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ABSTRACT
We study the problem of embedding weighted graphs of pathwidth

k into ℓp spaces. Our main result is an O(kmin{1/p,1/2})-distortion
embedding. Forp = 1, this is a super-exponential improvement over

the best previous bound of Lee and Sidiropoulos. Our distortion

bound is asymptotically tight for any fixed p > 1.

Our result is obtained via a novel embedding technique that is

based on low depth decompositions of a graph via shortest paths.

The core new idea is that given a geodesic shortest path P , we can
probabilistically embed all points into 2 dimensions with respect

to P . For p > 2 our embedding also implies improved distortion

on bounded treewidth graphs (O((k logn)1/p )). For asymptotically

large p, our results also implies improved distortion on graphs

excluding a minor.

CCS CONCEPTS
•Theory of computation→Graph algorithms analysis;Ran-
dom projections and metric embeddings;
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1 INTRODUCTION
Low-distortion metric embeddings are a crucial component in the

modern algorithmist toolkit. Indeed, they have applications in ap-

proximation algorithms [27], online algorithms [7], distributed

algorithms [21], and for solving linear systems and computing

graph sparsifiers [33]. Given a (finite) metric space (V ,d), a map
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ϕ : V → RD , and a norm ∥ · ∥, the contraction and expansion of the

map ϕ are the smallest τ , ρ ≥ 1, respectively, such that for every

pair x ,y ∈ V ,

1

τ
≤ ∥ϕ(x) − ϕ(y)∥

d(x ,y) ≤ ρ .

The distortion of the map is then τ · ρ In this paper we will investi-

gate embeddings into ℓp norms; the most prominent of which are

the Euclidean norm ℓ2 and the cut norm ℓ1; the former for obvious

reasons, and the latter because of its close connection to graph

partitioning problems, and in particular the Sparsest Cut problem.

Specifically, the ratio between the Sparsest Cut and the multicom-

modity flow equals the distortion of the optimal embedding into ℓ1
(see [16, 27] for more details).

We focus on embedding of metrics arising from certain graph

families. Indeed, since general n-point metrics require Ω(logn/p)-
distortion to embed into ℓp -norms, much attention was given to

embeddings of restricted graph families that arise in practice. (Em-

bedding an (edge-weighted) graph is short-hand for embedding the

shortest path metric of the graph generated by these edge-weights.)

Since the class of graphs embeddablewith some distortion into some

target normed space is closed under taking minors, it is natural to

focus on minor-closed graph families. A long-standing conjecture

in this area is that all non-trivial minor-closed families of graphs

embed into ℓ1 with distortion depending only on the graph family

and not the size n of the graph.

While this question remains unresolved in general, there has

been some progress on special classes of graphs. The class of out-

erplanar graphs (which exclude K2,3 and K4 as a minor) embeds

isometrically into ℓ1; this follows from results of Okamura and Sey-

mour [31]. Following [16], Chakrabarti et al. [12] show that every

graph with treewidth-2 (which excludes K4 as a minor) embeds

into ℓ1 with distortion 2 (which is tight, as shown by [24]). Lee and

Sidiropoulos [26] showed that every graph with pathwidth k can

be embedded into ℓ1 with distortion (4k)k3+1
. See Section 1.3 for

additional results.

We note that ℓ2 is a potentially more natural and useful target

space than ℓ1 (in particular, finite subsets of ℓ2 embed isometrically

into ℓ1). Alas, there are only few (natural) families of metrics that

admit constant distortion embedding into Euclidean space, such

as “snowflakes” of a doubling metrics [6], doubling trees [14] and

graphs of bounded bandwidth [8]. All these families have bounded

doubling dimension. (For definitions, see Section 2.)
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Table 1: Our and previous results for embedding certain graph families into ℓp . (For H -minor-free graphs, д(H ) is some function of |H |.)

Graph Family Our results. Previous results

Pathwidth k O (k 1/p ) (4k )k3+1 into ℓ1 [26]

Treewidth k O ((k logn)1/p ) O (k1−1/p · log1/p n) [22]

O ((log(k logn))1−1/p (log1/p n)) [20]

Planar O (log1/p n) O (log1/p n) [32]

H -minor-free O ((д(H ) logn)1/p ) O ( |H |1−1/p log1/p n) [4]+[22]

1.1 Our Results
In this paper we develop a new technique for embedding certain

graph families into ℓp spaces with constant distortion. Our main

result is an improved embedding for bounded pathwidth graphs (see

Section 2 for the definition of pathwidth and other graph families).

Theorem 1.1 (Pathwidth Theorem). Any graph with pathwidth
k embeds into ℓp with distortion O(k1/p ).

Note that this is a super-exponential improvement over the best

previous distortion bound ofO(k)k3

, by Lee and Sidiropoulos. Their

approach was based on probabilistic embedding into trees, which

implies embedding only into ℓ1. Such an approach cannot yield

distortion better than O(k), due to known lower bounds for the

diamond graph [16], that has pathwidth k+1. Our embedding holds

for any ℓp space, and we can overcome the barrier of O(k) (since
finite subsets of ℓ2 embed isometrically into ℓp , the distortion of

Theorem 1.1 is never larger than O(
√
k)). In particular, we obtain

embeddings of pathwidth-k graphs into both ℓ2 and ℓ1 with dis-

tortion O(
√
k). Moreover, an embedding with this distortion can

be found efficiently via semidefinite-programming; see, e.g., [27],

even without access to the actual path decomposition (which is NP-

hard even to approximate [9]). We remark that graphs of bounded

pathwidth can have arbitrarily large doubling dimension (exhib-

ited by star graphs that have pathwidth 1), and thus our result is

a noteworthy example of a non-trivial Euclidean embedding with

constant distortion for a family of metrics with unbounded doubling

dimension.

Since graphs of treewidth k have pathwidth O(k logn) (see, e.g.,
[17]), Theorem 1.1 provides an embedding of such graphs into ℓp

with distortionO((k logn)1/p ). This strictly improves the best previ-

ously known bound, which follows from a theorem in [22] (who ob-

tained distortionO(k1−1/p log1/p n) ), for any p > 2, and matches it

for 1 ≤ p ≤ 2. While [20] obtained recently a distortion bound with

improved dependence onk , their resultO((log(k logn))1−1/p (log1/p n))
has sub-optimal dependence on n.

AGeneral Embedding Framework. The embedding of Theorem 1.1

follows as a special case of a more general theorem: we devise

embeddings for any graph family which admits “shortest path de-

compositions” (SPDs) of “low depth”. Every (weighted) path graph

has an SPD of depth 1. A graph G has an SPD of depth k if after

removing some shortest path P , every connected component inG \P
has an SPD of depth k − 1. (An alternative definition appears in

Definition 3.1.) Our main technical result is the following.

Theorem 1.2 (Embeddings for SPD Families). LetG = (V ,E)
be a weighted graph with an SPD of depth k . Then there exists an
embedding f : V → ℓp with distortion O(k1/p ).

Since bounded-pathwidth graphs admit SPDs of low depth, we

get Theorem 1.1 as a simple corollary of Theorem 1.2. Moreover, we

derive several other results, which are summarized in Table 1; these

results either improve on the state-of-the-art, or provide matching

bounds using a new approach.

