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Graph spanners are well-studied and widely used both in theory and practice. In a 
recent breakthrough, Chechik and Wulff-Nilsen [10] improved the state-of-the-art for light 
spanners by constructing a (2k − 1)(1 + ε)-spanner with O (n1+1/k) edges and O ε(n

1/k)

lightness. Soon after, Filtser and Solomon [18] showed that the classic greedy spanner 
construction achieves the same bounds. The major drawback of the greedy spanner is 
its running time of O (mn1+1/k) (which is faster than [10]). This makes the construction 
impractical even for graphs of moderate size. Much faster spanner constructions do exist 
but they only achieve lightness �ε(kn1/k), even when randomization is used.
The contribution of this paper is deterministic spanner constructions that are fast, and 
achieve similar bounds as the state-of-the-art slower constructions. Our first result is an 
O ε(n2+1/k+ε′

) time spanner construction which achieves the state-of-the-art bounds. Our 
second result is an O ε(m + n log n) time construction of a spanner with (2k − 1)(1 +
ε) stretch, O (log k · n1+1/k) edges and O ε(log k · n1/k) lightness. This is an exponential 
improvement in the dependence on k compared to the previous result with such running 
time. Finally, for the important special case where k = log n, for every constant ε > 0, we 
provide an O (m + n1+ε) time construction that produces an O (logn)-spanner with O (n)

edges and O (1) lightness which is asymptotically optimal. This is the first known sub-
quadratic construction of such a spanner for any k = ω(1).
To achieve our constructions, we show a novel deterministic incremental approximate 
distance oracle. Our new oracle is crucial in our construction, as known randomized 
dynamic oracles require the assumption of a non-adaptive adversary. This is a strong 
assumption, which has seen recent attention in prolific venues. Our new oracle allows the 
order of the edge insertions to not be fixed in advance, which is critical as our spanner 
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algorithm chooses which edges to insert based on the answers to distance queries. We 
believe our new oracle is of independent interest.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

A fundamental problem in graph data structures is compressing graphs such that certain metrics are preserved as well as 
possible. A popular way to achieve this is through graph spanners. Graph spanners are sparse subgraphs that approximately 
preserve pairwise shortest path distances for all vertex pairs. Formally, we say that a subgraph H = (V , E ′, w) of an edge-
weighted undirected graph G = (V , E, w) is a t-spanner of G if for all u, v ∈ V we have dH (u, v) ≤ t · dG(u, v), where dX is 
the shortest path distance function for graph X and w is the edge weight function. Under such a guarantee, we say that 
our graph spanner H has stretch t . In the following, we assume that the underlying graph G is connected; if it is not, we 
can consider each connected component separately when computing a spanner.

Graph spanners originate from the 80’s [24,25] and have seen applications in e.g. synchronizers [25], compact routing 
schemes [31,26,7], broadcasting [17], and distance oracles [33].

The two main measures of the sparseness of a spanner H are the size (number of edges) and the lightness, which is 
defined as the ratio w(H)/w(M ST (G)), where w(H) resp. w(M ST (G)) is the total weight of edges in H resp. a minimum 
spanning tree (MST) of G . It has been established that for any positive integer k, a (2k − 1)-spanner of O (n1+1/k) edges 
exists for any n-vertex graph [2]. This stretch-size tradeoff is widely believed to be optimal due to a matching lower bound 
implied by Erdős’ girth conjecture [14], and there are several papers concerned with constructing spanners efficiently that 
get as close as possible to this lower bound [32,5,28].

Obtaining spanners with small lightness (and thus total weight) is motivated by applications where edge weights denote 
e.g. establishing cost. The best possible total weight that can be achieved in order to ensure finite stretch is the weight of 
an MST, thus making the definition of lightness very natural. The size lower bound of the unweighted case provides a lower 
bound of �(n1/k) lightness under the girth conjecture, since H must have size and weight �(n1+1/k) while the MST has 
size and weight n − 1. Obtaining this lightness has been the subject of an active line of work [1,6,13,10,18]. Throughout 
2
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this paper we say that a spanner is optimal when its bounds coincide asymptotically with those of the girth conjecture. 
Obtaining an efficient spanner construction with optimal stretch-lightness trade-off remains one of the main open questions 
in the field of graph spanners.

Light spanners Historically, the main approach of obtaining a spanner of bounded lightness has been through different 
analyses of the classic greedy spanner. Given t ≥ 1, the greedy t-spanner is constructed as follows: iterate through the edges 
in non-decreasing order of weight and add an edge e to the partially constructed spanner H if the shortest path distance 
in H between the endpoints of e is greater than t times the weight of e. The study of this spanner algorithm dates back 
to the early 90’s with its first analysis by Althöfer et al. [1]. They showed that this simple procedure with stretch 2k − 1
obtains the optimal O (n1+1/k) size, and has lightness O (n/k). The algorithm was subsequently analyzed in [6,13,18] with 
stretch (1 + ε)(2k − 1) for any 0 < ε < 1. Recently, a break-through result of Chechik and Wulff-Nilsen [10] showed that a 
significantly more complicated spanner construction obtains nearly optimal stretch, size and lightness giving the following 
theorem.

Theorem 1 ([10]). Let G = (V , E, w) be an edge-weighted undirected n-vertex graph and let k be a positive integer. Then for any 
0 < ε < 1 there exists a (1 + ε)(2k − 1)-spanner of size O (n1+1/k) and lightness O ε(n1/k).6

Following the result of [10] it was shown by Filtser and Solomon [18] that this bound is matched by the greedy spanner. 
In fact, they show that the greedy spanner is existentially optimal, meaning that if there is a t-spanner construction achieving 
an upper bound m(n, t) resp. l(n, t) on the size resp. lightness of any n-vertex graph then this bound also holds for the 
greedy t-spanner. In particular, the bounds in Theorem 1 also hold for the greedy spanner.

Efficient spanners A major drawback of the greedy spanner is its O (m · (n1+1/k + n log n)) construction time [1]. Similarly, 
Chechik and Wulff-Nilsen [10] only state their construction time to be polynomial, but since they use the greedy spanner as 
a subroutine, it has the same drawback. Addressing this problem, Elkin and Solomon [16] considered efficient construction 
of light spanners. They showed how to construct a spanner with stretch (1 + ε)(2k − 1), size O ε(kn1+1/k) and lightness 
O ε(kn1/k) in time O (km +min(n log n, mα(n))). Improving on this, a recent paper of Elkin and Neiman [12] uses similar ideas 
to obtain stretch (1 + ε)(2k − 1), size O (log k · n1+1/k) and lightness O (kn1/k) in expected time O (m + min(n log n, mα(n))).

Several papers also consider efficient constructions of sparse spanners, which are not necessarily light. Baswana and 
Sen [5] gave a (2k − 1)-spanner with O (kn1+1/k) edges in O (km) expected time. This was later derandomized by Roditty et 
al. [27] (while keeping the same sparsity and running time). Recently, Miller et al. [23] presented a randomized algorithm 
with O (m + n log k) running time and O (log k · n1+1/k) size at the cost of a constant factor in the stretch O (k).

It is worth noting that for super-constant k, none of the above spanner constructions obtain the optimal O (n1+1/k)

size or O (n1/k) lightness even if we allow O (k) stretch. If we are satisfied with nearly-quadratic running time, Elkin and 
Solomon [16] gave a spanner with (1 + ε)(2k − 1) stretch, O ε(n1+1/k) size and O ε(kn1/k) lightness in O (kn2+1/k) time 
by extending a result of Roditty and Zwick [28] who got a similar result but with unbounded lightness. However, this 
construction still has an additional factor k in the lightness. Thus, the fastest known spanner construction obtaining optimal 
size and lightness is the classic greedy spanner – even if we allow O (k) stretch or o(kn1/k) lightness.

We would like to emphasize that the case k = log n is of special interest. This is the point on the tradeoff curve allowing 
spanners of linear size and constant lightness. Prior to this paper, the state of the art for efficient spanner constructions 
with constant lightness suffered from distortion at least O (log2 n). See the discussion after Corollary 1 for further details.

A summary of spanner algorithms can be seen in Table 1.

1.1. Our results

We present the first spanner obtaining the same near-optimal guarantees as the greedy spanner in significantly faster 
time by obtaining a (1 +ε)(2k −1) spanner with optimal size and lightness in O ε(n2+1/k+ε′

) time. We also present a variant 
of this spanner, improving the running time to O (m + n log n) by paying a log k factor in the size and lightness. Finally, 
we present an optimal O ε(log n)-spanner which can be constructed in O (m + n1+ε) time. This special case is of particular 
interest in the literature (see e.g. [3,22]). Furthermore, all of our constructions are deterministic, giving the first subquadratic 
deterministic construction without the additional dependence on k in the size of the spanner. As an important tool, we 
introduce a new deterministic approximate incremental distance oracle which works in near-linear time for maintaining 
small distances approximately. We believe this result is of independent interest.

More precisely, we show the following theorems.

Theorem 2. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, any positive integer k, and ε, ε′ > 0 where 
ε arbitrarily close to 0 and ε′ is a constant, one can deterministically construct an (1 + ε)(2k − 1)-spanner of G with O ε(n1+1/k)

edges and lightness O ε(n1/k) in O (n2+1/k+ε′
) time.

6 O ε notation hides polynomial factors in 1/ε.
3
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Table 1
Table of related spanner constructions. In the top of the table we list non-efficient spanner constructions. 
In the middle we list known efficient spanner constructions. In the bottom we list our contributions. Re-
sults marked ∗ are different analyses of the greedy spanner. Results marked # are randomized. Lightness 
complexities marked ∗∗ are from the analysis in Section 9 and W denotes the maximum edge weight 
of the input graph. The bounds hold for any constant ε, ε′ > 0.

Stretch Size Lightness Construction Ref

(2k − 1) O
(
n1+1/k

)
O (n/k) O

(
mn1+1/k

)
[1]∗

(2k − 1)(1 + ε) O
(
n1+1/k

)
O

(
kn1/k

)
O

(
mn1+1/k

)
[6]∗

(2k − 1) O (n1+1/k) �(W ) ∗∗ O
(
kn2+1/k

)
[28]

(2k − 1) O
(
kn1+1/k

)
�

(
n1+1/k

) ∗∗ O
(
kmn1/k

)
[32]#

(2k − 1)(1 + ε) O
(
n1+1/k

)
O

(
kn1/k

)
O

(
kn2+1/k

)
[16]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O

(
n1/k · k/ log k

)
O

(
mn1+1/k

)
[13]∗

(2k − 1)(1 + ε) O
(
n1+1/k

)
O

(
n1/k

)
n�(1) [10]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O

(
n1/k

)
O

(
mn1+1/k

)
[18]∗

(2k − 1) O
(
kn1+1/k

)
�(W ) ∗∗ O (km) [5,27]

(2k − 1)(1 + ε) O
(
kn1+1/k

)
O

(
kn1/k

)
O (km + n logn) [16]

O (k) O (log k · n1+1/k) �(W ) O (m + n · log k) [23]#

(2k − 1)(1 + ε) O (log k · n1+1/k) O
(
k · n1/k

)
O (m + n · logn) [12]#

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
�(W ) O (m + n log k log(s) k) Theorem 6

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
O

(
log k · n1/k

)
O (m + n · logn) Theorem 3

(2k − 1)(1 + ε) O
(
n1+1/k

)
O

(
n1/k

)
O (n2+1/k+ε′

) Theorem 2

O (k) O
(
n1+1/k

)
O

(
n1/k

)
O

(
m + n1+ε′+1/k

)
Theorem 4

O (logn)/δ O (n) 1 + δ O
(

m + n1+ε′ )
Corollary 1

Theorem 3. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, a positive integer k ≥ 640, and ε > 0, one 
can deterministically construct a (2k − 1)(1 + ε)-spanner of G with O ε(log k · n1+1/k) edges and lightness O ε

(
log k · n1/k

)
in time 

O  (m + n log n).

Note that in Theorem 3 we require k to be larger than 640. This is not a significant limitation, as for k = O (1) [16] is 
already optimal.

Our O (log n)-spanner is obtained as a corollary of the following more general result.

Theorem 4. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, any positive integer k and constant ε′ > 0, 
one can deterministically construct an O (k)-spanner of G with O (n1+1/k) edges and lightness O (n1/k) in O (m + n1+ε′+1/k) time.

We note that the stretch O (k) of Theorem 4 (and Corollary 1 below) hides an exponential factor in 1/ε′ , thus we 
only note the result for constant ε′ . Bartal et al. [3] showed that given a spanner construction that for every n-vertex 
weighted graph produces a t(n)-stretch spanner with m(n, t) edge and l(n, t) lightness in T (n, m) time, then for every 
parameter 0 < δ < 1 and every graph G , one can construct a t/δ-spanner with m(n, t) edges and 1 + δ · l(n, t) lightness in 
T (n, m) + O (m) time. Plugging k = log n and using this reduction w.r.t. δ in Theorem 4, and δ′ = δ

log logn in Theorem 3, we get

Corollary 1. Let G = (V , E, w) be a weighted undirected n-vertex graph, let ε′ > 0 be a constant and δ > 0 be a parameter arbitrarily 
close to 0. Then one can construct a spanner of G with:

1. O (log n)/δ stretch, O (n) edges and 1 + δ lightness in time O (m + n1+ε′
).

2. O (log n log log n)/δ stretch, O (n log log n) edges and 1 + δ lightness in time O (m + n log n).

Corollary 1 above should be compared to previous attempts to efficiently construct a spanner with constant lightness. 
Although not stated explicitly, the state-of-the-art algorithms of [16,12], combined with the lemma from [3], provide an 
efficient spanner construction with 1 + δ lightness, O (n log log n) edges and only O (log2 n/δ) stretch.

We emphasize, that Corollary 1 is the first sub-quadratic construction of spanner with optimal size and lightness for any 
non-constant k.

In order to obtain Theorem 4 we construct the following deterministic incremental approximate distance oracle with 
near-linear total update time for maintaining small distances. We believe this result is of independent interest, and discuss 
it in more detail in the related work section below and in Section 3.

Theorem 5. Let G be a graph that undergoes a sequence of m edge insertions. For any constant ε′ > 0 and parameter d ≥ 1 there 
exists a data structure which processes the m insertions in total time O (m1+ε′ ·d) and can answer queries at any point in the sequence 
of the following form. Given a pair of nodes u, v, the oracle gives, in O (1) time, an estimate d̂(u, v) such that d̂(u, v) ≥ d(u, v) and if 
d(u, v) ≤ d then d̂(u, v) = O (1) · d(u, v).
4
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Theorem 5 assumes that ε′ is constant; the O -notation hides a factor exponential in 1/ε′ for both total update time and 
stretch whereas the query time bound only hides a factor of 1/ε′ .

We also obtain the following sparse, but not necessarily light, spanner in linear time as a subroutine in proving Theo-
rem 3.

Theorem 6. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, any positive integer k, any ε > 0, and 
any positive integer s = O (1), one can deterministically construct a (2k − 1)(1 + ε)-spanner of G with O ε(n1+1/k · log k) edges; the 
running time is O (m + n log(s−1) k log k) and if k ≤ log n/ log(s+1) n, the running time is O (m).

Here, the function log(s) is log concatenated with itself s times. Specifically, log(0) n = n, log(1) n = log n, and in general 
for s ≥ 1, log(s) n = log(log(s−1) n). log∗ n is the minimum index s such that log(s) n ≤ 2.

Note that since we may assume that k = O (logn), the time bound of Theorem 6 is linear for almost all choices of k and 
very close to linear for any choice of k.

Organization In Section 4 we state our framework that used in Theorems 2 to 4. Theorem 4 is proved in Section 5, and 
Theorem 2 in Section 5.2. Theorem 3 is proved in Section 6. Theorem 5 is proved in Section 8. The proof of Theorem 6
appears in Section 7.

