = (V,E) with |V | = n vertices, and a priority ranking of V ,
such that no spanning tree of G has priority distortion strictly less than α.

Proof. Since α /∈ Φ, there exists an integer n′ such that
∑n′

i=1 1/α(i) > 1. Take
some integer n > n′ such that n

α(i)+1 is an integer for all 1 ≤ i ≤ n′ (assume without

loss of generality (w.l.o.g.) that the α(i) are rational numbers). Then let G = Cn,
a cycle on n points with unit weight on the edges. Clearly, a spanning tree of Cn is
obtained by removing a single edge, thus we will choose the priorities x1, . . . , xn ∈ V
in such a way that no edge can be spared.

Seeking contradiction, assume that there exists a spanning tree with priority
distortion less than α. Let x1 be an arbitrary vertex, and note that if u is a vertex
within distance (in G) a1 = n

α(1)+1 from x1, then all the edges on the shortest path

from x1 to u must remain in the tree. Otherwise, the distortion of the pair {x1, u}
will be at least n−a1

a1
= α(1). There are 2n

α(1)+1 such edges that must belong to the

3We say that the target tree has Steiner nodes if it contains more vertices than the original graph.
4A tree T dominates a graph G if dT ≥ dG.
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x1

x2
x3

a1a1

a2

a2 a3

a3

Fig. 2. An illustration for the proof of Theorem 2. As all the pairs containing xi cannot suffer
distortion greater than or equal to α(i), all the edges of distance at most ai from xi cannot be deleted
from the tree. As

∑
ai > n, placing x1, x2, . . . so that the relevant sets of edges are disjoint and

cover all the edges, there is no edge that can be deleted.

tree (since we consider vertices from both sides of x1). Now take x2 to be a vertex at
distance n

α(1)+1 + n
α(2)+1 from x1. By a similar argument, the 2n

α(2)+1 edges closest to

x2 must be in the tree as well. Observe that these edges form a continuous sequence
on the cycle with those edges near x1. Continue in this manner to define x3, . . . , xn′ ,
and conclude that there are at least

(2)

n′∑
i=1

2n

α(i) + 1
≥

n′∑
i=1

n

α(i)
> n

edges that are not allowed to be removed, but this is a contradiction, as there are
only n edges in Cn. See Figure 2 for an illustration of this argument.

Theorem 3. For any nondecreasing function α : N→ R with α /∈ Φ, there exists
an integer n, a metric (X, d) on n points, and a priority ranking x1, . . . , xn ∈ X, such
that there is no embedding of X into a dominating tree metric with priority distortion
strictly less than α/8.

Proof. Take n, the metric (X, d) induced by Cn, and the same priority ranking
as in Theorem 2. First consider any tree T with exactly n vertices, but which is not
necessarily spanning. That is, T is allowed to have edges that did not exist in Cn.
Since T must be dominating, we may assume that an edge in T connecting vertices
of distance k in Cn will have weight exactly k (if it has larger weight, reducing it to
k can only improve the distortion). We extend an argument of [Gup01] to prove that
the priority distortion of T is at least α.

The argument in section 7 of [Gup01] says that T can be replaced by a tree T ′

satisfying d ≤ dT ′ ≤ dT , and such that any vertex in T ′ has at most one edge to its
left semicircle and one edge to its right semicircle.5 A crucial observation (made in
[Gup01]) is that for any pair of vertices at distance k in Cn, their distance in T ′ can
be either k or at least n − k. Now we may use similar reasoning as in the proof of

5If the vertices of Cn are labeled 0, 1, . . . , n − 1 as ordered on the cycle, the right semicircle of
vertex i is {i+ 1, i+ 2, . . . i+ bn/2c} (addition is modulo n), and the left semicircle is V \{i, i+ 1, i+
2, . . . i+ bn/2c}.
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Theorem 2; assume that x1 is the ith vertex of Cn, and observe that any vertex i+ j
for 1 ≤ j ≤ a1, must be connected by an edge to one of the vertices i, i+1, . . . , i+j−1,
as otherwise dT ′(i, i + j) ≥ n − a1, and the distortion of the pair {x1, j} will be at
least α(1). Notice that the edges x2 forced to exist are disjoint from those of x1. It
follows that for each 1 ≤ i ≤ n′, xi forces at least 2n

α(i)+1 disjoint edges to be in the

tree, which is impossible due to (2).
Finally, consider arbitrary dominating tree metrics, which may have Steiner nodes

(nodes which no vertex of Cn is mapped onto). By a result of [Gup01], such nodes
may be removed while increasing the distance between any pair of points by at most
8, so we conclude that such a tree cannot have priority distortion strictly less than
α/8.

4. Probabilistic embedding into ultrametrics with prioritized distor-
tion. In this section, we present our probabilistic embedding into trees with priori-
tized expected distortion. Specifically, we generalize the embedding of [FRT04] which
has a worst-case expected distortion guarantee, to prioritize expected distortion.

Theorem 4. For any metric space (X, d), there exists a distribution over embed-
dings of X into ultrametrics with expected prioritized distortion O(log j).

Proof. Let x1, . . . , xn be the priority ranking of X, and let ∆ be the diameter
of X. We assume w.l.o.g. that the minimal distance in X is 1, and let δ be the
minimal integer so that ∆ ≤ 2δ. We shall create a hierarchical laminar partition,
where for each i ∈ {0, 1, . . . , δ}, the clusters of level i have diameter at most 2i, and
each of them is contained in some level i + 1 cluster. The ultrametric is built in
the natural manner, the root corresponds to the level δ cluster which is X, and each
cluster in level i corresponds to an inner node of the ultrametric with label 2i, whose
children correspond to the level i−1 clusters contained in it. The leaves correspond to
singletons, that is, to the elements of X. Clearly, the ultrametric will dominate (X, d).

In order to define the partition, we choose a random permutation π : X → [n]
which is strongly correlated with the priority ranking, and in addition we choose a
random number β ∈ [1, 2] from an appropriate distribution. (See line 2 of Algo-
rithm 1.) Let K0 = {x1, x2}, and for any integer 1 ≤ j ≤ dlog log ne let Kj =

{xh : 22
j−1

< h ≤ 22
j} The permutation π is created by choosing a uniformly random

permutation on each Ki, and concatenating these. Note that π−1({h ∈ N : h ∈
(22

j−1

, 22
j

]}) = Kj , and π−1({1, 2}) = K0.
In each step i, we partition a cluster S of level i+ 1 as follows. Each point x ∈ S

chooses the point u ∈ X with minimal value according to π among the points of
distance at most βi := β · 2i−2 from x, and joins to the cluster of u. Observe that
x ∈ S might belong to the cluster of u where u /∈ S. In particular, a point may not
belong to the cluster associated with it, and some clusters may be empty (which we
can discard). The description of the hierarchical partition appears in Algorithm 1.

Let T denote the ultrametric created by the hierarchical partition of Algorithm 1,
and dT (u, v) the distance between u to v in T . Consider the clustering step at some
level i, where clusters in Di+1 are picked for partitioning. In each iteration l, all
unassigned points z such that d (z, π(l)) ≤ βi assign themselves to the cluster of π(l).
Fix an arbitrary pair {v, u}. We say that center w settles the pair {v, u} at level i, if
it is the first center so that at least one of u and v gets assigned to its cluster. Note
that exactly one center w settles any pair {v, u} at any particular level. Further, we
say that a center w cuts the pair {v, u} at level i, if it settles them at this level, and
exactly one of u and v is assigned to the cluster of w at level i. Whenever w cuts
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a pair {v, u} at level i, dT (v, u) is set to be 2i+1 ≤ 8βi. We charge this length to
the point w and define dwT (v, u) to be

∑
i 1 (w cuts {v, u} at level i) · 8βi (where 1 (·)

denotes an indicator function). We also define d
Kj
T (v, u) =

∑
w∈Kj d

w
T (v, u). Clearly,

dT (v, u) ≤
∑
j d

Kj
T (v, u).

Algorithm 1 Modified FRT(X,π).

1: Choose a random permutation π : X → [n] as above.
2: Choose β ∈ [1, 2] randomly by the distribution with the following probability

density function p (x) = 1
x ln 2 .