Our result of Theorem 1.1 (and thus also Theorem 1.2) is asymp-

totically tight for any fixed p > 1. The family exhibiting this fact is

the diamond graphs.

Theorem 1.3 ([23, 28, 30]). For any fixed p > 1 and every k ≥ 1,
there exists a graph G = (V ,E) with pathwidth-k , such that every
embedding f : V → ℓp has distortion Ω(kmin{1/p,1/2}).

The bound in Theorem 1.3 was proven first for p = 2 in [30],

generalized to 1 < p ≤ 2 in [23] and for p ≥ 2 by [28] (see also

[18, 19]). The proofs of [23, 30] were done using the diamond graph,

while [28] used the Laakso graph. For completeness, we provide a

proof of the case p ≥ 2 using the diamond graph in Section 8. We

note that for ℓ1 only the trivial Ω(logk) lower bound is known.

1.2 Technical Ideas
Many known embeddings [1, 10, 22, 32] are based on a collection

of 1-dimensional embeddings, where we embed each point to its

distance from a given subset of points. We follow this approach, but

differ in two aspects. Firstly, the subset of points we use is not based

on random sampling or probabilistic clustering. Rather, inspired

by the works of [5] and [4], the subset used is a geodesic shortest

path. The second is that our embedding is not 1-dimensional but

2-dimensional: this seemingly small change crucially allows us to

use the structure of the shortest paths to our advantage.

The SPD induces a collection of shortest paths (each shortest

path lies in some connected component). A natural initial attempt

is to embed a vertex v relative to a geodesic path P using two

dimensions:
1

• The first coordinate ∆1 is the distance to the path d(v, P).
• The second coordinate ∆2 is the distance d(v, r ) to the end-

point of the path, called its “root”.

1
In fact, we use different dimensions for each connected components.
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Figure 1: A shortest path P , rooted at r , partitions cluster X into clusters C1 and C2. In cases (a) and (b), the first coordinate (the distance to
P ) provides sufficient contribution. In case (c) the second coordinate (the distance to root r ) provides the contribution.

v

r

∆1 = d(v, P )
∆2

= d(v, r
)

P

Figure 2:An illustration of our initial attempt. The first coordinate
∆1 is the distance to the pathd (v, P ). The second coordinate∆2 is the
distance d (v, r ) to the endpoint of the path, called its “root”.

Unfortunately, this embedding may have unbounded expansion:

If two vertices u,v are separated by some shortest path, in future

iterations v may have a large distance to the root of a path P in its

component, while u has zero in that coordinate (because it’s not

in that component), incurring a large stretch. The natural fix is to

enforce a Lipschitz condition on every coordinate: for v in cluster

X , we truncate the value v can receive at O(dG (v,V \ X )). I.e., a
vertex close to the boundary of X cannot get a large value. Using

the fact that the SPD has depth k , each vertex will have only O(k)
nonzero coordinates, which implies expansion O(k1/p ).

To bound the contraction, for each pair u,v we consider the first
path P in the SPD that lies “close” to {u,v} or separates them to

different connected components. Then we show that at least one of

the two coordinates should give sufficient contribution.

But what about the effect of truncation on contraction? A careful

recursive argument shows that the contribution to u,v from the

first coordinate (the distance from the path P ) is essentially not

affected by this truncation. Hence the argument in cases (a) and (b)

of Figure 1 still works. However, the argument using the distance to

the root of P , case (c), can be ruined. Solving this issue requires some

new non-trivial ideas. Our solution is to introduce a probabilistic

sawtooth function that replaces the simple truncation. The main

technical part of the paper is devoted to showing that a collection

of these functions for all possible distance scales, with appropriate

random shifts, suffices to control the expected contraction in case

(c), for all relevant pairs simultaneously.

1.3 Other Related Work
There has been work on embedding several other graph families

into normed spaces: Chekuri et al. [13] extend the Okamura and

Seymour bound for outerplanar graphs tok-outerplanar graphs, and

showed that these embed into ℓ1 with distortion 2
O (k )

. Rao [32] (see

also [22]) embed planar graphs into ℓp with distortion O(log1/p n).
For graphs with genus д, [25] showed an embedding into Euclidean

space with distortion O(logд +
√
logn). Finally, for H -minor-free

graphs, combining the results of [4, 22] give ℓp -embeddings with

O(|H |1−1/p log1/p n) distortion.
Following [5, 29], the idea of using geodesic shortest paths to

decompose the graph has been used for many algorithmic tasks:

MPLS routing [15], directed connectivity, distance labels and com-

pact routing [34], object location [3], and nearest neighbor search

[2]. However, to the best of our knowledge, this is the first time it

has been used directly for low-distortion embeddings into normed

spaces.

2 PRELIMINARIES AND NOTATION
For k ∈ Z, let [k] := {1, . . . ,k}. For p ≥ 1, the ℓp -norm of a

vector x = (x1, . . . ,xd ) ∈ Rd is ∥x ∥p := (∑d
i=1 |xi |p )1/p , where

∥x ∥∞ := maxi |xi |.
Doubling dimension. The doubling dimension of a metric is a

measure of its local “growth rate”. Formally, a metric space (X ,d)
has doubling dimension λX if for every x ∈ X and radius r , the ball

B(x , r ) can be covered by 2
λX

balls of radius
r
2
. A family is doubling

if the doubling dimension of all metrics in it is bounded by some

universal constant.

Graphs. We consider connected undirected graphs G = (V ,E)
with edge weightsw : E → R>0. Let dG denote the shortest path

metric in G; we drop subscripts when there is no ambiguity. For a

vertex x ∈ V and a setA ⊆ V , let dG (x ,A) := mina∈A d(x ,a), where
dG (x , ∅) := ∞. For a subset of vertices A ⊆ V , let G[A] denote the
induced graph onA, and let dA := dG[A] be the shortest path metric

in the induced graph. Let G \ A := G[V \ A] be the graph after

deleting the vertex set A from G.
Special graph families. Given a graph G = (V ,E), a tree decom-

position of G is a tree T with nodes B1, . . . ,Bs (called bags) where
each Bi is a subset of V such that the following properties hold:

• For every edge {u,v} ∈ E, there is a bag Bi containing both

u and v .
• For every vertex v ∈ V , the set of bags containing v form a

connected subtree of T .
The width of a tree decomposition is maxi {|Bi | − 1}. The treewidth
of G is the minimal width of a tree decomposition of G.

A path decomposition ofG is a special kind of tree decomposition

where the underlying tree is a path. The pathwidth of G is the

minimal width of a path decomposition of G.
A graph H is a minor of a graphG if we can obtain H fromG by

edge deletions/contractions, and vertex deletions. A graph family

G is H -minor-free if no graph G ∈ G has H as a minor.
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2.1 The Sawtooth Function
Another component in our embeddings will be the following saw-

tooth function. For t ∈ N, we define дt : R+ → R the sawtooth
function w.r.t. 2

t
as follows. For x ≥ 0, if qx := ⌊x/2t+1⌋ then

дt (x) = 2
t −

���x −
(
qx · 2t+1 + 2t

)��� .
2t

0 2t+1 2 · 2t+1 3 · 2t+1 4 · 2t+1 5 · 2t+1

x1

x2

x3

Figure 3: The graph of the “sawtooth” function дt . The points x1 =
5 · 2t−1 and x3 = 15 · 2t−1 are mapped to 2

t−1, while x2 = 10 · 2t−1 is
mapped to 2

t .