1.2. Related work

Closely related to graph spanners are approximate distance oracles (ADOs). An ADO is a data structure which, after pre-
processing a graph G , is able to answer distance queries approximately. Distance oracles are studied extensively in the 
literature (see e.g. [32,34,8,9]) and often use spanners as a building block. The state of the art static distance oracle is due 
to Chechik [9], where a construction of space O (n1+1/k), stretch 2k − 1, and query time O (1) is given. Our distance oracle 
of Theorem 5 should be compared to the result of Henzinger, et al. [19], who gave a deterministic construction for incre-
mental (or decremental) graphs with a total update time of O ε(mn log n), a query time of O (log logn) and stretch 1 + ε. 
For our particular application, we require near-linear total update time and only good stretch for short distances, which 
are commonly the most troublesome when constructing spanners. It should be added that Henzinger et al. give a general 
deterministic data structure for choosing centers, i.e., vertices which are roots of shortest path trees maintained by the data 
structure. While this data structure may be fast when the total number of centers is small, we need roughly n centers and 
it is not clear how this number can be reduced. Having this many centers requires at least order mn time with their data 
structure.

To achieve our fast update time bound, we are interested in trading worse stretch for distances above parameter d for 
construction time. Roditty and Zwick [29] gave a randomized distance oracle for this case, however their construction does 
not work against an adaptive adversary as is required for our application, where the edges to be inserted are determined 
by the output to the queries of the oracle (see Section 3 for more discussion on this). Removing the assumption of a 
non-adaptive adversary in dynamic graph algorithms has seen recent attention at prestigious venues, e.g. [35,4]. Our new 
incremental approximate distance oracle for short distances given in Theorem 5 is deterministic and thus is robust against 
such an adversary, and we believe it may be of independent interest as a building block in deterministic dynamic graph 
algorithms.

For unweighted graphs, there is a folklore spanner construction by Halperin and Zwick [20] which is optimal on all 
parameters. The construction time is O (m), it has O (n1+1/k) edges and 2k − 1 stretch. In Section 6 we will use this spanner 
as a building block in proving Theorem 3.

2. Preliminaries

Consider a weighted graph G = (V , E, w), we will abuse notation and refer to as E both a set of edges and the graph 
itself. dG will denote the shortest path metric (that is dG (v, u) is the weight of the lightest path between v, u in G . Given 
a subset V ′ of V , G[V ′] is the induced graph by V ′ . That is it has V ′ as it vertices, E ∩ (V ′

2

)
as its edges and w as weight 

function. The diameter of a vertex set V ′ in a graph G ′ diamG ′ (V ′) = maxu,v∈V ′ dG ′ (u, v) is the maximal distance between 
two vertices in V ′ under the shortest path metric induced by G ′ . For a set of edges A with weight function w , the aspect 
ratio of A is maxe∈A w(e)/ mine∈A w(e). The sparsity of A is simply |A| its size.

We will assume that k = O (log n) as the guarantee for lightness and sparsity will not be improved by picking larger k. 
Instead of proving (1 + ε)(2k − 1) bound on stretch, we will prove only (1 + O (ε))(2k − 1) bound. This is good enough, as 
Post factum we can scale ε accordingly. By O ε we denote asymptotic notation which hides polynomial factors of 1/ε, that 
is O ε( f ) = O ( f ) · poly( 1

ε ).

3. Paper overview

General framework Theorems 2 to 4 are generated via a general framework. The framework is fed two algorithms for 
spanner constructions: A1, an algorithm suitable for graphs with small aspect ratio, and A2, an algorithm that returns a 
5
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sparse spanner, but with potentially unbounded lightness. We consider a partition of the edges into groups according to 
their weights. For treating most of the groups we use exponentially growing clusters, partitioning the edges according to 
weight. Each such group has bounded aspect ratio, and thus we can use A1. Due to the exponential growth rate, we show 
that the contribution of all the different groups is converging. Thus only the first group is significant. However, with this 
approach we need a special treatment for edges of small weight. This is, as using the previous approach, the number of 
clusters needed to treat light edges is unbounded. Nevertheless, these edges have small impact on the lightness and we 
may thus use algorithm A2, which ignores this property.

The main work in proving Theorems 2 to 4 is in designing the algorithms A1 and A2 described briefly below.
Approximate greedy spanner The major time consuming ingredient of the greedy spanner algorithm is its shortest path 

computations. By instead considering approximate shortest path computations we significantly speed this process up. We 
are the first to apply this idea on general graphs, while it has previously been applied by [11,18] on particular graph 
families. Specifically, we consider the following algorithm: given some parameters t < t′ , initialize H ← ∅ and consider the 
edges (u, v) ∈ E according to increasing order of weight. If dH (u, v) > t′ · w(u, v) the algorithm is obliged to add (u, v) to 
H . If dH (u, v) < t · w(u, v), the algorithm is forbidden to add (u, v) to H . Otherwise, the algorithm is free to include the 
edge or not. As a result, we will get spanner with stretch t′ , which has the same lightness and sparsity guarantees of the 
greedy t-spanner. Note however, that the resulting spanner is not necessarily a subgraph of any greedy spanner.

We obtain both Theorem 2 and Theorem 4 using this approach via an incremental approximate distance oracle. It is 
important to note that the edges inserted into H using this approach depend on the answers to the distance queries. It 
is therefore not possible to use approaches that do not work against an adaptive adversary such as the result of Roditty 
and Zwick [29], which is based on random sampling. Furthermore, this is the case even if we allow the spanner construc-
tion itself to be randomized. In order to obtain Theorem 2, we use our previously described framework coupled with the 
“approximately greedy spanner” using an incremental (1 + ε)-approximate distance oracle of Henzinger et al. [19]. For The-
orem 4, we present a novel incremental approximate distance oracle, which is described below. This is the main technical 
part of the paper and we believe that it may be of independent interest.

Deterministic distance oracle The main technical contribution of the paper and key ingredient in proving Theorem 4 is our 
new deterministic incremental approximate distance oracle of Theorem 5. The oracle supports approximate distance queries 
of pairs within some distance threshold, d. In particular, we may set d to be some function of the stretch of the spanner 
in Theorem 4. Similar to previous work on distance oracles, we have some parameter, k, and maintain k sets of nodes 
∅ = Ak−1 ⊆ . . . ⊆ A0 = V , and for each u ∈ Ai we maintain a ball of radius r ≤ di . Here, di is a distance threshold depending 
on the parameter d and which set Ai we are considering, and r is chosen such that the total degree of nodes in the ball 
of radius r from u is relatively small. The implementation of each ball can be thought of as an incremental Even-Shiloach 
tree. The set Ai+1 is then chosen as a maximal set of nodes with disjoint balls (see Fig. 3 in Section 8.1). Here we use the 
fact that the vertices in Ai+1 are centers of disjoint balls in Ai to argue that Ai+1 is much smaller than Ai . The decrease 
in size of Ai+1 pays for an increase in the maximum ball radius di at each level. The ball of a node u may grow in size 
during edge insertions. In this case, we freeze the ball associated with u, shrink the radius r associated with u, and create 
a new ball with the new radius. Thus, for each Ai we end up with O (log d) different radii for which we pick a maximal set 
of nodes with disjoint balls. For each node ui ∈ Ai we may then associate a node ui+1 ∈ Ai+1 whose ball intersects with 
ui ’s. We use these associated nodes in the query to ensure that the path distance we find is not “too far away” from the 
actual shortest path distance. Consider a query pair (u, v). Then the query algorithm iteratively finds a sequence of vertices 
u = u0 ∈ A0, u1 ∈ A1, ..., ui ∈ Ai ; di is picked such that if v is not in the ball centered at ui with radius di then the shortest 
path distance between u and v is at least d and the algorithm outputs ∞. Otherwise, the algorithm uses the shortest path 
distances stored in the balls that it encounters to output the weight of a uv-path (u = u0) � u1 � . . . � ui � v as an 
approximation of the shortest path distance between u and v .

Almost linear spanner Chechik and Wulff-Nilsen [10] implicitly used our general framework, but used the (time con-
suming) greedy spanner both as their A2 component and as a sub-routine in A1. We show an efficient alternative to the 
algorithm of [10]. For the A2 component we provide a novel sparse spanner construction (Theorem 6, see paragraph below). 
For A1, we perform a hierarchical clustering, while avoiding the costly exact diameter computations used in [10]. Finally, 
we replace the greedy spanner used as a sub-routine of [10] by an efficient spanner that exploits bounded aspect ratio (see 
Lemma 5). This spanner can be seen as a careful adaptation of Elkin and Solomon [16] analyzed in the case of bounded 
aspect ratio. The idea here is (again) a hierarchical partitioning of the vertices into clusters of exponentially increasing size. 
However, here the growth rate is only (1 + ε). Upon each clustering we construct a super graph with clusters as vertices 
and graph edges from the corresponding weight scale as inter-cluster edges. To decide which edges in each scale add to our 
spanner, we execute the extremely efficient spanner of Halperin and Zwick [20] for unweighted graphs.

Linear time sparse spanner As mentioned above we provide a novel sparse spanner construction as a building block in 
proving Theorem 3. Our construction is based on partitioning edges into O ε(log k) “well separated” sets E1, E2, . . ., such that 
the ratio between w(e) and w(e′) for edges e, e′ ∈ Ei is either a constant or at least k. This idea was previously employed 
by Elkin and Neiman [12] based on [23]. For these well-separated graphs, Elkin and Neiman used an involved clustering 
scheme based on growing clusters according to exponential distribution, and showed that the expected number of inter-
cluster edges, in all levels combined, is small enough. We provide a linear time deterministic algorithm with an arguably 
simpler clustering scheme. Our clustering is based upon the clusters defined implicitly by the spanner for unweighted 
graphs of Halperin and Zwick [20]. In particular, we introduce a charging scheme, such that each edge added to our spanner 
6
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is either paid for by a large cluster with many coins, or significantly contributing to reduce the number of clusters in the 
following level.

4. A framework for creating light spanners efficiently

In this section we describe a general framework for creating spanners, which we will use to prove our main results. 
The framework is inspired by a standard clustering approach (see e.g. [16] and [10]). The spanner framework takes as input 
two spanner algorithms for restricted graph classes, A1 and A2, and produces a spanner algorithm for general graphs. The 
algorithm A1 works for graphs with unit weight MST edges and small aspect ratio, and A2 creates a small spanner with no 
guarantee for the lightness. The main work in showing Theorems 2, 3, and 4 is to construct the algorithms, A1 and A2, that 
go into Lemma 1 below. We do this in Sections 5 and 6. The framework is described in the following lemma.

Lemma 1. Let G = (V , E) be a weighted graph with n nodes and m edges and let k > 0 be an integer, g > 1 a fixed parameter and 
ε > 0. Assume that we are given two spanner construction algorithms A1 and A2 with the following properties:

• A1 computes a spanner of stretch f1(k), size O ε(s1(k) · n1+1/k) and lightness O ε(l1(k) · n1/k) in time T1(n, m, k) when given a 
graph with maximum weight gk, where all MST edges have weight 1. Moreover, T1 has the property that 

∑∞
i=0 T1

(
n

gik ,mi,k
)

=
O  (T1(n,m,k)), where 

∑
i mi = m + O (n).

• A2 computes a spanner of stretch f2(k) and size O ε(s2(k) · n1+1/k) in time T2(n, m, k).

Then one can compute a spanner of stretch max((1 + ε) f1(k), f2(k)), size O ε((s1(k) + s2(k))n1+1/k), and lightness O ε((l1(k) +
s2(k)) · n1/k) in time O (T1(n, m, k) + T2(n, m, k) + m + n log n).

As an example, let us assume that we have both an optimal spanner algorithm for graphs with small aspect ratio, 
and an optimal spanner algorithm for sparse spanners in weighted graph. Specifically, we have algorithm A1 that given a 
graph as above creates a (1 + ε)(2k − 1)-spanner with O ε(n1+1/k) edges and lightness O ε(n1/k) in O ε(m + n log n) time. In 
addition we have algorithm A2 that returns an (1 + ε)(2k − 1)-spanner with O ε(n1+1/k) edges in O ε(m) time. Then, given 
a general graph, Lemma 1 provides us with a (1 + ε)(2k − 1)-spanner of O ε(n1+1/k) size and O ε(n1/k) lightness, in time 
O ε(m + n log n).

Before proving Lemma 1 we need to describe the clustering approach. The main tool needed is what we call an (i, ε)-
clustering. This clustering procedure is performed on graphs where all the MST edges have unit weight. Let G, g, ε, k be as 
in Lemma 1, then we say that an (i, ε)-clustering is a partitioning of V into clusters C1, . . . , Cni , such that each C j contains 
at least εgik nodes and has diameter at most 4εgik (even when restricted to MST edges of G). Let Gi denote the graph 
obtained by contracting the clusters of such an (i, ε)-clustering of G , and keeping the MST edges only. Then Gi has ni

nodes, and we can construct Gi from Gi−1 as follows. Start at some vertex v in Gi−1 (corresponding to an (i − 1, ε)-cluster) 
and iteratively grow an (i, ε)-cluster ϕv by joining arbitrary un-clustered neighbors to ϕv in Gi−1 one at a time. If the 
number of original vertices in ϕv reaches εgik , make ϕv into an (i, ε)-cluster, where the current vertices in ϕv are called 
its core. We argue that the diameter of the core is bounded by εgik + 4εg(i−1)k . If the vertex v (from Gi ) already contains 
εgik vertices, then ϕv = v and by the induction hypothesis the diameter of ϕv is at most 4εg(i−1)k . Otherwise (|v| < εgik), 
consider the last vertex u ∈ Gi−1 to join ϕv . As u joins ϕv , necessarily |ϕv \ u| < εgik . In particular, the diameter of ϕv \ u
(restricted to MST edges) is at most gik − 1. The diameter of u is at most 4εg(i−1)k and therefore the diameter of ϕv is 
indeed bounded by εgik + 4εg(i−1)k .

We perform this procedure starting at an un-clustered vertex until all vertices of Gi−1 belong to some (i, ε)-cluster. In 
the case where ϕv has no un-clustered neighbors, but does not contain εgik vertices, we simply merge it with an existing 
(i, ε)-cluster ϕu via an MST-edge to the core of ϕu . Note that the size of ϕv , and therefore its diameter, before the merging 
is at most εgik − 1 (as each cluster is connected when restricting to MST edges). To show that this gives a valid (i, ε)-
clustering, consider an (i, ε)-cluster ϕv with core ϕ̃v . Suppose that the “sub-clusters” ϕ̃u1 , . . . , ϕ̃us were merged into ϕ̃v

during this process. The diameter of ϕv is then bounded by

diam(ϕ̃v) + 2 + max
j, j′

(diam(ϕ̃u j ) + diam(ϕ̃u j′ )) ≤ (εgik + 4εg(i−1)k) + 2εgik ≤ 4εgik .

Moreover, the size of ϕv is at least the size of its core, |ϕ̃v | ≥ εgik . See figure Fig. 1 for illustration.
Note that we have ni ≤ n

εgik . Using the above procedure, we can construct the (i + 1, ε) clustering from the (i, ε) clus-

tering in O (ni) time. Therefore we can construct the clusters for all the levels in O  
(∑

i≥0 ni
) = O  

(
n

∑
i≥0

1
gik

)
= O (n) time 

(if we are given the MST).
With this tool in hand, we may now prove Lemma 1.
7
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Fig. 1. The small cycles represent (i − 1, ε)-clusters, which are the vertices of Gi−1. The (i − 1, ε)-cluster v iteratively grows a cluster around itself until it 
contains εgik original vertices. This current cluster is called ϕ̃v . ϕ̃v also called the core of ϕv , an (i, ε)-cluster that we will have at the end of the process. 
Afterwards, the (i − 1, ε)-cluster u1 iteratively grow a cluster around itself. When the temporary cluster is ϕ̃u1 there are no outgoing edges to unclustered 
vertices. However, since Gi−1 is connected, there is some outgoing edge. Necessarily the second endpoint of this edge belongs to the core of an existing 
cluster (here, ϕ̃v ), that is, as ϕ̃v stop growing while still having unclustered neighbors. All the vertices of ϕ̃u1 join the cluster of v . In a similar manner, ϕ̃u2

and ϕ̃u3 are also joined into the cluster of v . In the end of the algorithm, the (i, ε)-cluster of v is ϕv = ϕ̃v ∪ ϕ̃u1 ∪ ϕ̃u2 ∪ ϕ̃u3 .

Proof of Lemma 1. The proof constructs an algorithm consisting of two phases. The preparation phase where A2 is used 
to reduce the problem to a graph where all MST edges have weight 1, and the bootstrapping phase where we perform an 
iterative clustering of the graph to obtain several graphs with small aspect-ratio, where we can apply A1.

Preparation phase: Let T be an MST of G and let w ′ = ∑
(u,v)∈T

w(u,v)
n−1 . Define G2 to be G with all edges of weight 

greater than w ′/ε removed and let H2 be the spanner resulting from running A2 on G2. Next, we construct G1 from G
as follows. First, round up the weight of each edge in G to the nearest multiple of w ′ . For each edge e ∈ T subdivide it 
such that each edge of the resulting MST has weight w ′ .7 As the weight of each edge increase by at most an additive 
factor of w ′ , the weight of the MST increase by at most (n − 1)w ′ ≤ w(T ). The new number of vertices is bounded by ∑

(u,v)∈T

⌈
w(u,v)

w ′
⌉

≤ (n − 1) + 1
w ′ · ∑

(u,v)∈T w(u, v) < 2n. Finally, divide the weight of each edge by w ′ . This finishes the 
construction of G1.

Bootstrapping phase: We will now use A1 to make a spanner H1 for the graph G1 created above. We start by parti-
tioning the edges into sets Ei , where Ei contains all edges of G1 with weights in [gik, g(i+1)k). Note that since each MST 
edge of G1 has weight 1 we only need to consider edges with weight up to O (n). Next, we let T be an MST of G1 and 
for all i = 0, 1, . . . , O (logn) we create Ti by contracting all clusters of an (i, ε)-clustering of T , where the (i, ε)-clustering is 
computed as described above. Note that Ti is also a tree since each cluster is a connected subtree of T . We now construct 
graphs Gi by taking Ti and adding any minimum weight edge of Ei going between each pair of clusters (i.e. nodes corre-
sponding to clusters). Finally, we divide the weight of each non-MST edge of Gi by gik . This gives us a graph with maximum 
weight gk , where MST edges have weight 1. We call this new weight function wi . Let Hi be the spanner obtained by run-
ning algorithm A1 on Gi . Finally, let H1 be the union of all Hi s, where each edge of Hi is replaced by the corresponding 
edge(s) from G .

Analysis: We set the final spanner H = M ST (G) ∪ H1 ∪ H2. To bound the stretch of H first note that any edge of G2 has 
stretch at most f2(k) from H2. What remains is to bound the stretch of non-MST edges (u, v) with w(u, v) ≥ w ′/ε. First, 
observe that the rounding procedure used to create G1 can at most increase the weight of (u, v) in G1 by a factor of (1 +ε)

compared to G .
Now assume that (u, v) ∈ Ei for some i. Let ϕu and ϕv denote the clusters containing u, respectively, v in Gi . If ϕu = ϕv

we know that the distance between u and v using the MST is at most 4εgik and we are done. Thus, assume that ϕu = ϕv . 
By definition of Gi , there must be some edge (ϕu, ϕv) in Gi with wi(ϕu, ϕv) ≤ (1 + ε) · w(u, v)/gik . We know that there is 
a path {ϕu = ϕz0ϕz1 . . . ϕzs = ϕv} from ϕu to ϕv in Hi of length at most f1(k) · wi(ϕu, ϕv). Recall that the minimum weight 
in Hi is 1, thus we have s ≤ f1(k) · wi(ϕu, ϕv). Furthermore, the diameter of each cluster, ϕzq , is at most 4εgik . We now 
conclude (see Fig. 2 for illustration)

dH (u, v) ≤
s∑

q=0

diamT (ϕzq ) + gik
s−1∑
q=0

wi(ϕzq ,ϕzq+1)

≤ (s + 1) · 4εgik + gik f1(k) · wi(ϕu,ϕv)

≤ (1 + 8ε) · gik · f1(k) · wi(ϕu,ϕv)

≤ (1 + O (ε)) · f1(k) · w(u, v) (1)

7 Formally, for an edge e = {v, v ′} ∈ T of weight cw ′ , we add c − 1 new vertices u1, . . . , uc−1 and replace the edge {v, v ′} with the edges 
{v, u1}, {u1, u2}, . . . , {uc−2, uc−1}, {uc−1, v ′}, all with weight w ′ .
8
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Fig. 2. e = (u, v) is an edge (colored in blue) in Ei , such that u and v belong to the i-clusters ϕu, ϕv , respectively. The closed bold black curves represent 
i-clusters. The red edges represent edges in Hi . The thin black curves represent MST paths. There is an edge e′ between ϕv to ϕu in Gi . Therefore Hi

contains a short path between ϕv to ϕu . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Next we consider the size and lightness of H . First we see that, since G2 is a subgraph of G , the spanner H2 has size at 
most O (s2(k) · n1+1/k). Furthermore since every edge in G2 has weight at most w ′/ε the total weight of H2 is

O

(
s2(k) · n1+1/k · w(M ST (G))

(n − 1)ε

)
= O ε

(
s2(k) · n1/k

)
.

Recall that ni is the number of (i, ε) clusters, and therefore also the number of nodes in Ti . We can bound the total weight 
of H1 by

O

( ∞∑
i=0

gik · w(Ti) · l1(k) · n1/k
i

)
= O

( ∞∑
i=0

gik · ni · l1(k) · n1/k
i

)

= O ε

(
n ·

∞∑
i=0

l1(k) ·
(

n

gik

)1/k
)

= O ε

(
l1(k) · n1+1/k ·

∞∑
i=0

1

gi

)

= O ε

(
l1(k) · n1+1/k

)
.

Since the MST of G1 has weight n − 1 it follows that H1 has lightness O (l1(k) · n1/k) w.r.t. G1 and thus also G . The size can 
be bounded in a similar fashion.

The total running time of the algorithm is O (m +n log n) to find the MST of G and divide edges to G1 and G2, T2(n, m, k)

for creating H2, O (n) for creating the different (i, ε)-clusters and additional O (m +nk) = O (m +n log n) to create the graphs 
Gi , as described above. What is left is to bound the time needed to create the spanners Hi . Let mi = |Ei |, then this time can 
be bounded by

O

( ∞∑
i=0

mi + ni + T1(ni,mi,k)

)
= O

(
m +

∞∑
i=0

T1

(
n

gik
,mi,k

))
= O (m + T1(n,m,k)) . �

5. Efficient approximate greedy spanner

In this section we will show how to efficiently implement algorithms A1 and A2 of Lemma 1 in order to obtain The-
orems 2 and 4. We do this by implementing an “approximate-greedy” spanner, which uses an incremental approximate 
distance oracle to determine whether an edge should be added to the spanner or not.

We first prove Theorem 4 and then show in Section 5.2 how to modify the algorithm to give Theorem 2. We will use 
Theorem 5 as a main building block, but defer the proof of this theorem to Section 8. Our A1 is obtained by the following 
lemma giving stretch O (k) and optimal size O (n1+1/k) and lightness O (n1/k) for small weights.

Lemma 2. Let G = (V , E, w) be an undirected graph with m = |E| and n = |V | and integer edge weights bounded from above by 
W . Let k be a positive integer and let ε′ > 0 be a constant. Then one can deterministically construct an O (k)-spanner of G with size 
O (n1+1/k) and lightness O (n1/k) in time O  

(
m + kW n1+1/k+ε′)

.

We note that Lemma 2 above requires integer edge weights, but we may obtain this by simply rounding up the weight 
of each edge losing at most a factor of 2 in the stretch. Alternatively we can use the approach of Lemma 4 in Section 5.2 to 
reduce this factor of 2 to (1 + ε).

Our A2 will be obtained by the following lemma, which is essentially a modified implementation of Lemma 2.
9
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Lemma 3. Let G = (V , E, w) be an edge-weighted graph with m = |E| and n = |V |. Let k be a positive integer and let ε′ > 0 be a 
constant. Then one can deterministically construct an O (k)-spanner of G with size O (n1+1/k) in time O  

(
m + kn1+1/k+ε′)

.

Combining Lemma 1 of Section 4 with Lemmas 2 and 3 above immediately gives us a spanner with stretch O (k), size 
O (n1+1/k) and lightness O (n1/k) in time O (m +n1+1/k+ε′′

) for any constant ε′′ > 0. This is true because we may assume that 
k ≤ γ log n for any constant γ > 0 (as the improvement in sparsity and lightness obtained by picking k > γ log n is bounded 
by 2γ ), and thus by picking γ and ε′ accordingly we have that the running time given by Lemma 1 can be bounded by

O
(

m + kW n1+1/k+ε′ + kn1+1/k+ε′) = O
(

m + kgkn1+1/k+ε′) = O
(

m + n1+1/k+ε′′)
.

5.1. Details of the almost-greedy spanner

Set ε = 1.8 Our algorithm for Lemma 2 is described below in Algorithm 1. It computes a spanner of stretch c1(1 +ε)(2k −
1), where c1 = O (1) is the stretch of our incremental approximate distance oracle in Theorem 5. Let t = c1(1 + ε)(2k − 1)

throughout the section. With Algorithm 1 defined we are now ready to prove Lemma 2.

Algorithm 1: Approximate-Greedy.
input : Graph G = (V , E, w), Parameters ε, k
output : Spanner H

1 Create H = (V , ∅)

2 Initialize incremental distance oracle (Theorem 5) on H with d = t · W
3 for (u, v) ∈ E in non-decreasing order do
4 if d̂H (u, v) > t · w(u, v) then
5 Add (u, v) to H

6 return H

Proof of Lemma 2. Let H be the spanner created by running Algorithm 1 on the input graph G with the input parameters.
Stretch: We will bound the stretch by showing that for any edge (u, v) ∈ E there is a path of length at most t · w(u, v)

in H . Let (u, v) be any edge considered in the for loop of Algorithm 1. If (u, v) was added to H we are done. Thus, assume 
that (u, v) /∈ H . In this case we have d̂H (u, v) ≤ t · w(u, v) as (u, v) would have been otherwise added to H . The lemma 
now follows by noting that d(u, v) ≤ d̂H (u, v) by Theorem 5.

Size and lightness: Next we bound the size and lightness of H . Our proof is very similar to the proof of Filtser and 
Solomon for the greedy spanner [18]. However, we need to be careful as we are using an approximate distance oracle and 
do not have the exact distances when inserting an edge. Let H ′ be any spanner of H with stretch (1 + ε)(2k − 1). We will 
argue that H ′ = H . To see this let (u, v) ∈ H \ H ′ be any edge contradicting the above statement. Then there must be a path 
P in H ′ connecting u and v with w(P ) ≤ (1 + ε)(2k − 1) · w(u, v). Let (x, y) be the last edge in P ∪ {(u, v)} examined by 
Algorithm 1. It follows that w(x, y) ≥ w(u, v). As P ∪ {(u, v)} ∈ H it follows that all the edges of (P ∪ {(u, v)}) \ (x, y) were 
already in H when (x, y) was added. These edges form a path in H connecting x and y of weight

w(P ) − w(x, y) + w(u, v) ≤ w(P ) ≤ (1 + ε)(2k − 1) · w(u, v) ≤ (1 + ε)(2k − 1) · w(x, y) .

It follows that d(x, y) ≤ (1 + ε)(2k − 1) · w(x, y) ≤ d just before (x, y) was added to H , and by Theorem 5 that d̂H (x, y) ≤
t · w(x, y). Thus Algorithm 1 did not add the edge (x, y) to H , which is a contradiction. We conclude that H ′ = H .

Now, since H ′ could be any spanner of H , we may in particular choose it to be the (1 + ε)(2k − 1) spanner from 
Theorem 1. It now follows immediately that H = H ′ has size O (n1+1/k). For the lightness we know that H ′ has lightness 
O (n1/k) with regard to the MST of H . Thus, if we can show that the MST of H is the same as the MST of G we are done. 
However, this follows by noting that Algorithm 1 adds exactly the MST of G to H that would have been added by Kruskal’s 
algorithm [21], since each such edge connects two disconnected components. Thus the MST of G and H have the same 
weight which completes the proof.

Running time: In Algorithm 1 we perform m queries to the incremental distance oracle of Theorem 5 each of which take 
O (1) time. We also perform |E(H)| insertions to the incremental distance oracle. We invoke Theorem 5 using ε∗ picked 
such that 1/ε∗ is integer and ε∗ + ε∗/k ≤ ε′ . Since d = O (kW ), it follows from Theorem 5 and the size bound above that 
running time of the for-loop of Algorithm 1 is

O (m + d|E(H)|1+ε∗
) = O (m + kW n1+1/k+ε∗+ε∗/k) = O (m + kW n1+1/k+ε′

) .

8 In Section 5.2 we let 0 < ε < 1 here to be arbitrary small parameter.
10
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To achieve the non-decreasing order we may simply run the algorithm of Baswana and Sen [5] first with parameter k = 1/ε′ . 
This gives an additional factor of O (1/ε′) to the stretch, but leaves us with a graph with only O (n1+ε′

) edges which we 
may then sort. �

Next, we sketch the proof Lemma 3, by explaining how to modify the proof of Lemma 2.

Proof of Lemma 3. Recall that c1 is defined as the constant stretch provided by Theorem 5. We use Algorithm 1 with 
the following modifications: (1) we pick d = c1(2k − 1), (2) when adding an edge to the distance oracle we add it as an 
unweighted edge, (3) we add an edge if its endpoints are not already connected by a path of at most d edges according to 
the approximate distance oracle.

The stretch of the spanner follows by the same stretch argument as in Lemma 2 and the fact that we consider the edges 
in non-decreasing order. To see that the size of the spanner is O (n1+1/k) consider an edge (u, v) added to H by the modified 
algorithm. Since (u, v) was added to H we know that the distance estimate was at least c1(2k − 1). It thus follows from 
Theorem 5 that u and v have distance at least 2k in H and therefore H has girth at least 2k + 1. It now follows that H has 
O (n1+1/k) edges by a standard argument. The running time of this modified algorithm follows directly from Theorem 5. �
5.2. Near-quadratic time implementation

The construction of the previous section used our result from Theorem 5 to efficiently construct a spanner losing a 
constant factor exponential in 1/ε in the stretch. We may instead use the seminal result of Even and Shiloach [15] to obtain 
the same result with stretch (1 + ε)(2k − 1) at the cost of a slower running time as detailed in Theorem 2. It is well-known 
that the decremental data structure in [15] can be made to work with the same time guarantees in the incremental setting; 
we will make use of this result:

Theorem 7 ([15]). There exists a deterministic incremental APSP data structure for graphs with integer edge weights, which answers 
distance queries within a given threshold d in O (1) time and has total update time O (mnd).

Here, the threshold means that if the distance between two nodes is at most d, the data structure outputs the exact 
distance and otherwise it outputs ∞ (or some other upper bound).

To obtain Theorem 2 we use the framework of Section 4. For the algorithm A2 we may simply use the deterministic 
spanner construction of Roditty and Zwick [28] giving stretch 2k − 1 and size O (n1+1/k) in time O (kn2+1/k). For A1 we will 
show the following lemma.

Lemma 4. Let G = (V , E, w) be an undirected graph with m = |E| and n = |V |, edge weights bounded from above by W and where 
all MST edges have weight 1. Let k be a positive integer. Then one can deterministically construct a (1 + ε)(2k − 1)-spanner of G with 
size O ε(n1+1/k) and lightness O ε(n1/k) in time O ε(m log n + kW n2+1/k).

Proof sketch. The final spanner will be a union of two spanners. Since Theorem 7 requires integer weights. We therefore 
need to treat edges with weight less than 1/ε separately. For these edges we use the algorithm of Roditty and Zwick [28]
to produce a spanner with stretch 2k − 1, size O (n1+1/k) and thus total weight O (n1+1/k/ε).

For the remaining edges with weight at least 1/ε we now round up the weight to the nearest integer incurring a stretch 
of at most a factor of 1 + ε. We now follow the approach of Algorithm 1 using the incremental APSP data structure of 
Theorem 7 and a threshold in line 4 of (1 +ε)(2k −1) · w(u, v) instead. We use the distance threshold d = (1 +ε)(2k −1) · W .

The final spanner, H , is the union of the two spanners above. The stretch, size and lightness of the spanner follows 
immediately from the proof of Lemma 2. For the running time, we add in the additional time to sort the edges and query 
the distances to obtain a total running time of

O ε(m logn + d · |E(H)| · |V (H)|) = O ε

(
m logn + kW n2+1/k

)
. �

Now, recall that W = gk , where k ≤ logn and g > 1 is a fixed parameter of our choice. By picking g such that g2k ≤ nε′

we get a running time of O (n2+1/k+ε′
) for A1. Theorem 2 now follows from Lemma 1.

6. Almost linear spanner

Our algorithm builds on the spanner of Chechik and Wulff-Nilsen [10]. Here we first describe their algorithm and then 
present the modifications. Chechik and Wulff-Nilsen implicitly used our general framework, and thus provide two different 
algorithms ACW

1 and ACW
2 . ACW

2 is simply the greedy spanner algorithm.
ACW

1 starts by partitioning the non-MST edges into k buckets, such that the ith bucket contains all edges with weight in 
[gi−1, gi). The algorithm is then split into k levels with the ith bucket being treated in the ith level. In the ith level, the 
11
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vertices are partitioned into i-clusters, where the i-clusters refine the (i − 1)-clusters. Each i-cluster has diameter O (kgi)

and contains at least �(kgi) vertices. This is similar to the (i, ε)-clusters in Section 4 with the modification of having two 
types of clusters, heavy and light. A cluster is heavy if it has many incident i-level edges and light otherwise. For a light 
cluster, we add all the incident i-level edges to the spanner directly. For the heavy clusters, Chechik and Wulff-Nilsen [10]
create a special auxiliary cluster graph and run the greedy spanner on this to decide which edges should be added.

To bound the lightness of the constructed spanner, they show that each time a heavy cluster is constructed the number 
of clusters in the next level is reduced significantly. Then, using a clever potential function, they show that the contribution 
of all the greedy spanners is bounded. It is interesting to note, that in order to bound the weight of a single greedy spanner, 
they use the analysis of [13]. Implicitly, [13] showed that on graphs with O (poly(k)) aspect ratio, the greedy (1 +ε)(2k −1)-
spanner has O ε(n1/k) lightness and O (n1+1/k) edges.

There are three time-consuming parts in [10]: 1) The clustering procedure iteratively grows the i-clusters as the union 
of several (i − 1)-clusters, but uses expensive exact diameter calculations in the original graph. 2) They employ the greedy 
spanner several times as a subroutine during ACW

1 for graphs with O (poly(k)) aspect ratio. 3) They use the greedy spanner 
as ACW

2 .
In order to handle 1) above we will grow clusters purely based on the number of nodes in the (i − 1)-clusters (in 

similar manner to (i, ε)-clusters), thus making the clustering much more efficient without losing anything significant in the 
analysis. To handle 2) We will use the following lemma in place of the greedy spanner.

Lemma 5. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, a positive integer k, ε > 0, such that all the 
weights are within [a, a · �), and the MST have weight O (na). One can deterministically construct a (2k − 1)(1 + ε)-spanner of G
with O ε(n

1+ 1
k ) edges and lightness O ε

(
n

1
k · log (�)

)
in time O  (m + n log n)).

The core of Lemma 5 already appears in [16], while here we analyze it for the special case where the aspect ratio is 
bounded by �. The main ingredient is an efficient spanner construction by Halperin and Zwick [20] for unweighted graphs 
(Theorem 10). The description of the algorithm of Lemma 5 and its analysis can be found in Section 10. Replacing the 
greedy spanner by Lemma 5 above is the sole reason for the additional log k factor in the lightness of Theorem 3.

Imitating the analysis of [10] with the modified ingredients, we are able to prove the following lemma, which we will 
use as A1 in our framework.

Lemma 6. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, a positive integer k ≥ 640, and ε > 0, such 
that all MST edges have unit weight, and all weights bounded by gk, one can deterministically construct a (2k − 1)(1 + ε)-spanner of 
G with O ε(n1+1/k) edges and lightness O ε

(
log k · n

1
k

)
in time O  (m + nk).

To address the third time-consuming part we instead use the algorithm of Theorem 6 as A2. Replacing the greedy 
algorithm by Theorem 6 is the sole reason for the additional log k factor in the sparsity of Theorem 3.

Combining Lemma 6, Theorem 6 and Lemma 1 we get Theorem 3. The remainder of this section is concerned with 
proving Lemma 6.

6.1. Details of the construction

Algorithm 2 below contains a high-level description of the algorithm. We defer part of the exact implementation details 
and the analysis of the running time to Section 6.2. We denote Ei = {

(u, v) ∈ E | w(u, v) ∈ [gi, gi+1)
}

.
Using our modified clustering we will need the following claim which is key to the analysis. The claim is proved in 

Section 6.2. We refer to the definitions from Algorithm 2 in the following section.

Claim 1. For each i-level cluster C ∈ Ci produced by Algorithm 2 it holds that:

1. C has diameter at most 1
2 kgi (w.r.t. the current stage of the spanner Esp).

2. The number of vertices in C is larger than its diameter and is at least 1
c kgi .

Our analysis builds upon [10]. The bound on the stretch of Lemma 5 follows as we have only replaced the greedy spanner 
by alternative spanners with the same stretch (and have similar guaranties on the clusters diameter). The proof appears at 
Section 11.1.

To bound the sparsity and lightness we consider the two phases of Algorithm 2. During the i’th level of the first phase 
we add at most d edges per light cluster and at most 1 edge per (i − 1)-cluster to form the heavy clusters. By Claim 1 each 
i-level cluster contains �(kgi) vertices and thus the total number of clusters over all levels is bounded by 

∑k
i=0 O ( n

kgi ) =
O (n/k). It follows that we add at most O (n) edges during the first phase. For the lightness of these edges, note that 
edges added during the ith level have weight at most gi+1. Hence the total weight added during the ith level is at most 
12
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Algorithm 2: A1 component of Theorem 3.

input : Parameters k, ε, weighted graph G = (V , E, w) where all MST edges have unit weight and maxe∈E w(e) ≤ gk .
output : Spanner Esp .

1 Fix g = 20, c = 24, d = 160 and μ = logg (k/ε)

2 Esp ← M ST (G)

/* First phase: */

3 Partition V into 0-clusters C0 such that for every C ∈ C0, |C | ∈ [ k
c , k

2 ]
4 for i = 1 to k − 1 do
5 Let Ki be G with each C ∈ Ci−1 contracted. Retain only edges of weight [gi, gi+1) (keeping Ki simple).

/* Construct i-level heavy clusters */
6 Let all nodes of Ki be unmarked
7 for ϕ ∈ Ki do
8 if deg(ϕ) ≥ d, ϕ is unmarked, and all of ϕ ’s neighbors are unmarked then
9 Create new heavy cluster ϕ̂ with ϕ and all neighbors

10 Mark all nodes of ϕ̂

11 for ϕ ∈ Ki do
12 if deg(ϕ) ≥ d and ϕ is unmarked then

/* ϕ must then have marked neighbor. */
13 Add ϕ to the heavy cluster of a marked neighbor

14 Mark all clustered, unmarked vertices ϕ
15 Add all edges used to join heavy clusters to Esp

/* Construct i-level light clusters */
16 Add all edges incident to unmarked nodes to Esp

17 Join remaining nodes into clusters of size (number of original vertices) ≥ 1
c · kgi and diameter ≤ 1

2 · kgi using MST edges

18 If a cluster cannot reach 1
c · kgi nodes. Add it to a neighboring heavy cluster (via MST edge)

/* Second phase: */
19 Let S0 be a subgraph of G which contain only edges of weight at most k/ε. Let H0 be a (2k − 1)(1 + ε)-spanner of S0 constructed using Lemma 5
20 Add H0 to Esp

21 for r = 1 to �k/μ� − 1 do
22 Let Vr to be the set of nodes obtained by contracting each (r − 1)μ cluster contained in some i-level heavy cluster for i ∈ [rμ, (r + 1)μ)

(deleting all the other (r − 1)μ-clusters)
23 Let Er be all the edges used to create i-clusters (heavy or light) for i ∈ ((r − 1)μ, (r + 1)μ]

24 Let Sr be the graph with Vr as its vertices and Er ∪ ⋃(r+1)μ−1
i=(r−1)μ Ei as its edges (keeping Sr simple)

25 Let wr(e) = max{w(e), kg(r−1)μ/ε} be the weight function of Sr

26 Construct a (2k − 1)(1 + ε)-spanner Hr of Sr using Lemma 5
27 Add Hr to Esp

28 return Esp

O ( n
kgi−1 · gi+1) for heavy clusters and at most O ( dn

kgi · gi+1) for light clusters. Summing over all k levels this contributes at 
most O (n) to the total weight from the first phase.

Next consider the second phase. First note S0 has an MST of weight n − 1 and only contains edges with weight in [1, kε ). 

Thus, by Lemma 5, |H0| = O ε(n
1+ 1

k ) and w(H0) = O ε

(
n

1
k · log

(
k
ε

))
= O ε

(
n

1
k · log k

)
.

Fix some r ∈ [1, �k/μ� − 1]. Recall the definitions of Vr , Sr , and Hr : Vr is a set of vertices representing a subset of the 
(r −1)μ-level clusters. Sr is a graph with nodes Vr where all the edges have weight in [kg(r−1)μ/ε, g(r+1)μ] = [grμ, grμk/ε]. 
Hr is a spanner of Sr constructed using Lemma 5. Denote by Mr the MST of Sr . The following lemma bound its weight. A 
proof can be found in Section 11.2.

Lemma 7. The MSF Mr of Sr has weight wr(Mr) = O (|Vr | · kg(r−1)μ/ε).

By Lemma 5, |Sr | = O ε(|Vr |1+ 1
k ). Summing over all the indices r, we can bound the number of edges added in second 

phase by

�k/μ�−1∑
r=0

|Hi| = O ε(n
1+ 1

k ) +
�k/μ�−1∑

r=1

O ε

(
|Vr |1+ 1

k

)

= O ε

⎛
⎝n1+ 1

k +
�k/μ�−1∑

r=1

(
n

kg(r−1)μ

)1+1/k
⎞
⎠ = O ε

(
n1+ 1

k

∞∑
r=0

1

gr

)
= O ε

(
n1+ 1

k

)
.

Using a potential function, we show that the sum of the weights 
∑

r w(Hr) converges nicely. The details can be found in 
Section 11.2.
13
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Lemma 8. The total weight of the spanners constructed in the second phase of Algorithm 2 is O ε

(
n1+ 1

k · log k
)

.

The size and lightness of Lemma 6 now follows. All that is left is to describe the exact implementation details and 
analyze the running time, which is done below.

6.2. Exact implementation of Algorithm 2

In this section we give a detailed description of Algorithm 2 and bound its running time. In addition we prove Claim 1.

First phase Let mi = |Ei | and ni = |Ci | be number of i-level clusters as described in Algorithm 2. For each i, the clusters 
Ci form a partition of V , where Ci is a refinement of Ci+1. To efficiently facilitate certain operations we will maintain a 
forest T representing the hierarchy of containment between the clusters in different levels. Specifically, T will have levels 
going from −1 to k. For simplicity, we treat each vertex v ∈ V as a −1-cluster. Each i-cluster ϕ will be represented by an 
i-level node vϕ . vϕ will have a unique out-going edge to vϕ′ , the (i + 1)-level node that represents the (i + 1)-cluster ϕ′
containing ϕ . In addition, each node vϕ in T will store the size of the cluster it represents. Further, every −1 level node v
in T will have a link to each of its ancestors in T (i.e. nodes representing the i ≥ 0 clusters containing v).

0-clusters: are constructed upon −1-clusters (V ). The construction of C0 is done the same way as for i ≥ 1 (see below), 
where we start the construction right away from the construction of light clusters.

i-clusters: Fix some i ∈ [1, k − 1]. We assume that T is updated. Construct a graph Ki with Ci−1 as its vertices. We add 
all the edges of Ei to Ki (deleting self-loops and keeping only the lightest edge between two clusters). The construction of 
Ki is finished in O (mi) time (using T ).

The construction of Ci is done from Ki in two parts. In the first part we construct the heavy clusters. In the beginning 
all the nodes are unmarked. We now go over all the nodes, ϕ , in Ki and consider the following cases: If ϕ has at least d
neighbors and both ϕ and all its neighbors are unmarked we create a new i-level heavy cluster ϕ̃ containing ϕ and all of 
its neighbors. We mark all the nodes currently in ϕ̃ , called the origin of ϕ̃ (additional clusters might be added later). In 
addition, we add all the (representatives of the) edges between ϕ and its neighbors to Esp . At the end of this procedure, 
each unmarked node ϕ with at least d neighbors has at least one marked neighbor. We add each such ϕ to a neighboring 
i-level cluster (via and edge to its origin) and mark ϕ . We also add the corresponding edge to Esp . For every heavy cluster 
ϕ created so far, we denote all the vertices currently in ϕ as the core of ϕ (additional clusters might be added later during 
the formation of light clusters).

In the second part we construct the light clusters. We start by adding all the (representatives of the) edges incident to 
the remaining unmarked nodes to Esp . Let Li be the graph with the remaining unmarked nodes as its vertex set and the 
edges of the MST going between these nodes (keeping the graph simple) as its edge set. The clustering is similar to the 
(i, ε) clustering described in Section 4. Iteratively, we pick an arbitrary node ϕ ∈ Li , and grow a cluster around it by joining 
arbitrary neighbors one at a time. Once the cluster has size at least kgi/c (number of actual vertices from G) we stop and 
make it an i-level light cluster ϕ̃ . We call the nodes currently in ϕ̃ the core of ϕ̃ . If the cluster has size less than kgi/c and 
there is no remaining neighboring vertices in Li , we add it to an existing neighboring cluster (heavy or light) via an MST 
edge to its core (note that this is always possible). We continue doing this until all nodes are part of an i-level cluster.

This finishes the description of the clustering procedure. We are now ready to prove Claim 1.

Proof of Claim 1. Recall the value of our constants: g = 20, c = 24, d = 160. We also assumed that k ≥ 640.
We will prove the claim by induction on i. We start with i = 0. Property (2) of Claim 1 is straightforward from the 

construction as we used only unit weight edges. For property (1), note that the core of each 0-cluster has diameter at most 
k
c . Each additional part has diameter at most k

c − 1 and is connected via unit weight edge to the core. Hence the diameter 
of each 0-cluster is bounded by 3 · k

c < k
2 .

Now assume that the claim holds for i − 1 and let C ∈ Ci . Assume first that C is a light cluster. From the construction, 
C contains at least kgi/c vertices. The size of C is larger than the diameter by the induction hypothesis and the fact 
that we used only unit weight edges to join the light cluster. For the upper bound on the diameter, observe that the 
diameter of C was at most kgi/c before the last (i − 1)-cluster was added to the core of C . At this point we add the 
final (i − 1)-cluster, which has diameter at most kgi−1/2. We conclude that the diameter of the core of C is at most 
kgi/c + kgi−1/2. Afterwards, we might add additional parts to C . However, each such part has diameter strictly smaller 
than kgi/c and are added with a unit weight edge to the core of C . Thus each light cluster C has diameter at most 
1
c kgi + 1

2 kgi−1 + 2 1
c kgi ≤ kgi ·

(
3
c + 1

2g

)
≤ 1

2 kgi .

Next, we consider a heavy cluster C . Let C̃ ⊆ C be the set of vertices that belonged to C before the construction of light 
clusters (i.e. the core of C ). Let ϕ be the original (i −1)-cluster that formed C . Then each (i −1)-cluster of C̃ is at distance at 
most 2 from ϕ in Ki . Thus, by the induction hypothesis, the diameter of C̃ is at most 5 · 1

2 kgi−1 +4 · gi+1 = kgi ·
(

5
2g + 4g

k

)
≤

kgi/4, and its size is at least d · kgi−1/c = kgi · d
cg = kgi/3. During the construction of the light clusters we might add some 

“semi-clusters” to C̃ of diameter strictly smaller than kgi−1/c via unit weight edges. We conclude that the diameter of C is 
at most kgi/4 + 2 · kgi/c = kgi ·

(
1 + 2

)
= kgi/3. �
4 c
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To conclude the first phase we will analyze its running time. Level i clustering is done in O (ni−1 +mi) time, and updating 
T takes an additional O (n) time. In total all the first phase takes us O (kn + m) time.

Second phase Recall that we pick μ = log(k/ε) and refer to Algorithm 2 for definitions and details. Here we only analyze 
the running time. We denote m̃r = ∑(r+1)μ−1

i=(r−1)μ mi .
Creating S0 (line 19) takes O (m + n log n) times, computing H0 takes O ε(m + n log n) time (according to Lemma 5). Next 

we have k
μ step loop. For fixed r, we create the vertex set Vr (line 21) in O (n(r−1)μ) time, using T .9 Upon Vr , we create 

the graph Sr (line 23). This is done by first adding the edges of Er , and all the edges in ∪(r+1)μ−1
i=(r−1)μ Ei . We can maintain Er

during the first phase in no additional cost, thus creating Sr and modifying the weights will cost us O (n(r−1)μ +m̃r). Finally, 
we compute a spanner Hr of Sr using Lemma 5 (line 25) in O ε

(
m̃r + |Vr | · log |Vr |

) = O ε

(
m̃r + n(r−1)μ log n

)
time. Then we 

add (the representatives of) the edges in Hr into Esp (line 26) in O ε

(
m̃r + n(r−1)μ

)
time. Thus, the total time invested in 

creating Hr is O ε

(
m̃r + n(r−1)μ log n

)
. The total time is bounded by

�k/μ�−1∑
r=0

Time(Hr) = O ε(m + n) + O ε

(
m̃r + n(r−1)μ log n

)

= O ε

⎛
⎝m +

�k/μ�−1∑
r=1

m̃r + log n ·
�k/μ�−1∑

r=1

n

kg(r−1)μ

⎞
⎠ = O ε (m + n log n) .

Running time Combining the first and second phases above, the total running time is O (kn + m) + O  (m + n log n) =
O  (m + n log n).

7. Proof of Theorem 6

We restate the theorem for convenience:

Theorem 6. Given a weighted undirected graph G = (V , E, w) with m edges and n vertices, any positive integer k, any ε > 0, and 
any positive integer s = O (1), one can deterministically construct a (2k − 1)(1 + ε)-spanner of G with O ε(n1+1/k · log k) edges; the 
running time is O (m + n log(s−1) k log k) and if k ≤ log n/ log(s+1) n, the running time is O (m).

The basic idea in the algorithm of Theorem 6, is to partition the edges E of G into O ε(log k) sets E1, E2, . . . , such that 
the edges in Ei are “well separated”. That is, for every e, e′ ∈ Ei , the ratio between w(e) and w(e′) is either a constant or 
at least k. By hierarchical execution of a modified version of [20], with appropriate clustering, we show how to efficiently 
construct a spanner of size O (n1+1/k) for each such “well separated” graph. Thus, taking the union of these spanners, 
Theorem 6 follows.

In Section 7.1 we describe the algorithm. In Section 7.2 we bound the stretch, in Section 7.3 the sparsity, and in Section 7.4
the running time. In Section 7.5 we introduce a relaxed version of the union/find problem (called prophet union/find), and 
construct a data structure to solve it. The prophet union/find is used in the implementation of our algorithm.

7.1. Algorithm

The following is our main building block. The description and the proof can be found in Section 12.1.

Lemma 9 (Modified [20]). Given an unweighted graph G = (V , E) and a parameter k, Algorithm 7 returns a (2k − 1)-spanner H with 
O (n1+1/k) edges in O (m) time. Moreover, it holds that

1. V is partitioned into sets S1, . . . , S R , such that at iteration i of the loop, Si was deleted from V ′ .
2. For every i, diamH (Si) ≤ 2k − 2.

3. When deleting Si , Algorithm 7 adds less than |Si | · n
1
k edges. All these edges are either internal to Si or going from Si to ∪ j>i S j .

4. There is an index t, such that for every i ≤ t, |Si| ≥ n1/k, and for every i > t, |Si| = 1 (called singletons).

For simplicity we assume that the minimal weight of an edge in E is 1. Otherwise, we can scale accordingly. Let cl =
O ε(1), such that (1 + ε)cl logk ≥ 18k

ε . Let Ei = {
e ∈ E | w(ei) ∈ [

(1 + ε)i, (1 + ε)i+1
)}

, and let G j be the subgraph containing 

9 Just go from each (r + 1)μ-level cluster to all of its descendants and return each (r − 1)μ cluster that had a heavy cluster as ancestor in the first μ
steps.
15
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the edges ∪i≥0 E j+i·cl log k . Note that G0, . . . , Gcl log k−1 partition the edges of G . Next we build a different spanner H j for 
every G j and set the final spanner to be H = H0 ∪ . . . ∪ Hcl logk−1.

Fix some j. Set the 0-clusters to be the vertex set V . Similar to the previous sections we will have i-clusters, which 
are constructed as the union of (i − 1)-clusters. Let G j,i be the unweighted graph with the i-clusters as its vertex set and 
E j+i·cl logk as its edges (keeping the graph simple). Let H j,i be the (2k − 1)-spanner of G j,i returned by the algorithm of 
Lemma 9. We add (the representatives) of the edges in H j,i to H j . Based on H j,i we create the (i + 1)-clusters as follows. 
Let S1, . . . , St , V ′ be the appropriate partition of the vertex set, where S1, . . . , St are non-singletons, and all the singletons 
are in V ′ . Each Sa for a ≤ t becomes a (i + 1)-cluster. Next, for each connected component C in G j,i[V ′], we divide C into 
clusters of size at least k, and diameter at most 3k (in the case where |C | < k we let C be an (i + 1)-cluster). We then 
proceed to the next iteration.

7.2. Stretch

We start by bounding the diameter of the clusters.

Claim 2. Fix j, for every i-cluster ϕ of G j,i , diamH (ϕ) ≤ 1
2 · ε · (1 + ε) j+i·cl ·log k

Proof. We show the claim by induction on i. For i = 0, the diameter is 0. For general i, in the unweighted graph G j,i−1, we 
created clusters of diameter at most 2k − 2 for the non-singletons and 3k for the singletons. Thus the diameter of φ in H is 
bounded by the sum of 3k edges in E j+(i−1)·cl log k , and 3k + 1 diameters of (i − 1)-clusters. By the induction hypothesis

diamH (ϕ) ≤ 3k · (1 + ε) j+(i−1)·cl log k+1 + (3k + 1) · 1

2
· ε · (1 + ε) j+(i−1)·cl·log k

≤ 3k · (1 + ε) j+(i−1)·cl log k (1 + ε + ε)

= 3k · (1 + 2ε)

(1 + ε)cl log k
· (1 + ε) j+i·cl log k

≤ 1

2
· ε · (1 + ε) j+i·cl log k ,

where the last inequality follows as (1 + ε)cl log k ≥ 18k
ε . �

The rest of the proof follows by similar arguments as in Equation (1). See Fig. 2 for illustration.

7.3. Sparsity

Again, we fix some j ≥ 0. We will bound |H j| by O (n1+1/k) using a potential function. For a graph G ′ with nG ′ vertices, 
set potential function P (G ′) = 2 · nG ′ · n1/k . That is, we start with a graph G j,0 with n0 = n vertices and potential P (G j,0) =
2 · n · n1/k . In step i we considered the graph G j,i . Let mi denote the number of edges added to H j in this step. We will 
prove that P (G j,i) − P (G j,i+1) ≥ mi to conclude that

|H j| =
∑
i≥0

mi ≤
∑
i≥0

P (G j,i) − P (G j,i+1) = P (G j,0) = 2 · n1+ 1
k .

Let S1, . . . , S R be the partition created by Lemma 9, where S1, . . . , St are the non-singletons, and V ′ = ∪r>t Sr are the 
singletons. Let C1, . . . , C R ′ be the connected components in the induced graph G j,i[V ′]. We will look on the clustering 
procedure iteratively, and evaluate the change in potential after each contraction.

Consider first the non-singletons. Fix some r ≤ t and let Xr be the graph after we contract S1, . . . , Sr (note that X0 =
G j,i ). For r ≥ 0, let m̂r be the number of edges added to H j,i while creating Sr . Recall that m̂r ≤ |Sr | · n

1
k . Thus

P (Xr−1) − P (Xr) = 2 · |Xr−1| · n1/k − 2 · |Xr | · n1/k

= 2 · |Xr−1| · n1/k − 2 · (|Xr−1| − (|Sr | − 1)) · n1/k

= 2 · (|Sr | − 1) · n1/k ≥ m̂r ,

where the inequality follows as Sr is not a singleton.
Next we analyze the singletons. Consider some singleton {v} = Sr . Recall that once the algorithm processed Sr it only 

added edges to the spanner from the connected component Cr′ of G j,i[V ′] containing v . Furthermore it added at most n1/k

such edges. Instead of analyzing the potential change from deleting Sr , we will analyze the change from processing the 
entire connected component Cr′ . Denote by m̃r′ the total number of edges added to the spanner from Cr′ . It holds that 
16
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m̃r′ ≤ |Cr′ | · n
1
k . Let Yr′ be the graph G j,i where we contract S1, . . . , St , and all the clusters created from C1, . . . , Cr′ (note 

that Y0 = Xt and Y R ′ = G j,i+1). Suppose Cr′ is divided into clusters A1, . . . , Az . Then we have

P (Yr′−1) − P (Yr′) = 2 · ∣∣Yr′−1
∣∣ · n1/k − 2 · |Yr′ | · n1/k = 2 · (|Cr′ | − z) · n1/k .

We prove that P (Yr′−1) − P (Yr′ ) ≥ m̃r′ by case analysis:

• |Cr′ | = 1. Then z = 1, which implies m̃r′ = 0.
• |Cr′ | > 1 and z = 1. Then m̃r′ ≤ |Cr′ | · n1/k ≤ 2 · (|Cr′ | − z) · n1/k = P (Yr′−1) − P (Yr′ ).
• |Cr′ | > 1 and z > 1. Necessarily for every q, |Aq| ≥ k ≥ 3. Hence

m̃r′ ≤ |Cr′ | · n1/k =
z∑

q=1

|Aq| · n1/k <

z∑
q=1

2 · (|Aq| − 1
) · n1/k

= 2 · (|Cr′ | − z) · n1/k = P (Yr′−1) − P (Yr′) .

Finally,

P (Gi) − P (Gi+1) =
t−1∑
r=0

[P (Xr) − P (Xr+1)] +
R ′−1∑
r=0

[P (Yr) − P (Yr+1)]

≥
t−1∑
r=0

m̂r +
R ′−1∑
r=0

m̃r = mi . (2)

7.4. Running time

We can assume that the number of edges m is at least n1+1/k log k, as otherwise we can simply return the whole graph 
as the spanner. Assuming this, dividing the edges into the sets E0, E1, . . . , and creating the graphs G0, . . . , Gcl ·log k−1 will 
take us O (m + n log k) = O (m) time (first create log k empty graphs, and then go over the edges, and add each edge to 
the appropriate graph). Fix j, and set m j to be the number of edges in G j . The creation of H j,i , takes O  

(∣∣E j+i·cl logk
∣∣)

time (Lemma 9) which summed over all i is O (m j). Clustering can be done while constructing H j,i with a union/find 
data structure. Queries to this data structure are used to identify the clusters containing the endpoints of edges and union 
operations are used when forming clusters from sub-clusters. However, a union/find data structure will be too slow for our 
purpose since we seek linear time for almost all choices of k. In the next subsection, we present a variant of the union/find 
problem called prophet union/find; solving this problem suffices in our setting. With the constant s from Theorem 6, we give 
a data structure for prophet union/find which for any fixed j spends time O (m j s + n log(s) n) = O (m j + n log(s) n) on all 
operations. Summed over all j, this is O (m + n log(s) n log k).

We may assume that n log(s) n log k > m since otherwise the time bound simplifies to linear. Since we also assumed 
m > n1+1/k log k, we have

n log(s) n log k > n1+1/k log k ⇔ log(s) n > n1/k ⇔ k > log n/ log(s+1) n.

We conclude that the running time is linear if k ≤ log n/ log(s+1) n. Now, assume k > log n/ log(s+1) n. Then log n <
k log(s+1) n < k2, implying that log(s) n = O (log(s−1)(k2)) = O (log(s−1) k) and we get a time bound of O (m +n log(s−1) k log k), 
as desired.

7.5. Prophet union/find

Consider a ground set A = {x1, . . . , Xn} of n elements, partitioned to clusters C , initially consisting of all the singletons. 
We need to support two types of operations: find query, where we are given an element x ∈ A and should return the cluster 
C ∈ C containing it, and union operation, where we are given two elements x, y ∈ A where x ∈ Cx , y ∈ C y (Cx, C y ∈ C), and 
where we should delete the clusters Cx, C y from C and add a new cluster Cx ∪ C y to C . The problem described above is 
called Union/Find. Tarjan [30] constructed a data structure that processes m union/find operations over a set of n elements 
in O (m · α(n)) time, where α is the very slow growing inverse Ackermann function.

A trivial solution to the union/find problem will obtain O (m + n log n) running time, which is superior to [30] for m ≥
n log n. Indeed, one can simply store explicitly for each element the name of the current cluster containing it, and given a 
union operation for x, y ∈ A, where x ∈ A, y ∈ B and w.l.o.g. |A| ≥ |B|, one can simply change the membership of all the 
elements in B to A. Each find operation will take constant time, while every vertex can update its cluster name at most 
lg n times (as each time the cluster name is updated, the cluster size is at least doubled). Thus in total, the running time is 
bounded by O (m + n log n).
17
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We introduce a relaxed version of the union-find problem we call the Prophet union/find. Here we are given a ground set 
A = {x1, . . . , xn} of n elements, and a series q1, q2, . . . , qm ∈ Am of element queries known in advance. Then we are asked 
these previously provided set of queries, with union operations intertwined between the find operations. While the union 
operations are unknown in advance, they are of a restricted form: a union operation arriving after the query q j , must be of 
the form {q j−1, q j}, that is a union of the clusters containing the two last find query elements. For a parameter s, we solve 
the Prophet union/find problem in O (m · s + n log(s) n) time.

Theorem 8. For any s ≤ log∗ n, a series of m operations in the Prophet union/find problem over a ground set of n elements can be 
performed in O (m · s + n log(s) n) time.

Proof. Set α0 = n, αs = 1, and for i ∈ {1, . . . , s − 1}, set αi = log(i) n. We will execute a modified version of the trivial 
algorithm described above. Specifically, at any point in time, we maintain a set A of elements partitioned to clusters C , 
where for each element we will store the name of the cluster it currently belongs to, and for each cluster we will store the 
number of elements it contains. Initially we are given a list q1, . . . , qm of queries, which we will store as well. Further, for 
each element x ∈ A, we will store a linked list containing the indices of all the queries q j such that q j = x. Note that this 
prepossessing step is done in O (m) time.

Given a find query q j , which is simply a name of an element, we will return in O (1) time the stored cluster name. 
Given a union operation arriving after the j’th query, we know that it is between the clusters C j−1, C j containing the 
elements q j−1 and q j accordingly. We find the clusters and their sizes in O (1) time. Assume w.l.o.g. that |C j−1| ≤ |C j |. Let 
t ∈ {0, . . . , s} such that |C j | ∈ [αt+1, αt). There are two cases:

1. If |C j−1| + |C j | < αt , we proceed as the trivial algorithm. Specifically, we go over the elements of C j−1, update their 
cluster to be C j , and update the size of the cluster C j to be |C j−1| + |C j |.

2. Else, we have |C j−1| + |C j | ≥ αt ; in this case, replace all the elements C j−1 ∪ C j in A by a new element y. Specifically, 
add a new element y to A that will belong to a singleton cluster C y = {y} the size of which will be updated set to be 
|C j−1| + |C j |. Then make a linked list of queries for y by concatenating the linked lists of the elements in C j−1 ∪ C j . 
Finally, use the newly created linked list to go over all the find queries q j , . . . , qm , and replace every appearance of an 
element from C j−1 ∪C j with y. Note that we now have a valid preprocessed instance of the prophet union/find problem.

We finish with time analysis of the execution of the algorithm. Note that every find operation takes O (1) time, as we 
explicitly store all the queries and their answers. There are two types of executions of the union operation above. Denote 
by At all the artificial elements created during the execution of the algorithm such that the number of ground elements 
they are replacing is in [αt, αt−1). Then |At | ≤ n

αt
. Each element y ∈ At actively participated (that is made any changes) in 

at most logαt−1 union operations of the first type. This is because each time this happens, the size of the cluster containing 
y is (at least) doubled, and once it reaches the size of αt−1, a union operation of the second type will occur, and y will 
be deleted. Note that processing y in each such union operation takes only O (1) time (updating the name of the cluster it 
belongs to, and updating the size of the cluster). We conclude that in total, the time consumed by all the union operations 
of the first type is bounded by

O (1) ·
s∑

t=1

|At | · logαt−1 = O (1) ·
[

n · logαs−1 +
s−2∑
t=1

n

αt
· αt

]
= O (n · s + n · log(s) n) .

To bound the time consumed by union operations of the second type, note that each ground element x ∈ A = As , can go 
over at most s such transitions (implicitly). For every query q j that initially was to x, we will pay O (1) for each such 
transition (update the query and the linked list), and thus O (s) overall. We conclude that all the changes due to the second 
type union operations consume at most O (m · s) time. The theorem now follows. �
8. Deterministic incremental distance oracles for small distances

In this section, we present a deterministic incremental approximate distance oracle which can answer approximate dis-
tance queries between vertex pairs whose actual distance is below some threshold parameter d. This oracle will give us 
Theorem 5 and finish the proof of Theorem 4. In fact, we will show the following more general result. Theorem 5 follows 
directly by setting k = 1/ε in the theorem below.

Theorem 9. Let G = (V , E) be an n-vertex undirected graph that undergoes a series of edge insertions. Let G have positive integer 
edge weights and set E = ∅ initially. Let ε > 0 and positive integers k and d be given. Then a deterministic approximate distance oracle 
for G can be maintained under any sequence of operations consisting of edge insertions and approximate distance queries. Its total 
update time is O ε(m1+1/k(3 + ε)k−1d(k + log d) log n) where m is the total number of edge insertions; the value of m does not need 
18
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to be specified to the oracle in advance. Given a query vertex pair (u, v), the oracle outputs in O (k logn) time an approximate distance 
d̃(u, v) such that d̃(u, v) ≥ d(u, v) and such that if d(u, v) ≤ d then d̃(u, v) ≤ (2(3 + ε)k−1 − 1)d(u, v).

As discussed in Section 3, a main advantage of our oracle is that, unlike, e.g., the incremental oracle of Roditty and 
Zwick [29], it works against an adaptive adversary. Hence, the sequence of edge insertions does not need to be fixed in 
advance and we allow the answer to a distance query to affect the future sequence of insertions. This is crucial for our 
application since the sequence of edges inserted into our approximate greedy spanner depends on the answers to the 
distance queries.

We assume in the following that m ≥ n; if this is not the case, we simply extend the sequence of updates with n − m
dummy updates. We will present an oracle satisfying Theorem 9 except that we require it to be given m in advance. An 
oracle without this requirement can be obtained from this as follows. Initially, an oracle is set up with m = n. Whenever the 
number of edge insertions exceeds m, m is doubled and a new oracle with this new value of m replaces the old oracle and 
the sequence of edge insertions for the old oracle are applied to the new oracle. By a geometric sums argument, the total 
update time for the final oracle dominates the time for all the previous oracles. Hence, presenting an oracle that knows m
in advance suffices to show the theorem.

Before describing our oracle, we need some definitions and notation. For an edge-weighted tree T rooted at a vertex u, 
let dT (v) denote the distance from u to v in T , where dT (v) = ∞ if v /∈ V (T ). Let r(T ) = maxv∈V (T ) dT (v). Given a graph 
H and W ⊆ V (H), we let degH (W ) = ∑

v∈W degH (v) and given a subgraph S of H , we let degH (S) = degH (V (S)). For a 
vertex u in an edge-weighted graph H and a value r ≥ 0, we let B H (u, r) denote the ball with center u and radius r in H , 
i.e., B H (u, r) = {v ∈ V (H)|dH (u, v) ≤ r}. When H is clear from context, we simply write B(u, r).

We use a superscript (t) to denote a dynamic object (such as a graph or edge set) or variable just after the t ’th edge 
insertion where t = 0 refers to the object prior to the first insertion and t = m refers to the object after the final insertion. 
For instance, we refer to G just after the t ’th update as G(t) .

In the following, let ε, k, and d be the values and let G = (V , E) be the dynamic graph of Theorem 9. For each 
i ∈ {0, . . . , k − 1}, define mi = 2m(i+1)/k and let di be the smallest integer power of (1 + ε) of value at least (3 + 2ε)id. 
For each u ∈ V and each t ∈ {0, . . . , m}, let d(t)

i (u) be the largest integer power of (1 + ε) of value at most di such that 
degG(t) (B(t)(u, d(t)

i (u))) ≤ mi ; note that d(t)
i (u) ≥ (1 + ε)−1. We let B(t)

i (u) = B(t)(u, d(t)
i (u)) and let T (t)

i (u) be a shortest path 
tree from u in B(t)

i (u). Note that T (t)
i (u) need not be uniquely defined; in the following, when we say that a tree is equal 

to T (t)
i , it means that the tree is equal to some shortest path tree from u in B(t)

i (u).
The data structure in the following lemma will be used as black box in our distance oracle. One of its tasks is to 

efficiently maintain trees T (t)
i (u).

Lemma 10. Let U ⊆ V be a dynamic set with U (0) = ∅ and let i ∈ {0, . . . , k − 1} be given. There is a deterministic dynamic data 
structure which supports any sequence of update operations, each of which is one of the following types:

Insert-Edge(u, v): this operation is applied whenever an edge (u, v) is inserted into E,
Insert-Vertex(u): inserts vertex u into U .

Let tmax denote the total number of operations and for each vertex u inserted into U , let tu denote the update in which this happens. The 
data structure outputs in each update t ∈ {1, . . . , tmax} a (possibly empty) set of trees T (t)

i (u) rooted at u for each u ∈ U (t) satisfying 
either t > tu and d(t)

i (u) < d(t−1)
i (u) or t = tu and d(t)

i (u) < di . For each such tree T
(t)
i (u), r(T

(t)
i (u)) ≤ (1 + ε)d(t)

i (u) ≤ di and 
degG(t) (T

(t)
i (u)) > mi . Total update time is O (m) + O ε(|U (tmax)|midi log n).

At any point, the data structure supports in O (1) time a query for the value d(t)
i (u) and in O (log n) time a query for the value 

d
T (t)

i (u)
(v) and for whether v ∈ V (T (t)

i (u)), for any query vertices u ∈ U and v ∈ V .

Proof. We assume in the following that each vertex of V has been assigned a unique label from the set {0, . . . , n − 1}.
In the following, fix a vertex u ∈ V such that tu exists, i.e., update tu is the operation Insert-Vertex(u). Before 

proving the lemma, we describe a data structure Du which maintains the following for each t ∈ {tu, . . . , m}: a tree T (t)(u)

rooted at u, a distance threshold d(t)(u), and distances dT (t)(u)(v) for all v ∈ V (T (t)(u)). We will show that Du maintains 
the following two properties:

1. T (t)(u) = T (t)
i (u) and d(t)(u) = d(t)

i (u) for all t ∈ {tu, . . . , m},

2. in each update t ∈ {tu, . . . , m} where either t > tu and d(t)
i (u) < d(t−1)

i (u) or t = tu and d(t)
i (u) < di , Du outputs a tree 

T
(t)
i (u) rooted at u such that r(T

(t)
i (u)) ≤ (1 + ε)d(t)

i (u) ≤ di and degG(t) (T
(t)
i (u)) > mi . In all other updates, no tree is 

output.
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After any update t , Du supports in O (1) time a query for the value d(t)
i (u) and in O (log n) time a query for the value 

d
T (t)

i (u)
(v) and for whether a given vertex v ∈ V belongs to V (T (t)

i (u)).

Du maintains a tree T (t)(u) rooted at u as well as a distance threshold d(t)(u); to simplify notation, we shall write T (t)

instead of T (t)(u) and d(t) instead of d(t)(u). Later we show that T (t) = T (t)
i (u) and d(t) = d(t)

i (u). The tree T (t) is maintained 
by keeping a predecessor pointer for each vertex to its parent (with u having a nil pointer) and where each vertex v ∈ T (t)

is associated with its distance dT (t) (v) from the root u.

Since d(t) is maintained explicitly by Du and since d(t) = d(t)
i (u), it follows that Du can answer a query for the value 

d(t)
i (u) in O (1) time. To answer the other two types of queries, Du maintains V (T (t)) as a red-black tree keyed by vertex 

labels; this clearly allows both types of queries to be answered in O (log n) time.

Handling the update t = tu for Du: For the initial update t = tu , a tree T
(t)
i (u) is computed by running Dijkstra’s algorithm 

from u in G(t) with the following modifications:

1. the priority queue initially contains only u with estimate 0; all other vertices implicitly have an estimate of ∞,
2. a vertex is only added to the priority queue if a relax operation caused its distance estimate to be strictly decreased to a 

value of at most di ,

3. the algorithm stops when the priority queue is empty or as soon as degG(t) (T
(t)
i (u)) > mi .

If the algorithm emptied its priority queue, Du sets T (t) ← T
(t)
i (u) and d(t) ← di , finishing the update.

Now, assume that the algorithm did not empty its priority queue and let vmax denote the last vertex added to T
(t)
i (u). 

Du lets d(t) be the largest power of (1 + ε) such that d(t) < d
T

(t)
i (u)

(vmax). Then it obtains T (t) as the subtree of T
(t)
i (u)

consisting of all vertices of distance at most d(t) from u in T
(t)
i (u). Finally, it outputs T

(t)
i (u).

Handling updates t > tu for Du: Next, consider update t > tu . Du ignores updates to U so we assume that update t is 
of the form Insert-Edge(e(t)). Assume that Du has obtained T (t−1) and d(t−1) in the previous update. To obtain T (t)

and d(t) , Du regards e(t) as two oppositely directed edges. Note that for at most one of these edges (v(t)
1 , v(t)

2 ), we have 
dT (t−1) (v(t)

1 ) + w(e(t)) < dT (t−1) (v(t)
2 ). If no such edge exists, Du sets T (t) ← T (t−1) and d(t) ← d(t−1) , finishing the update. 

Otherwise, Du applies a variant of Dijkstra’s algorithm. During initialization, this variant sets, for each vertex v ∈ V (T (t−1)), 
the starting estimate of v to dT (t−1) (v) and sets its predecessor to be the parent of v in T (t−1); all other vertices implicitly 
have an estimate of ∞. The priority queue is initially empty. In the last part of the initialization step, the edge (v(t)

1 , v(t)
2 ) is 

relaxed. The rest of the algorithm differs from the normal Dijkstra algorithm in the following way:

1. a vertex v is only added to the priority queue if a relax operation caused the estimate for v to be strictly decreased to a 
value of at most d(t−1) ,

2. the algorithm stops when the priority queue is empty or as soon as the total degree in G(t) of vertices belonging to the 
current tree found by the algorithm exceeds mi .

Let T
(t)
i (u) be the tree found by the Dijkstra variant. If the priority queue is empty at this point, Du sets T (t) ← T

(t)
i (u)

and d(t) ← d(t−1) . Otherwise, Du computes T (t) and d(t) in exactly the same manner as in the case above where t = tu and 
where the priority queue was not emptied; finally, Du outputs T

(t)
i (u).

Properties of Du: We now show the two properties of Du mentioned earlier. We repeat them here for convenience:

1. T (t)(u) = T (t)
i (u) and d(t)(u) = d(t)

i (u) for all t ∈ {tu, . . . , m},

2. in each update t ∈ {tu, . . . , m} where either t > tu and d(t)
i (u) < d(t−1)

i (u) or t = tu and d(t)
i (u) < di , Du outputs a tree 

T
(t)
i (u) rooted at u such that r(T

(t)
i (u)) ≤ (1 + ε)d(t)

i (u) ≤ di and degG(t) (T
(t)
i (u)) > mi . In all other updates, no tree is 

output.

The first property is shown by induction on t ≥ tu . This is clear when t = tu so assume in the following that t > tu , that 
T (t−1) = T (t−1)

i (u) and d(t−1) = d(t−1)
i (u), and that update t is an operation Insert-Edge(e(t)). The first property will 

follow if we can show that T (t) = T (t)
i (u) and d(t) = d(t)

i (u).

If the Dijkstra variant was not executed then no edge was relaxed which implies that T (t) = T (t−1) = T (t−1)
i (u) = T (t)

i (u)

and d(t) = d(t−1) = d(t−1)
i (u) = d(t)

i (u), as desired. Otherwise, consider first the case where d(t)
i (u) = d(t−1)

i (u). Then 
d(t−1) = d(t)

i (u) so the priority queue of the Dijkstra variant must be empty at the end of update t . Combining this with the 
observation that any vertex v whose distance from u in G(t) is smaller than in G(t−1) must be on a u-to−v path containing 
e(t) , it follows that the Dijkstra variant computes T (t) = T (t)

(u) and d(t) = d(t−1) = d(t)
(u), as desired. For the case where 
i i

20



JID:TCS AID:13232 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.312] P.21 (1-31)

S. Alstrup, S. Dahlgaard, A. Filtser et al. Theoretical Computer Science ••• (••••) •••–•••
d(t)
i (u) < d(t−1)

i (u), the priority queue of the Dijkstra variant is not emptied; it follows by definition of T (t)
i (u) and d(t)

i (u)

that also in this case, T (t) = T (t)
i (u) and d(t) = d(t)

i (u).
To show that Du satisfies the second of the properties above, consider an update t ≥ tu . Assume first that t = tu . Then 

T
(t)
i (u) is output if and only if d(t)

i (u) < di ; this follows since d(t) = d(t)
i (u), since d(t) = di when T

(t)
i is not output, and since 

d(t) < d
T

(t)
i (u)

(vmax) ≤ di when T
(t)
i is output. If d(t)

i (u) < di , then Dijkstra’s algorithm stopped without emptying its priority 

queue which implies that degG(t) (T
(t)
i (u)) > mi ; furthermore, by the choice of d(t) , r(T

(t)
i (u)) = d

T
(t)
i (u)

(vmax) ≤ (1 + ε)d(t) =
(1 + ε)d(t)

i (u), as desired. The inequality (1 + ε)d(t)
i (u) ≤ di holds since d(t)

i (u) < di implies that d(t)
i (u) ≤ di/(1 + ε).

The case t > tu is quite similar. We may assume that this update inserts e(t) into G(t) . If d(t)
i (u) = d(t−1)

i (u) then as 
shown above, no tree is output in update t . Now, assume that d(t)

i (u) < d(t−1)
i (u). Then the Dijkstra variant did not empty 

its priority queue so it outputs tree T
(t)
i (u). Clearly, degG(t) (T

(t)
i (u)) > mi and since d(t−1) = d(t−1)

i (u), the same argument 
as in the case where t = tu gives r(T

(t)
i (u)) ≤ (1 + ε)d(t)

i (u). The inequality (1 + ε)d(t)
i (u) ≤ di holds since d(t)

i (u) < d(t−1)
i (u)

implies that d(t)
i (u) ≤ d(t−1)

i (u)/(1 + ε) ≤ di/(1 + ε). This shows the second of the two properties for Du mentioned above.
Bounding update time of Du: We now bound the update time for Du where we ignore the cost of updates t where e(t)

is not incident to T (t−1)
i (u); when we use Du in the final data structure D below, D will ensure that Insert-Edge will 

only be applied to edges if they are incident to T (t−1)
i (u) and we show that this suffices to ensure the two properties of Du .

Consider an update tu . Observe that our two Dijkstra variants (the one described in the case t = tu and the one described 
in the case t > tu) are terminated as soon as the total degree in G(t) of vertices extracted from the priority queue exceeds mi . 
Ignoring the cost of the initialization step of the second variant, it follows from a standard analysis of Dijkstra’s algorithm 
that both variants run in time O (mi log n). To bound the time for the initialization step of the second variant, note that 
the desired starting estimates and predecessor pointers are present in T (t−1) and this tree is available at the beginning of 
the update. Hence, the work done in the initialization step thus only involves relaxing a single edge (v(t)

1 , v(t)
2 ). With this 

implementation, the cost of the initialization step does not dominate the total cost of the update.
The number of updates t > tu for which d(t)

i (u) < d(t−1)
i (u) is at most log1+ε di = O ε(i + log d). As shown above, the time 

spent in each such update is O (mi log n) which over all such updates is O ε(mi log n(i + log d)) time.
Now, consider a maximal range of updates {t1, t1 + 1 . . . , t2} ⊆ {tu, tu + 1, . . . , tmax} where d(t2)

i (u) = d(t1)
i (u) and consider 

an update t ∈ {t1 + 1, t1 + 2, . . . , t2}. Assuming that the Dijkstra variant is executed, it must empty its priority queue in 
this update. Let V (t)

1 = V (T (t)
i (u)) \ V (T (t−1)

i (u)) and let V (t)
2 be the set of vertices v ∈ V (T (t)

i (u)) ∩ V (T (t−1)
i (u)) such that 

d
T (t)

i (u)
(v) < d

T (t−1)
i (u)

(v). Since the Dijkstra variant only adds a vertex of T (t−1)
i (u) to the priority queue if the distance 

estimate of the vertex is strictly decreased, we can charge the running time cost of the Dijkstra variant to degG(t) (V (t)
1 ∪

V (t)
2 ) log n. In the following, we bound degG(t) (V (t)

1 ) log n and degG(t) (V (t)
2 ) log n separately over all t ∈ {t1 + 1, t1 + 2, . . . , t2}

and all maximal ranges {t1, t1 + 1, . . . , t2}.
Let one such range {t1, t1 + 1, . . . , t2} be given. Since V (T (t−1)

i (u)) ⊆ V (T (t)
i (u)) for all t ∈ {t1 + 1, t1 + 2, . . . , t2}, we get∑

t∈{t1+1,t1+2,...,t2}
degG(t) (V (t)

1 ) log n ≤ degG(t2) (T (t2)
i (u)) log n ≤ mi log n,

for each range {t1, t1 + 1, . . . , t2} which over all ranges {t1, t1 + 1, . . . , t2} is O ε(mi log n(i + log d)).
Next, we bound the sum of degG(t) (V (t)

2 ) log n over all t ∈ {t1 + 1, t1 + 2, . . . , t2} and all ranges {t1, t1 + 1, . . . , t2}. 
Let {t1, t1 + 1, . . . , t2} and v ∈ V be given. For each t ∈ {t1 + 1, t1 + 2, . . . , t2} where v ∈ V (t)

2 , we have d
T (t)

i (u)
(v) <

d
T (t−1)

i (u)
(v). Since edge weights are integers, the sum of degrees of v over all such t is at most (d

T
(t1+1)

i (u)
(v) −

d
T

(t2)

i (u)
(v)) degG(t2) (v) log n. Observe that v ∈ V (t)

2 for some t ∈ {t1 + 1, t1 + 2, . . . , t2} implies that v ∈ V (T (t2)
i (u)). Sum-

ming over all v thus gives∑
t∈{t1+1,t1+2,...,t2}

degG(t) (V (t)
2 ) log n ≤

∑
v∈V (T

(t2)

i (u))

(d
T

(t1+1)

i (u)
(v) − d

T
(t2)

i (u)
(v))degG(t2) (v) log n

≤ d(t1)
i (u)mi log n.

Note that since d(t2+1)
i (u) < d(t1)

i (u), we in fact have d(t2+1)
i (u) ≤ d(t1)

i (u)/(1 + ε). Summing over all ranges {t1, t1 + 1, . . . , t2}
thus gives a geometric sum of value O ε(midi log n).

We conclude that Du requires time O ε(mi log n(di + i + log d)) = O ε(midi log n) over all updates t consisting of the 
insertion of an edge e(t) which is incident to T (t−1)

i (u).
The final data structure: We have shown that Du satisfies the two properties stated at the beginning of the proof and that 

the total update time over updates t for which e(t) is incident to T (t−1)
i (u) is O ε(midi log n). We are now ready to give a 

data structure D satisfying the lemma.
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Initially, D sets U (0) = ∅. If update t is an operation of the form Insert-Vertex(u), D initializes a new structure Du . 
For each v ∈ V , D keeps the set U (t)(v) of those vertices u ∈ U (t) for which v belongs to the tree T (t)

i (u) maintained by 
Du . This set is implemented with a red-black tree keyed by vertex labels. We extend each data structure Du so that when a 
vertex v joins (resp. leaves) T (t)

i (u), u joins (resp. leaves) U (t)(v). This can be done without affecting the update time bound 
obtained for Du above.

If an update t is of the form Insert-Edge(e(t)) where e(t) = (v(t)
1 , v(t)

2 ), D identifies the set U (t−1)(v(t)
1 ) ∪ U (t−1)(v(t)

2 )

and updates Du with the insertion of e(t) for each u in this set. This suffices to correctly maintain all data structures 
Du since for each u ∈ U (t−1) \ U (t−1)(v(t)

1 ) ∪ U (t−1)(v(t)
2 ), we have T (t)

i (u) = T (t−1)
i (u) and d(t)

i (u) = d(t−1)
i (u), implying that 

Du need not be updated. Hence, D handles updates in the way stated in the lemma and has total update time O (m) +
O ε(|U (tmax)|midi log n), as desired.

Answering a query for values dTi(u)(v) or di(u) or for whether v ∈ V (Ti(u)) is done by querying Du . Since Du can be 
identified in O (1) time, the query time bounds for D match those for Du . This completes the proof. �
8.1. The distance oracle

We are now ready to present our incremental distance oracle. Pseudocode for the preprocessing step is done with the 
procedure Initialize(V , k) in Algorithm 3. Inserting an edge (v1, v2) with integer weight w > 0 is done with the 
procedure Insert(v1, v2, w(v1, v2)) in Algorithm 4 and a query for the approximate distance between two vertices u and 
v is done with the procedure Query(u, v) in Algorithm 5.

The high level intuition of our construction is that we maintain increasingly smaller subsets of vertex sets denoted Ai , 
where A0 is the entire vertex set V ; see Fig. 3. For each vertex v , we grow a ball up to a threshold size, and we let the 
centers of a maximal set of disjoint balls be promoted to the next level Ai+1, where the same procedure happens. An 
implication is that Ai+1 is much smaller than Ai and we can thus afford to grow larger balls as i grows, i.e. we let the ball 
threshold size grow with i.

In order to bound stretch, we need balls to have roughly the same radius. To ensure this, we partition balls centered at 
vertices of Ai into classes such that balls in the jth class all have radius within a constant factor of (1 + ε) j . For each class, 
we keep a maximal set of disjoint balls as described above and Ai+1 is the union of centers of these balls over all classes. 
In class j, each vertex v , which is the center of a ball not belonging to this maximal set points to a representative vertex 
ni, j(v). This representative vertex is picked in the intersection with another ball in class j centered at a vertex of Ai+1. 
Every vertex w in this other ball has a pointer ri, j(w) to the center. These pointers are used as navigation in the distance 
query algorithm when identifying a vertex ui+1 ∈ Ai+1 from a vertex ui ∈ Ai ; see Fig. 3. The fact that the two balls centered 
at ui resp. ui+1 have roughly the same radius is important to ensure that the stretch only grows by at most a constant 
factor in each iteration of the query algorithm.

Algorithm 3: Initialize.
input : V , k

1 A0 ← V
2 Initialize D0 as an instance of the data structure of Lemma 10
3 for i = 1 → k − 1 do
4 Ai ← ∅
5 Initialize Di as an instance of the data structure of Lemma 10
6 for j = 0 → log1+ε di do
7 W i, j ← ∅
8 Associate with each v ∈ V uninitialized variables ni, j(v) and ri, j(v)

9 for u ∈ V do
10 D0.Insert-Vertex(u)

The following lemmas are crucial when we bound update and query time as well as stretch. For i = 0, . . . , k − 1 and 
j = 1, . . . , log1+ε di , let Ti, j be the dynamic set of trees Ti, j(u) obtained so far for which the test in line 11 of Insert
succeeded. Note that for any j in line 9 of Insert, 1 ≤ j = log1+ε((1 + ε)di(u)) ≤ log1+ε di by Lemma 10 so W i, j is 
well-defined and initialized to ∅ in procedure Initialize.

Lemma 11. After each update, the following holds. For any i = 0, . . . , k − 2 and any j = 1, . . . , log1+ε di , W i, j is the disjoint union of 
V (Ti, j(u)) over all Ti, j(u) ∈ Ti, j . Furthermore, Ai+1 = ⋃

j{u|Ti, j(u) ∈ Ti, j}.

Proof. For every u added to Ui+1 in procedure Insert(v1, v2, w(v1, v2)), V (Ti, j(u)) ∩ W i, j = ∅ just before the update in 
line 12 and line 12 is the only place where W i, j is updated. All vertices of Ui+1 are added to Ai+1 in line 5 of iteration 
i + 1 and this is the only place where Ai+1 is updated. �
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Algorithm 4: Insert.
input : v1, v2, w(v1, v2)

1 Add (v1, v2) to E with weight w(v1, v2)

2 U0, . . . , Uk−1 ← ∅
3 for i = 0 → k − 1 do
4 Ti ← Di .Insert-Edge(v1, v2)

5 Ai ← Ai ∪ Ui

6 for u ∈ Ui do
7 Ti ← Ti ∪Di .Insert-Vertex(u)

8 for T i(u) ∈ Ti do
9 j ← 1 + log1+ε di(u)

10 Ti, j(u) ← T i(u)

11 if V (Ti, j(u)) ∩ W i, j = ∅ then
12 W i, j ← W i, j ∪ V (Ti, j(u))

13 for v ∈ V (Ti, j(u)) do
14 ri, j(v) ← u

15 Ui+1 ← Ui+1 ∪ {u}
16 else
17 ni, j(u) ← an arbitrary vertex of W i, j ∩ V (Ti, j(u))

Algorithm 5: Query.
input : u, v
output : Estimated distance between u and v

1 u0 ← u
2 s0 ← 0
3 for i = 0 → k − 1 do
4 if v ∈ V (Ti(ui)) then
5 return si + dTi (ui )(v)

6 if di(ui) = di then
7 return ∞
8 if ui ∈ Ai+1 then
9 ui+1 ← ui

10 si+1 ← si

11 else
12 j ← 1 + log1+ε di(ui)

13 w ← ni, j(ui)

14 ui+1 ← ri, j(w)

15 si+1 ← si + dTi, j (ui )(w) + dTi, j (ui+1)(w)

Lemma 12. After each update, |Ai| = O ε((m1−i/k)(i + log d)) for i = 0, . . . , k − 1.

Proof. The lemma is clear for i = 0 since |A0| = n ≤ m. Now, let i ∈ {1, . . . , k − 2} be given. We will bound |Ai+1|. Consider 
any j ∈ {1, . . . , log1+ε di}. Since the total degree of vertices in G is at most 2m and since the sets V (Ti, j(u)) are pairwise 
disjoint for all Ti, j(u) ∈ Ti, j by Lemma 11, it follows from Lemma 10 that the number of roots of these trees is less than 
2m/mi . Lemma 11 then implies that |Ai+1| = O ((m/mi) log1+ε di) = O ε((m1−(i+1)/k)(i + log d)). This shows the lemma. �
Lemma 13. After each update, the following holds. Let i ∈ {0, . . . , k − 2} and u ∈ Ai \ Ai+1 be given and let j = 1 + log1+ε di(u) and 
w = ni, j(u). If di(u) < di then w ∈ V (Ti, j(u)) ∩ V (Ti, j(ri, j(w))) and ri, j(w) ∈ Ai+1 .

Proof. By Lemma 10, since di(u) < di , there must have been some update to Di that output a tree T i(u); consider the 
last such tree. Then di(u) has not changed since then and so Ti, j(u) must be that tree. Since u /∈ Ai+1, we must have 
V (Ti, j(u)) ∩ W i, j = ∅ so w ∈ V (Ti, j(u)) ∩ W i, j . Since w ∈ W i, j , we have w ∈ V (Ti, j(ri, j(w)). At some point, ri, j(w) was 
added to Ui+1 and hence to Ai+1. Since vertices are never removed from Ai+1, the lemma follows. �
8.2. Bounding time and stretch

After replacing ε with ε/2, the following lemma gives the update time bound claimed in Theorem 9.

Lemma 14. A total of O ε(m1+1/k(3 + 2ε)k−1d(k + log d) log n) time is spent in all calls to procedure Insert.
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v4v3

v2 = ui+1 = ri, j(w)

v1

a

b

c

ui

w = ni, j(ui)

Fig. 3. A high-level overview of the distance oracle construction. The vertices v1, . . . , v5 are centers of disjoint (grey) balls and are thus promoted to 
Ai+1, while W i, j is the union over the vertices of the disjoint balls. The grey balls have radius roughly (1 + ε) j , and we keep a set of balls for every 
j ∈ {1, . . . , log1+ε di}. A query from a center ui of a non-disjoint ball has an associated vertex w in an intersecting grey ball, which in turn has a pointer to 
the ball center ui+1 = ri, j(w).

Proof. It is easy to see that each execution of lines 9 to 17 in procedure Insert can be implemented to run in time 
O (|V (T i(u))|). Hence, the total time spent in all calls to Insert is dominated by the total update time of data structures 
Di , for i = 0, . . . , k − 1. Note that after each update, Ai is the current set of vertices added to Di . Letting A(tmax)

i be the set 
Ai after the last update, it follows from Lemmas 10 and 12 that D0, . . . , Dk−1 have total update time

O (km) +
k−1∑
i=0

O ε(|A(tmax)
i |midi logn) =

k−1∑
i=0

O ε(m
1+1/kdi(i + log d) log n)

=
k−1∑
i=0

O ε(m
1+1/k(3 + 2ε)id(i + log d) log n)

= O ε(m
1+1/k(3 + 2ε)k−1d(k + log d) log n),

where the last bound follows from a geometric sums argument. �
Finally, we bound query time and stretch with the following lemma; replacing ε with ε/2 gives the bounds of Theorem 9.

Lemma 15. Procedure Query(u, v) outputs in O (k logn) time a value d̃G(u, v) such that dG(u, v) ≤ d̃G(u, v) and such that if 
dG (u, v) ≤ d then d̃G(u, v) ≤ (2(3 + 2ε)k−1 − 1)dG (u, v).

Proof. To bound the stretch, we will first show the following loop invariant: at the beginning of the ith execution of the 
for-loop of procedure Query(u, v), ui ∈ Ai and si ≤ ((3 + 2ε)i − 1)dG (u, v). This is clear when i = 0 so assume that i > 0
24
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and that the loop invariant holds at the beginning of the ith iteration. We need to show that if the beginning of the (i +1)th 
iteration is reached, the loop invariant also holds at this point.

We may assume that the tests in lines 4 and 6 fail since otherwise, the (i + 1)th iteration is never reached. If ui ∈ Ai+1
then at the beginning of the (i + 1)th iteration, we have ui+1 = ui ∈ Ai+1 and si+1 = si ≤ ((3 + 2ε)i − 1)dG (u, v) < ((3 +
2ε)i+1 − 1)dG (u, v), as desired.

Now, assume that ui /∈ Ai+1. Then ui ∈ Ai \ Ai+1. Since the tests in lines 4 and 6 fail, we have di(u) < dG(ui, v) and 
di(u) < di . Since si is the weight of some u-to-ui -path in G , we have dG (u, ui) ≤ si . Lemma 13 now implies that ui+1 =
ri, j ∈ Ai+1 and

si+1 ≤ si + 2(1 + ε)di(u) < si + 2(1 + ε)dG(ui, v) ≤ si + 2(1 + ε)(dG(ui, u) + dG(u, v))

≤ (3 + 2ε)si + 2(1 + ε)dG(u, v) ≤ ((3 + 2ε)i+1 − 1)dG(u, v),

as desired.
We can now show the stretch bounds. First observe that mk−1 = 2m. Since at any time, the total degree of vertices in G

is at most 2m, it follows that dk−1(u) = dk−1 for all u ∈ V . Hence, Query outputs a value in some iteration.
The bound dG (u, v) ≤ d̃G(u, v) is clear if d̃G (u, v) = ∞ and it also holds if d̃G (u, v) is output in line 4 since si + dTi(u)(v)

is the weight of some path in G .
Next, we give the upper bound on stretch. If the test in line 4 succeeds in some iteration i, it follows from the loop 

invariant that

d̃G(u, v) = si + dTi(ui)(v) ≤ 2si + dG(u, v) ≤ 2((3 + 2ε)i − 1)dG(u, v) + dG(u, v)

≤ (2(3 + 2ε)k−1 − 1)dG(u, v),

as desired.
Now, assume that the test in line 4 fails in some iteration i, i.e., assume that v /∈ V (Ti(ui)). Then dG (ui, v) > di(ui). If 

the test in line 6 succeeds in iteration i then dG(ui, v) > di(ui) = di ≥ (3 + 2ε)id. The loop invariant and the observation 
above that dG (u, ui) ≤ si imply that

dG(u, v) ≥ dG(ui, v) − dG(ui, u) > (3 + 2ε)id − si ≥ (3 + 2ε)id + dG(u, v) − (3 + 2ε)idG(u, v).

Hence, (3 + 2ε)idG(u, v) > (3 + 2ε)id which gives dG (u, v) > d. Since the upper bound on stretch is only required when 
dG (u, v) ≤ d, outputting d̃G (u, v) = ∞ in line 6 is thus valid.

It remains to bound query time. Consider any iteration i. By Lemma 10, performing the tests in lines 4 and 6 and 
computing distances in line 15 can be done in O (log n) time. Over all iterations, this is O (k log n). �
9. A note on the lightness of other spanners

To motivate the problem of computing light spanners efficiently, we will in this section consider notable spanner con-
structions and show that they do not provide light spanners. More precisely, we consider the three celebrated spanner 
constructions of Baswana and Sen [5], Roditty and Zwick [28], and Thorup and Zwick [32], respectively, and we show that 
they do not provide light spanners.

We first consider the algorithm from [28]. This algorithm creates a spanner by considering the edges in non-decreasing 
order by weight similar to the greedy algorithm. It maintains an incremental distance oracle of an unweighted version of the 
spanner, and adds an edge (u, v), if there is no path between u and v of at most 2k − 1 edges. Consider now running this 
algorithm on the graph of Fig. 4 consisting of a cycle of n = 2k + 1 edges where 2k of them have weight 1 and the last has 
an arbitrarily large weight W . In this case the algorithm of [28] would add every edge to the spanner, since u and v are 
only connected by a path of length 2k + 1 when the edge (u, v) is considered (disregarding the weight of (u, v)). This gives 
us a lightness of �(W /n). Since W can be arbitrarily large it follows that no guarantee in terms of k and n can be given on 
the lightness.

A key part of the algorithm of [5] is to arrange the vertices in k layers ∅ = Ak ⊆ Ak−1 ⊆ · · · ⊆ A0 = V and clustering the 
vertices of each layer. Each layer is formed by randomly sampling the clusters of the previous layer with probability n−1/k . 
Consider a vertex w and let Ai be the first layer where w is not sampled. If w is not adjacent to any cluster in Ai , then 
the smallest-weight edge from w to each of the clusters of Ai−1 is added to the spanner. Thus, in the example of Fig. 4, 
if neither u nor its neighbors are sampled, then the edge (u, v) is added to the spanner. This happens with probability at 
least (1 − n−1/k)3 and thus we cannot even give a guarantee on the expected lightness of the spanner, as W could be very 
large compared to this probability.

The spanner of [32] also creates sets of vertices ∅ = Ak ⊆ Ak−1 ⊆ · · · A0 = V , where each Ai is formed by sampling the 
vertices of Ai−1 independently with probability n−1/k . For each vertex of v ∈ (Ai \ Ai+1) they define the cluster of w to be 
the set of all vertices in V which are closer to w than to any vertex in Ai+1. The spanner they construct is simply the union 
of the shortest path trees of each cluster with root in w . In particular, for the vertices w ∈ Ak−1 we include the shortest 
path tree of the entire graph with root in w . We wish to show that at least one of these shortest path trees have lightness 
25
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u
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1
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1
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1 1

1

Fig. 4. Example of a bad input graph to the algorithms of [5] and [28]: A cycle of 2k + 1 edges with one very heavy edge. This bad instance implies �(W )

lightness for both algorithms.
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W
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Fig. 5. Example of a bad input graph for the spanner of [32]. K is the complete graph on n1/k vertices, where every edge has weight 1. This bad instance 
implies �(n1+1/k) lightness for [32].

�(n) with constant probability. To see this consider the graph of Fig. 5. In this graph we have a complete graph K on n/2
vertices with weights 1 and a cycle C on n/2 vertices with weights 1. For each vertex u ∈ K and each vertex v ∈ C there is 
an edge (u, v) of large weight W . Clearly the weight of the MST for this graph is W +n − 2, however the shortest path tree 
from any vertex u ∈ K has weight nW /2 + n/2 − 1 = �(nW ). Since we expect half of the vertices of Ak−1 to be from K we 
see that the spanner has expected lightness at least �(|Ak−1| · n) = �(n1+1/k) in this graph. We also note that no edge of 
the spanner can have weight larger than that of the MST. This follows because every edge of the spanner is part of some 
shortest-path tree and if its weights was larger, we could simply replace it in the shortest-path tree by the entire MST. Thus 
the lightness is also bounded from above by O (kn1+1/k).

10. Proof of Lemma 5

We build upon (the first variant of) the algorithm from [16], while we get an improved bound using the assumption of 
the small aspect ratio. The basic component of the algorithm is the spanner of Halperin and Zwick (see Theorem 10). For 
simplicity we will assume that a = 1. The construction/proof stays the same for general a.

Fix ρ = 1 + ε . We start by computing the MST T . We divide the edges into logρ � buckets. For j ∈ [1, logρ �], let 
E j = {

e ∈ E | w(e) ∈ [ρ j−1,ρ j)
} \ T . We will construct separate spanner for each bucket. We will use the (i, ε )-clustering as 
4
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described in Section 4. That is, for every j, we will have set of at most n j = 4n
ερ j−1 cluster, each with diameter bounded by 

ερ j−1 (in the MST metric). Then, for each j, we contract each cluster and construct an unweighted graph G j with clusters 
as its vertices, where there is an edge between two clusters ϕv , ϕu , iff there are vertices v ∈ ϕv and u ∈ ϕu such that 
(u, v) ∈ E j . Next we will construct a spanner H j for G j using Theorem 10. For each edge ẽ ∈ H j we will add the edge 
e ∈ E j that created ẽ to our final spanner H (if there are multiple such edges, we add an arbitrary one). Our final spanner 
H contains the MST edges and the representatives of all the edges in 

⋃
j H j .

Stretch As the diameter of every j-cluster is only an ε fraction of the weight of edges in E j , bound on the stretch proof 
follows by similar arguments as in Equation (1). See Fig. 2 for illustration.

Number of edges by Theorem 10

|H| ≤ |T | + O (1) ·
logρ �∑

j=1

∣∣n j
∣∣1+ 1

k = O (1) ·
⎡
⎣logρ �∑

j=1

(
n

ερ j−1

)1+ 1
k

⎤
⎦

= O ε(n
1+ 1

k ) ·
⎡
⎣ ∞∑

j=0

(
ρ− j

)1+ 1
k

⎤
⎦ = O ε(n

1+ 1
k ) .

Lightness as all the edges in H j have weight at most ρ j ,

|w(H)| ≤ w(T ) + O (1) ·
logρ �∑

j=1

∣∣n j
∣∣1+ 1

k · ρ j = O ε(n
1+ 1

k ) ·
⎡
⎣logρ �∑

j=1

(
1

ρ j−1

)1+ 1
k · ρ j

⎤
⎦

= O ε(n
1+ 1

k ) ·
⎡
⎣logρ �∑

j=0

(
1

ρ j

) 1
k

⎤
⎦ = O ε(n

1+ 1
k · log�) .

Thus the lightness bounded by O ε (n
1
k · log �).

Running time Computing the MST takes O (n log n) times. Following the analysis of Section 4, the construction of the 
vertices for all the graphs G1, . . . , G logρ � will take O  

(∑logρ �

j=1

∣∣n j
∣∣) = O  

(
n

∑logρ �

j=0
1
ρ j

)
= O ε(n) time. Adding the 

edges to the graphs will take additional O (m + n log n) time. Computing the spanners H j (using Theorem 10) takes ∑
j O (|E j |) = O (m) time. All in all, a total of O ε (m + n log n) time.

11. Missing proofs from the analysis

11.1. Stretch

In this section we bound the stretch of the spanner constructed in Algorithm 2 by (1 + O (ε))(2k − 1). Consider some 
edge (u, v) = e ∈ E . If w(e) ≤ k

ε = gμ , then e is treated by H0, the spanner constructed in line 19 of Algorithm 2. Otherwise, 
let i ≥ μ and r ≥ 1 be such that w(e) ∈ [gi, gi+1) ⊆ [grμ, g(r+1)μ). For any j, let ϕ j

v (resp. ϕ j
u) denote the j-level clusters 

containing v (resp. u).

If ϕ i
v = ϕ i

u , by Claim 1 dEsp (v, u) ≤ diamEsp (ϕ
i
v) ≤ kgi

2 ≤ k
2 w(e) and we are done.

Otherwise, if ϕ i
v or ϕ i

u are light i-clusters, then during the first phase, we add an edge e′ (of weight at most w(e)) 
between ϕ i−1

v and ϕ i−1
u . In particular

dEsp (v, u) ≤ diamEsp (ϕ
i−1
v ) + w(e′) + diamEsp (ϕ

i−1
u )

≤ kgi−1

2
+ w(e) + kgi−1

2
≤ (k/g + 1)w(e) .

Finally consider the case where ϕ i
v and ϕ i

u are heavy i-clusters. Recall the auxiliary graph Sr constructed during the 
second phase. Its vertices were V (r−1)μ . In particular it contained an edge e′ from ϕ(r−1)μ

v to ϕ(r−1)μ
u , where w(e′) ≤ w(e). 

Note that the diameter of each (r − 1)μ cluster is bounded by k·g(r−1)μ

2 = ε
2 grμ , while in the used modified weight function 

wr(e′) the minimal weight is grμ . Following similar arguments to those in Equation (1) there is a path in Esp of length 
(1 + O (ε))(2k − 1) · w(e) from v to u. See Fig. 2 for illustration.

11.2. Proofs of Lemma 7 and Lemma 8

For i-level cluster C (heavy or light), set ̂diam(C) to be the maximum value between the diameter (in H) of the cluster 
C (in the time it was created) and 1 kgi .
c
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We start with proving some properties of the clusters:

Claim 3. Let C be an i-level heavy cluster. Let C be the set of the i − 1 clusters contained in C , then 
∑

C ′∈C ̂diam(C ′) − ̂diam(C) ≥
|C|gi−1

2c · k.

Proof. By the definition of ̂diam, and Claim 1

∑
C ′∈C

̂diam(C ′) − ̂diam(C) ≥ |C| gi−1k

c
− gik

2
≥ |C| gi−1k

2c
+ dgi−1k

2c
− gik

2
= |C| gi−1k

2c
. �

Claim 4. Let C be an i-light cluster. Let C be the set of the i − 1 clusters contained in C , then ̂diam(C) ≤ ∑
C ′∈C ̂diam(C ′) + |C| − 1.

Proof. This is straightforward as the cluster C was created from C using only MST unit weight edges. �
Claim 5. Let C be an i cluster and C be the set of the j clusters contained in C for some j < i. Consider the graph G [C] where we 
contract all the j-clusters and keep only the edges used to create clusters. Then w (M ST (G [C])) = O  

(∑
C ′∈C ̂diam(C ′)

)
.

Proof. Denote by Cr the set of r-level clusters contained in C . Let E ′
r be the set of edges used to create the clusters Cr+1

from Cr . Note that 
∣∣E ′

r

∣∣ < |Cr |, and that the weight of e ∈ E ′
r is bounded by gr+2. Moreover, E ′ = ∪i

r= j+1 E ′
r spans G [C], and 

thus we can bound w (M ST (G [C])) by w(E ′). It holds that

w
(

E ′) =
i∑

r= j+1

w
(

E ′
r

)
<

i∑
r= j+1

|Cr | · gr+2 =
i∑

r= j+1

∑
C ′∈Cr

gr+2 ≤
i∑

r= j+1

∑
C ′∈Cr

c · g2

k
· ̂diam(C ′) .

By Claim 3 and Claim 4, 
∑

C ′∈Cr
̂diam(C ′) = O  

(∑
C ′∈C j

̂diam(C ′)
)

. We conclude

w
(

E ′) ≤ O

⎛
⎝ i∑

r= j+1

∑
C ′∈Cr

1

k
· ̂diam(C ′)

⎞
⎠ = O

⎛
⎝ ∑

C ′∈C j

̂diam(C ′)

⎞
⎠ . �

We now ready to prove Lemma 7.

Proof of Lemma 7. Recall that we used modified weights wr(e) = max
{
kg(r−1)μ/ε, w(e)

}
. The contribution of this change 

to the weight of Mr , bounded by (|Vr | − 1)kg(r−1)μ/ε . Thus we can ignore it, and bound w(Mr) (original weight) instead 
of wr(Mr) (modified weight).

Denote by Ci the set of i-level clusters. Let Hr be the set of maximal heavy clusters in 
⋃(r+1)μ−1

i=rμ Ci (i.e. heavy clusters 
that does not contain in any other heavy cluster up to level (r + 1)μ). Note that Hr form a partition of Vr . We will call 
the sets in Hr bugs. We will construct a spanning tree T of Sr . Trivially, w(T ) is upper bound on w(Mr). T will consist of 
spanning tree TC for every C ∈Hr , and in addition a set of cross-bug edges T ′ .

First consider C ∈ Hr . Let CC be all the (r − 1)μ clusters contained in C . By Claim 5, there is a spanning tree TC of 
weight O  

(∑
C ′∈CC

̂diam(C ′)
)

that connects between all the clusters in C . Note that all the edges in TC contained in Er , and 
thus in Sr .

Next, let T ′ be a set of edges between bugs of maximal cardinality, such that there are no cycles in T ′ ∪ ⋃
C∈Hr

TC . Set 
T = T ′ ∪ ⋃

C∈Hr
TC , note that T is a spanning forest of Sr . As each C ∈Hr is already connected, necessarily 

∣∣T ′∣∣ ≤ |Hr | − 1. 
The weight of each edge e ∈ T ′ , is at most g(r+1)μ = kgμr/ε, while for every C ∈ Hr , ̂diam(C) ≥ kgrμ

c . Hence w(T ′) ≤
|Hr | · k

ε · gμr ≤ c
ε · ∑C∈Hr

̂diam(C). Using Claim 3 and Claim 4

w(T ) ≤ w
(
T ′) +

∑
C∈Hr

w(TC ) = c

ε
·

∑
C∈Hr

̂diam(C) +
∑

C∈Hr

O

⎛
⎝ ∑

C ′∈CC

̂diam(C ′)

⎞
⎠

= O

⎛
⎝ ∑

C∈H

∑
C ′∈C

̂diam(C ′)

⎞
⎠/ε = O

⎛
⎝ ∑

ϕ∈V

̂diam(ϕ)/ε

⎞
⎠ . �
r C r
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Define a potential function Di = ