
Distributed Monitoring of Election Winners

Arnold Filtser
Ben-Gurion University

Beer-Sheva, Israel
arnoldf@cs.bgu.ac.il

Nimrod Talmon
Weizmann Institute of Science

Rehovot, Israel
nimrodtalmon77@gmail.com

ABSTRACT
We consider distributed elections, where there is a center
and k sites. In such distributed elections, each voter has
preferences over some set of candidates, and each voter is
assigned to exactly one site such that each site is aware
only of the voters assigned to it. The center is able to di-
rectly communicate with each of the sites. We are interested
in designing communication-efficient protocols, allowing the
center to maintain (i.e., declare) a candidate which, with
arbitrary high probability, is guaranteed to be a winner,
or at least close to being a winner. We consider various
single-winner voting rules, such as variants of Approval vot-
ing and scoring rules, tournament-based voting rules, and
several round-based voting rules. For these voting rules, we
show that, using communication which is logarithmic in the
number of voters, it is possible for the center to maintain
such approximate winners. We complement our protocols
with lower bounds. Our results have implications in various
scenarios, such as aggregating customer preferences in on-
line shopping websites or supermarket chains and collecting
votes from different polling stations of political elections.

Keywords
Voting, Distributed streams, Sublinear algorithms

1. INTRODUCTION
Elections are used extensively to aggregate preferences of

voters. Some elections are centralized, but others are car-
ried out in distributed settings. Consider, e.g., a supermar-
ket chain consisting of a large number of stores, each col-
lecting data on the purchases made in it; the managers at
the chain headquarters might want to aggregate this data,
to identify, say, the most popular items being sold. One
solution would be to have a central database, collecting all
data from all stores, and to compute the most popular items
on this centralized database. As the number of customers
might be huge it might not be practical to do so. Further,
as the communication between the stores and the headquar-
ters might be expensive, a more efficient solution would be
to have some computations being made at each store, and
to develop a protocol for efficient communication between

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the stores and the headquarters, to allow the managers at
the headquarters to know, at each point in time, what are
the most popular items being sold throughout the chain.

A similar situation happens in online shopping websites,
where buyers from all around the world make purchases. As
the design of modern websites is based on data centers, ag-
gregating the data of all the buyers involves communicating
in a distributed setting. Specifically, in order to identify the
current trends, and as communication between data centers
might be expensive, it is of interest to develop protocols for
those data centers to communicate with a central entity.

In this paper, we model such situations as follows. We are
considering an election whose electorate is distributed into
k sites. Assuming some common axis of time, we have that
at each point in time, a new voter arrives and votes, and her
vote is assigned to one of those k sites. There is some center
which is able to directly communicate with each of the k
sites. With respect to a voting rule R, the goal of the center
is to maintain, at any point in time, a candidate which is
either an R-winner of the whole election, or is close to being
anR-winner of the whole election. That is, we are interested
in designing communication-efficient protocols, allowing the
center to declare a candidate which, with high probability, is
guaranteed to be an R-winner in an election which is similar
to the original election, except for adding up to ε-fraction
of voters. A more formal description of our model and our
notion of approximation is given in Section 2.

Our model also catches scenarios of political polls and
elections. That is, in political elections and in TV polls, it
is usually the case that there are several polling stations,
spread around the country or the region. Then, in order
to compute the results of the election (or the intermediate
results during the day of the poll), the voters’ preferences
from all those polling stations are aggregated at some central
station. For example, in the general political elections held
in Brazil in 2014, there were roughly 500000 polling stations,
with an average of 300 voters per station.

We concentrate on single-winner voting rules, and de-
velop protocols for maintaining approximate winners in such
distributed elections for various voting rules, ranging from
approval-based rules and scoring rules, to tournament-based
rules and round-based voting rules. We develop some gen-
eral techniques for designing protocols for maintaining ap-
proximate winners in distributed elections, which might be
applicable for other voting rules and settings as well. We
show how to apply those techniques for the rules we con-
sider. We discuss the effect which several parameters have
on the communication complexity, namely the number n of

voters, the number m of candidates, the required approxi-
mation ε, and the number k of sites. We complement our
communication-efficient protocols with a lower bound.

As a by-product of our lower bounds for maintaining ap-
proximate Plurality winner in distributed elections, we im-
prove the state-of-the-art lower bound on the Count-
tracking problem, which is a central problem in distributed
streams. In it, the task is to maintain a value which approx-
imates the number of items in a given distributed stream. In
the regime where k ≥ 1/ε2, we improve the lower bound for
Count-tracking from Ω(k), proved by Huang et al. [20,
Theorem 2.3], to Ω(k logn/ log k) (see Remark 1).

Related Work. There are several papers which deal with
identifying election winners using time or space which is
sublinear in the number of voters. Several papers [16, 14,
6] study sampling algorithms for winner determination as
well as winner determination in the streaming model. Dey
and Narahari [15] study sampling algorithms for estimating
the margin of victory. These works deal with centralized
elections, while the current paper considers distributed elec-
tions. In a series of papers, Chevaleyre et al. [8, 7] and Xia
and Conitzer [26] define and study the compilation complex-
ity of various voting rules; in their model, the electorate is
partitioned into two parts, and the general concern is the
amount of communication which needs to be transmitted
between the two parts, in order to determine an election
winner. In compilation complexity there are no rounds of
communication, as only one message is being passed between
the two parts. This stands in contrast to our protocols,
which use small amounts of communication due to their use
of several rounds of communication between the center and
the sites.

Conitzer and Sandholm [10] study communication com-
plexity for various voting rules, but they are interested in
finding exact winners, and do not consider approximations.
Further, in their model, each voter acts as a site. In a re-
lated paper, Service and Adams [1] do consider approxima-
tions, but they also consider each voter as a site, concentrate
on deterministic protocols, and their notion of approxima-
tion is different: a candidate is “(1 − ε)-approximation” if
sc(a)/sc(w) ≥ 1 − ε, where w is the winner and sc is the
score function. Some papers deal with vote elicitation [17,
9, 23, 22], and provide algorithms for finding approximate
winners under various voting rules, by elicitating the voters’
preference orders.

The model of computation which we study in the current
paper is generally called the continuous distributed moni-
toring model. There is a fairly recent survey about this
model [11], as well as quite extensive line of work study-
ing various problems in this model, such as sampling-based
protocols [13, 25], protocols for approximating moments [12,
2], protocols for counting with deletions [24] (interestingly,
that paper specifically mentions elections as a motivation,
but do not study it explicitly), heuristic protocols for moni-
toring most-frequent items [3], and randomized protocols for
counting the number of items in a distributed stream and
finding frequent items [20].

