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METRIC EMBEDDING VIA SHORTEST PATH DECOMPOSITIONS∗

ITTAI ABRAHAM† , ARNOLD FILTSER‡ , ANUPAM GUPTA§ , AND OFER NEIMAN¶

Abstract. We study the problem of embedding shortest-path metrics of weighted graphs into
ℓp spaces. We introduce a new embedding technique based on low-depth decompositions of a graph
via shortest paths. The notion of shortest path decomposition (SPD) depth is inductively defined:
A (weighed) path graph has SPD depth 1. General graph has an SPD of depth k if it contains a
shortest path whose deletion leads to a graph, each of whose components has SPD depth at most
k − 1. In this paper we give an O(kmin{1/p,1/2})-distortion embedding for graphs of SPD depth at
most k. This result is asymptotically tight for any fixed p > 1, while for p = 1 it is tight up to second
order terms. As a corollary of this result, we show that graphs having pathwidth k embed into ℓp
with distortion O(kmin{1/p,1/2}). For p = 1, this improves over the best previous bound of Lee and
Sidiropoulos that was exponential in k; moreover, for other values of p it gives the first embeddings
whose distortion is independent of the graph size n. Furthermore, we use the fact that planar graphs
have SPD depth O(logn) to give a new proof that any planar graph embeds into ℓ1 with distortion
O(

√
logn). Our approach also gives new results for graphs with bounded treewidth, and for graphs

excluding a fixed minor.
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1. Introduction. Low-distortion metric embeddings are a crucial component in
the modern algorithmist toolkit. Indeed, they have applications in approximation
algorithms [LLR95], online algorithms [BBMN15], distributed algorithms [KKM+12],
and for solving linear systems and computing graph sparsifiers [ST04]. Given a (finite)
metric space (V, d), a map ϕ : V → RD, and a norm ∥·∥, the contraction and expansion
of the map ϕ are the smallest τ, ρ ≥ 1, respectively, such that for every pair x, y ∈ V ,

1

τ
≤ ∥ϕ(x)− ϕ(y)∥

d(x, y)
≤ ρ .

The distortion of the map is then τ · ρ.
In this paper we will investigate embeddings into ℓp norms; the most prominent of

which are the Euclidean norm ℓ2 and the cut norm ℓ1; the former for obvious reasons,
and the latter because of its close connection to graph partitioning problems, and
in particular, the sparsest cut problem. Specifically, the ratio between the sparsest
cut and the multicommodity flow equals the distortion of the optimal embedding
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into ℓ1. (Note that every ℓ1 metric is a linear combination of cut metrics. See
[LLR95, GNRS04] for more details on the connection to multicommodity flows.)

We focus on embedding of metrics arising from certain graph families. Indeed,
since general n-point metrics require Ω(logn/p)-distortion to embed into ℓp-norms,
much attention was given to embeddings of restricted graph families that arise in
practice. (Embedding an (edge-weighted) graph is short-hand for embedding the
shortest path metric of the graph generated by these edge-weights.) Since the class of
graphs embeddable with some distortion into some target normed space is closed under
taking minors, it is natural to focus on minor-closed graph families. A long-standing
open problem in this area to decide whether all nontrivial minor-closed families of
graphs embed into ℓ1 with distortion depending only on the graph family, and not
the size n of the graph.

While this question remains unresolved in general, there has been some progress
on special classes of graphs. The class of outerplanar graphs (which exclude K2,3 and
K4 as a minor) embeds isometrically into ℓ1; this follows from results of Okamura
and Seymour [OS81]. Following [GNRS04], Chakrabarti et al. [CJLV08] show that
every graph with treewidth-2 (which excludes K4 as a minor) embeds into ℓ1 with
distortion 2 (which is tight, as shown by [LR10]). Lee and Sidiropoulos [LS13] showed

that every graph with pathwidth k can be embedded into ℓ1 with distortion (4k)k
3+1.

See subsection 1.3 for additional results.
We note that ℓ2 is a potentially more natural and useful target space than ℓ1 (in

particular, finite subsets of ℓ2 embed isometrically into ℓ1). Alas, there are only few
(natural) families of metrics that admit constant distortion embedding into Euclidean
space, such as “snowflakes” of doubling metrics [Ass83], doubling trees [GKL03], and
graphs of bounded bandwidth [BCMN13]. All of these families have bounded doubling
dimension. (For definitions, see section 2.)

1.1. Our results. In this paper we develop a new technique for embedding
graphs into ℓp spaces with small distortion. We introduce the notion of shortest path
decomposition (SPD) of bounded depth. Every (weighted) path graph has an SPD of
depth 1. A graph G has an SPD of depth k if there exists a shortest path P , such that
deleting P from the graph G (that is, deleting all the vertices on P and the adjacent
edges) results in a graph whose connected components all have SPD of depth at most
k − 1. (An alternative definition appears in Definition 1.) Our main result is the
following.

Theorem 1 (embeddings for SPD families). Let G = (V,E) be a weighted graph
with an SPD of depth k. Then there exists an embedding f : V → ℓp with distortion
O(k1/p).

Remark. Since finite subsets of ℓ2 embed isometrically into ℓp for any 1 ≤ p ≤ ∞,

we get that the distortion of Theorem 1 is never larger than O(
√
k).

Graph families with SPD of small depth. We will show that graphs of pathwidth
k have SPD of depth k+1, and thus obtain the following result as a simple corollary
of Theorem 1.

Theorem 2 (pathwidth theorem). Any graph with pathwidth k embeds into ℓp
with distortion O(kmin{1/p,1/2}).

Note that this is a superexponential improvement over the best previous distor-
tion bound of O(k)k

3

by Lee and Sidiropoulos [LS13]. Their approach was based on
probabilistic embedding into trees, which implies embedding only into ℓ1. Such an
approach cannot yield distortion better than O(k), due to known lower bounds for the
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Table 1
Our and previous results for embedding certain graph families into ℓp. (For H-minor-free

graphs, g(H) is some function of |H|.)

Graph family Our results. Previous results

Pathwidth k O(k1/p) (4k)k
3+1 into ℓ1 [LS13]

Treewidth k O((k logn)1/p) O(k1−1/p · log1/p n) [KLMN05]

O((log(k logn))1−1/p(log1/p n)) [KK16]

Planar O(log1/p n) O(log1/p n) [Rao99]

H-minor-free O((g(H) logn)1/p) O(|H|1−1/p log1/p n) [AGG+19]+[KLMN05]

H-minor-free O(1) into ℓO(g(H)·log2 n)
∞ O(|H|2) into ℓO(3|H| log |H| log n)

∞ [KLMN05]

diamond graph [GNRS04] that has pathwidth k+1. Our embedding holds for any ℓp
space, and we can overcome the barrier of Θ(k). In particular, we obtain embeddings
of pathwidth-k graphs into both ℓ2 and ℓ1 with distortion O(

√
k). Moreover, an em-

bedding with this distortion can be found efficiently via semidefinite-programming;
see, e.g., [LLR95], even without access to the actual path decomposition (which is NP-
hard even to approximate [BGHK92]). We remark that graphs of bounded pathwidth
can have arbitrarily large doubling dimension (exhibited by star graphs that have
pathwidth 1), and thus our result is a noteworthy example of a nontrivial Euclidean
embedding with constant distortion for a family of metrics with unbounded doubling
dimension.

Since graphs of treewidth k have pathwidth O(k log n) (see, e.g., [KS93]), Theo-
rem 2 provides an embedding of such graphs into ℓp with distortion O((k log n)1/p).
This strictly improves the best previously known bound, which follows from a theo-
rem in [KLMN05] (who obtained distortion O(k1−1/p log1/p n)), for any p > 2, and
matches it for 1 ≤ p ≤ 2. While [KK16] obtained recently a distortion bound with im-

proved dependence on k, their result O((log(k log n))1−1/p(log1/p n)) has suboptimal
dependence on n.

Moreover, we derive several other results for planar graphs, and more generally
graphs excluding a fixed minor. Even though these families have unbounded path-
width, we show that they have SPD of depth O(log n). These results are summarized
in Table 1, they either improve on the state-of-the-art, or provide matching bounds
using a new approach.

In section 8 we show that we can slightly modify our construction of Theorem 1
so that the dimension of the host space will be O(k log n), while maintaining the same
distortion guarantee. This implies that graphs excluding H as a minor admit an

embedding into ℓ
O(g(H)·log2 n)
∞ with constant distortion (this constant is independent

of H). See Theorem 5 and the discussion therein.
Our result of Theorem 2 (and thus also Theorem 1) is asymptotically tight for

any fixed p > 1. The family exhibiting this fact is the diamond graphs.