3: Let Dδ = X; i← δ − 1.
4: while Di+1 has nonsingleton clusters do
5: Set βi ← β · 2i−2.
6: for l = 1, . . . , n do
7: for every cluster S in Di+1 do
8: Create a new cluster in Di, consisting of all unassigned points in S closer

than βi to π (l).
9: end for

10: end for
11: i← i− 1.
12: end while

Fix some 0 ≤ j ≤ dlog log ne. Our next goal is to bound the expected value of

d
Kj
T (v, u) by O (log (|Kj |)). We arrange the points of Kj in nondecreasing order of

their distance from the pair {v, u} (breaking ties arbitrarily). Consider the sth point
ws in this sequence. W.l.o.g. assume that d (ws, v) ≤ d (ws, u). For a center ws to cut
{v, u}, it must be the case that

1. d (ws, v) ≤ βi < d (ws, u) for some i;
2. ws settles {v, u} at level i.

Note that for each x ∈ [d (ws, v) , d (ws, u)), the probability that βi ∈ [x, x+ dx) is at
most dx

x·ln 2 . Conditioning on βi taking such a value x, any one of w1, . . . , ws can settle
{v, u}. The probability that ws is the first in the permutation π among w1, . . . ws is
1
s . (In fact, there may be points from

⋃
0≤r<j Kr that settle {v, u} before ws. It is

safe to ignore that, as it can only decrease the probability that ws cuts {v, u}.) Thus,
we obtain

(3) E[dwsT (v, u)] ≤
∫ d(ws,u)

d(ws,v)

8x· dx
x ln 2

· 1
s

=
8

s · ln 2
(d(ws, u)−d(ws, v)) ≤ 16

s
·d(v, u) .

Hence, we conclude

(4) E[d
Kj
T (v, u)] ≤

∑
ws∈Kj

E[dwsT (v, u)]
(3)

≤ 16d(v, u)

|Kj |∑
s=1

1

s
= log |Kj | ·O(d(v, u)) .

Assume v = xh is the hth vertex in the priority ranking for some h > 2. Let a be
the integer such that v ∈ Ka, and recall that 22

a−1

< h ≤ 22
a

, i.e., 2a ≤ 2 log h. The
crucial observation is that if y ∈ Kb such that b > a, then y cannot settle {v, u}. The
reason is that v always appears before y in π, so v will surely be assigned to a cluster
when it is the turn of y to create a cluster. This leads to the conclusion that for all
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b > a, E[dKbT (v, u)] = 0. We conclude

E[dT (v, u)] ≤
a∑
j=0

E[d
kj
T (v, u)]

(4)

≤ O(d(v, u))

a∑
j=0

log |Kj |

= O(d(v, u))

a∑
j=0

log
(

22
j
)

= O(d(v, u))

a∑
j=0

2j

= O(d(v, u)) · 2a

= O(d(v, u)) · log h .

When h ∈ {1, 2} we can take a = 0, and thus obtain a bound of O(d(v, u)).

5. Distance oracles with prioritized stretch. In this section we consider
distance oracles where the stretch scales with the priority of the vertices. See section 2
for the basic definitions. A classical result of [TZ05], with improved query time and
size due to [Che14, Che15], asserts that for any parameter t ≥ 1 and any graph on n
vertices, there exists a (2t − 1)-stretch distance oracle of space O(n1+1/t) with O(1)
query time.

5.1. Prioritized stretch with small space. Our first result provides a range of
distance oracles with prioritized stretch and extremely low space. They also exhibit a
somewhat nonintuitive (although very good) dependence of the stretch on the priority
of the vertices. The drawbacks of these oracles are that they cannot report the
approximate paths in the graph between the queried vertices, and it is not clear if
they can be distributed as a labeling scheme.

For the sake of brevity, denote τ(j) =
⌊

logn
log(n/j)

⌋
(where n is always the number

of vertices). For a function f : N → N, define its iterative application F : N → N as
follows: F (0) = 1, and, for integer k ≥ 1, as F (k) = f(F (k − 1)). That is, F (k) is
determined by iteratively applying f for k times starting at 1.

Theorem 5. Let G = (V,E) be a weighted graph on n vertices. For any positive
integer T , let f : N → R+ be any monotone increasing function such that f(1) = 2
and F (T ) ≥ log n. Then there exists a distance oracle that requires space O(T · n),
has query time O(1), and prioritized stretch

min {4f (τ(j))− 5, log n} .

Corollary 2. Any weighted graph G = (V,E) on n vertices admits distance
oracles with the following possible trade-offs between space and prioritized stretch:

(1) space O(n log n) and prioritized stretch min{4τ(j)− 1, log n};
(2) space O(n log log n) and prioritized stretch min{8τ(j)− 5, log n};
(3) space O(n log log log n) and prioritized stretch min{4τ(j)2 − 5, log n};
(4) space O(n log∗ n) and prioritized stretch min{4 · 2τ(j) − 5, log n}.
Observe that the first two oracles have stretch 3 for all points of priority rank less

than
√
n, and that in all of these oracles, for any fixed ε > 0, all vertices of priority

at most n1−ε have constant stretch.
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Proof of Corollary 2. All the trade-offs follow by simple choices for T and f , which
are described in the next bullets.

• For the first trade–off let T = log n (assume w.l.o.g. this is an integer), and
take the function f(k) = k + 1, so that F (k) = k + 1 as well for all k, so
indeed F (T ) ≥ log n. Thus the space is indeed O(n log n), and the prioritized
stretch is min{4τ(j)− 1, log n} by Theorem 5.

• For the second trade-off, using T = log log n, it suffices to take f(k) = 2k, so
that F (k) = 2k and F (T ) = log n as required. The space is now O(n log log n)
and the prioritized stretch is as promised applying Theorem 5 again.

• In the third trade-off we use T = 1 + log log log n, and let f(1) = 2 and for

k ≥ 2, f(k) = k2. It implies that F (k) = 22
k−1

. The bounds on the space
and the prioritized stretch follow as before.

• The final trade-off holds by taking T = log∗ n− 1, and setting f(k) = 2k, so
that F (k) = tower(k).6 The bounds on the space and the prioritized stretch
follow as before.

We now turn to proving the theorem, and start with the following lemma.

Lemma 1. For any t ≥ 1 and any graph G = (V,E) on n vertices with a subset
K ⊆ V of size |K| = k, there exists a distance oracle which can answer in O(1) time
queries on every pair in K × V with stretch 4t− 1, using space O(k1+1/t + n).

Proof. Apply the distance oracle of [Che15] on the complete graph G′ = (K,E′)
with parameter t, where the weight of each edge in E′ is the shortest path distance in
G between its endpoints. This gives stretch 2t− 1 for any pair in K×K and requires
space O(k1+1/t). For every vertex u ∈ V \K, store only dG(u,K) and the name of
the vertex ku ∈ K that manifests this distance (that is, dG(u, ku) = dG(u,K)). We
obtain a data structure of space O(k1+1/t + n). To answer a distance query between
v ∈ K and u ∈ V , report d̃(v, ku) + dG(ku, u), where d̃ is the distance reported by
the oracle of G′. It remains to bound the stretch: observe that since ku is the closest
vertex to u in K, we have that dG(v, ku) ≤ dG(v, u)+dG(ku, u) ≤ 2dG(u, v), and thus
the reported distance is bounded as follows,

d̃(v, ku) + dG(ku, u) ≤ (2t− 1)dG(v, ku) + dG(u, v) ≤ (4t− 1)dG(u, v) .

Using the triangle inequality and that the reported distance is never larger than the
original,

d̃(v, ku) + dG(ku, u) ≥ dG(v, ku) + dG(ku, u) ≥ dG(u, v) .

We are finally ready to prove Theorem 5.

Proof of Theorem 5. Let x1, . . . , xn ∈ V be the priority ranking of V . For each
i ∈ [T ], let Si = {xj : 1 ≤ j ≤ n1−1/F (i)}, and apply the oracle of Lemma 1 on
G with the set Si and parameter ti = F (i) − 1, let Oi be the resulting oracle.7 Also
invoke the oracle OMN of [MN06] on G, that has stretch log n on all pairs using only
O(n) space (with O(1) query time).

Observe that for each i ∈ [T ], the stretch ti was chosen so that (1 − 1/F (i)) ·
(1 + 1/ti) = 1, so that the oracle Oi has space

O(|Si|1+1/ti + n) = O(n) .