The following observation is straightforward.

Observation 1. The Sawtooth function дt is 1-Lipschitz, bounded
by 2

t , periodic with period 2t+1.

The proof of the following lemma appears in Section 7.

Lemma 2.1 (Sawtooth Lemma). Let x ,y ∈ R+. Let α ∈ [0, 1],
β ∈ [0, 4] be drawn uniformly and independently. The following
properties hold:

(1) Eα,β
[
дt (βx + α · 2t+1)

]
= 2

t−1.
(2) If |x − y | ≤ 2

t−1, then
Eα,β

[��дt (βx + α · 2t+1) − дt (βy + α · 2t+1)
��] = Ω(|x − y |).

(3) If |x − y | > 2
t−1, then

Eα,β
[��дt (βx + α · 2t+1) − дt (βy + α · 2t+1)

��] = Ω(2t ).

3 SHORTEST PATH DECOMPOSITIONS
Our embeddings will crucially depend on the notion of shortest

path decompositions. In the introduction we provided a recursive

definition for SPD. Here we show an equivalent definition which

will be more suitable for our purposes.

Definition 3.1 (Shortest Path Decomposition (SPD)). Given aweighted
graph G = (V ,E,w), a SPD of depth k is a pair {X,P}, where X
is a collection X1, . . . ,Xk of partial partitions of V 2

, and P is a

collection of sets of paths P1, . . . ,Pk , where X1 = {V }, Xk = Pk ,
and the following properties hold:

(1) For every 1 ≤ i ≤ k and every subset X ∈ Xi , there exist
a unique path PX ∈ Pi such that PX is a shortest path in

G[X ].
(2) For every 2 ≤ i ≤ k ,Xi consists of all connected components

of G[X \ PX ] over all X ∈ Xi−1.

In other words,

⋃k
i=1 Pk is a partition of V into paths, where

each path PX is a shortest path in the component X it belongs to at

the point it is deleted.

For a given graph G let SPDdepth(G) be the minimum k such

that G admits an SPD of depth k . For a given family of graphs G
2
i.e. for every X ∈ Xi , X ⊆ V , and for every different subsets X , X ′ ∈ Xi , X ∩X ′ =
∅.

let SPDdepth(G) := maxG ∈G{SPDdepth(G)}. In the following we

consider the SPDdepth of some graph families.

3.1 The SPD Depth for Various Graph Families
One advantage of defining the shortest path decomposition is that

several well-known graph families have bounded depth SPD.

• Pathwidth. Every graph G = (V ,E,w) with pathwidth k has

an SPDdepth of k+1. Indeed, let T = ⟨B1, . . . ,Bs ⟩ be a path
decomposition ofG , whereB1,Bs are the two bags at the end

of this path. Choose arbitrary vertices x ∈ B1 and y ∈ Bs ,

and let P be a shortest path inG from x toy. By the definition
of a path decomposition, the path P contains at least one

vertex from every bag Bi . Hence, deleting the vertices of P
would reduce the size of each bag by one; consequently each

connected component of G \ P has pathwidth k − 1, and by

induction SPDdepth k . Finally, a connected component of

pathwidth 0 is necessarily a singleton, which has SPDdepth

1.

• Treewidth. Since every tree has pathwidth O(logn), we
can show that an n-vertex treewidth-k graph has path-

widthO(k logn). Hence, treewidth-k graphs have SPDdepth

O(k logn).
• Planar.Using cycle separators [29] as in [15, 34], every planar
graph has SPDdepth O(logn); this follows as each cycle

separator can be constructed as union of two shortest paths.

• Minor-free. Finally, every H -minor-free graph admits a bal-

anced separator consisting of д(H ) shortest paths (for some

function д) [3], and hence has an SPDdepth O(д(H ) · logn).

Combining these observation with Theorem 1.2, we get the fol-

lowing set of results:

Corollary 3.2. Consider an n-vertex weighted graph G, Theo-
rem 1.2 implies the following:

• IfG has pathwidth k , it embeds into ℓp with distortionO(k1/p ).
• If G has treewidth k , it embeds into ℓp with distortion
O((k logn)1/p ).

• If G is planar, it embeds into ℓp with distortion O(log1/p n).
• For every fixed H , if G excludes H as a minor, it embeds into
ℓp with distortion O(log1/p n), where the constant in the big-O
depends on H .

As mentioned in Section 1, we get a substantial improvement

for the pathwidth case. Our result for treewidth improves upon

that from [22] for p > 2; they got O(k1−1/p (logn)1/p ) distortion
compared to our O((k logn)1/p ). Our result appears to be closer to

the truth, since the distortion tends to O(1) as p → ∞.

Finally, our results for planar graphs match the current state-of-

the-art.

Our results for minor-free graphs depend on the Robertson-

Seymour decomposition, and hence are currently better only for

large values of p. (It remains an open question to improve the

SPDdepth of H -minor-free graphs to have a poly(|H |) logn depen-

dence, perhaps using the ideas from [4].) In general, we hope that

our results will be useful in getting other embedding results, and

will spur further work on understanding shortest path separators.
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4 THE EMBEDDING ALGORITHM
Let G = (V ,E) be a weighted graph, and let {X,P} =

{{X1, , . . . ,Xk } , {P1, . . . ,Pk }} be an SPD of depth k for G. By
scaling, we can assume that the minimum weight of an edge is 1;

let M ∈ N be the minimal such that the diameter of G is strictly

bounded by 2
M
. Pick α ∈ [0, 1] and β ∈ [0, 4] uniformly and inde-

pendently.

For every i ∈ [k], and X ∈ Xi , we now construct an embedding

fX : V → RD (for some number of dimensions D ∈ N). This map

fX consists of two parts.

First coordinate: Distance to the Path. The first coordinate of the
embedding implements the distance to the path PX , and is denoted

by f
path

X . Let X1, . . . ,Xs ∈ Xi+1 be the connected components of

G [X \ PX ] (note that it is also possible that s = 0). We use a separate

coordinate for each X j , and hence f
path

X : V → Rs . Moreover, for

v ∈ X we truncate at 2dG (v,V \X ) in order to guarantee Lipschitz-

ness. In particular, the coordinate corresponding to X j is set to(
f
path

X

)
X j

(v) =
{
min {dX (v, PX ), 2dG (v,V \ X )} if v ∈ X j ,

0 otherwise.

See Figure 4 for an illustration.

3 27
3

2

X1

X2

PX

(0, 0)

(6, 0)

(0, 0)

(0, 0)

(7, 0)

(2, 0)

(0, 3)
(0, 4)

(0, 0)

Figure 4: The set X ∈ Xi surrounded by a closed curve. The path PX
partitions X into X1, X2 ∈ Xi+1. The embedding f pathX consists of two
coordinates, and represented in the figure by a horizontal vector next
to each vertex, where the first entry is w.r.t. X1 and the second w.r.t.
X2. Each point on PX , or not in X maps to 0 in both the coordinates.
Each point inX1 maps tomin {dX (v, PX ) , 2dG (v, V \ X )} in the first
coordinate and to 0 in the second.