Theorem 3 (see [NR03, LN04, JS09]). For any fixed p > 1 and every k ≥ 1,
there exists a graph G = (V,E) with pathwidth-k, such that every embedding f : V →
ℓp has distortion Ω(kmin{1/p,1/2}).

The bound in Theorem 3 was proven first for p = 2 in [NR03], generalized to
1 < p ≤ 2 in [LN04] and for p ≥ 2 by [JS09] (see also [MN13, JLM11]).

For the case of p = 1, we show that Theorem 1 is tight up to second order terms.

Theorem 4. For every k ≥ 1, there exists a graph G = (V,E) with SPDdepth

O(k), such that every embedding f : V → ℓ1 has distortion Ω(
√

k
log k ).
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The proof appears in section 9. The family exhibiting the lower bound is a slight
modification of the diamondfold graphs [LS11]. We note that the diamonfold graphs
(and also our modification of them) contain large grids as a minor and therefore do
not have a small pathwidth, or even treewidth. In particular, for embedding graphs
with pathwidth k into ℓ1, only the trivial Ω(log k) lower bound is known.

1.2. Technical ideas. Many known embeddings [Bou85, Rao99, KLMN05,
ABN11] are based on a collection of 1-dimensional embeddings, where we embed
each point to its distance from a given subset of points. We follow this approach,
but differ in two aspects. First, the subset of points we use is not based on random
sampling [Bou85] or probabilistic clustering [Rao99]. Rather, inspired by the works
of [And86] and [AGG+19], the subset used is a geodesic shortest path. The second
is that our embedding is not 1-dimensional but 2-dimensional: this seemingly small
change crucially allows us to use the structure of the shortest paths to our advantage.

The SPD induces a collection of shortest paths (each shortest path lies in some
connected component). A natural initial attempt is to embed a vertex v relative to a
geodesic path P using two dimensions:1

• The first coordinate ∆1 is the distance to the path d(v, P ) (see Figure 1).
• The second coordinate ∆2 is the distance d(v, r) to the endpoint of the path,
called its “root” (see Figure 1).

v

r

∆1 = d(v, P )
∆2

= d(v, r
)

P

Fig. 1. An illustration of our initial attempt. The first coordinate ∆1 is the distance to
the path d(v, P ). The second coordinate ∆2 is the distance d(v, r) to the endpoint of the path,
called its “root”.

Unfortunately, this embedding may have unbounded expansion: If two vertices
u, v are separated by some shortest path, in future iterations v may have a large
distance to the root of a path P in its component, while u has zero in that coordinate
(because it’s not in that component), incurring a large stretch. The natural fix is to
enforce a Lipschitz condition on every coordinate: for v in cluster X, we truncate the
value v can receive at O(dG(v, V \X)). That is, a vertex close to the boundary of X
cannot get a large value. Using the fact that the SPD has depth k, each vertex will
have only O(k) nonzero coordinates, which implies expansion O(k1/p).

To bound the contraction, for each pair u, v we consider the first path P in the
SPD that lies “close” to {u, v} or separates them to different connected components.
Then we show that at least one of the two coordinates should give sufficient contri-
bution.

But what about the effect of truncation on contraction? A careful recursive
argument shows that the contribution to u, v from the first coordinate (the distance
from the path P ) is essentially not affected by this truncation. Hence the argument in
cases (a) and (b) of Figure 2 still work. However, the argument using the distance to

1In fact, we use different dimensions for each connected component.
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(c)r rr

Fig. 2. A shortest path P , rooted at r, partitions cluster X into clusters C1 and C2. In
cases (a) and (b), the first coordinate (the distance to P ) provides sufficient contribution. In
case (c) the second coordinate (the distance to root r) provides the contribution.

the root of P , case (c), can be ruined. Solving this issue requires some new nontrivial
ideas. Our solution is to introduce a probabilistic sawtooth function that replaces
the simple truncation. The main technical part of this paper is devoted to showing
that a collection of these functions for all possible distance scales, with appropriate
random shifts, suffices to control the expected contraction in case (c) for all relevant
pairs simultaneously.

1.3. Other related work. There has been work on embedding several other
graph families into normed spaces: Chekuri et al. [CGN+06] extend the Okamura
and Seymour bound for outerplanar graphs to k-outerplanar graphs, and showed
that these embed into ℓ1 with distortion 2O(k). Rao [Rao99] (see also [KLMN05])

embed planar graphs into ℓp with distortion O(log1/p n). For graphs with genus g,
[LS10] showed an embedding into Euclidean space with distortion O(log g +

√
log n).

Finally, for H-minor-free graphs, combining the results of [AGG+19, KLMN05] give

ℓp-embeddings with O(|H|1−1/p log1/p n) distortion.
Following [And86, Mil86], the idea of using geodesic shortest paths to decompose

the graph has been used for many algorithmic tasks: MPLS routing [GKR04], directed
connectivity, distance labels and compact routing [Tho04], object location [AG06], and
nearest neighbor search [ACKW15].

Given a tree T , Matoušek [Mat99] recursively defined the caterpillar dimension
cdim(T ) as follows: the cdim of a singleton vertex is 0. The cdim of a tree is k if there
are a set of paths P1, . . . , Ps intersecting in a single vertex, such that removing the
edges in all these paths (as opposed to vertices in our definition) results in connected
components each with cdim at most k − 1. Matoušek showed that every tree T with

cdim(T ) embeds into every ℓp space with distortion Op(log(cdim(T )))min{ 1
2 ,

1
p}.

In a follow up paper, [Fil20a] (the second author) generalized our definition of
SPD to partial-SPD (allowing the lower level in the partition hierarchy to be general
subgraph rather than only a shortest path). Given a weighted planar graph G =
(V,E,w) with a subset of terminals K, a face cover is a subset of faces such that
every terminal lies on some face from the cover. Given a face cover of size γ, using
our embedding result for SPD [Fil20a] shows that the terminal setK can be embedded
into ℓ1 with distortion O(

√
log γ).

In another follow-up paper, the second author [Fil20b], created strong sparse par-
titions for graphs with bounded SPDdepth. These were later used to obtain constant
distortion solution for the Steiner point removal problem, and also creating approx-
imation algorithms for the universal Steiner tree problem, and universal traveling
salesman problem [JLN+05].
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2t

0 2t+1 2 · 2t+1 3 · 2t+1 4 · 2t+1 5 · 2t+1

x1

x2

x3

Fig. 3. The graph of the “sawtooth” function gt. The points x1 = 5·2t−1 and x3 = 15·2t−1

are mapped to 2t−1, while x2 = 10 · 2t−1 is mapped to 2t.

2. Preliminaries and notation. For k ∈ Z, let [k] := {1, . . . , k}. For p ≥ 1,

the ℓp-norm of a vector x = (x1, . . . , xd) ∈ Rd is ∥x∥p := (
∑d

i=1 |xi|p)1/p, where
∥x∥∞ := maxi |xi|.

Doubling dimension. The doubling dimension of a metric is a measure of its local
“growth rate.” Formally, a metric space (X, d) has doubling dimension λX if for every
x ∈ X and radius r the ball B(x, r) can be covered by 2λX balls of radius r

2 . A family
is doubling if the doubling dimension of all metrics in it is bounded by some universal
constant.

Graphs. We consider connected undirected graphs G = (V,E) with edge weights
w : E → R>0. Let dG denote the shortest path metric in G; we drop subscripts
when there is no ambiguity. For a vertex x ∈ V and a set A ⊆ V , let dG(x,A) :=
mina∈A d(x, a), where dG(x, ∅) := ∞. For a subset of vertices A ⊆ V , let G[A] denote
the induced graph on A, and let dA := dG[A] be the shortest path metric in the induced
graph. Let G \A := G[V \A] be the graph after deleting the vertex set A from G.

Special graph families. Given a graph G = (V,E), a tree decomposition of G is a
tree T with nodes B1, . . . , Bs (called bags) where each Bi is a subset of V such that
the following properties hold:

• For every edge {u, v} ∈ E, there is a bag Bi containing both u and v.
• For every vertex v ∈ V , the set of bags containing v form a connected subtree
of T .

The width of a tree decomposition is maxi{|Bi|−1}. The treewidth of G is the minimal
width of a tree decomposition of G.

A path decomposition of G is a special kind of tree decomposition where the under-
lying tree is a path. The pathwidth of G is the minimal width of a path decomposition
of G.

A graph H is a minor of a graph G if we can obtain H from G by edge dele-
tions/contractions and vertex deletions. A graph family G is H-minor-free if no graph
G ∈ G has H as a minor.