Our notion of approximation resembles the problem of
electoral control (see, e.g., [4] and [19]), where the goal is to
change the election outcome by, e.g., adding voters; and the
problem of possible winners (see, e.g., [5, 18, 21, 27]), where
the goal is to strategically complete some incomplete profile.

2. PRELIMINARIES
We begin by providing preliminaries regarding elections

and voting rules and continue by providing preliminaries re-
garding continuous monitoring of distributed streams. We
use standard notions from computational complexity. For
n ∈ N, we denote the set {1, . . . , n} by [n].

2.1 Elections and Voting Rules
An election E = (C, V) consists of a set of candidates

C = {c1, . . . , cm} and a collection of voters V = (v1, . . . , vn).
We consider both approval-based elections and ranked-based
elections. In approval-based elections, each voter is associ-
ated with her set of approved candidates, such that vi ⊆ C.
We say that vi approves candidate c if c ∈ vi. In ranked-
based election each voter is a total order �vi over C.

A single-winner voting rule R is a function that gets an
election E and returns a set R(E) ⊆ C of (tied) co-winners
of that elections, such that c is a winner of the election E
under R if c ∈ R(E). Since we will be interested in design-
ing protocols where the center cannot see the full election, it
will not be possible for our protocols to guarantee to find an
exact winner; therefore, we will be satisfied with protocols
which guarantee to find an approximate winner, specifically,
an ε-winner, as defined next; we view an ε-winner as a can-
didate which is not far from being the winner of the election.

Definition 1 (ε-winner). A candidate c is an ε-winner
in an election E under some voting rule R if it can become
a winner under R by adding at most εn additional voters to
E. That is, if c ∈ R(E′) where E′ is similar to E except for
up to εn additional voters.

Next we define our voting rules of interest. We ignore
issues of tie-breaking; specifically, candidate c is a winner if
there is some fixed tie-breaking that makes him a winner.

Approval-based rules and scoring rules. Under Ap-
proval, each voter approves a subset of the candidates (that
is, it is held in approval-based elections), and the score of a
candidate is the number of voters approving him. The can-
didates with the highest score tie as co-winners. t-Approval
is similar to Approval, but with the restriction that each
voter shall approve exactly t candidates (that is, |vi| = t).
Plurality is a synonym for 1-Approval. Under Borda, a voter
ranking a candidate in position j is giving it m − j points,
and the candidate with the highest score wins.

Tournament-based voting rules. The Copeland score of
a candidate c is the number of other candidates c′ 6= c for
which a majority of voters prefer c to c′. Copeland selects a
candidate with the highest score as a winner. A Condorcet
winner is a candidate with Copeland score m − 1. Under
Condorcet, a Condorcet winner is selected as a winner if it
exists; otherwise, all candidates tie as co-winners.

Round-based voting rules. Plurality with run-off pro-
ceeds in two rounds. In the first round, it selects the two
candidates with the highest Plurality scores, where the Plu-
rality score of a candidate is defined as the number of voters
ranking him first. In the second round, it considers only
those two candidates and selects as a winner the one which
is preferred to the other by the larger number of voters.
Bucklin also proceeds in rounds. In round i ∈ [m], it com-
putes, for each candidate c, the number of voters ranking
c among their top i choices. Then, if there is a candidate

with a strict majority of the voters ranking him among their
top i choices, then such a candidate is selected as a winner;
otherwise, a new round begins.

2.2 Computational Model
In our computational model we have one center and k

sites, arranged in a star-shaped network, centered at the
center, such that the center has a direct communication link
to all sites but two sites cannot communicate directly.

We assume some axis of time, t1, . . . , tn, and a stream of
voters v1, . . . , vn, such that voter vi comes at time ti. Each
voter is assigned to exactly one site, such that each site is
aware only of the subset of voters which are assigned to it.
We stress that the time is not known to either the center or
the sites. Such a stream is called a distributed stream.

We are interested in designing communication-efficient pro-
tocols, whose goal is to allow the center to declare, at any
point in time, a candidate c which is, with constant proba-
bility (say, 0.9), an ε-winner (see Section 4 for a discussion
on higher probabilities).

A protocol is defined via the messages which the center
and the sites send to each other, and can consist of several
rounds. The protocol shall be correct not only at the end
of the stream (which is usually the case in streaming algo-
rithms), but shall be correct at any point in time. As it is
the custom in protocols operating on distributed streams,
we describe our upper bounds in terms of words of commu-
nication, where we assume that a word contains log n bits.

3. ALGORITHMIC TECHNIQUES
The naive protocol, where each site sends to the center

a message for every voter which arrives to it, clearly solves
our problem, however it uses communication which is lin-
ear in the number of voters. Specifically, it communicates
O(nm logm) bits, since m logm bits are sufficient for send-
ing a single vote (indeed, for Plurality, e.g., logm bits are
sufficient). In this paper we are interested in protocols which
use significantly less communication, namely communication
which is polylogarithmic in the number of voters.

In this section we provide high level descriptions of three
algorithmic techniques which are useful for developing proto-
cols for maintaining approximate winners in distributed vote
streams. Accordingly, in Section 4 we demonstrate how to
realize and instantiate those algorithmic techniques as con-
crete protocols for maintaining approximate winners.

Protocols Based on Counting Frequencies. In the
Frequency-tracking problem, we are given a distributed
stream where, instead of voters, the items of the stream
come from a known universe of items. The goal is for the
center to maintain, for each item type in the distributed
stream, a value which approximates the frequency of that
item type. More formally, let us denote the items of the
stream by v1, . . . , vn and consider m different item types,
such that item i (for i ∈ [n]) is of type j (for j ∈ [m]) if
vi = j. Let us denote the frequency of item type j by f(j) =
|{i : vi = j}|. A protocol solving the Frequency-tracking
problem guarantees that with constant probability, simulta-
neously for every item type j, the center can maintain a
value f ′(j) such that f ′(j) ∈ f(j) ± εn. There is a pro-
tocol for the Frequency-tracking problem in distributed
streams whose communication complexity is O((ε−1

√
k +

k) logn) [20]. As some voting rules operate by counting

points for candidates, it is sometimes possible to reduce the
problem of maintaining an ε-winner under such voting rules
to the problem of maintaining approximate frequencies.

Protocols Based on Sampling. Instead of sending all
voters to the center, as the naive protocol does, it is nat-
ural to let each site send only some of the voters arriving
to it. Specifically, we would like the center to have a uni-
form sample of the voters. Cormode et al. [13] describe a
protocol for maintaining a sample of s items chosen uni-
formly at random from a distributed stream; it’s commu-
nication complexity is O((k + s) logn). Since we are sam-
pling voters, we need to take into account the communica-
tion needed to send each of the sampled voters. Specifically,
in approval-based elections (ranked-based elections) we need
log 2m (resp., logm!) bits per voter. Since we count the
communication complexity in words, each of which contains
logn bits, we need dlog 2m/ logne ≤ 1 + m/ logn (resp.,
dlogm!/ logne ≤ 1 +m logm/ logn) words per voter.