Second coordinate: Distance to the Root. The second part is de-

noted f rootX , which is intended to capture the distance from the

root r of the path. Again, to get the Lipschitz-ness, we would like to

truncate the value at 2dG (v,V \ X ) as we did for f
path

X . However,

a problem with this idea is that the root r can be arbitrarily far

from some pair u,v that needs contribution from this coordinate.

And hence, even if |dG (u, r ) −dG (v, r )| ≈ dG (u,v), there may be no

contribution after the truncation. So we use the sawtooth function.

Specifically, we replace the ideal contribution dG (v, r ) by the

sawtooth function дt (dG (v, r )), where the scale t for the function
is chosen such that 2

t ≈ dG (v,V \ X ). To avoid the case that two

nearby points use two different scales (and hence to guarantee

Lipschitz-ness), we take an appropriate linear combination of the

two distance scales closest to 2dG (v,V \X ). Recall that the sawtooth
function does not guarantee contribution for u,v due to its period-

icity: we may be unlucky and have дt (dG (v, r )) = дt (dG (u, r )) even
when dG (v, r ) and dG (u, r ) are very different. To guarantee a large

enough contribution for all relevant pairs simultaneously, we add a

random shift α , and apply a random “stretch” β to dG (v, r ) before
feeding it to дt . Lemma 2.1 then shows that many of the choices of

α and β give substantially different values for u,v .
Formally, the mapping is as follows. The function f rootX consists

ofM + 1 coordinates, one for each distance scale t ∈ {0, 1, . . . ,M}.
The coordinate corresponding to t is denoted by f rootX ,t . Let r be an

arbitrary endpoint of PX ; we will call r the “root” of PX . Let tv ∈ N
be such that 2dG (v,V \X ) ∈ [2tv , 2tv+1). Set λv = 2dG (v,V \X )−2tv

2
tv .

Note that 0 ≤ λv < 1. For v ∈ X , we define

f rootX ,t (v) =


λv · дt (β · dX (v, r ) + α · 2t+1) if t = tv + 1,

(1 − λv ) · дt (β · dX (v, r ) + α · 2t+1) if t = tv ,

0 otherwise.

(1)

For all nodes v < X , we set f rootX (v) = ®0.
Define the map fX = f

path

X ⊕ f rootX , and the final embedding is

f =
k⊕
i=1

⊕
X ∈Xi

fX ,

i.e., the concatenation of all the constructed embeddings. Before

we start the analysis, let us record some simple observations.

Observation 2. For the map f defined above, the following hold:
• The number of coordinates in f does not depend on α , β .
• For every X ∈ Xi and v < X , the map fX (v) is the constant
vector ®0.

• For everyX ∈ Xi andv ∈ X , the map fX is nonzero in at most
3 coordinates.

Hence, since Xi is a partial partition of V and the depth of the SPD
is k , we get that f (v) is nonzero in at most 3k coordinates for each
v ∈ V .

5 THE ANALYSIS
The main technical lemmas now show that the per-coordinate ex-

pansion is constant, and that for every pair, there exists a coordinate

for which the expected contraction is constant.

Lemma 5.1 (Expansion Bound). For any vertices u,v , every co-
ordinate j, and every choice of α , β ,��fj (v) − fj (u)

�� = O(dG (u,v)).
Lemma 5.2 (Contraction Bound). For any vertices u,v , there

exists some coordinate j such that

Eα,β
[��fj (v) − fj (u)

��] = Ω(dG (u,v)).
Given these two lemmas, we can combine them together to

show that the entire embedding has small distortion. (Proof of the

composition lemma can be found in Section 6.)

Lemma 5.3 (Composition Lemma). Let (X ,d) be a metric space.
Suppose that there are constants ρ,τ and a function f : X → Rs ,
drawn from some probability space such that:

956



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Ittai Abraham, Arnold Filtser, Anupam Gupta, Ofer Neiman

(1) For everyu,v ∈ X and every j ∈ [s], | fj (v)−fj (u)| ≤ ρ ·d(v,u).

(2) For every u,v ∈ X , there exists j ∈ [s] such that E[ | fj (v) −
fj (u)| ] ≥ 1

τ · d(v,u).
(3) For every v ∈ X , there is a subset of indices Iv ⊆ [s] of size

|Iv | ≤ k , such that for every j < Iv , fj (v) = 0. In other words,
for every v ∈ X , f (v) has support of size at most k .

Then, for every p ≥ 1, there is an embedding of (X ,d) into ℓp with
distortionO(k1/p ). Moreover, if there is an efficient algorithm for sam-
pling such an f , then there is a randomized algorithm that constructs
the embedding efficiently (in expectation).

Now Theorem 1.2, our embedding for graphs with low depth

SPDs, immediately follows by applying the Composition Lemma

(Lemma 5.3) to Lemma 5.1, Lemma 5.2, and Observation 2.

5.1 Proof of Lemma 5.1
In this section we bound the expansion of any coordinate in our em-

bedding. Recall that the embedding of v lying in some component

X consists of two sets of coordinates: its distance from the path, and

its distance from the root. As mentioned in the introduction, since

points outside X are mapped to zero, maintaining Lipschitz-ness

requires us to truncate the contribution of v of any coordinate to

its distance from the boundary. This truncation (either via taking a

minimum with dG (v,V \ X ), or via the sawtooth function), means

that our proofs of expansion require more care. Let us now give

the details.

Consider any level i , any setX ∈ Xi , and any pair of verticesu,v .
It suffices to show that ∥ fX (v) − fX (u)∥∞ = O(dG (u,v)). To begin,

we may assume that both u,v ∈ X . Indeed, if both u,v < X , then

fX (v) = fX (u) = ®0 and we are done. If one of them, say v belongs

to X while the other u < X , then fX (u) = ®0 while fX (v) is bounded
by 2

tv+1 ≤ 4dG (v,V \ X ) ≤ 4dG (u,v) in each coordinate.

Moreover, we may also assume that the shortest u-v path in G
contains only vertices from X . Indeed, suppose their shortest path

in G uses vertices from V \ X , then dG (u,V \ X ) + dG (v,V \ X ) ≤
dG (u,v). But since both fX (v), fX (u) are bounded in each coor-

dinate by 4 · max {dG (u,V \ X ),dG (v,V \ X )}, we have constant
expansion. Henceforth, we can assume thatdG (u,v) = dX (u,v). We

now bound the expansion in each of the two parts of fX separately.

Expansion of f pathX . Let Xv ,Xu be the connected components

in G [X \ PX ] such that v ∈ Xv and u ∈ Xu . Consider the first case
Xv , Xu , then PX intersects the shortest path between v and u. In
particular,

∥ f pathX (v) − f
path

X (u)∥∞
≤ min {dX (v, PX ) , 2dG (v,V \ X )}

+min {dX (u, PX ) , 2dG (u,V \ X )}
≤ dX (v, PX ) + dX (u, PX ) ≤ dX (v,u) = dG (v,u) .