6tower(k) is defined as tower(0) = 1 and tower(k) = 2tower(k−1), so that tower(log∗ n) = n.
7Since F (0) = 1 and f is strictly monotone, it follows that F (i) ≥ 2 for all i ≥ 1, so that ti ≥ 1.
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The total space is thus O(T · n), as promised. It remains to prove the prioritized
stretch guarantee. Fix any v = xj , and let i be the minimal such that xj ∈ Si
(observe that if j > n/2 there is not necessarily any such i). For i = 1 the stretch
guaranteed by O1 is 4ti−1 = 4(F (1)−1)−1 = 3, as promised (recall that f(k) ≥ 2 for
all k ≥ 1, so the required stretch is never smaller than 3). For i > 1, by minimality of

i it follows that j > n1−1/F (i−1), that is, F (i− 1) ≤
⌊

logn
log(n/j)

⌋
= τ(j) (since F (i− 1)

is an integer). The stretch of Oi for v with any other point is at most

4(F (i)− 1)− 1 = 4F (i)− 5 = 4f(F (i− 1))− 5 ≤ 4f (τ(j))− 5 ,

while the stretch of OMN is at most log n for all pairs, which handles the case no
i exists, and allows us to report the minimum of the two terms. The query time is
O(1), since each v stores the relevant oracle for it, whose query time is O(1).

5.2. Prioritized distance oracles with bounded prioritized stretch. In
this section we prove the following theorem, which prioritizes the stretch of the dis-
tance oracle of [TZ05]. Unlike the oracles of Theorem 5, this oracle can also support
path queries, that is, return a path in the graph that achieves the required stretch, in
time proportional to its length (plus the distance query time). Additionally, it can be
distributed as a labeling scheme, which we exploit in the next section. Furthermore,
this oracle matches the best known bounds for the worst-case stretch of [TZ05], which
are conjectured to be optimal.

Theorem 6. Let G = (V,E) be a graph with n vertices. Given a parameter t ≥ 1,
there exists a distance oracle of space O(tn1+1/t) with prioritized stretch 2d t log jlogn e − 1

and query time O(d t log jlogn e).

Overview. Recall that in the distance oracle construction of [TZ05], a sequence
of sets V = A0 ⊇ A1 ⊇ · · · ⊇ At = ∅ is sampled randomly, by choosing each element
of Ai−1 to be in Ai with probability n−1/t. We make the crucial observation that the
distance oracle provides improved stretch of 2(t− i)− 1, rather than 2t− 1, to points
in Ai. However, as these sets are chosen randomly, they have no correlation with our
given priority list over the vertices. We therefore alter the construction, to ensure
that points with high priority will surely be chosen to Ai for sufficiently large i.

Proof of Theorem 6. Let x1, . . . , xn ∈ V be the priority ranking of V . For each
i ∈ {0, 1, . . . , t−1} let Si = {xj : 1 ≤ j ≤ n1−i/t}. Let A0 = V , At = ∅, and for each
1 ≤ i ≤ t− 1 define A′i by including every element of Ai−1 with probability n−1/t/2,
and let Ai = A′i ∪ Si. For each v ∈ V and 0 ≤ i ≤ t − 1, define the ith pivot pi(v)
as the nearest point to v in Ai, and Bi(v) = {w ∈ Ai : d(v, w) < d(v,Ai+1)}.8 Also
the bunch of v is defined as B(v) =

⋃
0≤i≤t−1Bi(v). The distance oracle will store in

a hash table, for each v ∈ V , all the distances to points in B(v), and also the pi(v)
vertices.

The query algorithm for the distance between u, v is essentially the same as in
[TZ05], the main difference is that we start the process at level i rather than level 0,
for a specified value of i.

Stretch. Let v = xj be the jth point in the ordering for some j > 1, and fix
any u ∈ V . (For j = 1, observe that every vertex of At−1 lies in all the bunches, so
when considering x1 ∈ At−1, we have that x1 ∈ B(u) and so Algorithm 2 will return
the exact distance.) Let 0 ≤ i ≤ t − 1 be the integer satisfying that n1−(i+1)/t <

8We assume that d(v, ∅) =∞ (this is needed as At = ∅).
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Algorithm 2 Dist(v, u, i).
1: w ← v;
2: while w /∈ B(u) do
3: i← i+ 1;
4: (u, v)← (v, u);
5: w ← pi(v);
6: end while
7: return d(w, u) + d(w, v);

j ≤ n1−i/t, that is, the maximal i such that v ∈ Si. By definition we have that
v ∈ Ai as well, so we may run Dist(v, u, i). Assuming that all operations in the
hash table cost O(1), the query time is O(t − i). The stretch analysis is similar to
[TZ05]: letting uk, vk, and wk be the values of u, v, and w at the kth iteration, it
suffices to show that at every iteration in which the algorithm did not stop, d(vk, wk)
increases by at most d(u, v). It suffices because there are at most t− 1− i iterations
(since wt−1 ∈ At−1, it lies in all bunches), so if ` is the final iteration, it must be
that d(v`, w`) ≤ (`− i) · d(u, v) (initially d(wi, vi) = 0), and by the triangle inequality
d(w`, u`) ≤ d(u, v) + d(v`, w`) ≤ (`− i+ 1) · d(u, v), and as ` ≤ t− 1 we conclude that

d(w, u) + d(w, v) ≤ (2(t− i)− 1) · d(u, v) .

To see the increase by at most d(u, v) at every iteration, we first note that wi = vi ∈ Ai
(this fact enables us to start at level i rather than in level 0). In the kth iteration,
observe that as wk /∈ B(uk) but wk ∈ Ak, it must be that d(uk, pk+1(uk)) ≤ d(uk, wk).
The algorithm sets wk+1 = pk+1(uk), vk+1 = uk, and uk+1 = vk, so we get that

d(vk+1, wk+1) = d(uk, pk+1(uk)) ≤ d(uk, wk) ≤ d(uk, vk) + d(vk, wk)

= d(u, v) + d(vk, wk) .

Note that as n1−(i+1)/t < j ≤ n1−i/t, it follows that t− i− 1 < t log j
logn ≤ t− i, so

that t− i = d t log jlogn e. The guaranteed stretch for pairs containing xj is thus bounded

by 2d t log jlogn e − 1 (or stretch 1 for x1).

Space. Fix any u ∈ V , and let us analyze the expected size of B(u). Fix any
0 ≤ i ≤ t − 2, and consider Bi(u). Assume we have already chosen the set Ai, and
arrange the vertices of Ai = {a1, . . . am} in order of increasing distance to u. Note
that if ar is the first vertex in the ordering to be in Ai+1, then |Bi(u)| = r− 1. Every
vertex of Ai is either in Si+1 and thus will surely be included in Ai+1, otherwise it
has probability n−1/t/2 to be in A′i+1 and so in Ai+1 as well. The number of vertices
that we see until the first success (being in Ai+1) is stochastically dominated by a
geometric distribution with parameter p = n−1/t/2, which has expectation 2n1/t.
For the last level t − 1, note that each vertex in Si \ Si+1 has probability exactly
(n−1/t/2)t−1−i = n−1+(i+1)/t/2t−1−i to be included in At−1, independently of all
other vertices. As |Si\Si+1| ≤ |Si| = n1−i/t, the expected number of vertices in At−1 is

t−1∑
i=0

n1−i/t · n−1+(i+1)/t/2t−1−i < 2n1/t .(5)

This implies that E[|Bt−1(u)|] ≤ 2n1/t as well, and so E[|B(u)|] ≤ 2t · n1/t. The total
expected size of all bunches is therefore at most 2t · n1+1/t.
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6. Prioritized distance labeling. In this section we discuss distance labeling
schemes, in which every vertex receives a short label, and it should be possible to
approximately compute the distance between any two vertices from their labels alone.
The novelty here is that we would like “important” vertices, those that have high
priority, to have both improved stretch and also short labels.

6.1. Distance labeling with prioritized stretch and size. We begin by
showing that the stretch-prioritized oracle of Theorem 6 can be made into a labeling
scheme, with the same stretch guarantees, and with a small label for high ranking
points. The result has some dependence on n in the label size, and it seems to be
interesting particularly for large values of t. Indeed, we shall use this result with
parameter t = log n in the following, to obtain a fully prioritized label size which will
be independent of n, and can support any desired maximum stretch. Furthermore,
this result is the basis for our routing schemes with prioritized label size and stretch.

Theorem 7. For any graph G = (V,E) with n vertices and any t ≥ 1, there
exists a distance labeling scheme with prioritized stretch 2d t log jlogn e − 1 and prioritized

label size O(n1/t · log j).