As Bhattacharyya and Dey [14] show, it is indeed possi-
ble to sample only a small number of voters from a given
election in order to identify an ε-winner of that election, for
various voting rules. Notice that, unlike Bhattacharyya and
Dey [14], which guarantee that the winner of the sampled
election is a winner in the original election, where we are al-
lowed to change the votes of at most εn voters, we allow to
add at most εn voters. We can, however, transfer between
these two notions: sometimes the transformation is immedi-
ate, and for the less obvious cases, we describe the specific
transformations within our proofs, in Section 4.

Protocols Based on Checkpoints. While protocols based
on counting frequencies or sampling are randomized (even
though protocols based on counting frequencies can be made
deterministic; see Section 6), protocols based on checkpoints
are deterministic in nature. The general idea is as follows.
Assume that the center knows an ε/2-winner c of the elec-
tion containing the first n′ voters. Then, until the number
of voters reaches (1 + ε/2)n′, the center can usually still de-
clare c as an ε-winner. (This is true for voting rules where,
by adding at most εn new voters, we can “correct” the at-
most-εn voters which arrived after the last checkpoint.)

This observation suggests protocols where the center only
updates its declared candidate whenever the number of vot-
ers multiplies by an (1 + δ) fraction, for a frequency param-
eter δ = q · ε for some constant q < 1. We refer to those
points in time with 1, (1 + δ), (1 + δ)2, . . . voters, which are
the points in time where the center needs to update its de-
clared ε-winner, as checkpoints. Notice that the number of
checkpoints is log1+δ n = O(δ−1 logn) = (ε−1 logn). In
each checkpoint, the center shall initiate a (non-dynamic)
subprotocol to identify an ε-winner of the election so far.

Importantly, in order to identify those checkpoints, the
center shall be able to count the number of voters arriv-
ing so far. Fortunately, there is an efficient deterministic
protocol which uses O(ε−1k logn) words [28] for solving the
Count-tracking problem, where the center maintains a
value n′ such that n′ ∈ n± εn, where n is the actual number
of items. Notice that for protocols based on checkpoints,
it is enough to feed the Count-tracking protocol with
ε′ = Ω(ε), and, correspondingly, compute an O(ε)-winner
in each checkpoint. The communication complexity would
remain asymptotically unchanged. Assuming that it is pos-
sible to compute an ε-winner using O(z) bits of communi-

Voting rule Frequencies Checkpoints Sampling

Plurality O((ε−1
√
k + k) logn)

t-Approval O((ε−1
√
kt+ k) log tn) O

(
k
ε
(m log k

ε
+ logn)

)
O((ε−2 log t+ k)(m+ logn))

Approval O((ε−1
√
km+ k) logmn) O

(
k
ε
(m log k

ε
+ logn)

)
O((ε−2 logm+ k)(m+ logn))

Borda O((ε−1
√
km+ k) logmn) O

(
k
ε
(m log k

ε
+ logn)

)
O((ε−2 logm+ k)(m logm+ logn))

Condorcet O((ε−1
√
km2 + k) logmn) O

(
k
ε
(m2 log k

ε
+ logn)

)
O((ε−2 log3m+ k)(m logm+ logn))

Copeland O((ε−1
√
km2 + k) logmn) O

(
k
ε
(m2 log k

ε
+ logn)

)
O((ε−2 log3m+ k)(m logm+ logn))

Run Off O((ε−1
√
km2 + k) logmn) O

(
k
ε
(m log k

ε
+ logn)

)
O((ε−2 + k)(m logm+ logn))

Bucklin O((ε−1
√
km log2m+ k) logmn) O(k logm

ε
(m log k

ε
+ logn)) O((ε−2 logm+ k)(m logm+ logn))

Table 1: Overview of our results. The results in this table are for randomized protocols. ε is the required
approximation, k is the number of sites, m is the number of candidates, and n is the number of voters. There
are three columns of upper bounds, where the first is for protocols based on counting frequencies, the second
is for protocols based on checkpoints, and the third is for sampling-based protocols. For Plurality with run-off
there is a fourth protocol, based on sampling and checkpoints, which uses O

(
(ε−2 + kε−1) logn

)
words.

cation, a protocol based on checkpoints would then need
O((k+z)ε−1 logn) bits of communication. As z will be usu-
ally greater than O(k), we would get O(z · ε−1 logn).1

Note that as the Count-tracking is done approximately,
instead of having a checkpoint precisely after (1 + δ)i vot-
ers arrived, we will have a small multiplicative shift of, say,
1 ± δ

10
. This can be easily handled by having a checkpoint

when approximately (1+ δ
10

)i voters arrived. Indeed, we will

have more checkpoints, but between the arriving of (1+ δ
10

)i

voters to the arrival of (1 + δ
10

)i+1 voters we will have a
checkpoint for sure, which is enough. For the sake of clarity,
throughout the paper we will ignore this issue and assume
that the Count-tracking is precise.

4. RESULTS
Our upper bounds are summarized in Table 1. We begin

with approval-based rules and scoring rules, continue with
tournament-based rules, and finish with round-based rules.

Notice that we state our results for protocols which are
correct with some constant probability, say 0.9. One can
always achieve arbitrary high probability δ, as follows: For
protocols based on counting frequencies, one shall run
O(log(1/δ)) instances of the Frequency count protocol
and take the median; protocols based on checkpoints are
deterministic anyhow; and the increase in communication
for protocols based on sampling is usually quite small [14].
Due to space restrictions, we omit some proof details.

4.1 Approval-based Rules and Scoring Rules
A distributed stream for Plurality contains m item types

(one item type for each candidate). Given an approximate
frequency for each type (that is, an approximate number of
voters voting for each candidate), the center can safely de-
clare the candidate with the highest approximate frequency.

Theorem 1. There is a protocol for Plurality-winner-
tracking which uses O((ε−1

√
k + k) logn) words.

Proof. We use the efficient protocol for Frequency-
tracking [20] with ε′ = ε/2. This allows the center to
maintain, for each candidate c, a value which is guaranteed

1Huang et al. [20] provide a randomized protocol for Count-

tracking which uses O(
√
kε−1 logn) bits of communica-

tion. As z will be greater than O(k), using randomization
will not reduce the total asymptotic communication.

to be at most ε
2
n-far from the real number of voters voting

for c. The center would declare the candidate c for which
the approximate frequency is the highest.

Let us denote the real frequency of a candidate c by f(c)
(which equals its Plurality score), and its approximate fre-
quency computed by the Frequency-tracking protocol by
f ′(c). For each c′ 6= c, it holds that f(c′) ≤ f ′(c′) + ε

2
n ≤

f ′(c) + ε
2
n ≤ f(c) + εn where the first and third inequalities

follows from the ε/2-approximation and the second from our
choice of c. Therefore, we conclude that c is an ε-winner.