2.1. The sawtooth function. An important component in our embeddings
will be the following sawtooth function. For t ∈ N, we define gt : R+ → R to be the
sawtooth function w.r.t. 2t as follows. For x ≥ 0, if qx := ⌊x/2t+1⌋, then

gt(x) := 2t −
∣∣x−

(
qx · 2t+1 + 2t

)∣∣ .
Figure 3 can help visualize this function. The following observation is straightforward.

Observation 1. The sawtooth function gt is 1-Lipschitz, bounded by 2t, and pe-
riodic with period 2t+1.
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To make the proofs cleaner, we define an auxiliary function given parameters
α ∈ [0, 1], β ∈ [0, 4]:

gt,α,β(x) := gt(β · x+ α · 2t+1).(1)

Note that by Observation 1, gt,α,β is β-Lipschitz and bounded by 2t. The proof of
the following lemma appears in section 7.

Lemma 1 (sawtooth lemma). Let x, y ∈ R+. Let α ∈ [0, 1], β ∈ [0, 4] be drawn
uniformly and independently. The following properties hold:

1. Eα,β [ gt,α,β(x) ] = 2t−1.
2. Eα,β [ |gt,α,β(x)− gt,α,β(y)| ] = Ω(min{|x− y|, 2t}).

3. Shortest path decompositions. Our embeddings will crucially depend on
the notion of shortest path decompositions (SPDs). In the introduction we provided
a recursive definition for SPD. Here we show an equivalent definition which will be
more suitable for our purposes.

Definition 1 (SPD). Given a weighted graph G = (V,E,w), an SPD of depth
k is a pair {X ,P}, where X is a collection X1, . . . ,Xk of partial partitions of V ,2 and
P is a collection of sets of paths P1, . . . ,Pk, where X1 = {V }, Xk = Pk, and the
following properties hold:

1. For every 1 ≤ i ≤ k and every subset X ∈ Xi, there exist a unique path
PX ∈ Pi such that PX is a shortest path in G[X].

2. For every 2 ≤ i ≤ k, Xi consists of all connected components of G[X \ PX ]
over all X ∈ Xi−1.

In other words,
⋃k

i=1 Pk is a partition of V into paths, where each path PX is a
shortest path in the component X it belongs to at the point it is deleted.

For a given graph G, let SPDdepth(G) be the minimum k such that G ad-
mits an SPD of depth k. For a given family of graphs G, let SPDdepth(G) :=
maxG∈G{SPDdepth(G)}. In the following, we consider the SPDdepth of some graph
families.

3.1. The SPD depth for various graph families. One advantage of defining
the SPD is that several well-known graph families have bounded depth SPD.

• Pathwidth. Every graph G = (V,E,w) with pathwidth k has an SPDdepth of
k+1. Indeed, let T = ⟨B1, . . . ,Bs⟩ be a path decomposition ofG, where B1,Bs

are the two bags at the end of this path. Choose arbitrary vertices x ∈ B1

and y ∈ Bs, and let P be a shortest path in G from x to y. By the definition
of a path decomposition, the path P contains at least one vertex from every
bag Bi. Hence, deleting the vertices of P would reduce the size of each bag by
one; consequently, each connected component of G \ P has pathwidth k − 1,
and by induction SPDdepth k. Finally, a connected component of pathwidth
0 is necessarily a singleton, which has SPDdepth 1.

• Treewidth. Since every treewidth-k graph has pathwidth O(k log n), tree-
width-k graphs have SPDdepth O(k log n).

• Planar. Using cycle separators [Mil86] as in [Tho04, GKR04], every planar
graph has SPDdepth O(log n); this follows as each cycle separator can be
constructed as a union of two shortest paths.

2That is, for every X ∈ Xi, X ⊆ V , and for every different subset X,X′ ∈ Xi, X ∩X′ = ∅.
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• Minor-free. Finally, every H-minor-free graph admits a balanced separator
consisting of g(H) shortest paths (for some function g) [AG06], and hence
has an SPDdepth O(g(H) · log n).

Combining these observations with Theorem 1, we get the following set of results.

Corollary 1. Consider an n-vertex weighted graph G. Theorem 1 implies the
following:

• If G has pathwidth k, it embeds into ℓp with distortion O(k1/p).
• If G has treewidth k, it embeds into ℓp with distortion O((k log n)1/p).

• If G is planar, it embeds into ℓp with distortion O(log
1/p n).

• For every fixed H, if G excludes H as a minor, it embeds into ℓp with

distortion O(log
1/p n), where the constant in the big-O depends on H.

As mentioned in section 1, we get a substantial improvement for the pathwidth
case. Our result for treewidth improves upon that from [KLMN05] for p > 2; they
got O(k1−1/p(log n)1/p) distortion compared to our O((k log n)1/p). Our result appears
to be closer to the truth, since the distortion tends to O(1) as p → ∞. Our results
for planar graphs match the current state-of-the-art results.

Finally, our results for minor-free graphs depend on the Robertson–Seymour de-
composition, and hence are currently better only for large values of p. (It remains
an open question to improve the SPDdepth ofH-minor-free graphs to have a poly(|H|)
log n dependence, perhaps using the ideas from [AGG+19].) In general, we hope that
our results will be useful in getting other embedding results, and will spur further
work on understanding shortest path separators.

We note that there exist graphs with large SPDdepth. For instance, the clique
graph Kn has SPDdepth of n

2 , as each shortest path contains at most two vertices.
Moreover, there are sparse graphs with very large SPDdepth. Specifically, an n-
vertex constant degree expander has SPDdepth of nΩ(1). Indeed, denote by k the
SPDdepth of some constant degree expander G. According to Theorem 5, G can

be embedded into ℓ
O(k logn)
∞ with distortion O(1). However, according to Rabinovich

[Rab08], in order to embed a constant degree expander into ℓ∞ with distortion D,
nΩ(1/D) coordinates are required. It follows that k = nΩ(1).

1

1

1

1 1

1

1

1

n

n

On the other hand, there are graphs with SPDdepth 2 that
contain arbitrarily large cliques. For example, see the graph drawn
on the right. The graph consists of two sets {L,R} each containing
n vertices. The graph restricted to the vertices of L (resp., R)
consist of a shortest path with unit weight edges. In addition, for
every pair of vertices v ∈ L and u ∈ R we add an edge of weight n.
Note that G contains the full bipartite graph Kn,n as a subgraph
(and, in particular, Kn as a minor). It is straightforward that G
has SPDdepth 2. Note also that by subdividing each edge of weight n to n unit weight
edges, we will get an unweighted graph of SPDdepth 3 that contains Kn as a minor.

4. The embedding algorithm. Let G = (V,E) be a weighted graph, and let
{X ,P} = {{X1, , . . . ,Xk} , {P1, . . . ,Pk}} be an SPD of depth k for G. By scaling,
we can assume that the minimum weight of an edge is 1; let M ∈ N be the minimal
such that the diameter of G is strictly bounded by 2M . Pick α ∈ [0, 1] and β ∈ [0, 4]
uniformly and independently.

For every i ∈ [k] and X ∈ Xi, we now construct an embedding fX : V → RD (for
some number of dimensions D ∈ N). This map fX consists of two parts.

First coordinate: Distance to the path. The first coordinate of the embedding
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implements the distance to the path PX , and is denoted by fpath
X . Let X1, . . . , Xs ∈

Xi+1 be the connected components of G [X \ PX ] (note that it is also possible that

s = 0). We use a separate coordinate for each Xj , and hence fpath
X : V → Rs.

Moreover, for v ∈ X we truncate at 2 dG(v, V \ X) in order to guarantee Lipschitz-
ness. In particular, the coordinate corresponding to Xj is set to(

fpath
X

)
Xj

(v) =

{
min {dX(v, PX), 2dG(v, V \X)} if v ∈ Xj ,

0 otherwise.

See Figure 4 for an illustration.

3 27
3

2

X1

X2

PX

(0, 0)

(6, 0)

(0, 0)

(0, 0)

(7, 0)

(2, 0)

(0, 3)
(0, 4)

(0, 0)

Fig. 4. The set X ∈ Xi is surrounded by a closed curve. The path PX partitions X into
X1, X2 ∈ Xi+1. The embedding fpath

X consists of two coordinates and is represented in the
figure by a horizontal vector next to each vertex, where the first entry is w.r.t. X1 and the
second w.r.t. X2. Each point on PX or not in X maps to 0 in both the coordinates. Each
point in X1 maps to min {dX (v, PX) , 2dG (v, V \X)} in the first coordinate and to 0 in the
second.

Second coordinate: Distance to the root. The second part is denoted f root
X , which

is intended to capture the distance from the root r of the path. Again, to get the
Lipschitz-ness, we would like to truncate the value at 2 dG(v, V \ X) as we did for

fpath
X . However, a problem with this idea is that the root r can be arbitrarily far
from some pair u, v that needs contribution from this coordinate. And hence, even
if |dG(u, r)− dG(v, r)| ≈ dG(u, v), there may be no contribution after the truncation.
So we use the sawtooth function.