Otherwise, Xv = Xu and the two vertices

lie in the same component. Now ∥ f pathX (v) −
f
path

X (u)∥∞ equals

��
min {dX (v, PX ) , 2dG (v,V \ X )} −

min {dX (u, PX ) , 2dG (u,V \ X )}
��
. Assuming (without loss of

generality) that the first term is at least the second, we can drop the

absolute value signs. Now the bound on the expansion follows from

a simple case analysis. Indeed, suppose dX (u, PX ) ≤ 2dG (u,V \ X ).
Then we get

∥ f pathX (v) − f
path

X (u)∥∞
= min {dX (v, PX ) , 2dG (v,V \ X )} − dX (u, PX )
≤ dX (v, PX ) − dX (u, PX ) ≤ dX (u,v) = dG (u,v).

The other case is that dX (u, PX ) > 2dG (u,V \ X ), and then

∥ f pathX (v) − f
path

X (u)∥∞
= min {dX (v, PX ) , 2dG (v,V \ X )} − 2dG (u,V \ X )
≤ 2dG (v,V \ X ) − 2dG (u,V \ X ) ≤ 2dG (u,v).

Hence the expansion is bounded by 2.

Expansion of f rootX . Let r be the root of PX . For t ∈
{0, 1, . . . ,M}, let pt (respectively, qt ) be the “weight” of v (respec-

tively, u) on дt—in other words, pt is the constant in (1) such that

f rootX ,t (v) = pt ·дt (β ·dX (v, r )+α ·2
t+1). Note thatpt ∈ {0, λv , 1−λv }

is chosen deterministically, and is nonzero for at most two indices

t .
First, observe that for every t ,���f rootX ,t (v) − f rootX ,t (u)

���
=

���pt · дt (β · dX (v, r ) + α · 2t+1)

− qt · дt (β · dX (u, r ) + α · 2t+1)
���

≤ min {pt ,qt } ·
���дt (β · dX (v, r ) + α · 2t+1)

− дt (β · dX (u, r ) + α · 2t+1)
��� + |pt − qt | · 2t

≤ min {pt ,qt } · β · |dX (v, r ) − dX (u, r )| + |pt − qt | · 2t

≤ O(dG (u,v)) + |pt − qt | · 2t . (2)

The first inequality used that дt is bounded by 2
t
, and the second

inequality that дt is 1-Lipschitz; both follow from Observation 1.

The last inequality follows by the triangle inequality (since we

assumed that the shortest path from v to u is contained within X ).

Hence, it suffices to show that |pt − qt | = O(dG (u,v)/2t ). In-
deed, for indices t < {tu , tu + 1, tv , tv + 1}, pt = qt = 0, hence

|pt − qt | = 0. Let us consider the other cases. W.l.o.g., assume that

dG (v,V \ X ) ≥ dG (u,V \ X ) and hence tv ≥ tu .

• tu = tv : In this case,

��ptv − qtv
�� = |(1 − λv ) − (1 − λu )| =

λv − λu =
��ptv+1 − qtv+1

��
. Moreover, this quantity is

λv − λu =
2dG (v,V \ X ) − 2

t

2
t − 2dG (u,V \ X ) − 2

t

2
t

=
2 (dG (v,V \ X ) − dG (u,V \ X ))

2
t

≤ 2dG (u,v)
2
t .

Hence, we get that |pt − qt | = O(dG (u,v)/2t ) for both t ∈
{tv , tv + 1}.
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• tu = tv − 1 : It holds that

λv + (1 − λu )

≤ 2 · 2dG (v,V \ X ) − 2
tv

2
tv

+
2
tu+1 − 2dG (u,V \ X )

2
tu

=
2dG (v,V \ X ) − 2dG (u,V \ X )

2
tu

≤ 2dG (u,v)
2
tu

.

If we define χ := λv + (1 − λu ), we conclude that��ptv+1 − qtv+1
�� = λv ≤ χ = O(dG (u,v)/2tv+1)��ptv − qtv

�� = |1 − λv − λu | ≤ χ = O(dG (u,v)/2tv )��ptu − qtu
�� = 1 − λu ≤ χ = O(dG (u,v)/2tu )

• tu < tv − 1 : By the definition of tv and tu , 2dG (v,u) ≥
2 (dG (v,V \ X ) − dG (u,V \ X )) ≥ 2

tv − 2
tu+1 ≥ 2

tv−1
.

In particular, for every t ≤ tv + 1,

|pt − qt | ≤ 1 ≤ 2dG (u,v)
2
tv −1 = O

(
dG (u,v)

2
t

)
.

5.2 Bounding the Contraction: Proof of
Lemma 5.2

Recall that we want to prove that for any pair u,v of vertices, the

embedding has a large contribution between them. A natural proof

idea is to show that vertices u,v would eventually be separated by

the recursive procedure. When they are separated, either one ofu,v
is far from the separating path P , or they both lie close to the path.

In the former case, the distance d(v, P) gives a large contribution
to the embedding distance, and in the latter case the distance from

one end of the path (the “root”) gives a large contribution.

However, there’s a catch: the value of the v’s embedding in

any single coordinate cannot be more than v’s distance to the

boundary, and this causes problems. Indeed, if u,v fall very close

to the path P at some step of the algorithm, they must get most

of their contribution at this level, since future levels will not give

much contribution. How can we do it, without assigning large

values? This is where we use the sawtooth function: it gives a good

contribution between points without assigning any vertex too large

a value in any coordinate.

Formally, to bound the contraction and prove Lemma 5.2, for

nodes u,v we need to show that there exists a coordinate j such
that Eα,β [| fj (v) − fj (u)|] = Ω(dG (u,v)). For brevity, define

∆uv := dG (u,v). (3)

Fix c = 12. Let i be the minimal index such that there exists

X ∈ Xi with u,v ∈ X , and at least one of the following holds:

(1) min {dX (v, PX ),dX (u, PX )} ≤ ∆uv/c (i.e., we choose a path
close to {v,u}).

(2) v and u are in different components of X \ PX .
Note that such an index i indeed exists: if v and u are separated by

the SPD then condition (2) holds. The only other possibility that v
andu are never separated is when at least one of them lies on one of

the shortest paths. In such a case, surely condition (1) holds. By the

minimality of i , for every X ′ ∈ Xi′ such that i ′ < i and u,v ∈ X ′
,

necessarily min{dX ′(v, PX ′),dX ′(u, PX ′)} > ∆uv/c . Therefore, the
ball with radius ∆uv/c around each of v,u is contained in X . In
particular, min {dG (v,V \ X ),dG (u,V \ X )} > ∆uv/c .

Suppose first that (2) occurs but not (1). Let j be the coordinate

in f
path

X created for the connected component of v in X \ PX . Then���(f pathX )j (v) − (f pathX )j (u)
���

= min {dX (v, PX ) , 2dG (v,V \ X )} − 0

≥ min

{
∆uv
c
, 2

∆uv
c

}
=

∆uv
c
.

Next assume that (1) occurs. W.l.o.g., dX (v, PX ) ≤ dX (u, PX ), so
that dX (v, PX ) ≤ ∆uv/c . Suppose first that dX (u, PX ) ≥ 2∆uv/c .
Then in the coordinate j in f

path

X created for the connected compo-

nent of u in X \ PX , we have���(f pathX )j (v) − (f pathX )j (u)
���

≥
���min {dX (u, PX ) , 2dG (u,V \ X )}

−min {dX (v, PX ) , 2dG (v,V \ X )}
���

≥ min

{
2

∆uv
c
, 2

∆uv
c

}
− ∆uv

c
=

∆uv
c
.

(It does not matter whether v , u are in the same connected com-

ponent or not.) Thus it remains to consider the case dX (u, PX ) <
2∆uv/c . Let r be the root of PX . Let v

′
(resp. u ′) be the closest

vertex on PX to v (resp. u) inG[X ]. Then by the triangle inequality

dX (v ′,u ′) ≥ dX (v,u) − dX (v,v ′) − dX (u,u ′) ≥
c − 3

c
∆uv .

In particular,

|dX (v, r ) − dX (u, r )|
≥

��dX (v ′, r ) − dX (u ′, r )
�� − dX (v,v ′) − dX (u,u ′)

≥ c − 6

c
∆uv =

1

2

∆uv , (4)

where we used that PX is a shortest path in G[X ] (implying

|dX (v ′, r ) − dX (u ′, r )| = dX (v ′,u ′)). See Figure 5 for illustration.

r

u

u′

v

v′
PX

∆uv2∆uv

c ≥ ∆uv

c ≥

Figure 5: PX is a shortest path with root r . v (resp. u) is at dis-
tance at most ∆uv

c (resp. 2∆uv
c ) from v ′ (resp u′), it’s closest ver-

tex on PX . By triangle inequality dX (v ′, u′) ≥ (1 − 3

c )∆uv . As
u′, v ′ lay on the same shortest path starting at r , |dX (v ′, r ) −
dX (u′, r ) | = dX (v ′, u′). Using the triangle inequality again we con-
clude |dX (v, r ) − dX (u, r ) | ≥ |dX (v ′, r ) − dX (u′, r ) | − 3

c ∆uv ≥ (1 −
6

c )∆uv .

Set x = dX (v, r ) and y = dX (u, r ). Assume first that

dG (v,V \ X ) ≥ dG (u,V \ X ). In particular, tv ≥ tu . By the def-

inition of tv , 2dG (v,V \ X ) ≤ 2
tv+1

. Thus

2
tv ≥ ∆uv

c
= Ω(∆uv ) (5)
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Claim 1. Let t ≥ tv , then there is a constant ϕ such that

Eα,β
[��дt (β · x + α · 2t+1) − дt (β · y + α · 2t+1)

��] ≥ ∆uv/ϕ .

Proof. If |x − y | ≤ 2
t−1

, then using Property 2 of Lemma 2.1

Eα,β
[��дt (β · x + α · 2t+1) − дt (β · y + α · 2t+1)

��]
= Ω (|x − y |) (4)

= Ω(∆uv ) .

Otherwise, using

Eα,β
[��дt (β · x + α · 2t+1) − дt (β · y + α · 2t+1)

��]
= Ω

(
2
t ) (5)

≥ Ω(∆uv ) . □

Set S = max

{
8ϕ, 8c

2

}
. We consider two cases:

• If for some t ∈ {0, 1, . . . ,M}, |pt − qt | · 2t > ∆uv
S , then

Eα,β

[���f rootX ,t (v) − f rootX ,t (u)
���]

= Eα,β
[��pt · дt (β · x + α · 2t+1) − qt · дt (β · y + α · 2t+1)

��]
≥

���pt · Eα,β [
дt (β · x + α · 2t+1)

] ���
− qt · Eα,β

[
дt (β · y + α · 2t+1)

]
= |pt − qt | · 2t = Ω(∆uv ) .

Where the equality follows by Property 1 of Lemma 2.1.

• The other case is that for every t , |pt − qt | · 2t ≤ ∆uv
S . Note

thatptv+ptv+1 = (1−λv )+λv = 1. Let t ∈ {tv , tv+1} be such
that pt ≥ 1

2
. Using (5), qt ≥ pt − ∆uv

2
tv ·S ≥ 1

2
− 2c

2∆uv
· ∆uvS ≥ 1

4
.

In particular,

Eα,β

[���f rootX ,t (v) − f rootX ,t (u)
���]

= Eα,β
[��pt · дt (β · x + α · 2t+1) − qt · дt (β · y + α · 2t+1)

��]
≥ min {pt ,qt } · Eα,β

[���дt (β · x + α · 2t+1)

− дt (β · y + α · 2t+1)
���] − |pt − qt | · 2t

≥ 1

4

· ∆uv
ϕ

− ∆uv
S
= Ω(∆uv ) ,

where in the first inequality we used Property 1 of Lemma 2.1,

and in the second inequality we used Claim 1.

Finally, recall that we assumed dG (v,V \ X ) ≥ dG (u,V \ X ) for
the proof above. The other case (dG (v,V \ X ) < dG (u,V \ X )) is
completely symmetric.

6 PROOF OF
THE COMPOSITION LEMMA (5.3)

We restate the lemma for convenience:

Lemma 5.3 (Composition Lemma). Let (X ,d) be a metric space.
Suppose that there are constants ρ,τ and a function f : X → Rs ,
drawn from some probability space such that:

(1) For every u,v ∈ X and every j ∈ [s], | fj (v) − fj (u)| ≤ ρ ·
d(v,u).

(2) For every u,v ∈ X , there exists j ∈ [s] such that E[ | fj (v) −
fj (u)| ] ≥ 1

τ · d(v,u).

(3) For every v ∈ X , there is a subset of indices Iv ⊆ [s] of size
|Iv | ≤ k , such that for every j < Iv , fj (v) = 0. In other words,
for every v ∈ X , f (v) has support of size at most k .

Then, for every p ≥ 1, there is an embedding of (X ,d) into ℓp with
distortionO(k1/p ). Moreover, if there is an efficient algorithm for sam-
pling such an f , then there is a randomized algorithm that constructs
the embedding efficiently (in expectation).

Proof. Fix n = |X |, and set m = 48ρτ · lnn. Let

f (1), f (2), . . . , f (m)
: X → Rs be functions chosen i.i.d accord-

ing to the given distribution. Set д = m−1/p ⊕m
i=1 f

(i)
. We argue

that with high probability, д has distortion O(k1/p ) in ℓp .
Fix some pair of vertices v,u ∈ V . Set d(v,u) = ∆. The upper

bound follows from Property 1 and Property 3 of the lemma:

∥д(v) − д(u)∥pp =
m∑
i=1

∑
j ∈Iv∪Iu

(
m−1/p ·

���f (i)j (v) − f
(i)
j (u)

���)p
≤

m∑
i=1

∑
j ∈Iv∪Iu

1

m
· (ρ · ∆)p ≤ 2k · (ρ · ∆)p ,

thus ∥д(v) − д(u)∥p ≤ O(k1/p · ∆).
Next, for the contraction bound, let j be the index of Property 2

w.r.t v,u. Set F = { f :

��fj (v) − fj (u)
�� ≥ ∆/2τ } to be the event

that we draw a function with significant contribution to v,u. Then
using Property 1 and Property 2,

∆

τ
≤ E

[��fj (v) − fj (u)
��]

≤ Pr

[
F
]
· ∆

2τ
+ Pr [F] · ρ∆ ≤ ∆

2τ
+ Pr [F] · ρ∆ ,

which implies that Pr [F] ≥ 1

2ρτ . Let Q
(i)
u,v be an indicator random

variable for the event f (i) ∈ F, and set Qu,v =
∑m
i=1Q

(i)
u,v . By

linearity of expectation, E[Qu,v ] ≥ m
2ρτ = 24 · lnn. By a Chernoff

bound

Pr

[
Qu,v ≤ 12 · lnn

]
≤ Pr

[
Qu,v ≤ 1

2

· E
[
Qu,v

] ]
≤ exp(−1

8

E
[
Qu,v

]
)

≤ exp(−3 lnn) = n−3 .

By taking a union bound over the

(n
2

)
pairs, with probability at least

1 − 1

n , for every u,v ∈ V , Qu,v > 12 lnn = Ω(m). (Recall that both
ρ,τ are universal constants.) If this event indeed occurs, then the

contraction is indeed bounded:

∥д(v) − д(u)∥pp ≥
m∑
i=1

(
m−1/p ·

���f (i)j (v) − f
(i)
j (u)

���)p
≥ 1

m

∑
i :Q (i )

u,v=1

���f (i)j (v) − f
(i)
j (u)

���p
≥

Qu,v

m
·
(
∆

2ρτ

)p
= Ω

((
∆

2ρτ

)p )
.

In particular, for every u,v , ∥д(v) − д(u)∥p ≥ Ω(∆). □
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2t

2t+1

2t 2t

2t2t2t

2t+1 2t+1

2t+12t+12t+1 2t+1

2t

α = 0 α = 2t − z α = 2t − z
2

α = 2t α = 2t+1 − z α = 2t+1 − z
2 α = 2t+1

Figure 6: α is going from 0 to 2
t+1. z ≤ 2

t . In each of the figures the leftmost red point represents α while the rightmost red point represents
z + α . Each of the middle figures represent a moment when дt (z + α ) − дt (z) changes its derivative.

7 PROOF OF THE SAWTOOTH LEMMA (2.1)
We restate Lemma 2.1 for convenience:

Lemma 2.1 (Sawtooth Lemma). Let x ,y ∈ R+. Let α ∈ [0, 1],
β ∈ [0, 4] be drawn uniformly and independently. The following
properties hold:

(1) Eα,β
[
дt (βx + α · 2t+1)

]
= 2

t−1.
(2) If |x − y | ≤ 2

t−1, then
Eα,β

[��дt (βx + α · 2t+1) − дt (βy + α · 2t+1)
��] = Ω(|x − y |).

(3) If |x − y | > 2
t−1, then

Eα,β
[��дt (βx + α · 2t+1) − дt (βy + α · 2t+1)

��] = Ω(2t ).

Property 1 is straightforward, as by Observation 1 дt is

periodic with period length 2
t+1

. Indeed, for every fixed β ,
Eα

[
дt (βx + α · 2t+1)

]
= Eα

[
дt (α · 2t+1)

]
= 2

t−1
. The following

claim will be useful in the proofs of Property 2 and Property 3.

Claim 2. For z ∈ [0, 2t+1],
Eα ∈[0,1]

[��дt (z + α · 2t+1) − дt (α · 2t+1)
��] = (2t+1−z)z

2
t+1 .

Proof. Set (∗) = Eα ∈[0,1]
[��дt (z + α · 2t+1) − дt (α · 2t+1)

��]
.

By substituting the variable of integration, (∗) = 1

2
t+1 ·∫

2
t+1

0
|дt (z + α) − дt (α)| dα . First assume that z ≤ 2

t
, then there

are 5 “phase changes” in |дt (z + α) − дt (α)| from 0 to 2
t+1

, at

2
t − z, 2t − z

2
, 2t , 2t+1 − z, 2t+1 − z

2
. (see Figure 6 for illustration).

We calculate

2
t+1 · (∗) =

∫
2
t−z

0

zdα +

∫ z
2

0

(z − 2α)dα +
∫ z

2

0

2αdα

+

∫
2
t−z

0

zdα +

∫ z
2

0

(z − 2α)dα +
∫ z

2

0

2αdα

= 2 ·
∫

2
t−z

0

zdα + 2 ·
∫ z

2

0

zdα =
(
2
t+1 − z

)
z .

For z > 2
t
, setw = 2

t+1 − z. Then using that дt is periodic,

Eα ∈[0,1]
[��дt (w + α · 2t+1) − дt (α · 2t+1)

��]
= Eα ∈[0,1]

[��дt (w + z + α · 2t+1) − дt (z + α · 2t+1)
��]

= Eα ∈[0,1]
[��дt (2t+1 + α · 2t+1) − дt (z + α · 2t+1)

��]
= Eα ∈[0,1]

[��дt (z + α · 2t+1) − дt (α · 2t+1)
��] .

Hence by the first case, (∗) = (2t+1−w)w
2
t+1 =

(2t+1−z)z
2
t+1 . □

For the proofs of Property 2 and Property 3

assume w.l.o.g x > y. Set z = x − y, and

(∗) = Eα,β
[��дt (βx + α · 2t+1) − дt (βy + α · 2t+1)

��]
.

As дt is a periodic function, we have that (∗) =

Eβ
[
Eα

[��дt (βz + α · 2t+1) − дt (α · 2t+1)
��] ]

.

Proof of Property 2. Using Claim 2, we have

(∗) = Eβ

[ (
2
t+1 − βz

)
βz

2
t+1

]
=

1

2
t+1 · 1

4

·
(
2
t+1z

2

β2 − z2

3

· β3 |4
0

)
=

1

4

·
(
16

2

· z − z2

2
t+1 · 2

6

3

)
≥ 1

4

·
(
8 − 64

3 · 4

)
· z = 2

3

· |x − y | ,

where in the inequality we used that z ≤ 2
t−1

. □

Proof of Property 3. As дt is periodic func-

tion, Claim 2 implies that for every w ≥ 0 it

holds that Eα
[��дt (w + α · 2t+1) − дt (α · 2t+1)

��] =

(2t+1−(w mod 2
t+1))(w mod 2

t+1)
2
t+1 . Let a ∈ [0, 4] such that a ·z = 2

t+1
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(such a exists as |x − y | > 2
t−1

). The claim follows as,

(∗) · 2t+1

= Eβ ∈[0,4]
[(
2
t+1 − (βz mod 2

t+1)
)
(βz mod 2

t+1)
]

≥
⌊ 4

a ⌋−1∑
i=0

1

4

·
(i+1)a∫
ia

(
2
t+1 − (β · 2

t+1

a
mod 2

t+1)
)

· (β · 2
t+1

a
mod 2

t+1)dβ

=

⌊ 4

a ⌋−1∑
i=0

1

4

·
a∫

0

(
2
t+1 − β · 2

t+1

a

)
· β · 2

t+1

a
dβ

=

⌊
4

a

⌋
· 1
4

· a

2
t+1 ·

2
t+1∫
0

(
2
t+1 − γ

)
· γdγ

≥ 4

2a
· 1
4

· a

2
t+1 ·

(
2
t+1γ

2

2

− γ 3

3

|2t+1
0

)
=

1

2

· 1

2
t+1 ·

(
2
t+1)3
6

=

(
2
t+1)2
12

.

□

8 LOWER BOUND: PROOF OF THEOREM 1.3
We start with the definition of the diamond graphs Dk .

Definition 8.1 (Diamond Graphs). Let D0,D1,D2, . . . be a se-

quence of graphs defined as follows: D0 is a single edge, and for

i ≥ 1, Di is obtained from Di−1 by replacing every edge of Di−1
with a square with two new vertices. See Figure 7 for illustration.