We go on to consider t-Approval, where each voter speci-
fies t candidates which she approves.

Theorem 2. There are three protocols for t-Approval-
winner-tracking, for t ≤ m/2. Respectively, the proto-

cols use O((ε−1
√
kt+k) log tn), O

(
k
ε
(m log k

ε
+ logn)

)
, and

(ε−2 log t+ k)(m+ logn) words of communication.

Proof. For the first protocol, we reduce t-Approval to
Plurality, as follows. Each site, upon receiving a voter v
which approves t candidates, instead of considering the voter
v, creates and considers t voters, v1, . . . vt, such that voter vi
(for i ∈ [t]) is set to approve the ith approved candidate of v.
For example, a voter approving {a, b, d} would be reduced
to three voters, approving a, b, and d, respectively.

The reduced election has n′ = nt voters, and will be ex-
ecuted with precision parameter ε′ = ε/2t. Consider a can-
didate c which is an ε′-winner in the reduced election; we
argue that c is an ε-winner in the original election. In-
deed, we can add εn voters, each approving c, while for
each other candidate c′, at most εn/2 of them approve c′

(as t ≤ m/2); thus, the relative score of c increases by
εn/2 = ε′n′. As c is ε′-winner in the reduced election,
this is sufficient. By Theorem 1, the communication used
is O((ε′−1

√
k + k) logn′) = O((ε−1

√
kt+ k) log tn).

The second protocol is based on checkpoints, where we
consider O(ε−1 logn) checkpoints, and in each checkpoint
we execute a subprotocol for identifying an ε/4-winner. In
the subprotocol, the center initiates communication with all
sites, asking from each site to send an approximate score
for each candidate. That is, each site, for each candidate
c, sends the number of voters approving c, rounded to the
closest multiplication of εn/(4k). Such rounding is enough,
since, summing up the possible errors from all k sites, the
center would have a value which is at most εn/8-far from
the real score. Thus, the candidate c with the highest score

will indeed be an ε/4-winner. Each site should communi-
cate log(4k

ε
) bits for each candidate. Thus, the total com-

munication in each subprotocol is bounded by kdm log 4k
ε

logn
e ≤

O(k(1 +
m log k

ε
logn

)). The bound follows.

For the third protocol, we sample O(ε−2 log t) voters, cho-
sen uniformly at random, which are sufficient for identifying
an ε-winner under t-Approval [14, Theorem 7]. The result
then follows from the discussion in Section 3.

For Approval, we proceed similarly to t-Approval. Natu-
rally, we have m factors instead of t factors in our bounds.

Theorem 3. There are three protocols for Approval-
winner-tracking. Respectively, the protocols use
O((ε−1

√
km + k) logmn), O

(
k
ε
(m log k

ε
+ logn)

)
, and

O((ε−2 logm+ k)(m+ logn)) words of communication.

We go on to consider Borda (which is defined over ranked-
based elections), for which we describe three protocols.

Theorem 4. There are three protocols for Borda-
winner-tracking. Respectively, the protocols use
O((ε−1

√
km+ k) logmn), O(ε−1k(m log(k/ε) + logn)), and

O((ε−2 logm+k) (m logm+logn)) words of communication.

Proof. We first discuss the impact of adding voters. For
an arbitrary candidate c, consider two voters where one voter
is ranking c first and then the other candidates in an arbi-
trary order, and another voter is ranking c first and then the
other candidates in reverse order. Adding these two voters
increases the score of c by 2(m − 1) while the score of all
other candidates increases by m − 2. Thus, by adding εn
voters, we can increase the relative score of c by εnm/2.

The first protocol is based on reducing Borda to Plurality,
similarly to the first protocol stated in Theorem 2. Specif-
ically, each site, upon receiving a voter v with preference
order c1 � . . . � cm, instead of considering the voter v, cre-
ates and considers

∑
j∈[m]m− j < m2 voters, such that for

j ∈ [m], it creates m− j voters, each approving cj . For ex-
ample, a voter v : a � b � d would be transformed into three
voters, approving a, a, b, respectively. In the reduced elec-
tion we have n′ < m2n voters, where n is the number of vot-
ers in the original election. We use the protocol for Plurality
described in Theorem 1 with ε′ = ε/(4m). Let us denote the
real frequency of a candidate c in the reduced election by
f(c) and its computed approximate frequency by f ′(c). The
error is bounded by |f ′(c)− f(c)| ≤ ε′n′ < ε

4m
·nm2 = εnm

4
.

Since by adding εn voters we can increase the relative score
of the chosen candidate by εnm/2, we are done.

The second protocol is based on checkpoints, where in
each checkpoint we use a subprotocol to compute the Borda
score of each candidate with accuracy of εnm/8. Similarly
to the second protocol in Theorem 2 , the subprotocol uses
O(k(1 + (m log k

ε
)/(logn))) words, thus the total commu-

nication is as claimed. Correctness follows since adding εn
voters can increase the score of our candidate by εnm/2,
which is more than the rounding error and the impact of
the voters arriving after the last checkpoint.

The third bound follows by a protocol based on sampling,
since, as shown by Bhattacharyya and Dey [14, Theorem 6],
a sample of s = O(ε−2 logm) voters chosen uniformly at ran-
dom is sufficient to identify an ε-Borda-winner with constant
probability. The result then follows from the discussion in
Section 3.

4.2 Tournament-based Rules
In this section we consider Condorcet winners and the

Copeland voting rule. Both rules are built upon the tourna-
ment defined over the election by considering head-to-head
contests between all pairs of candidates.

Theorem 5. There are three protocols for Copeland-
winner-tracking. Respectively, the protocols use
O((ε−1

√
km2 + k) logmn), O

(
k
ε
(m2 log k

ε
+ logn)

)
, and

O((ε−2 log3m+ k)(m logm+ logn)) words.

Proof. For the first protocol, we reduce each voter, cor-
responding to a total order over the candidates, to O(m2)
items; specifically, the reduced distributed stream will con-
tain items of O(m2) item types, where for each pair of candi-
dates c1 and c2 we have a different type, denoted by (c1, c2).
The reduction proceeds as follows. Each site, upon receiving
a voter v which specifies a linear order, instead of consider-
ing the voter v, creates and considers

(
m
2

)
items, such that if

v prefers c1 to c2, then we create an item (c1, c2) (notice that
this is an ordered tuple). For example, a voter v : a � b � d
would be transformed into three items, (a, b), (a, d), and
(b, d). The reduced distributed stream has n′ = O(m2n)
items, and O(m2) types of items. For two candidates c1 and
c2, let N(c1, c2) denote the number of voters preferring c1 to
c2. Now we can use a protocol based on counting frequencies
(see Section 3), with ε′ = ε/(4m2), to let the center main-
tain, for each pair of candidates c1 and c2, a value N ′(c1, c2)
such that N ′(c1, c2) ∈ N(c1, c2)± ε′n′ = N(c1, c2)± εn/4.

Then, for a pair of candidates c1 and c2, the center defines
that c1 wins over c2 in a head-to-head contest if N ′(c1, c2) ≥
n/2 − εn/4. Finally, the center declares as an ε-winner a
candidate c for which the center defines that he wins over
the largest number of other candidates. Correctness follows
since a candidate c which is declared as an ε-winner is guar-
anteed to have at least N(c, c′) > n/2− εn/2 for the largest
number of c′ 6= c. Then, by adding εn/2 voters which rank c
on top and then the other candidates in arbitrary order, and
another εn/2 voters which rank c on top and then the other
candidates in reverse order, we causes a sufficient increase
of N(c, c′) for each c′, while not increasing the number of
wins of any other candidate. The communication complex-
ity follows by the discussion given in Section 3, the size of
the reduced distributed stream, and our choice of ε′.

The second protocol is based on checkpoints. In each
checkpoint, we use a subprotocol that for every two can-
didates c and c′, computes the number of voters preferring
c over c′ within a (rounding) error of εn/4. As there are m2

quantities to estimate, following the analysis of the second

protocol in Theorem 2, the subprotocol uses kdm
2 log 2k

ε
logn

e
words. The total communication follows. In each check-
point, a candidate achieving estimated score higher that
n
2
− εn

4
for the maximal number of times is declared a win-

ner. Correctness follows as additional εn voters can increase
the relative values of N(c, c′) for our candidate by εn, while
not increasing the relative score of the other candidates.

The third protocol is a sampling-based protocol, based on
the fact that a sample of size O(ε−2 log3m) is sufficient for
Copeland [14, Theorem 9]2

2Recall that Bhattacharyya and Dey [14] allow to change
(rather then add) εn voters. Notice that, for Copeland, we
can reduce changing εn voters to adding 2εn voters. Specif-
ically, the relative impact of changing voter v to v′ can be
imitated by adding the voter v′ and the “reverse” voter of v.

Since Copeland can be seen as a relaxation of Condorcet,
we can use the protocols for Copeland as protocols for Con-
dorcet.

Theorem 6. There are three protocols for Condorcet-
winner-tracking. Respectively, the protocols use
O((ε−1

√
km2 + k) logmn), O

(
k
ε
(m2 log k

ε
+ logn)

)
, and

O((ε−2 log3m+ k)(m logm+ logn)) words.

4.3 Round-based Rules
Next we consider two round-based voting rules. We begin

with Plurality with run-off and then continue to Bucklin.

Theorem 7. There are four protocols for Plurality-
with-run-off-winner-tracking. Respectively, the pro-
tocols use O((ε−1

√
km2 + k) logmn), O(ε−1k(m log(k/ε) +

logn)), O((ε−2 + k)(m logm + logn)), and
O
(
(ε−2 + kε−1) logn

)
words.

Proof. The first protocol is based on counting frequen-
cies. We combine the protocol for Plurality, described in
the proof of Theorem 1, with the protocol for Condorcet,
described in the proof of Theorem 5. Specifically, the cen-
ter can identify two candidates with the highest Plurality
scores using the protocol for Plurality and use the results
of the protocol for Condorcet to decide which of those two
candidates it shall declare as an ε-winner. We will use both
protocols with parameter ε′ = ε/3. Assuming that the fre-
quency counting protocol for Plurality identifies c1 and c2
as the candidates with the highest Plurality scores and the
frequency counting protocol for Condorcet decides that c1
wins over c2, we can add 2εn/3 voters ranking c1 on top and
another εn/3 voters ranking c2 on top; this guarantees that
c1 and c2 have the highest Plurality score and a majority of
the voters prefer c1 over c2.

The second protocol is based on checkpoints with fre-
quency parameter ε′ = ε/8 (see Section 3). In each check-
point we execute a subprotocol which operates in two rounds.
In the first round, we compute the Plurality score of all the
candidates, within εn/16 error. This allows the center to
identify and broadcast two candidates with the approximate
highest Plurality scores, say c1 and c2. In the second round,
each site sends the exact number of voters preferring c1 to
c2. Finally, the center declares c1 (c2) as an ε-winner if the
there are at least n/2 voters preferring c1 to c2 (c2 to c1). In
the first round, each site sends at most 1 + m log 8k

ε
/ logn

words, while in the second round each site sends at most 1
word. The claimed communication complexity then follows.

Next we show that the declared winner c is indeed an ε-
winner at any point until the next checkpoint. Let c′ be the
second Plurality winner. Given that z ≤ ε′n voters arrived
after the last checkpoint, we can add 4z voters which rank c
on top and 3z voters ranking c′ on top. As a result, c and c′

will be the two candidates with the highest Plurality score,
and c will win over c′ in a head-to-head contest.

The third, sampling-based protocol (see Section 3), pro-
ceeds by samplingO(ε−2) voters uniformly at random, which
are sufficient for Plurality with run-off [14, Theorem 11].

The fourth protocol is a “hybrid” protocol which combines
checkpoints and sampling. During the protocol we main-
tain a sample of O(ε−2) voters, chosen uniformly at random,
specifically storing only their top candidates.

Then, at each checkpoint we use that sample to identify
two candidates c and c′ with the highest (approximated)

Plurality score3. Given c and c′, the center collects from
all sites the number of voters preferring c over c′, and de-
clares as a winner the one which is preferred by more vot-
ers. The protocol uses O

(
(ε−2 + k) logn

)
+O

(
kε−1 logn

)
=

O
(
(ε−2 + kε−1) logn

)
words. Correctness follows similarly

to the checkpoints protocol described above.

Theorem 8. There are three protocols for Bucklin-
winner-tracking. Respectively, the protocols use
O((ε−1

√
km log2m+ k) logmn), O(ε−1km logm logn), and

O((ε−2 logm+ k)(m logm+ logn)) words.

Proof. For simplicity we assume that m is even (other-
wise we can add one dummy candidate). By averaging argu-
ments, a Bucklin winner is necessarily found within the first
m/2 rounds. Observe that adding a voter and its reverse
does not change anything (i.e., any candidate c at any level
j has a majority after the addition if and only if it had a ma-
jority before the addition). Let c be an arbitrary candidate
and consider adding two voters, each ranking c on top, and
ranking the other candidates in reverse orders. As a result,
the score of c increases by 2 for each level j ≤ m/2, while
the status of each candidate c′ 6= c is only weaker (thus, if
c′ does not have a majority at level j before the addition,
then it will also not have a majority after the addition).