Specifically, we replace the ideal contribution dG(v, r) by the sawtooth function
gt(dG(v, r)), where the scale t for the function is chosen such that 2t ≈ dG(v, V \
X). To avoid the case that two nearby points use two different scales (and hence
to guarantee Lipschitz-ness), we take an appropriate linear combination of the two
distance scales closest to 2 dG(v, V \X). Recall that the sawtooth function does not
guarantee contribution for u, v due to its periodicity: we may be unlucky and have
gt(dG(v, r)) = gt(dG(u, r)) even when dG(v, r) and dG(u, r) are very different. To
guarantee a large enough contribution for all relevant pairs simultaneously, we add a
random shift α, and apply a random “stretch” β to dG(v, r) before feeding it to gt.
Lemma 1 then shows that many of the choices of α and β give substantially different
values for u, v.

Formally, the mapping is as follows. The function f root
X consists of M +1 coordi-

nates, one for each distance scale t ∈ {0, 1, . . . ,M}. The coordinate corresponding to
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t is denoted by f root
X,t . Let r be an arbitrary endpoint of PX ; we will call r the “root”

of PX . Let tv ∈ N be such that 2 dG(v, V \X) ∈ [2tv , 2tv+1). Set λv = 2 dG(v,V \X)−2tv

2tv .
Note that 0 ≤ λv < 1. For v ∈ X, we define

f root
X,t (v) =


λv · gt,α,β(dX(v, r)) if t = tv + 1,

(1− λv) · gt,α,β(dX(v, r)) if t = tv,

0 otherwise.

(2)

Recall that gt,α,β was defined in (1). For all nodes v /∈ X, we set f root
X (v) = 0⃗.

Define the map fX = fpath
X ⊕ f root

X , and the final embedding is

f =

k⊕
i=1

⊕
X∈Xi

fX ,

i.e., the concatenation of all the constructed embeddings. Before we start the analysis,
let us record some simple observations.

Observation 2. For the map f defined above, the following hold:
• The number of coordinates in f does not depend on α, β.
• For every X ∈ Xi and v /∈ X, the map fX(v) is the constant vector 0⃗.
• For every X ∈ Xi and v ∈ X, the map fX is nonzero in at most three
coordinates.

Hence, since Xi is a partial partition of V and the depth of the SPD is k, we get that
f(v) is nonzero in at most 3k coordinates for each v ∈ V .

5. The analysis. The main technical lemmas now show that the per-coordinate
expansion is constant, and that for every pair there exists a coordinate for which the
expected contraction is constant.

Lemma 2 (expansion bound). For any vertices u, v, every coordinate j, and
every choice of α, β,

|fj(v)− fj(u)| = O(dG(u, v)).

Lemma 3 (contraction bound). For any vertices u, v, there exists some coordi-
nate j such that

Eα,β [|fj(v)− fj(u)|] = Ω(dG(u, v)).

Given these two lemmas, we can combine them together to show that the entire
embedding has small distortion. (A proof of the composition lemma can be found in
section 6.)

Lemma 4 (composition lemma). Let (X, d) be a metric space. Suppose that there
are parameters ρ, τ and a function f : X → Rs, drawn from some probability space
such that

1. For every u, v ∈ X and every j ∈ [s], |fj(v)− fj(u)| ≤ ρ · d(v, u).
2. For every u, v ∈ X, there exists j ∈ [s] such that E[ |fj(v) − fj(u)| ] ≥ 1

τ ·
d(v, u).

3. For every v ∈ X, ∥f(x)∥0 ≤ k, that is, f(v) has support of size at most k
(formally, there is a subset of indices Iv ⊆ [s] of size ≤ k such that ∀j /∈ Iv,
fj(v) = 0).

Then, for every p ≥ 1, there is an embedding of (X, d) into ℓp with distortion
O(ρ3τ2) · k1/p. In particular, if ρ and τ are constant, then the distortion is constant.
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Moreover, if there is an efficient algorithm for sampling such an f , then there is a
randomized algorithm that constructs the embedding efficiently (in expectation).

Theorem 1, our embedding for graphs with low depth SPDs, immediately follows
by applying the composition lemma (Lemma 4) to Lemmas 2 and 3, and Observa-
tion 2.

5.1. Bounding the expansion: Proof of Lemma 2. In this section we bound
the expansion of any coordinate in our embedding. Recall that the embedding of v
lying in some component X consists of two sets of coordinates: its distance from the
path, and its distance from the root. As mentioned in the introduction, since points
outside X are mapped to zero, maintaining Lipschitz-ness requires us to truncate the
contribution of v of any coordinate to its distance from the boundary. This truncation
(either via taking a minimum with dG(v, V \X), or via the sawtooth function), means
that our proofs of expansion require more care. Let us now give the details.

Consider any level i, any set X ∈ Xi, and any pair of vertices u, v. It suffices to
show that ∥fX(v) − fX(u)∥∞ = O(dG(u, v)). To begin, we may assume that both
u, v ∈ X. Indeed, if both u, v /∈ X, then fX(v) = fX(u) = 0⃗ and we are done. If one
of them, say v, belongs to X while the other u /∈ X, then fX(u) = 0⃗ while fX(v) is
bounded by 2tv+1 ≤ 4dG (v, V \X) ≤ 4 dG(u, v) in each coordinate.

Moreover, we may also assume that the shortest u-v path in G contains only
vertices from X. Indeed, suppose their shortest path in G uses vertices from V \
X, then dG(u, V \ X) + dG(v, V \ X) ≤ dG(u, v). But since both fX(v), fX(u) are
bounded in each coordinate by 4 ·max {dG(u, V \X), dG(v, V \X)}, we have constant
expansion. Henceforth, we can assume that dG(u, v) = dX(u, v). We now bound the
expansion in each of the two parts of fX separately.

Expansion of fpath
X . Let Xv, Xu be the connected components in G [X \ PX ]

such that v ∈ Xv and u ∈ Xu. Consider the first case Xv ̸= Xu, then PX intersects
the shortest path between v and u. In particular,

∥fpath
X (v)− fpath

X (u)∥∞ ≤ min {dX (v, PX) , 2dG (v, V \X)}
+min {dX (u, PX) , 2dG (u, V \X)}

≤ dX (v, PX) + dX (u, PX) ≤ dX(v, u) = dG(v, u) .

Otherwise, Xv = Xu and the two vertices lie in the same component. Now ∥fpath
X (v)−

fpath
X (u)∥∞ equals∣∣min {dX (v, PX) , 2dG (v, V \X)} −min

{
dX
(
u, PX

)
, 2dG

(
u, V \X

) }∣∣.
Assuming (without loss of generality (w.l.o.g.)) that the first term is at least the
second, we can drop the absolute value signs. Now the bound on the expansion
follows from a simple case analysis. Indeed, suppose dX (u, PX) ≤ 2dG (u, V \X).
Then we get

∥fpath
X (v)− fpath

X (u)∥∞ = min {dX (v, PX) , 2dG (v, V \X)} − dX (u, PX)

≤ dX (v, PX)− dX (u, PX) ≤ dX(u, v) = dG(u, v).

The other case is that dX (u, PX) > 2dG (u, V \X), and then

∥fpath
X (v)− fpath

X (u)∥∞ = min {dX (v, PX) , 2dG (v, V \X)} − 2dG (u, V \X)

≤ 2dG (v, V \X)− 2dG (u, V \X) ≤ 2dG(u, v).
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Hence the expansion is bounded by 2.

Expansion of f root
X . Let r be the root of PX . For t ∈ {0, 1, . . . ,M}, let pt (resp.,

qt) be the “weight” of v (resp., u) on gt,α,β—in other words, pt is the constant in (2)
such that f root

X,t (v) = pt · gt,α,β(dX(v, r)). Note that pt ∈ {0, λv, 1 − λv} is chosen
deterministically, and is nonzero for at most two indices t.

First, observe that for every t,∣∣f root
X,t (v)− f root

X,t (u)
∣∣ = |pt · gt,α,β(dX(v, r))− qt · gt,α,β(dX(u, r))|
≤ min {pt, qt} · |gt,α,β(dX(v, r))− gt,α,β(dX(u, r))|+ |pt − qt| · 2t

≤ min {pt, qt} · β · |dX(v, r)− dX(u, r)|+ |pt − qt| · 2t

≤ O(dG(u, v)) + |pt − qt| · 2t .(3)

The first inequality used that gt,α,β is bounded by 2t, and the second inequality
that gt,α,β is β-Lipschitz; both follow from Observation 1. The last inequality follows
by the triangle inequality (since we assumed that the shortest path from v to u is
contained within X).

Hence, it suffices to show that |pt − qt| = O(dG(u, v)/2
t). Indeed, for indices

t /∈ {tu, tu + 1, tv, tv + 1}, pt = qt = 0, hence |pt − qt| = 0. Let us consider the other
cases. Without loss of generality, assume that dG (v, V \X) ≥ dG (u, V \X) and
hence tv ≥ tu.

• tu = tv. In this case, |ptv − qtv | = |(1− λv)− (1− λu)| = λv − λu =
|ptv+1 − qtv+1|. Moreover, this quantity is

λv − λu =
2dG (v, V \X)− 2t

2t
− 2dG (u, V \X)− 2t

2t

=
2 (dG (v, V \X)− dG (u, V \X))

2t

≤ 2dG(u, v)

2t
.

Hence, we get that |pt − qt| = O(dG(u, v)/2
t) for both t ∈ {tv, tv + 1}.

• tu = tv − 1. It holds that

λv + (1− λu) ≤ 2 · 2dG (v, V \X)− 2tv

2tv
+

2tu+1 − 2dG (u, V \X)

2tu

=
2dG (v, V \X)− 2dG (u, V \X)

2tu
≤ 2dG(u, v)

2tu
.

If we define χ := λv + (1− λu), we conclude that

|ptv+1 − qtv+1| = λv ≤ χ = O(dG(u, v)/2
tv+1),

|ptv − qtv | = |1− λv − λu| ≤ χ = O(dG(u, v)/2
tv ),

|ptu − qtu | = 1− λu ≤ χ = O(dG(u, v)/2
tu).

• tu < tv − 1. By the definition of tv and tu,

2dG(v, u) ≥ 2 (dG(v, V \X)− dG(u, V \X)) ≥ 2tv − 2tu+1 ≥ 2tv−1 .

In particular, for every t ≤ tv + 1, |pt − qt| ≤ 1 ≤ 2dG(u,v)
2tv−1 = O

(dG(u,v)
2t

)
.
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5.2. Bounding the contraction: Proof of Lemma 3. Recall that we want
to prove that for any pair u, v of vertices, the embedding has a large contribution
between them. A natural proof idea is to show that vertices u, v would eventually
be separated by the recursive procedure. When they are separated, either one of u, v
is far from the separating path P , or they both lie close to the path. In the former
case, the distance d(v, P ) gives a large contribution to the embedding distance, and
in the latter case the distance from one end of the path (the “root”) gives a large
contribution.

However, there’s a catch: the value of v’s embedding in any single coordinate
cannot be more than v’s distance to the boundary, which causes problems. Indeed, if
u, v fall very close to the path P at some step of the algorithm, they must get most
of their contribution at this level, since future levels will not give much contribution.
How can we do it without assigning large values? This is where we use the sawtooth
function: it gives a good contribution between points without assigning any vertex
too large a value in any coordinate.

Formally, to bound the contraction and prove Lemma 3, for nodes u, v we need
to show that there exists a coordinate j such that Eα,β [|fj(v)− fj(u)|] = Ω(dG(u, v)).
For brevity, we define

∆uv := dG(u, v).(4)

Fix c = 12. Let i be the minimal index such that there exists X ∈ Xi with
u, v ∈ X, and at least one of the following holds:

1. min {dX(v, PX), dX(u, PX)} ≤ ∆uv/c (i.e., we choose a path close to {v, u}).
2. v and u are in different components of X \ PX .

Note that such an index i indeed exists: if v and u are separated by the SPD,
then condition 2. holds. The only other possibility that v and u are never sepa-
rated is when at least one of them lies on one of the shortest paths. In such a case,
surely condition 1. holds. By the minimality of i, for every X ′ ∈ Xi′ such that
i′ < i and u, v ∈ X ′, necessarily min{dX′(v, PX′), dX′(u, PX′)} > ∆uv/c. Therefore,
the ball with radius ∆uv/c around each of v, u is contained in X. In particular,
min {dG(v, V \X), dG(u, V \X)} > ∆uv/c.

Suppose first that condition 2. occurs but not condition 1. Let j be the coordinate
in fpath

X created for the connected component of v in X \ PX . Then∣∣∣(fpath
X )j(v)− (fpath

X )j(u)
∣∣∣ = min {dX (v, PX) , 2dG (v, V \X)} − 0

≥ min

{
∆uv

c
, 2

∆uv

c

}
=

∆uv

c
.

Next assume that condition 1. occurs. Without loss of generality, assume that dX(v, PX)
≤ dX(u, PX), so that dX(v, PX) ≤ ∆uv/c. Suppose first that dX(u, PX) ≥ 2∆uv/c.

Then in the coordinate j in fpath
X created for the connected component of u in X \PX ,

we have ∣∣∣(fpath
X )j(v)− (fpath

X )j(u)
∣∣∣ ≥ ∣∣min {dX(u, PX), 2dG(u, V \X)}

−min
{
dX(v, PX), 2dG(v, V \X)

}∣∣
≥ min

{
2
∆uv

c
, 2

∆uv

c

}
− ∆uv

c
=

∆uv

c
.

(It does not matter whether or not v, u are in the same connected component.) Thus
it remains to consider the case dX(u, PX) < 2∆uv/c. Let r be the root of PX . Let v′
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(resp., u′) be the closest vertex on PX to v (resp., u) in G[X]. Then by the triangle
inequality

dX(v′, u′) ≥ dX(v, u)− dX(v, v′)− dX(u, u′) ≥ c− 3

c
∆uv .

In particular,

|dX(v, r)− dX(u, r)| ≥ |dX(v′, r)− dX(u′, r)| − dX(v, v′)− dX(u, u′)

≥ c− 6

c
∆uv =

1

2
∆uv ,(5)

where we used that PX is a shortest path in G[X] (implying |dX(v′, r)− dX(u′, r)| =
dX(v′, u′)). See Figure 5 for an illustration.

r

u

u′

v

v′
PX

∆uv2∆uv

c ≥ ∆uv

c ≥

Fig. 5. PX is a shortest path with root r. v (resp., u) is at distance at most
∆uv
c

(resp., 2∆uv
c

) from v′ (resp., u′), it’s closest vertex on PX . By triangle inequal-

ity dX(v′, u′) ≥ (1 − 3
c
)∆uv. As u′, v′ lay on the same shortest path starting at r,

|dX(v′, r) − dX(u′, r)| = dX(v′, u′). Using the triangle inequality again we conclude
|dX(v, r)− dX(u, r)| ≥ |dX(v′, r)− dX(u′, r)| − 3

c
∆uv ≥ (1− 6

c
)∆uv.

Set x = dX(v, r) and y = dX(u, r). Assume first that dG (v, V \X) ≥ dG (u, V \X).
In particular, tv ≥ tu. By the definition of tv, 2dG (v, V \X) ≤ 2tv+1. Thus

(6) 2tv ≥ ∆uv

c
= Ω(∆uv).

Claim 1. Let t ≥ tv, then there is a constant ϕ such that

Eα,β [|gt,α,β(x)− gt,α,β(y)|] ≥ ∆uv/ϕ.

Proof. According to property 2 of Lemma 1,

Eα,β [ |gt,α,β(x)− gt,α,β(y)| ] = Ω(min{|x− y|, 2t}) (5)&(6)
= Ω(∆uv) .

Set S = max
{
8ϕ, 8c

2

}
. Note that ptv + ptv+1 = (1− λv) + λv = 1. Let t ∈ {tv, tv +1}

be such that pt ≥ 1
2 . We consider two cases:

• If |pt − qt| · 2t > ∆uv

S , then

Eα,β

[∣∣f root
X,t (v)− f root

X,t (u)
∣∣] = Eα,β [|pt · gt,α,β(x)− qt · gt,α,β(y)|]

≥ |pt · Eα,β [gt,α,β(x)]− qt · Eα,β [gt,α,β(y)]|
= |pt − qt| · 2t = Ω(∆uv),(7)

where the equality follows by property 1 of Lemma 1.
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• Otherwise, using inequality (6), qt ≥ pt − ∆uv

2tv ·S ≥ 1
2 − 2c

2∆uv
· ∆uv

S ≥ 1
4 . In

particular,

Eα,β

[∣∣f root
X,t (v)− f root

X,t (u)
∣∣] = Eα,β [|pt · gt,α,β(x)− qt · gt,α,β(y)|]

≥ min {pt, qt} · Eα,β

[∣∣∣gt,α,β(x)− gt,α,β(y)
∣∣∣]

− |pt − qt| · 2t

≥ 1

4
· ∆uv

ϕ
− ∆uv

S
= Ω(∆uv) ,(8)

where in the first inequality we used property 1 of Lemma 1, and in the second
inequality we used Claim 1.

Finally, recall that we assumed dG (v, V \X) ≥ dG (u, V \X) for the proof above.
The other case (dG (v, V \X) < dG (u, V \X)) is completely symmetric.

6. The composition lemma: Proof of Lemma 4. We restate the lemma for
convenience.

Lemma 4 (composition lemma). Let (X, d) be a metric space. Suppose that there
are parameters ρ, τ and a function f : X → Rs, drawn from some probability space
such that

1. For every u, v ∈ X and every j ∈ [s], |fj(v)− fj(u)| ≤ ρ · d(v, u).
2. For every u, v ∈ X, there exists j ∈ [s] such that E[ |fj(v) − fj(u)| ] ≥ 1

τ ·
d(v, u).

3. For every v ∈ X, ∥f(x)∥0 ≤ k, that is, f(v) has support of size at most k
(formally, there is a subset of indices Iv ⊆ [s] of size ≤ k such that ∀j /∈ Iv,
fj(v) = 0).

Then, for every p ≥ 1, there is an embedding of (X, d) into ℓp with distortion
O(ρ3τ2) · k1/p. In particular, if ρ and τ are constant, then the distortion is constant.
Moreover, if there is an efficient algorithm for sampling such an f , then there is a
randomized algorithm that constructs the embedding efficiently (in expectation).

Proof. Fix n = |X| and set m = 48ρτ · lnn. Let f (1), f (2), . . . , f (m) : X → Rs be
functions chosen i.i.d. according to the given distribution. Set g = m−1/p

⊕m
i=1 f

(i).
We argue that, with high probability, g has distortion 16ρ3τ2 · k1/p in ℓp.

Fix some pair of vertices v, u ∈ V . Set d(v, u) = ∆. The upper bound follows
from property 1 and property 3 of the above lemma:

∥g(v)− g(u)∥pp =

m∑
i=1

∑
j∈Iv∪Iu

(
m−1/p ·

∣∣∣f (i)
j (v)− f

(i)
j (u)

∣∣∣)p
≤

m∑
i=1

∑
j∈Iv∪Iu

1

m
· (ρ ·∆)p ≤ 2k · (ρ ·∆)p ,

thus ∥g(v)− g(u)∥p ≤ 2
1
p · ρ · k1/p ·∆.

Next, for the contraction bound, let j be the index of property 2 w.r.t. v, u. Set
F = {f : |fj(v)− fj(u)| ≥ ∆/2τ} to be the event that we draw a function with
significant contribution to v, u. Then using properties 1 and 2,

∆

τ
≤ E [|fj(v)− fj(u)|]

≤ Pr
[
F
]
· ∆
2τ

+ Pr [F ] · ρ∆ ≤ ∆

2τ
+ Pr [F ] · ρ∆ ,
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which implies that Pr [F ] ≥ 1
2ρτ . Let Q

(i)
u,v be an indicator random variable for the

event f (i) ∈ F , and set Qu,v =
∑m

i=1 Q
(i)
u,v. By linearity of expectation, E[Qu,v] ≥

m
2ρτ = 24 · lnn. By a Chernoff bound

Pr [Qu,v ≤ 12 · lnn] ≤ Pr

[
Qu,v ≤ 1

2
· E [Qu,v]

]
≤ exp

(
− 1

8
E [Qu,v]

)
≤ exp(−3 lnn) = n−3 .

By taking a union bound over the
(
n
2

)
pairs, with probability at least 1− 1

n for every
u, v ∈ V , Qu,v > 12 lnn = m

4ρτ . If this event indeed occurs, then the contraction is
indeed bounded:

∥g(v)− g(u)∥pp ≥
m∑
i=1

(
m−1/p ·

∣∣∣f (i)
j (v)− f

(i)
j (u)

∣∣∣)p
≥ 1

m

∑
i:Q

(i)
u,v=1

∣∣∣f (i)
j (v)− f

(i)
j (u)

∣∣∣p
≥ Qu,v

m
·
(

∆

2ρτ

)p

=
1

4ρτ
·
(

∆

2ρτ

)p

.

In particular, for every u, v, ∥g(v)− g(u)∥p ≥ ( 1
4ρτ )

1
p · ∆

2ρτ . Combining the upper

and lower bounds, we conclude that g has distortion 2
1
p · ρ · k1/p · 2ρτ · (4ρτ) 1

p =

21+
3
p ρ2+

1
p τ1+

1
p · k1/p.

2t

2t+1

2t 2t

2t2t2t

2t+1 2t+1

2t+12t+12t+1 2t+1

2t

α = 0 α = 2t − z α = 2t − z
2

α = 2t α = 2t+1 − z α = 2t+1 − z
2 α = 2t+1

Fig. 6. α is going from 0 to 2t+1. z ≤ 2t. In each of the figures the leftmost red
point represents α while the rightmost red point represents z+α. Each of the middle figures
represent a moment when gt(z + α)− gt(z) changes its derivative. (Figure in color online.)

7. The sawtooth lemma: Proof of Lemma 1. We restate Lemma 1 for
convenience.

Lemma 1 (sawtooth lemma). Let x, y ∈ R+. Let α ∈ [0, 1], β ∈ [0, 4] be drawn
uniformly and independently. The following properties hold:
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1. Eα,β [ gt,α,β(x) ] = 2t−1.
2. Eα,β [ |gt,α,β(x)− gt,α,β(y)| ] = Ω(min{|x− y|, 2t}).

Property 1 is straightforward, as by Observation 1 gt is periodic with period
length 2t+1. Indeed, for every fixed β, Eα [gt,α,β(x)] = Eα

[
gt(βx+ α · 2t+1)

]
=

Eα

[
gt(α · 2t+1)

]
= 2t−1. The following claim will be useful in the proof of prop-

erty 2.

Claim 2. For z ∈ [0, 2t+1], Eα∈[0,1]

[∣∣gt(z + α · 2t+1)− gt(α · 2t+1)
∣∣] = (2t+1−z)z

2t+1 .

Proof. Set (∗) = Eα∈[0,1]

[∣∣gt(z + α · 2t+1)− gt(α · 2t+1)
∣∣]. By substituting the

variable of integration, (∗) = 1
2t+1 ·

∫ 2t+1

0
|gt(z + α)− gt(α)| dα. First, assume that

z ≤ 2t, then there are five “phase changes” in |gt(z + α)− gt(α)| from 0 to 2t+1 at
2t − z, 2t − z

2 , 2t, 2t+1 − z, 2t+1 − z
2 . (See Figure 6 for an illustration.)

We calculate

2t+1 · (∗) =
∫ 2t−z

0

zdα+

∫ z
2

0

(z − 2α)dα+

∫ z
2

0

2αdα+

∫ 2t−z

0

zdα

+

∫ z
2

0

(z − 2α)dα+

∫ z
2

0

2αdα

= 2 ·
∫ 2t−z

0

zdα+ 2 ·
∫ z

2

0

zdα =
(
2t+1 − z

)
z .

For z > 2t, set w = 2t+1 − z. Then using that gt is periodic,

Eα∈[0,1]

[∣∣gt(w + α · 2t+1)− gt(α · 2t+1)
∣∣] = Eα∈[0,1]

[∣∣gt(w + z + α · 2t+1)

− gt(z + α · 2t+1)
∣∣]

= Eα∈[0,1]

[∣∣gt(2t+1 + α · 2t+1)

− gt(z + α · 2t+1)
∣∣]

= Eα∈[0,1]

[∣∣gt(z + α · 2t+1)− gt(α · 2t+1)
∣∣] .

Hence by the first case, (∗) = (2t+1−w)w
2t+1 =

(2t+1−z)z
2t+1 .

For the proof of property 2 assume w.l.o.g. that x > y. Set z = x − y and
(∗) = Eα,β [|gt,α,β(x)− gt,α,β(y)|]. As gt is a periodic function, we have that (∗) =
Eβ [Eα [|gt,α,β(z)− gt,α,β(0)|]]. The rest of the proof is by case analysis.

• If |x− y| ≤ 2t−1 . Using Claim 2, we have

(∗) = Eβ

[(
2t+1 − βz

)
βz

2t+1

]
=

1

2t+1
· 1
4
·
(
2t+1z

2
β2 − z2

3
· β3 |40

)
=

1

4
·
(
16

2
· z − z2

2t+1
· 2

6

3

)
≥ 1

4
·
(
8− 64

3 · 4

)
· z =

2

3
· |x− y| ,

where in the inequality we used that z ≤ 2t−1.
• If |x− y| > 2t−1 .

As gt is a periodic function, Claim 2 implies that for every w ≥ 0 it holds that

Eα [|gt,α,β(w)− gt,α,β(0)|] = (2t+1−(w mod 2t+1))(w mod 2t+1)

2t+1 . Let a ∈ [0, 4] such that



METRIC EMBEDDING VIA SHORTEST PATH DECOMPOSITIONS 307

a · z = 2t+1 (such a exists as |x− y| > 2t−1). The claim follows as

(∗) · 2t+1

= Eβ∈[0,4]

[(
2t+1 − (βz mod 2t+1)

)
(βz mod 2t+1)

]
≥

⌊ 4
a⌋−1∑
i=0

1

4
·
∫ (i+1)a

ia

(
2t+1 −

(
β · 2

t+1

a
mod 2t+1

))
·
(
β · 2

t+1

a
mod 2t+1

)
dβ

=

⌊ 4
a⌋−1∑
i=0

1

4
·
∫ a

0

(
2t+1 − β · 2

t+1

a

)
· β · 2

t+1

a
dβ

=

⌊
4

a

⌋
· 1
4
· a

2t+1
·
∫ 2t+1

0

(
2t+1 − γ

)
· γdγ

≥ 4

2a
· 1
4
· a

2t+1
·
(
2t+1 γ

2

2
− γ3

3
|2t+1

0

)
=

1

2
· 1

2t+1
·
(
2t+1

)3
6

=

(
2t+1

)2
12

.

Property 2 now follows.

8. Reducing the dimension. In the previous sections we did not attempt
to bound the dimension of our embedding (Theorem 1). As each point is nonzero
in at most O(k log n) coordinates (taking into account the repetitions done by the
composition lemma (Lemma 4)), naively we can bound the number of coordinates by
O(nk log n). However, we can improve further. By introducing some modifications
to the embedding algorithm, we are able to bound the number of coordinates by
O(k log n). Notice that this fact is interesting only for p > 2. For embeddings into
ℓ2, one can easily reduce the dimension to O(log n) using the Johnson–Lindenstrauss
lemma [JL84]. Furthermore, for embeddings into ℓp for p ∈ [1, 2), we first embed into
ℓ2 (using dimension O(log n)). Then we embed from ℓ2 into ℓp. It is well known that

ℓd2 embeds into ℓ
O(d)
p (for p ∈ [1, 2]) with constant distortion (see [Mat13]), thus we

conclude that our embedding can use only O(log n) coordinates.

Theorem 5 (embeddings with bounded dimension). Let G = (V,E) be an n-
vertex weighted graph with an SPD of depth k. Then there exists an embedding

f : V → ℓ
O(k logn)
p with distortion O(k1/p).

Proof. Recall the embedding algorithm: we assumed that the minimal distance in
G is 1, while the diameter is bounded by 2M . Let {X ,P} =

{
{X1, , . . . ,Xk} ,

{
P1, . . . ,

Pk

}}
be an SPD of depth k for G. For every index i ∈ [k] and cluster X ∈ Xi we

had two different embeddings fpath
X and f root

X . The function fpath
X is a deterministic

embedding that maps each point x ∈ X to its (truncated) distance from PX , while
using a different coordinate for each connected component in X \ PX . The function
f root
X is an embedding that depends on random variables α, β. It uses M +1 different
coordinates that captures a randomly truncated distance to the root r of PX .

In Lemma 2 we proved that our embedding is Lipschitz in each coordinate. In
Lemma 3 we showed that for every pair of vertices v, u there is some coordinate j
such that E [|fj(v)− fj(u)|] = Ω(dG(u, v)). The coordinate j might come from either

fpath or f root. Denote by Rpath ⊆
(
V
2

)
(resp., Rroot) the set of pairs for which the

coordinates above come from fpath (resp., f root). In order to replace expectation
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with high probability, we invoke O(log n) independent repetitions of our embedding
(Lemma 4). We will modify each type of coordinates separately, arguing that a total
of O(k log n) coordinates suffices.

fpath. We start with modifying the fpath type coordinates. First, note that as
the value of this coordinates chosen deterministically, there is no reason to invoke the
independent repetitions (Lemma 4). Next, consider a specific level i ∈ [k]. For every

cluster X ∈ Xi+1, let Π(X) ∈ Xi be the cluster such that X ⊆ Π(X). Denote by fpath
i

the concatenation of all
(
fpath
Π(X)

)
X

for X ∈ Xi+1, and by fpath the concatenation of

all fpath
i for i ∈ [k]. Set D = |Xi+1|, note that fpath

i has exactly D coordinates, where
each v ∈ V is nonzero in at most one coordinate. For every X ∈ Xi+1 pick a sequence
αX ∈ {±1}m, where m = O(logD), such that for every different X,X ′ ∈ Xi+1

the number of coordinates where αX and αX′
differ is at least m

4 .
3 We define a

new embedding hpath
i : V → Rm, such that for every v ∈ X ∈ Xi+1, hpath

i (v) =
fpath
Π(X)

(v)

m1/p

(
αX
1 , . . . , αX

m

)
. For v ∈ V that belongs to no cluster in Xi+1, set h

path
i (v) = 0⃗.

Consider v, u ∈ V . If u, v are both belong to the same cluster X, then

∥∥∥hpath
i (v)− hpath

i (u)
∥∥∥p
p
=

m∑
i=1

∣∣∣∣∣αX
i ·
(
fpath
Π(X)(v)

m1/p
−

fpath
Π(X)(u)

m1/p

)∣∣∣∣∣
p

=
∣∣∣fpath

Π(X)(v)− fpath
Π(X)(u)

∣∣∣p =
∥∥∥fpath

i (v)− fpath
i (u)

∥∥∥p
p
.

On the other hand, if v ∈ Xv and u ∈ Xu belong to different clusters, it holds that∥∥∥hpath
i (v)− hpath

i (u)
∥∥∥p
p
=

m∑
i=1

1

m

∣∣∣αXv
i · fpath

Π(Xv)
(v)− αXu

i · fpath
Π(Xu)

(u)
∣∣∣p

∥∥∥hpath
i (v)− hpath

i (u)
∥∥∥p
p
≤

m∑
i=1

1

m

∣∣∣fpath
Π(Xv)

(v) + fpath
Π(Xu)

(u)
∣∣∣p

≤ 2p ·
((

fpath
Π(Xv)

(v)
)p

+
(
fpath
Π(Xu)

(u)
)p)

= 2p ·
∥∥∥fpath

i (v)− fpath
i (u)

∥∥∥p
p∥∥∥hpath

i (v)− hpath
i (u)

∥∥∥p
p
≥ m

4
· 1

m

∣∣∣fpath
Π(Xv)

(v) + fpath
Π(Xu)

(u)
∣∣∣p

≥ 1

4
· 1
2

((
fpath
Π(Xv)

(v)
)p

+
(
fpath
Π(Xu)

(u)
)p)

=
1

8
·
∥∥∥fpath

i (v)− fpath
i (u)

∥∥∥p
p
.

Note that hpath
i has m = O(logD) ≤ O(log n) coordinates. Denote by hpath the

concatenation of all hpath
i for i ∈ [k]. Then hpath has at most O(k log n) coordinates,

as desired. Moreover, for all u, v ∈ V it holds that

8−
1
p ·
∥∥fpath(v)− fpath(u)

∥∥
p
≤
∥∥hpath(v)− hpath(u)

∥∥
p
≤ 2 ·

∥∥fpath(v)− fpath(u)
∥∥
p
.

f root. Next, we modify the f root type coordinates. Consider level i ∈ [k], and a
cluster X ∈ Xi. f root

X : V → RM+1 is a function that sends each vertex v /∈ X to 0⃗,

3Such a set of sequences can be chosen greedily.
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while each vertex v ∈ X has a specific scale tv ∈ [0,M − 1], such that f root
X (v) can

be nonzero only in coordinates tv, tv+1. Set hroot
X : V → R2 as a concatenation of

hroot
X,odd, h

root
X,even, where hroot

X,odd (resp., hroot
X,even) is the sum of all the odd (resp., even)

coordinates of f root
X . That is, hroot

X,odd =
∑⌊M−1/2⌋

t=0 f root
X,2t+1 and hroot

X,even =
∑⌊M/2⌋

t=0 f root
X,2t.

Next, define hroot
i =

∑
X∈Xi

hroot
X as the sum of all hroot

X for X ∈ Xi. Denote by f root
i

the sum of all f root
X for X ∈ Xi, and by f root the concatenation of all f root

i for i ∈ [k].
It is clear that the expansion is not increased in hroot

i , as for every v, u ∈ V , using the
triangle inequality∥∥hroot

i (v)− hroot
i (u)

∥∥
p
≤
∑
X∈Xi

∥∥hroot
i,X (v)− hroot

i,X (u)
∥∥
p

≤
∑
X∈Xi

M∑
t=0

∥∥f root
X,t (v)− f root

X,t (u)
∥∥
p
=
∥∥f root

i (v)− f root
i (u)

∥∥
p
.