For each of the new squares created at level i , call the two new

vertices a diagonal at level-i .
Consider the graph Dk . For 1 ≤ i ≤ k , denote by Di the set of

all level-i diagonals, and let Ei be the set of pairs of vertices which

were edges inDi . It holds that |Ek | = 4
k
and Dk = 4

k−1
. Moreover,

D0 has pathwidth 1, and it can be verified by induction that Dk
has pathwidth k + 1.

Newman and Rabinovich [30] proved that every embedding of

Dk into ℓ2 requires distortion
√
k + 1. Lee andNaor [23] generalized

it for 1 < p ≤ 2, by proving that every embedding of Dk into

ℓp requires distortion

√
1 + (p − 1)k . We will prove that for p ≥ 2,

every embedding ofDk into ℓp requires distortion at least

(
k+1
2
p−2

)1/p
.

The following claim will be essential.

Claim 3 (ℓp Quadrilateral Ineqality). For p ≥ 2, and every
four vectors a,b, c,d ∈ ℓp , it holds that

∥a − c ∥pp + ∥b − d ∥pp
≤ 2

p−2
(
∥a − b∥pp + ∥b − c ∥pp + ∥c − d ∥pp + ∥d − a∥pp

)
(6)

Proof. The proof of the following inequality can be found at

[11, Theorem 11.12],

∀x ,y ∈ ℓp , ∥x + y∥pp + ∥x − y∥pp ≤ 2
p−1

(
∥x ∥pp + ∥y∥pp

)
.

s t s

v

u

s

a1

t

t

a2

b1

d1

c2

b2

d2

c1

v

u

D2

D1D0

Figure 7: The first 3 diamond graphs. {s, t } is the level 0 di-
agonal, {u, v } is the level 1 diagonal, {a1, a2 }, {b1, b2 }, {c1, c2 },
{d1, d2 } are the level 2 diagonals. E0 = {{s, t }}, E1 =

{{s, u }, {t, u }, {t, v }, {s, v }} .

Define x1 = b − a, y1 = a − d and x2 = b − c, y2 = c − d . We get

∥b − d ∥pp + ∥b − 2a + d ∥pp ≤ 2
p−1

(
∥a − b∥pp + ∥d − a∥pp

)
.

∥b − d ∥pp + ∥b − 2c + d ∥pp ≤ 2
p−1

(
∥b − c ∥pp + ∥c − d ∥pp

)
.

By summing up and dividing by 2,

∥b − d ∥pp +
∥b − 2a + d ∥pp + ∥b − 2c + d ∥pp

2

≤ 2
p−2

(
∥a − b∥pp + ∥b − c ∥pp + ∥c − d ∥pp + ∥d − a∥pp

)
.

The claim now follows by convexity. □

Fix some p ≥ 2, and embedding f : Dk → ℓp . We will assume

w.l.o.g that f is non-contractive, and denote by ρ its expansion, i.e.

distortion. Set α0 =
1

2
k (p−2) and for i > 0, αi =

1

2
(k−i+1)(p−2) . Note

that for i ≥ 1, αi · 2p−2 = αi+1. Our proof will be based on the

following Poincaré-type inequality

Claim 4 (Diamond graph ℓp Poincaré-type ineqality).

k∑
i=0

αi ·
∑

{x,y }∈Di

∥ f (x) − f (y)∥pp

≤ αk+1 ·
∑

{x,y }∈Ek
∥ f (x) − f (y)∥pp . (7)
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Proof. For edge {x ,y} ∈ Ei−1, denote by {x ′,y′} ∈ Di the

diagonal created by it. We have∑
{x,y }∈Di

∥ f (x) − f (y)∥pp +
∑

{x,y }∈Ei−1
∥ f (x) − f (y)∥pp

=
∑

{x,y }∈Ei−1

(
∥ f (x) − f (y)∥pp +

f (
x ′

)
− f

(
y′

)p
p

)
(6)
≤ 2

p−2 ·
( ∑
{x,y }∈Ei−1

( f (x) − f
(
x ′

)p
p +

f (
x ′

)
− f (y)

p
p

+
f (y) − f

(
y′

)p
p +

f (
y′

)
− f (x)

p
p

))
= 2

p−2 ·
∑

{x,y }∈Ei
∥ f (x) − f (y)∥2

2
.

Summing over 1 ≤ i ≤ k’s, with appropriate scaling,

k∑
i=1

αi ·
( ∑
{x,y }∈Di

∥ f (x) − f (y)∥pp

+
∑

{x,y }∈Ei−1
∥ f (x) − f (y)∥pp

)

≤
k∑
i=1

αi · 2p−2 ·
∑

{x,y }∈Ei
∥ f (x) − f (y)∥pp

=

k∑
i=1

αi+1 ·
∑

{x,y }∈Ei
∥ f (x) − f (y)∥pp .

Hence

k∑
i=1

αi ·
∑

{x,y }∈Di

∥ f (x) − f (y)∥pp

+ α1 ·
∑

{x,y }∈E0
∥ f (x) − f (y)∥pp

≤ αk+1 ·
∑

{x,y }∈Ek
∥ f (x) − f (y)∥pp .

As E0 = D0 and α0 = α1, the claim follows. □

Next, we calculate

k∑
i=0

αi ·
∑

{x,y }∈Di

d (x ,y)p

= α0 ·
(
2
k
)p
+

k∑
i=1

|Di | · αi ·
(
2
k−i+1

)p
= 2

2k +

k∑
i=1

4
i−1 ·

(
2
k−i+1

)
2

= (k + 1) · 4k . (8)

Recall that f is non-contractive and has expansion ρ. Conse-
quently,

(k + 1) · 4k (8)
=

k∑
i=0

αi ·
∑

{x,y }∈Di

d (x ,y)p

≤
k∑
i=0

αi ·
∑

{x,y }∈Di

∥ f (x) − f (y)∥pp

(7)
≤ αk+1 ·

∑
{x,y }∈Ek

∥ f (x) − f (y)∥pp

≤ αk+1 ·
∑

{x,y }∈Ek
(ρ · d(x ,y))p

= αk+1 · (ρ)p · |Ek | .

We conclude

ρ ≥
(
4
k

|Ek |
· k + 1
αk+1

)1/p
=

(
k + 1

2
p−2

)1/p
= Ω(k1/p ) .

9 CONCLUSIONS
In this paper we introduced the notion of shortest path decomposi-

tions with low depth. We showed how these can be used to give

embeddings into ℓp spaces. Our techniques give optimal embed-

dings of bounded pathwidth graphs into ℓ2, and also new embed-

dings for graphs with bounded treewidth, as well as planar and

excluded-minor families of graphs. Our embedding into ℓp admits

a tight lower bound for fixed p > 1. We hope that our techniques

will be useful for other embedding results.

Our work raises several open questions. While our embeddings

are tight for fixed p > 1, can we improve the bounds for ℓ1 em-

bedding of bounded pathwidth graphs? Can we give better results

for the SPDdepth of H -minor-free graphs? Our approach gives a

O(
√
logn)-distortion embedding of planar graphs into ℓ1, which is

quite different from the previous known results via padded decom-

positions: can these ideas be used to make progress towards the

planar graph embedding conjecture?
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