The first protocol is based on counting frequencies. It
begins by reducing the distributed vote stream into a dif-
ferent distributed stream. Specifically, each site, upon re-
ceiving a voter v, instead of considering the voter, creates
for each candidate cl (l ∈ [m]), the items (cl, i, j) for each
i ∈ [0, logm− 1] and for each j ∈ [0,m/2i − 1] for which it
holds that v ranks cl between the (j · 2i + 1)’th position and
the ((j+ 1) · 2i)’th position. The idea is that we can recover
the approximate number of voters ranking each c at the first
j positions using logm approximate counters of these items.

The protocol initiates a Frequency-tracking protocol
on the reduced distributed stream with ε′ = ε/(2m log2m).
This will give us approximate values on the number of items
of each type in our reduced distributed stream. Let us de-
note, for a candidate ci and position j (for i ∈ [m] and
j ∈ [m]), the number of voters ranking ci at any position
j′ ≤ j by N(ci, j). Then, we can approximate each of the
values N(ci, j) by adding logm different approximated fre-
quencies, computed by the Frequency-tracking protocol
(on the reduced stream).

Using these approximations ofN(ci, j), denoted byN ′(ci, j),
we are now able to simulate Bucklin; specifically, the center
finds the minimum j for which there is at least one ci for
which N ′(ci, j) ≥ n

2
− εn

2
. Next we show correctness. The

size of the reduced distributed stream is n′ = nm logm,
since each voter is transformed into m logm items, specifi-
cally logm per each candidate. To approximate the value
N(ci, j) we add up logm approximate frequencies, each of
which can be wrong by at most ε′n′ = εn/2 logm; thus, the
value of N ′(ci, j) can be wrong by at most εn/2. Therefore,
in each level j′ < j where we do not find a winner, there is
indeed no candidate with a majority. Finally, εn additional
voters can indeed make our chosen candidate a winner.

The second protocol is based on checkpoints with fre-
quency parameter ε′ = ε/4. Each checkpoint contains logm

3Note that, while Bhattacharyya and Dey [14] concentrate
on identifying an ε-winner, they estimate the Plurality scores
of all candidates within an εn error.

rounds, where in those logm rounds, the center is perform-
ing an approximate binary search to find the first j for which
there is at least one candidate ci for which the approxima-
tion for N(ci, j) is greater than n

2
− εn

8
, and declares this ci as

an ε-winner; when considering an index j, we approximate
N(ci, j) for every i within εn/8 error. The binary search is
done in the standard order. Note that if we stopped at level
j, then necessarily for every j′ < j there was no candidate
with n/2 votes.

The communication bound follows since in each subproto-

col we use kdm log 4k/ε
logn

e words. For correctness, let c be the

declared winner and assume that additional δn < ε′n voters
arrived since the last checkpoint. Let us assume that all of
them ranked c last, as this is the hardest. By adding δn
reversed voters to those which arrived, and additional εn/2
voters that rank c first (and such that every c′ 6= c is ranked
among the first m/2 places at most half of the time) we can
assure that c becomes a winner.

The third bound follows by sampling O(ε−2 logm) vot-
ers uniformly at random, which is sufficient for Bucklin [14,
Theorem 10].

5. LOWER BOUND
In this section we prove an almost tight lower bound (up

to a factor of log k) for Plurality-winner-tracking. The
lower bound holds already for Plurality with 2 candidates.
This lower bound applies as well to all other voting rules we
consider, via the following reduction. Assuming a protocol
for a voting rule R, we can use it as a black-box for solving
Plurality with 2 candidates: for each Plurality voter which
arrives and approves some candidate, say c, we create a voter
ranking c on top and the remaining candidate after him 4.

Notice that in our lower bound, we assume, as it is usual
when studying distributed streams, that there is no sponta-
neous communication; that is, the center can initiate com-
munication only as a result of receiving a message from the
sites, and each site can initiate communication only as a re-
sult of receiving a stream item or a message from the center.

Now we are ready to state our lower bound; the proof
of the corresponding theorem (that is, Theorem 9) appears
at the end of the section, and is based on Lemma 1 and
Lemma 2. Recall that for Plurality-winner-tracking,
Theorem 1 provides an upper bound of O((ε−1

√
k+k) logn).

Theorem 9. Any randomized protocol for Plurality-
winner-tracking uses at least Ω((ε1

√
k + k) logn/ log k)

words of communication, even when m = 2.

The next lemma shows a lower bound when k < ε−2.

Lemma 1. If k < ε−2, then any randomized protocol for
Plurality-winner-tracking uses at least Ω(ε−1

√
k logn)

words of communication, even when m = 2.

Proof. We reduce Count-tracking to Plurality-
winner-tracking. To this end, we assume, towards a con-
tradiction, that there is a protocol for Plurality-winner-
tracking with o(ε−1

√
k logn) communication complexity,

4The t-Approval voting rule requires different reduction. We
will have two special candidates, c1 and c2, which correspond
to the candidates in the Plurality instance. For each arriving
Plurality voter (which vote for, say, c1), we create two voters,
both approving c1; one of them approving c2; and any other
candidate c′ is approved by at most one of them (recall that
t ≤ m/2).

and describe a protocol with the same communication com-
plexity for Count-tracking. For k < ε−2 this leads to a
contradiction, since there is a lower bound of Ω(ε−1

√
k logn)

for Count-tracking where k < ε−2 [20, Theorem 2.4].
The distributed stream for Count-tracking contains

items of only one type, and a protocol for Count-tracking
maintains a value n′ such that n′ ∈ n ± εn, where n is the
number of items in the distributed stream. Let us treat those
items as voters, each of which is approving the candidate c1.

The general idea of the reduction is for the center to simu-
late another site, called a ghost site (since it is not a real site,
just simulated by the center), to which the center will send
ghost voters (again, not real voters, but only simulated by
the center). The center will simulate a protocol for Plurality
with voters approving c1 going to the k “real” sites, and sim-
ulated voters approving c2 going to the ghost site. Specifi-
cally, the center has three parts. The first part is a center for
a Plurality-winner-tracking protocol operating on k+1
sites. The second part is a site in a Plurality-winner-
tracking protocol; this is the ghost site. The third part is
for the center to inspect the Plurality-winner-tracking
protocol from above, and (using knowledge about the cur-
rent winner) to send voters approving the candidate c2 to
the ghost site.

Let us denote the number of voters voting for c1 (c2) by
s(c1) (respectively, s(c2)). Set δ = ε/10. The protocol for
Plurality-winner-tracking will work with respect to ap-
proximation δ, and will consist of k + 1 sites.

Next we describe the logic of the third part of the cen-
ter. The estimation for Count-tracking will be est =
(1 + 3δ)s(c2) (note that only the ghost site receives voters
approving c2, hence the center knows s(c2) exactly).

Before there is any communication from the (real) sites to
the center, we set s(c2) = 0. Then, at some point in time
there will be some communication from the sites to the cen-
ter indicating that some voters approving c1 arrived; specif-
ically, the first part of the center would declare c1 as the
winner of the election. More generally, our protocol works
in phases, where a phase starts when the center “flip”s its
estimation; that is, the (first part of the) center changes the
estimation for the Plurality winner from c2 to c1. When
such a flip occurs, the center sends some ghost voters (ap-
proving c2) to the ghost site until s(c2) = (1 + 3δ)i (for
some i) and a flip (from c1 back to c2) occurs. (That is,
we send ghost voters until a flip occurs and then send some
additional voters until we reach a power of 1 + 3δ; reaching
this power of 1 + 3δ is actually not needed, but it does not
affect the communication complexity and it makes the anal-
ysis cleaner.) We assume, as is usually done in distributed
streams, that communication and internal computation hap-
pens instantly. Thus, we have that c2 is always the winner of
the Plurality-winner-tracking protocol. This finishes
the description of the reduction.

Next we argue that our estimation (for Count-tracking)
is accurate. Specifically, we will show that s(c1) ≤ est ≤
(1+ ε)s(c1). As c2 is always the winner, it always holds that
s(c2) + δ(s(c1) + s(c2)) ≥ s(c1). Hence, since δ < 1/10 (as
ε < 1), it holds that:

s(c1) ≤ 1 + δ

1− δ · s(c2) < (1 + 3δ) · s(c2) = est .

Fix s(c2) = (1 + 3δ)i. Note that when s(c2) was equal to
(1 + 3δ)i−1, the protocol for Plurality-winner-tracking
considered c1 as the winner. Hence s(c1) + δ(s(c1) + (1 +
3δ)i−1) ≥ (1 + 3δ)i−1, therefore

s(c1) ≥ 1− δ
1 + δ

(1 + 3δ)i−1 ≥ (1 + 3δ)

(1 + 3δ)3
(1 + 3δ)i ≥ est

1 + ε
.

Note that until the next flip, s(c1) can only grow, while our
estimation remains unchanged. Hence, it will still hold that
est ≤ (1 + ε)s(c1). Finally, we have that the communica-
tion of our protocol is bounded by o(δ−1

√
k + 1 log(s(c1) +

s(c2))) = o(ε−1
√
k logn), which contradicts the lower bound

for Count-tracking discussed above.

The next lemma is especially interesting for k ≥ ε−2.

Lemma 2. Any randomized protocol for Plurality-
winner-tracking uses at least Ω(k logn/ log k) words of
communication, even when m = 2.

Proof. We assume that ε < 1
3
. Consider a protocol for

Plurality-winner-tracking which is correct with con-
stant probability on every input. Next we describe a dis-
tributed stream of voters which come to the sites. Specifi-
cally, the stream consists of s phases. Let x1 = 1, y1 = 1,
xi = (1 + 3ε) · k · yi−1 and yi = yi−1 + xi. During the i’s
phase, xi voters will go to each site and vote for the candi-
date c(i mod2). Note that after the i’s phase, exactly yi voters
voted at each site. The total number of votes for c(i mod2) is
at least k·xi, while the total number of votes for c(i−1 mod2) is
at most k ·yi−1. In particular, c(i mod2) is a unique ε-winner.
By induction it holds that yi = yi−1 + (1 + 3ε) · k · yi−1 <
3k · yi−1 ≤ (3k)i−1; hence, the total number of voters is
n = k · ys < (3k)s. In particular, s = Ω(logn

log k
).

Next consider the j’s site Sj during the phase i. Let Yi,j
be the event that some communication between the center
and Sj occurs. Let Zi,j be the event that the center ini-
tiates communication with Sj . Let Xi,j be the event that
Sj initiates communication with the center, conditioned on
the event that the center does not initiate communication
with Sj (that is, Yi,j conditioned on Zi,j). We argue that
E[Xi,j] = Ω(1). Before the i’s phases starts, c(i−1 mod2) is
the unique ε-winner. Consider an alternative scenario where,
after the end of the i− 1’s phase, xi voters come to Sj (and
vote for c(i mod2)), while no additional voters arrive. In this
alternative scenario the center will not initiate communica-
tion with Sj , as from its point of view nothing have changed
since the end of the (i− 1)’s phase (since it did not receive
any new messages). Note also that in the alternative sce-
nario, c(i mod2) is the unique ε-winner. This is since

k · yi−1 + ε(k · yi−1 + xi) = k · yi−1 (1 + ε(1 + (1 + 3ε)))

= k · yi−1

(
1 + 2ε+ 3ε2

)
< xi.

Thus, if Sj will not initiate communication with the cen-
ter, then, in the alternative scenario, the center would not
hold the right estimation both at the end of the i−1’s phase
and at the end of the i’s phase. This is so since it will
have the same estimation, while there are different unique
ε-winners at those times. Therefore, the probability that the
center is right in both of these times is bounded by Pr [Xi,j].
As the center has constant probability to have the right es-
timation twice, we conclude that E[Xi,j] = Ω(1).

Let us go back to our original scenario. Set Pr [Zi,j] = α.
Then, we have that:

E [Yi,j] = E [Zi,j] + Pr
[
Zi,j

]
E [Xi,j]

= α+ (1− α) · Ω(1) = Ω(1) .

The total communication during the whole protocol is lower

bounded by
∑s
i=1

∑k
j=1 E [Yi,j] = Ω(sk) = Ω

(
k logn
log k

)
.

We are ready to prove Theorem 9.

Proof of Theorem 9 . If k < ε−2, then Lemma 1 pro-

vides us with a lower bound of Ω(
√
k
ε

logn) = Ω
(

(
√
k
ε

+ k) logn
log k

)
.

Otherwise (k ≥ ε−2), using Lemma 2 we get a lower bound

of Ω(k logn
log k

) = Ω
(

(
√
k
ε

+ k) logn
log k

)
.

Remark 1. For the Count-tracking problem in the
regime where k ≥ ε−2, Huang et al. [20, Theorem 2.3] give a
lower bound of Ω(k). As there is a straightforward reduction
from Plurality-winner-tracking with two candidates to
Count-tracking, Lemma 2 implies a Ω(k logn

log k
) lower bound

for the Count-tracking problem.

6. DISCUSSION AND OUTLOOK
We begin this section with a discussion on deterministic

protocols, followed by a brief discussion on the choice of
which protocol to use at which scenario. Then, we mention
some directions for future research.

Deterministic protocols. While in this paper we con-
centrated on randomized protocols, it turns out that there
are efficient deterministic protocols as well (this is arguably
quite surprising; for example, there are usually no efficient
deterministic algorithms operating on centralized streams).
Indeed, while there are no deterministic equivalents to our
sampling-based protocols, our other protocols can gener-
ally be made deterministic. Specifically, protocols based
on checkpoints are already deterministic; protocols based
on counting frequencies can use a deterministic protocol for
Frequency count which uses O(ε−1k logn) words of com-
munication [28]. Correspondingly, the increase in the com-

munication complexity is by at most a factor of
√
k. Notice

that the corresponding deterministic protocols still maintain
only approximate solutions.

Choice of protocol. A closer look at our upper bounds
reveals that the choice of which protocol to use for which
voting rule crucially depends on the relationships between
the various parameters; specifically, as a rule of thumb, it
looks as if the choice of which protocol to use depends on
the relation between k and 1/ε−2; specifically, if k < 1/ε−2,
then protocols based on counting frequencies or on check-
points shall be used, while if k ≥ 1/ε−2, then sampling-
based protocols achieve better communication complexity.
We believe that both cases make sense; for example, in a su-
permarket chain with 4000 stores, requiring approximation
of ε = 1/100 would put us in the first case, while requiring
ε = 1/10 would put us in the second case.

Future Directions. As future directions, we mention
(1) improving our (upper and lower) bounds, (2) consid-
ering further (single-winner and multiwinner) voting rules,
(3) considering limited time and space for the sites, and
(4) considering domain restrictions.

REFERENCES
[1] J. A. Adams and T. C. Service. Communication

complexity of approximating voting rules. In
Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent (AAMAS ’12),
pages 593–602, 2012.

[2] C. Arackaparambil, J. Brody, and A. Chakrabarti.
Functional monitoring without monotonicity. In
Automata, Languages and Programming, pages
95–106. 2009.

[3] B. Babcock and C. Olston. Distributed top-k
monitoring. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data
(CDM ’03), pages 28–39, 2003.

[4] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is
it to control an election? Mathematical and Computer
Modeling, 16(8/9):27–40, 1992.

[5] N. Betzler, S. Hemmann, and R. Niedermeier. A
multivariate complexity analysis of determining
possible winners given incomplete votes. In
Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI ’09), pages 53–58,
July 2009.

[6] A. Bhattacharyya and P. Dey. Fishing out winners
from vote streams. arXiv preprint arXiv:1508.04522,
2015.

[7] Y. Chevaleyre, J. Lang, N. Maudet, and J. Monnot.
Compilation and communication protocols for voting
rules with a dynamic set of candidates. In Proceedings
of the 13th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK ’11), pages
153–160, 2011.

[8] Y. Chevaleyre, J. Lang, N. Maudet, and
G. Ravilly-Abadie. Compiling the votes of a
subelectorate. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI
’09), pages 97–102, 2009.

[9] V. Conitzer and T. Sandholm. Vote elicitation:
Complexity and strategy-proofness. In Proceedings of
the 18th National Conference on Artificial Intelligence
(AAAI ’02), pages 392–397, 2002.

[10] V. Conitzer and T. Sandholm. Communication
complexity of common voting rules. In Proceedings of
the 6th ACM Conference on Electronic Commerce
(EC’ 05), pages 78–87, 2005.

[11] G. Cormode. The continuous distributed monitoring
model. ACM SIGMOD Record, 42(1):5–14, 2013.

[12] G. Cormode, S. Muthukrishnan, and K. Yi.
Algorithms for distributed functional monitoring.
ACM Transactions on Algorithms (TALG), 7(2):21,
2011.

[13] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang.
Continuous sampling from distributed streams.
Journal of the ACM (JACM), 59(2):10, 2012.

[14] P. Dey and A. Bhattacharyya. Sample complexity for
winner prediction in elections. In Proceedings of the
14th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’15), pages
1421–1430, 2015.

[15] P. Dey and Y. Narahari. Estimating the margin of
victory of an election using sampling. In Proceedings
of the 24th International Conference on Artificial
Intelligence (IJCAI ’15), pages 1120–1126, 2015.

[16] P. Dey, N. Talmon, and O. van Handel. Proportional
representation in vote streams. In Proceedings of the
16th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’17), 2017. To
appear.

[17] S. Dhamal and Y. Narahari. Scalable preference
aggregation in social networks. In Proceedings of the
First AAAI Conference on Human Computation and
Crowdsourcing (HCOMP ’13), 2013.

[18] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in
elections: Finding the possible winners. Journal of
Artificial Intelligence Research, 42:529–573, 2011.

[19] P. Faliszewski and J. Rothe. Control and bribery in
voting. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
and A. D. Procaccia, editors, Handbook of
Computational Social Choice, chapter 7. Cambridge
University Press, 2015.

[20] Z. Huang, K. Yi, and Q. Zhang. Randomized
algorithms for tracking distributed count, frequencies,
and ranks. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of
Database Systems (PODS ’12), pages 295–306, 2012.

[21] K. Konczak and J. Lang. Voting procedures with
incomplete preferences. In Proceedins of the
Multidisciplinary IJCAI-05 Worshop on Advances in
Preference Handling, pages 124–129, July/August
2005.

[22] D. T. Lee. Efficient, private, and ε-strategyproof
elicitation of tournament voting rules. In Proceedings
of the 24th International Joint Conference on
Artificial Intelligence (IJCAI ’15), 2015.

[23] D. T. Lee, A. Goel, T. Aitamurto, and H. Landemore.
Crowdsourcing for participatory democracies: Efficient
elicitation of social choice functions. In Proceedings of
the Second AAAI Conference on Human Computation
and Crowdsourcing (HCOMP’ 14), 2014.

[24] Z. Liu, B. Radunovic, and M. Vojnovic. Continuous
distributed counting for non-monotonous streams. In
Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS ’12), pages 307–318,
2012.

[25] S. Tirthapura and D. P. Woodruff. Optimal random
sampling from distributed streams revisited. In
Proceeding of the 25th international conference on
Distributed computing (DISC ’11), pages 283–297,
2011.

[26] L. Xia and V. Conitzer. Compilation complexity of
common voting rules. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI ’10),
pages 915–920, 2010.

[27] L. Xia and V. Conitzer. Determining possible and
necessary winners given partial orders. Journal of
Artificial Intelligence Research, 41:25–67, 2011.

[28] K. Yi and Q. Zhang. Optimal tracking of distributed
heavy hitters and quantiles. Algorithmica,
65(1):206–223, 2013.

	Introduction
	Preliminaries
	Elections and Voting Rules
	Computational Model

	Algorithmic Techniques
	Results
	Approval-based Rules and Scoring Rules
	Tournament-based Rules
	Round-based Rules

	Lower Bound
	Discussion and Outlook