Proof. Using the same notation as section 5, the label of vertex v ∈ V consists
of its hash table (which contains distances to all points in the bunch B(v), and the
identity of the pivots pi(v) for 0 ≤ i ≤ t − 1). Note that Algorithm 2 uses only this
information to compute the approximate distance. The stretch guarantee is prioritized
as above, and it remains to give an appropriate bound on the label sizes.

Let x1, . . . , xn ∈ V be the priority ranking of V . Fix a point v = xj for some
j > 1, and let i be the maximal such that v ∈ Si. Note that this implies that
t− i− 1 < t log j

logn . Observe that B0(v)∪ · · · ∪Bi−1(v) = ∅, so it remains to bound the

size of Bi(v), . . . , Bt−1(v). For the last set Bt−1(v) = At−1, let E be the event that
|At−1| ≤ 8n1/t. We already noted in (5) that the expected size of At−1 is at most
2n1/t, thus using Markov inequality, with probability at least 3/4 event E holds.

For i ≤ k ≤ t − 2, let Xk be a random variable distributed geometrically with
parameter p = n−1/t/2, thus E[Xk] = 2n1/t for all k. We noted above that the
distribution of Xk is stochastically dominating the cardinality of Bk(v), thus it suffices

to bound
∑t−2
k=iXk. Observe that for any integer s, if

∑t−2
k=iXk > s, then it means

that in a sequence of s independent coin tosses with probability p for heads, we have
seen less than t− 1− i heads. That is, if Z ∼ Bin(s, p) is a binomial random variable,
then

Pr

[
t−2∑
k=i

Xk > s

]
= Pr[Z < t− 1− i] ≤ Pr

[
Z <

t log j

log n

]
≤ Pr[Z < log j] .

Take s = 16n1/t · log j (assume this is an integer), so that µ := E[Z] = 8 log j, and by
a standard Chernoff bound

Pr[Z < log j] = Pr[Z < µ/8] ≤ e−3µ/8 < 1/j3 .

Let F be the event that for some 2 ≤ j ≤ n,
∣∣∣⋃t−2k=0Bk(xj)

∣∣∣ > 16n1/t · log j. By taking

a union bound over all 2 ≤ j ≤ n (note that the bound is nonuniform, and depends
on j), we obtain that

Pr[F ] ≤
n∑
j=2

Pr

[∣∣∣∣∣
t−2∑
k=0

Bk(xj)

∣∣∣∣∣ > 16n1/t · log j

]
≤

n∑
j=2

1/j3 < 1/4 .
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We conclude that with probability at least 1/2 both events E and F̄ hold, which
means that the size of the bunch of each xj is bounded by O(n1/t · log j), as required.
(Recall that x1 ∈ At−1, so its label size is |At−1| ≤ 8n1/t when event E holds.)

Corollary 3. Any graph G = (V,E) has a distance labeling scheme with prior-
itized stretch 2dlog je − 1 and prioritized label size O(log j).

6.2. Distance labeling with prioritized label size. In this section we con-
struct a labeling scheme in which the maximum stretch is fixed for all points, and the
label size is fully prioritized and independent of n.

Theorem 8. For any graph G = (V,E) and an integer t ≥ 1, there exists a
distance labeling scheme with stretch 2t− 1 and prioritized label size O(j1/t · log j).

Proof overview. The idea is to partition the vertices into m := d lognt e sets
S1, . . . , Sm, and to apply the result of section 6.1 in conjunction with a variation
of the source-restricted distance oracles of [RTZ05], using a labeling scheme rather
than an oracle. In a source restricted labeling scheme on X with a subset S ⊆ X,
only distances between pairs in S×X can be queried. Replacing the source restricted
oracle with a labeling scheme demands that we use an analysis similar to section 6.1
to guarantee a prioritized bound on the label sizes. We will apply this for each
i ∈ {2, 3, . . . ,m} with X = Si ∪ · · · ∪ Sm and the subset Si. Thus an element of Si
will have a label which consists of i schemes, and we will guarantee that their sizes
form a geometric progression, so that the total label size is sufficiently small.

As it turns out, the construction of [RTZ05] is inadequate for the first 2t elements
S1, which have very strict requirement on their label size. We will use the construction
of section 6.1 to handle distances involving the elements in S1. Fortunately, the stretch
incurred by this construction is 2dlog je− 1 which is bounded by 2t− 1 for the first 2t

elements in the ranking. We begin by stating the source-restricted distance labeling,
based on [RTZ05].

Theorem 9. For any integer t ≥ 1, any graph G = (V,E) and a subset S ⊆
V , there exists a source-restricted distance labeling scheme with stretch 2t − 1 and
prioritized label size O(|S|1/t · log j).

Proof. The observation made in [RTZ05] is that to obtain a source-restricted
distance oracle, it suffices to sample the random sets S = A0 ⊇ A1 ⊇ · · · ⊇ At = ∅ only
from S, where each element of Ai−1 is included in Ai independently with probability
|S|−1/t. They show that defining the bunches as in [TZ05], the resulting stretch is
2t− 1 for all pairs in S×V . We shall use a similar analysis as in Theorem 7 to argue
that this can be made into a labeling scheme. The expected label size is O(|S|1/t), and
we can show that with constant probability, every point xj pays only an additional
factor of O(log j). As the proof is very similar, we leave the details to the reader.

Proof of Theorem 8. Let S1 = {xj : 1 ≤ j ≤ 2t}, and for each i ∈ {2, 3, . . . ,m}
let Si = {xj : 2(i−1)t < j ≤ 2it}. We have a separate construction for i = 1 and for
i > 1. For the case i = 1, use the labeling scheme of Corollary 3 on G = (V,E). For
each 2 ≤ i ≤ m, apply Theorem 9 on G and the subset Si, but append the resulting
labels only for vertices in Si ∪ · · · ∪ Sm.

Fix any u, v ∈ V , and w.l.o.g. assume that v ∈ Si has a higher rank than u.
This implies that u ∈ Si ∪ · · · ∪ Sm, thus the source restricted labeling scheme for Si
guarantees stretch at most 2t−1 for the pair u, v (and u indeed stored the appropriate
label). Note that in the case of v = xj ∈ S1, the stretch can be improved to 2dlog je−1
(recall that log j ≤ t).
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We now turn to bounding the label sizes. First consider v = xj ∈ S1, then it
must be that j ≤ 2t. The label size of v is by Corollary 3 at most O(log j), and
this is the final label of v. For v = xj ∈ Si when i ≥ 2, the label of v consists of
labels created for the sets S1, . . . , Si. Notice that 2t(i−1) < j ≤ 2ti, so it holds that
2i = (2t · 2t(i−1))1/t < 2j1/t. By Corollary 3 the label due to S1 is at most O(log j),
and using Theorem 9 the label size of v is at most

O(log j) +

i∑
k=2

O(|Sk|1/t · log j) = O(log j) ·
i∑

k=1

2k = O(2i · log j) = O(j1/t · log j) .

6.3. Prioritized distance labeling for graphs with bounded separators.

6.3.1. Exact labeling with prioritized size. In this section we exhibit a
prioritized exact distance labeling scheme tailored for graphs that admit a small sep-
arator. We say that a graph G = (V,E) admits an s-separator, if for any weight
function w : V → R+, there exists a set U ⊆ V of size |U | = s, such that each
connected component C of G \ U , has w(C) ≤ 2w(V )/3.9 It is well known that trees
admit a 1-separator, and graphs of treewidth k admit a k-separator.

The basic idea for constructing an exact distance labeling scheme based on sep-
arators is to create a hierarchical partition of the graph, each time by applying the
separator on each connected component. Then the label of a vertex u consists of all
distances to all the vertices in the separators of clusters that contain u. To answer a
query between vertices u, v, we return the minimum of d(u, s)+d(v, s) for all separator
vertices s that u, v have in common in their labels (this is the exact distance, because
at some point a vertex on the shortest path from u to v must be chosen to be in a
separator). Since at every iteration the number of vertices in each cluster drops by
at least a constant factor, after O(log n) levels the process is complete, thus the label
size is at most O(s log n).

Our improved label size for vertices of high priority, will be based on the following
observation: if the weight function w is an indicator for a set S ⊆ V (that is, if u ∈ S,
then w(u) = 1, and if u ∈ V \S then w(u) = 0), then after dlog |S|e+ 1 iterations, all
vertices of S must have been removed from the graph.

Theorem 10. Let G = (V,E) be a graph admitting an s-separator, and let V =
(x1, . . . , xn) be a priority ranking of the vertices. Then there exists an exact distance
labeling scheme with prioritized label size O(s · log j).

Proof. let S0 = {x1, x2}, and for 1 ≤ i ≤ dlog log ne let Si = {xj : 22
i−1

< j ≤
22
i} The hierarchical partition will be performed in log log n phases. The ith phase

consists of 2i + 1 levels. In each level of the ith phase, we generate an s-separator for
each remaining connected component C with the following weight function

w(u) =

{
1 if u ∈ Si ∩ C,
0 otherwise.

Then this separator is removed from the component. By the observation made above,
after at most 1+log |Si| ≤ 2i+1 levels, all remaining components have no vertices from
Si. The label of a vertex u ∈ V will be the distances to all points in the separators
created for components containing u.

9For a set C ⊆ V , its weight is defined as w(C) =
∑

u∈C w(u).
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Fix some vertex xj (for j > 1), and assume xj ∈ Si. Notice that 2i−1 < log j.
Then the label size of xj is at most

i∑
k=0

s · (2k + 1) = O(s · 2i) = O(s · log j) .

6.3.2. Planar graphs and graphs excluding a fixed minor. While exact
distance labeling for planar graphs requires polynomial label size or query time, there
is a 1 + ε stretch labeling scheme for planar graphs with label size O(log n) [Tho01,
Kle02], which was extended to graphs excluding a fixed minor [AG06]. All these
constructions are based on path separators: a constant number of shortest paths in
the graph, whose removal induces pieces of bounded weight. The label of a vertex
consists of distances to carefully selected vertices on these paths. We may use the
same methodology as above; generate these path separators for the sets Si in order,
and obtain the following.

Theorem 11. Let G = (V,E) be a graph excluding some fixed minor, and V =
(x1, . . . , xn) a priority ranking of the vertices. Then for any ε > 0 there exists a
distance labeling scheme with stretch 1 + ε and prioritized label size O((log j)/ε).

7. Routing.

7.1. Routing in trees with prioritized labels. In this section we extend a
result of [TZ01], and show a routing scheme on trees. The setting is that each vertex
stores a routing table, and when a routing request arrives for vertex v, it contains
L(v), the label of vertex v. We will show the following.

Theorem 12. For any tree T = (V,E) there is a routing scheme with routing
tables of size O(1) and labels of prioritized size log j + 2 log log j + 4.

Proof. The proof follows closely the one of [TZ01], with the major difference being
the assignments of weights, which gives preference to the high priority vertices, thus
ensuring that when routing from the root of the tree to a vertex of rank j, there are
≈ log j junctions that require routing information from the label of the vertex.

Let x1, . . . , xn be the priority ranking of V . Let S0 = {x1} and for each 1 ≤ i ≤
log n, let Si = {xj : 2i−1 < j ≤ 2i}. Fix an arbitrary root r of the tree T . For every
v ∈ Si define p(v) = 1

2i·(i+1)2 . Note that as |Si| ≤ 2i we have that

∑
v∈V

p(v) ≤
logn∑
i=0

2i

2i · (i+ 1)2
≤ 2 .

For each v ∈ V , define the weight of v as sv =
∑
u∈Tv p(u), where Tv is the subtree

rooted at v (including v itself). A child v′ of v is called heavy if its weight is greater
than sv/2; otherwise it is called light. The root r of the tree will always be considered
heavy. Observe that any vertex can have at most one heavy child. The light level `(v)
of a vertex v is defined as the number of light vertices on the path from the root to v,
denoted by Path(v) = (r = v0, v1, . . . , vk = v). The label size of v will be `(v) words.

We enumerate all vertices T in depth-first search (DFS) order, where all the light
children of a vertex are visited before its heavy child is visited. (The order is otherwise
arbitrary.) We identify each vertex v with its DFS number. Let fv denote the largest
descendant of v. Also, let hv denote its heavy child, if exists. If it does not exist
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define hv = fv+1. Also, let P (π(v)) denote the port number of the edge connecting v
to its parent π(v), and P (hv) denote the port number connecting v to its heavy child
(if it exists). The routing table stored at v is (v, fv, hv, P (π(v)), P (hv)). It requires
O(1) words.

Each time an edge from a vertex to one of its light children is taken, the weight
of the corresponding subtree decreases by at least a factor of 2. Note that a vertex
v = xj ∈ Si has weight at least w(v) ≥ p(v) = 1

2i·(i+1)2 , and since the root has weight

at most 2, it follows that `(v) ≤ log(2 · 2i · (i + 1)2) = i + 2 log(i + 1) + 1. Since
2i−1 < j, we conclude that

`(v) ≤ log j + 2 log(log(j) + 2) + 2 .

For each index q, 1 ≤ q ≤ `(v), denote by iq the index of the qth light vertex of
Path(v). Let L(v) = (v, (port(vi1−1, vi1), . . . , port(vi`(v)−1

, vi`(v)))) be the label of v,
which consists of its name, and a sequence of at most `(v) words containing the port
numbers corresponding to the edges leading to light children on Path(v).

The routing algorithm works as follows. Suppose we need to route a message with
the header L(v) at a vertex w. The vertex w checks if w = v. If it is the case then
we are done. Otherwise, w checks if v ∈ [w,w + 1, . . . , fw]. If it is not the case, then
v is not in the subtree of w, and then w sends the message to its parent. Otherwise
w checks if v ∈ [hw, hw + 1, . . . , fw]. If it is the case then the message is sent to the
heavy child. Otherwise v is a descendant of a light child of w. The vertex w finds
itself in the sequence of L(v), and determines to which light child of w the message
should be sent. Then it sends the message to this child.

7.2. Routing in general graphs. To obtain a routing scheme for general
graphs, we use the same method as [TZ01], but replace their distance labeling with
our prioritized ones from Theorem 7. This routing scheme has the following property:
after an initial calculation using the entire label of the destination vertex v, all routing
decisions are based on a much shorter header appended to the message. In particular,
we obtain the following theorem.

Theorem 13. For any graph G = (V,E) with priority ranking x1, . . . , xn of V ,
and any parameter t ≥ 1, there exists a routing scheme, such that the label size of xj
is at most log j · d t log jlogn e · (1 + o(1)), and it stores a routing table of size O(n1/t · log j).

Routing from any vertex into xj will have stretch at most 4d t log jlogn e− 3 using a header

of size log j · (1 + o(1)), while routing from xj towards any other vertex incurs stretch

at most 4d t log jlogn e − 1 using a header of size at most log n · (1 + o(1)).

Sketch. We use the definitions of section 5.2. Consider the distance labeling
scheme given in Theorem 7. Following [TZ05], this labeling scheme yields a tree
cover: a collection of subtrees such that vertex v = xj belongs to at most |B(v)| trees.
The tree Tz for vertex z contains z as the root, and the shortest path to all the vertices
in C(z) = {x ∈ V : z ∈ B(x)}. To route from some vertex u ∈ V to v, it suffices to
find an appropriate z ∈ B(u) ∩B(v), and route in Tz by applying Theorem 12.

The routing table stored at each vertex v ∈ V contains the hash table for its
bunch B(v), and the routing table needed to route in Tz for each z ∈ B(v). Recall
that by Theorem 7, |B(v)| ≤ O(n1/t · log j) (where v = xj), and by Theorem 12,
the routing table of each tree is of constant size. Assume first that we route towards
a high ranked vertex, and let i be the minimal such that v = xj ∈ Si. The label
of v is ((pi(v), Li(v)), . . . , (pt−1(v), Lt−1(v))), where Lh(v) is the label of v that is
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848 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

required to route in Tph(v). Note that the label is of size (t − i) log j · (1 + o(1)) =

log j · d t log jlogn e · (1 + o(1)) (the equality follows from a calculation done in section 5.2).
Finding the tree which guarantees the prioritized stretch as in Theorem 7 could

have been achieved by using Algorithm 2; alas, this requires knowledge of the bunches
of both vertices u and v. It remains to see that using only the label of v and the routing
table at u, one can find a tree in the cover which has stretch at most 4d t log jlogn e − 3 for

u, v (routing in the tree does not increase the stretch). To see this, let i ≤ h ≤ t− 1
be the minimal such that ph(v) ∈ B(u). Following [TZ01], we prove by induction that
for each i ≤ k ≤ h it holds that

d(v, pk(v)) ≤ 2(k − i) · d(u, v).

The base case for k = i holds as v = pi(v), assume for k, and for k + 1: Since k < h
it follows that pk(v) /∈ B(u), thus it must be that d(u, pk+1(u)) ≤ d(u, pk(v)). Now,

d(v, pk+1(v)) ≤ d(v, pk+1(u))

≤ d(v, u) + d(u, pk+1(u))

≤ d(v, u) + d(u, pk(v))

≤ 2d(v, u) + d(v, pk(v))

≤ (2(k − i) + 2) · d(u, v) ,

where the last inequality uses the induction hypothesis. Finally, routing through the
shortest path tree rooted at ph(v) will have stretch at most

d(u, ph(v)) + d(ph(v), v) ≤ d(u, v) + 2d(v, ph(v))

≤ (4(h− i) + 1) · d(u, v)

≤ (4(t− i)− 3) · d(u, v)

=

(
4

⌈
t log j

log n

⌉
− 3

)
· d(u, v) ,

using that h ≤ t−1 and that t−i = d t log jlogn e. Note that once the vertex ph(v) is found,

all other vertices on the route from u to v only require the information (ph(v), Lh(v)),
which is appended to the message as a header of size log j · (1 + o(1)).

We now turn to the case where u is the high ranked vertex, and let i be the minimal
index such that u ∈ Si. Since u ∈ Ai by definition, we have that d(v, pi(v)) ≤ d(v, u).
The label of v contains ((pi(v), Li(v)), . . . , (pt−1(v), Lt−1(v))) (since v has worse rank
than u), so we can use the same algorithm as above: find the minimal i ≤ h ≤ t− 1
such that ph(v) ∈ B(u), and route in Tph(v). We can prove by induction that for
i ≤ k ≤ h,

d(v, pk(v)) ≤ (2(k − i) + 1) · d(u, v).

The base case k = i holds since we have d(v, pi(v)) ≤ d(u, v). The rest of the proof
is similar to the one above, and we leave the details to the reader. The final stretch
will be 4d t log jlogn e − 1 (the +1 will increase it by an additive 2), as required.

Corollary 4. Any graph G = (V,E) with a priority ranking x1, . . . , xn has
a fully prioritized routing scheme, such that the label size of xj is at most log2 j ·
(1 + o(1)), and it stores a routing table of size O(log j). Routing from or towards xj
will have stretch at most 4dlog je − 1.
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8. Prioritized embedding into normed spaces. We start by providing some
notations used in this section. For p ∈ [1,∞] and m ∈ N, `mp = (Rm, ‖·‖p) denotes the
m-dimensional real vector space with the `p-norm. Specifically, for x = (x1, . . . , xm) ∈
Rm we have ‖x‖p = (

∑m
i=1 |xi|

p
)

1
p . As usual, the `p-norm induces a metric on Rm,

where the distance between x, y ∈ Rm is ‖x−y‖p. Distortion, priority, and prioritized
distortion are defined naturally using this metric. Given some metric space (X, dX)
and two functions f1 : X → `d1p and f2 : X → `d2p , their concatenation is a function

from X into `d1+d2p , denoted f1 ⊕ f2.
For a metric space (K, dK), an embedding f : K → Rm is called a (normalized)

Fréchet embedding if there are some m sets A1, . . . , Am ⊆ K such that f is defined as
f(x) = m−1/p

⊕m
i=1 dK (x,Ai). A useful property of Fréchet embeddings is that they

can be extended into nonexpansive embedding. Formally, suppose (X, dX) is a metric
space, and K ⊆ X admits a Fréchet embedding f : K → `mp (with the induced metric).

An extension f̂ is a function f̂ : X → `mp , such that for every x ∈ K, f(x) = f̂(x). To

get a nonexpansive extension for y ∈ X, simply define f̂(y) = m−1/p
⊕m

i=1 dX (y,Ai).

It is straightforward that f̂ is an extension of f . As for every x, y,∈ X,

∥∥∥f̂(x)− f̂(y)
∥∥∥
p

=

(
m∑
i=1

∣∣∣m− 1
p · dX (x,Ai)−m−

1
p · dX (y,Ai)

∣∣∣p) 1
p

≤

(
1

m
·
m∑
i=1

|dX (x, y)|p
) 1
p

= d (x, y) ,

so f̂ is also nonexpansive.

8.1. Embedding with prioritized distortion. In this section we study em-
bedding arbitrary metrics into normed spaces, where the distortion is prioritized ac-
cording to the given ranking of the points in the metric. Our main result is the
following

Theorem 14. For any p ∈ [1,∞], ε > 0, and any finite metric space (X, d) with

priority ranking X = (x1, . . . , xn), there exists an embedding of X into `
O(log2 n)
p with

priority distortion O(log j · (log log j)(1+ε)/2).

Proof overview. Our improved distortion guarantee for high ranked points comes
from a variation of Bourgain’s embedding [Bou85] of finite metric spaces into `p space.
Bourgain’s embedding is based on randomly sampling sets in various densities, and
defining the coordinates as distances to these sets. Our first observation (see Lemma 2)
is sampling points only from a subset K ⊆ X suffices to obtain an embedding which
is nonexpansive for all pairs, and has bounded contraction for pairs in K ×X. Fur-
thermore, the contraction depends only on |K|, rather than on |X|.

We then use a similar strategy as in previous sections, and partition X into
roughly log log n subsets S0, S1, . . . , Slog logn, where Si is of size ≈ 22

i

. The doubly
exponential size arises because for any u, v ∈ Si, the logarithm of the ranking of u
and of v differs by at most a factor of 2. For each i, we create the embedding fi that
will “handle” pairs in Si×X, and concatenate all these functions f =

⊕log logn
i=0 αi ·fi.

Without the αi factor, every pair will suffer a (log log n)1/p term in the distortion
due to expansion. We introduce these factors into the embedding, where αi is such
that

∑∞
i=0 α

p
i ≤ 1. In such a way, the function f is nonexpansive, but we pay a small

factor of 1/αi in the distortion for pairs in Si ×X.
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Lemma 2. Let (X, d) be a metric space of size |X| = n, K ⊆ X a subset of size
|K| = k, and a parameter p ∈ [1,∞]. Then there is a nonexpansive embedding of X

into `
O(log2 k)
p such that the contraction of any pair in K ×X is at most O(log k).

Proof. Let m = O(log2 k), and f : K → `mp be a nonexpansive embedding with
contraction δ = O(log k) on the pairs of K ×K, which exists due to [Bou85, LLR95].

Let f̂ be a nonexpansive extension to all of X as above. Let h : X → R be defined
by h(x) = d(x,K). The embedding F : X → `mp is defined by the concatenation of

these maps F = f̂ ⊕ h. Since both of the maps f̂ , h are nonexpansive, it follows that
for any x, y ∈ X,

‖F (x)− F (y)‖pp ≤ ‖f̂(x)− f̂(y)‖pp + |h(x)− h(y)|p ≤ 2 · d(x, y)p ,

hence, F has expansion at most 21/p for all pairs. Let t ∈ K and x ∈ X, and let
kx ∈ K be such that d(x,K) = d(x, kx) (it could be that kx = x). If it is the case that
d(x, t) ≤ 3δ ·d(x, kx), then by the single coordinate of h we get a sufficient contribution
for this pair:

‖F (t)− F (x)‖p ≥ |h(t)− h(x)| = h(x) = d(x, kx) ≥ d(x, t)

3δ
.

The other case is that d(x, t) > 3δ · d(x, kx), here we will get the contribution from f̂ .
First observe that by the triangle inequality,

(6) d(t, kx) ≥ d(t, x)− d(x, kx) ≥ d(t, x)(1− 1/(3δ)) ≥ 2d(t, x)/3 .

By another application of the triangle inequality, using that f̂ is nonexpansive, and
that f has contraction δ on K, we get the required bound on the contraction:

‖F (t)− F (x)‖p ≥ ‖f̂(t)− f̂(x)‖p
≥ ‖f̂(t)− f̂(kx)‖p − ‖f̂(kx)− f̂(x)‖p
≥ ‖f(t)− f(kx)‖p − d(x, kx)

≥ d(t, kx)

δ
− d(t, x)

3δ
(6)

≥ 2d(t, x)

3δ
− d(t, x)

3δ

=
d(t, x)

3δ
.

In particular, the function 2−
1
p · F is nonexpansive for all pairs, and has contraction

at most 2
1
p · 3 · δ = O(log k) for pairs in K ×X.

We are now ready to prove Theorem 14.

Proof of Theorem 14. Let S0 = {x1, x2}, and for 1 ≤ i ≤ dlog log ne let Si =

{xj : 22
i−1

< j ≤ 22
i}. For every i, let fi : X → `p be the embedding of Lemma 2

with K = Si, and let αi = c · (i+ 1)−(1+ε)/p for sufficiently small constant c, so that∑∞
i=0 α

p
i ≤ 1. Finally, define the embedding f : X → `p by

f =

dlog logne⊕
i=0

αi · fi .
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To see that f is indeed nonexpansive, recalling that each fi is nonexpansive, we obtain
that for any u, v ∈ X

‖f(u)− f(v)‖pp ≤
dlog logne∑

i=0

αpi · ‖fi(u)− fi(v)‖pp ≤ d(u, v)p
∞∑
i=0

αpi ≤ d(u, v)p .

For the contraction, let v = xj for some j > 1, and take any u ∈ X. Let i be the
index such that v ∈ Si, and note that 2i−1 < log j. By Lemma 2, the embedding fi
has contraction at most O(log |Si|) = O(2i) = O(log j) for the pair u, v. Observe that
αpi = cp · (i+ 1)−(1+ε) = Ω

(
(2 + log log j)−(1+ε)

)
, thus

‖f(u)− f(v)‖pp ≥ α
p
i · ‖f(u)− f(v)‖pp ≥ Ω

(
d(u, v)p

(log j)p · (2 + log log j)−(1+ε)

)
.

It is not hard to verify that x1 has constant contraction with any u, so the
prioritized distortion is O

(
log j · (log log j)−(1+ε)/p

)
. Finally, since the dimension of fi

is O(log2 |Si|) = O(22i), the embedding f maps X into
∑dlog logne
i=0 O(22i) = O(log2 n)

dimensions. For 1 ≤ p ≤ 2, one may embed first into `2, use [JL84] to reduce the

dimension to O(log n), and then apply an embedding to `
O(logn)
p , while paying a

constant factor in the distortion [FLM77]. The prioritized distortion will thus be at
most O(log j · (log log j)(1+ε)/2).

8.2. Embedding with prioritized dimension. The main result of this section
is an embedding with prioritized distortion and dimension. This means that a high
ranking point will have low distortion (with any other point) and, additionally, its
image will consist of few nonzero coordinates, followed by zeros in the rest.

Theorem 15. For any p ∈ [1,∞], ε > 0, and any metric space (X, d) on n points,

there exists an embedding of X into `
O(log2 n)
p with priority distortion O

(
log4+ε j

)
and

prioritized dimension O(log4 j).

Proof overview. The basic framework of this embedding appears at a first glance
to be similar to section 8.1, which is applying a variation of Bourgain’s embedding,
while sampling only from certain subsets Si of the points. However, the crux here is
that we need to ensure that high priority points will be mapped to the zero vector in
the embeddings that handle the lower ranked points.

Recall that the coordinates of the embedding are given by distances to sets. The
idea is the following: while creating the embedding for the points in Si, we insert all
the points with higher ranking (those in S0∪· · ·∪Si−1) into every one of the randomly
sampled sets. This will certify that the high ranked points are mapped to zero in every
one of these coordinates. However, the analysis of the distortion no longer holds, as
the sets are not randomly chosen. Fix some point u ∈ Si and v ∈ X. The crucial
observation is that if none of the higher ranked points lie in certain neighborhoods
around u and v (the size of these neighborhoods depends on d(u, v)), then we can still
use the randomness of the selected sets to obtain some bound (albeit not as good as
the standard embedding achieves). While if there exists a high ranked point nearby,
say z ∈ Si′ for some i′ < i, then we argue that u, v should already have sufficient
contribution from the embedding designed for Si′ . The formal derivation of this idea
is captured in Lemma 3.

The calculation shows that the distortion guarantee for u, v deteriorates by a
logarithmic factor for each i, that is, it is the product of the distortion bound for

D
ow

nl
oa

de
d 

11
/0

5/
19

 to
 1

28
.5

9.
22

2.
10

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

852 MICHAEL ELKIN, ARNOLD FILTSER, AND OFER NEIMAN

points in Si−1 multiplied by O(log |Si|). This implies that the optimal size of Si is
triple exponential in i, which yields the best balance between the price paid due to
the size of Si and the product of the logarithms of |S0|, . . . , |Si−1|.

Lemma 3. Let p ∈ [1,∞] and D ≥ 1. Given a metric space (X, d), two disjoint
subsets A,K ⊆ X, where |K| = k ≥ 2, and a nonexpansive embedding g : X → `p with
contraction at most D for all pairs in A×X, then there is a nonexpansive embedding

f : X → `
O(log2 k)
p such that the following properties hold:

1. For all x ∈ A, f (x) = ~0 .

2. For all (x, y) ∈ K×X, ‖f(x)−f(y)‖p ≥ d(x,y)
1000D·log k or ‖g(x)−g(y)‖p ≥ d(x,y)

2D .

We postpone the proof of Lemma 3 to section 8.2.1, and prove Theorem 15 using
the lemma.

Proof of Theorem 15. Let I = dlog log log ne. Let S0 = {x1, x2, x3, x4} , and for
1 ≤ i ≤ I let

Si =

{
xj : 22

2i−1

< j ≤ 22
2i
}
.

Also define S<i =
⋃

0≤k<i Sk.
The desired embedding F : X → `p will be created by iteratively applying

Lemma 3, each time using its output function f as part of the input for the next
iteration. Formally, for each 0 ≤ i ≤ I apply Lemma 3 with parameters A = S<i,

K = Si, g = F (i−1), and D = 22
i+5i2 , to obtain a map fi : X → `p. The map

F (i) : X → `p is defined as follows: F (−1) ≡ 0 and F (i) =
⊕i

k=0 αk · fk, where
(αk) is a sequence that ensures F (i) is nonexpansive for all i. For concreteness, take
αk = ( 6

π2(k+1)2 )1/p. The final embedding is defined by F = F (I).

Fix any pair x, y ∈ X. As fi is nonexpansive by Lemma 3, we obtain that F is
nonexpansive as well:

‖F (x)− F (y)‖pp =

I∑
i=0

αpi · ‖fi(x)− fi(y)‖pp ≤
∞∑
i=0

6

π2(i+ 1)2
· d(x, y)p = d(x, y)p .

Next, we must show that for each 0 ≤ i ≤ I, the embedding F (i−1) has contraction
at most 22

i+5i2 for pairs in S<i × X to comply with the requirement of Lemma 3.
We prove this by induction on i, the base case for i = 0 holds trivially as F (−1) has
no requirement on its contraction (since S<0 = ∅). Assume (for i) that F (i−1) has

contraction at most 22
i+5i2 on pairs in S<i ×X. For i+ 1, let x ∈ S<i+1 and y ∈ X.

Recall that F (i) is generated by applying Lemma 3 with A = S<i, K = Si, g = F (i−1),

and D = 22
i+5i2 . Then the lemma returns fi, and finally F (i) = g ⊕ (αi · fi).

We may assume that x ∈ Si, otherwise g = F (i−1) has the required contraction
on x, y by the induction hypothesis. Apply condition (2) of the lemma: if it is the

case that ‖g(x) − g(y)‖p ≥ d(x, y)/(2D), then clearly 2D < 22
i+1+5(i+1)2 . The other

case is that ‖fi(x)− fi(y)‖p ≥ d(x,y)
1000D·log |Si| . Since log |Si| ≤ 22

i

and 1/αi ≤ 2(i+ 1)2,

the contraction of F (i) is at most the contraction of αi · fi, which is bounded by

1000D · log |Si|
αi

≤ 1000 ·22
i+5i2 ·22

i

·2(i+1)2 < 22·2
i+5i2+2 log(i+1)+11 < 22

i+1+5(i+1)2 .

Observe that if x = xj ∈ Si for some j > 1, then 22
i−1

< log j, and thus

the distortion of F for any pair containing x is at most 22
i+1+5(i+1)2 = O(log4 j) ·
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2O((2+log log log j)2) = O(log4+ε j). Additionally, note that as the distortion of F (I−1)

is at most D = 22
I+5I2 , the same argument suggests that the maximal distortion of

F = F (I) for any pair is at most

1000D · log n

αI
≤ 1000 · 22

I+5I2 · log n · 2(I + 1)2 = O(log3+ε n) .

Finally, let us bound the number of nonzero coordinates of the points. Recall
that fi maps X into O(log2 |Si|) ≤ O(22

i+1

) dimensions. Fix some x = xj for j > 1,

and let i be such that xj ∈ Si. Note that 22
i−1

< log j, so that 22
i+1

< log4 j. By

Lemma 3, for every i′ > i, fi′(xj) = ~0, and the number of coordinates used by F (i) is
at most

i∑
k=0

O(22
k+1

) = O(22
i+1

) = O(log4 j) .

Since the dimension of fI is at most O(log2 n), we get that the total number of
coordinates used by F is only

I−1∑
k=0

O(22
k+1

) +O(log2 n) ≤ O(22
1+log log logn

) +O(log2 n) = O(log2 n) .

8.2.1. Proof of Lemma 3. The basic approach to the proof is similar to
Lemma 2, which is sampling subsets of K, according to various densities. The main
difference is that we insert all the points of A into each sampled set, to ensure f(x) = ~0
for all x ∈ A. The standard analysis of Bourgain for a pair x, y, considers certain
neighborhoods defined according to the density of points around x, y. We show that
the analysis still works as long as no point of A is present in those neighborhoods.
Thus we can obtain a contribution which is proportional to the distance of x, y to A
(or to d(x, y) if that distance is large). This motivates the following definition and
lemma.

Definition 1. The γ-distance between x and y with respect to A is defined to be

γA (x, y) = min

{
d(x, y)

2
, d(x,A), d(y,A)

}
.

Lemma 4. Let c = 24. There exists a nonexpansive embedding ϕ : X → `
O(log2 k)
p ,

such that for all z ∈ A, ϕ(z) = ~0, and for all x, y ∈ K,

‖ϕ(x)− ϕ(y)‖p ≥
γA(x, y)

c log k
.

We defer the proof of Lemma 4, and proceed first with the proof of Lemma 3.
Define h : X → R for x ∈ X as h(x) = d(x,A ∪K). Our embedding f is

f =
ϕ⊕ h
21/p

.

Since both ϕ and h are nonexpansive and vanish on A, clearly f is nonexpansive as
well, and f(z) = ~0 for any z ∈ A. It remains to show property (2) of the lemma. Fix
any x ∈ K and y ∈ X, and consider the following three cases:
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Case 1. d ({x, y} , A) ≤ d(x,y)
4D .

In this case we shall use the guarantees of the map g. Assume w.l.o.g. that z ∈ A
is such that d(y, z) ≤ d(x,y)

4D . Then by the triangle inequality

(7) d(x, z) ≥ d(x, y)− d(y, z) ≥ d(x, y)− d(x, y)

4D
≥ 3d(x, y)

4
.

Now, using that g is nonexpansive, and has contraction at most D for any pair in
A×X, we obtain that

‖g(x)− g(y)‖p ≥ ‖g(x)− g(z)‖p − ‖g(z)− g(y)‖p

≥ d(x, z)

D
− d(z, y)

(7)

≥ 3d(x, y)

4D
− d(x, y)

4D

=
d(x, y)

2D
,

which satisfies property (2).

Case 2. d ({x, y} , A) > d(x,y)
4D and d(y,K) ≥ d(x,y)

20cD·log k (where c = 24 is the

constant of Lemma 4).
Here we shall use the map h for the contribution. Since d(y,A) ≥ d(x, y)/(4D),

we have that h(y) = d(y,A ∪K) ≥ d(x,y)
20cD·log k and of course h(x) = 0, so that

‖f(x)− f(y)‖p ≥
|h(x)− h(y)|

2
≥ d(x, y)

40cD · log k
,

as required.

Case 3. d ({x, y} , A) > d(x,y)
4D and d(y,K) < d(x,y)

20cD·log k .
In this case, the function ϕ will yield the required contribution, by employing a

similar strategy to Lemma 2. Let ky ∈ K be such that d(y, ky) = d(y,K). Note that

d(ky, A) ≥ d(y,A)− d(y, ky) ≥ d(x,y)
4D − d(x,y)

20cD·log k ≥
d(x,y)
5D , and it follows that

(8) γA(x, ky) ≥ d(x, y)

5D
.

By Lemma 4, since f is nonexpansive, and using another application of the triangle
inequality, we conclude that

‖f(x)− f(y)‖p ≥ ‖f(x)− f(ky)‖p − ‖f(y)− f(ky)‖p

≥ ‖ϕ(x)− ϕ(ky)‖p
2

− d(y, ky)

≥ γA(x, ky)

2c log k
− d(x, y)

20cD · log k
(8)

≥ d(x, y)

10cD · log k
− d(x, y)

20cD · log k

=
d(x, y)

20cD · log k
.

This concludes the proof of Lemma 3. It remains to validate Lemma 4, which is similar
in spirit to the methods of [Bou85, LLR95]; we give full details for completeness.
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Proof of Lemma 4. Let I = dlog ke and J = C · log k for a constant C that will
be determined later. For each i ∈ [I] and j ∈ [J ] sample a set Q′ij by including

each x ∈ K independently with probability 2−i, and let Qij = Q′ij ∪ A. Define maps

ϕij : X → R by letting for each u ∈ X, ϕij(u) = d(u,Qij), and ϕ : X → `I·Jp by

ϕ(u) =
1

(I · J)1/p

⊕
i∈[I]

⊕
j∈[J]

ϕij(u) .

Since each ϕij is nonexpansive, ϕ is nonexpansive as well, and in what follows we
bound its contraction.

Define for u ∈ K and r ≥ 0 the ball restricted to K, BK(u, r) = B(u, r)∩K, and
recall that by B◦ we mean the open ball. Fix a pair u, v ∈ K, and for each 0 ≤ i ≤ I,
let r′i be the minimal such that both |BK(u, r)| ≥ 2i and |BK(v, r)| ≥ 2i. Define
ri = min{r′i, γA(u, v)} and let ∆i = ri− ri−1. Observe that r0 = 0 and rI = γA(u, v),
so that

(9)
∑
i∈[I]

∆i = γA(u, v) .

We first claim that for each i ∈ [I] and j ∈ [J ],

(10) Pr[|ϕij(u)− ϕij(v)| ≥ ∆i] ≥ 1/12 .

If ∆i = 0 then there is nothing to prove. Assume then that ri−1 < ri, and note that
either |B◦K(u, ri)| ≤ 2i or |B◦K(v, ri)| ≤ 2i (otherwise it contradicts the minimality of
ri). W.l.o.g. we have that |B◦K(u, ri)| ≤ 2i. Furthermore, note that the sets B◦K(u, ri),
BK(v, ri−1), and A are pairwise disjoint. Let E be the event that {Qij∩B◦K(u, ri) = ∅}
and F be the event that {Qij ∩ BK(v, ri−1) 6= ∅}. Observe that if both events hold
then d(u,Qij) ≥ ri and d(v,Qij) ≤ ri−1, so that

|ϕij(u)− ϕij(v)| ≥ ri − ri−1 = ∆i .

Since both balls are disjoint from A, we have that

Pr[E ] =
∏

x∈B◦K(u,ri)

Pr
[
x /∈ Q′ij

]
=
(
1− 2−i

)|B◦K(u,ri)| ≥
(
1− 2−i

)2i ≥ 1

4
.

And similarly,

Pr[F ] = 1−
∏

x∈BK(v,ri−1)

Pr
[
x /∈ Q′ij

]
= 1−

(
1− 2−i

)|BK(v,ri−1)|

≥ 1−
(
1− 2−i

)2i−1

≥ 1− e− 1
2 ≥ 1

3
.

Since the events E and F are independent, this concludes the proof of (10). Let Xij

be an indicator random variable for the event that |ϕij(u)− ϕij(v)| ≥ ∆i, and Xi =
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j=1Xij . Using the independence for different values of j, and that E[Xi] ≥ J/12,

a Chernoff bound yields that for any i

Pr[Xi < J/24] ≤ e−J/100 ≤ 1/k3 ,

when C is sufficiently large. Note that if indeed Xi ≥ J/24 for all 1 ≤ i ≤ I, then

‖ϕ(u)− ϕ(v)‖pp =
1

I · J

I∑
i=1

J∑
j=1

|ϕij(u)− ϕij(v)|p

≥ 1

24I

I∑
i=1

∆p
i

≥ I1−p

24I

( I∑
i=1

∆i

)p
(9)

≥ γA(u, v)p

24Ip
,

where the second inequality uses Hölder’s inequality. Applying a union bound over
the

(
k
2

)
possible pairs in

(
K
2

)
, and the I = dlog ke possible values of i, there is at least

a constant probability that for every pair ‖ϕ(u)− ϕ(v)‖p ≥ γA(u,v)
241/p·log k .
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