Arguing that the expected contraction property is maintained is more involved.
Consider a pair of vertices v, u ∈ V . Following the arguments in Lemma 3, i is
the minimal index such that there exists X ∈ Xi with u, v ∈ X such that either
condition (1) or condition (2) hold. We can assume that condition (1) holds, and
moreover, that dX(v, PX), dX(u, PX) ≤ 2∆uv/c (as otherwise the coordinate that
contributes to the contraction comes from fpath and we have nothing to prove here).
In particular, inequalities (5) and (6) and Claim 1 hold. Recall that we assumed
tv ≥ tu, and let t ∈ {tv, tv + 1} such that pt ≥ 1

2 . Without loss of generality, assume
that t is odd. We proceed to the case analysis:

• If |pt − qt| · 2t > ∆uv

S and qt ̸= 0, note that for every odd t′ ̸= t, f root
X,t′ (v) =

f root
X,t′ (u) = 0. Therefore, following inequality (7)

Eα,β

[∣∣hroot
i,odd(v)− hroot

i,odd(u)
∣∣] = Eα,β

[∣∣f root
X,t (v)− f root

X,t (u)
∣∣] = Ω(∆uv) .

• Otherwise, if qt = 0, there might be a single odd scale t′ ≤ t − 2 such that
qt′ ̸= 0 (if qt′ = 0 for all odd scales, then the analysis above holds). We have

Eα,β

[∣∣hroot
i,odd(v)− hroot

i,odd(u)
∣∣] = Eα,β

[∣∣f root
X,t (v)− f root

X,t′ (u)
∣∣]

= Eα,β [|pt · gt,α,β(x)− qt′ · gt′,α,β(y)|]
≥ |pt · Eα,β [gt,α,β(x)]− qt′ · Eα,β [gt′,α,β(y)]|

≥ pt · 2t−1 − qt′ · 2t
′−1 ≥ 1

2
· 2t−1 − 2t−3 = 2t−3

= Ω(∆uv) ,

where the last equality follows by inequality (6).
• Otherwise, |pt − qt| · 2t ≤ ∆uv

S . Using inequality (6), qt ≥ 1
4 (and therefore

f root
X,t′ (v) = f root

X,t′ (u) = 0 for every odd t′ ̸= t). Following inequality (8),

Eα,β

[∣∣hroot
i,odd(v)− hroot

i,odd(u)
∣∣] = Eα,β

[∣∣f root
X,t (v)− f root

X,t (u)
∣∣] = Ω(∆uv) .

Define hroot the concatenation of all hroot
i for i ∈ [k]. hroot has exactly 2k coordinates.

We saw that h is Lipschitz in every coordinate. Moreover, for every {u, v} ∈ Rroot,
Eα,β

[∣∣hroot
i,odd(v)− hroot

i,odd(u)
∣∣] = Ω(∆uv).

Set h to be the concatenation of hpath and hroot. We now invoke the composition

lemma (Lemma 4) to construct an embedding with distortion O(k
1
p ). Recall that
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a0 a1

a3 a2

b01

b30 b12

b23

b↑

b↓

Fig. 7. The two first diamondfold graphs X1 and X2.

during the construction of Lemma 4 we sample and concatenate O(log n) independent
copies of h (normalized accordingly). As hpath is deterministic, it is enough to take
only a single (nonnormalized) copy of hpath, and O(log n) (normalized) copies of hroot.
In particular, the total number of coordinates is O(k log n)+O(log n)·2k = O(k log n),
as required.

9. Lower bounds for p = 1: Proof of Theorem 4. Our lower bound will be
proven using a slight modification of the diamondfold graphs presented by Lee and
Sidiropoulos [LS11]. We begin by presenting the discrete version of the diamondfold
graph.

Definition 2 (diamondfold graph). Let X0,X1,X2, . . . , be a sequence of unweight-
ed graphs defined as follows: X0 is a simple cycle with four vertices: A = {a0, a1, a2, a3}.
X1 is obtained from X0 by first subdividing each edge, getting new vertices B =
{b01, b12, b23, b30}. In addition, we add two new vertices b↑, b↓ and all the edges
between them to B. As a result we get eight cycles of length 4 ({a0, b01, b↑, b30},
. . . , {a2, b23, b↓, b12}). These cycles are called basic cycles. See Figure 7 for an illus-
tration.

In general, in Xk we have 8k basic cycles. Xk+1 is obtained from Xk by replacing
each basic cycle with a copy of X1 (if an edge belong to several basic cycles, we subdivide
it only once). An alternative way to construct Xk+1 will be to start with X1, and
replace each of the eight basic cycles with a copy of Xk.

Theorem 6 (see [LS11]). Every embedding of Xk into ℓ1 has distortion Ω(
√

k
log k ).

Intuitively, the diamondfold graphs are fractals. In particular, by deleting a con-
stant number of shortest paths from Xk, we obtain a graph where each connected
component is a subgraph of Xk−1. Therefore, by inductive arguments it should follow
that Xk has SPDdepth O(k). Unfortunately, SPD possesses the counterintuitive prop-
erty that deleting edges may increase the SPDdepth of a graph. In order to overcome
this problem, and provide an upper bound on the SPDdepth, we slightly modify the
construction of the diamondfold graph.

Definition 3 (buffered diamondfold graph). Let X̂1, X̂2, . . . , be a sequence of
weighted graphs. The first graph X̂1 is obtained from X1 as follows: First, replace
each of the vertices {b01, b12, b23, b30, b↑, b↓} with a copy of a star with four leafs,
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Fig. 8. The first buffered diamondfold graph X̂1. Each basic cycle containing a vertex
from the star of b↑ (resp., b↓) is colored in red (resp., blue). (Figure in color online.)

such that each leaf participates in exactly one basic cycle. Similarly, replace each of
the vertices {a0, a1, a2, a3} with a copy of a star with two leafs. See Figure 8 for an
illustration. The weight of the star edges are defined to be ϵ > 0, for ϵ to be determined
later. The weight of all the other edges remains 1. There are eight basic cycles in X̂1

corresponding to the eight basic cycles in X1.
In general, in X̂k we have 8k basic cycles. X̂k+1 is obtained from X̂k by replacing

each basic cycle with a copy of X̂1. An alternative way to construct X̂k+1 will be to
start with X̂1, and replace each of the eight basic cycles with a copy of X̂k.

Each vertex in Xk corresponds to some induced tree in X̂k where all the edges
in the tree have ϵ weight. In particular, we can define an embedding f : Xk →
X̂k by sending each vertex v ∈ Xk to one of its copies (i.e., to some vertex in its
corresponding tree). It is clear that the distortion of f tends to 1 as ϵ tends to 0.
Therefore, Theorem 6 implies that for small enough ϵ, every embedding of X̂k into ℓ1

has distortion Ω(
√

k
log k ).

Next, we argue that X̂k has SPDdepth O(k). It is
straightforward to verify that X̂1 has SPDdepth 4. As-
sume by induction that X̂k has SPDdepth at most 2(k+1).
Consider X̂k+1 which obtained from X̂1 by replacing each
of the eight basic cycles with a copy of X̂k. By deleting two
shortest paths (the purple and green paths in the figure on
the right), we obtain a graph consisting of eight connected
components, each component isomorphic to X̂k. By the
induction hypothesis, X̂k+1 has SPDdepth at most 2+2(k+1) = 2(k+2). Theorem 5
now follows.

10. Conclusions. In this paper we introduced the notion of shortest path de-
compositions with low depth. We showed how these can be used to give embeddings
into ℓp spaces. Our techniques give optimal embeddings of bounded pathwidth graphs
into ℓ2, and also new embeddings for graphs with bounded treewidth, planar, and
excluded-minor families of graphs. Our embedding for the family of graphs with SPD
depth k into ℓp has an asymptotically matching lower bound for every fixed p > 1.

The lower bound for p = 1 differs from the upper bound of O(
√
k) by an O(

√
log k)
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factor. Our techniques already have been useful for other embedding results, e.g., for
embedding planar graphs with small face covers into ℓ1 [Fil20a]. We hope that our
techniques will find further applications.

Our work raises several open questions. While our embeddings are tight for
fixed p > 1, can we improve the bounds for ℓ1 embedding of graphs with bounded
pathwidth? Can we give better results for the SPDdepth of H-minor-free graphs?
Our approach gives a O(

√
log n)-distortion embedding of planar graphs into ℓ1, which

is quite different from the previous known results using padded decompositions: can
a combination of these ideas be used to make progress towards the planar graph
embedding conjecture?
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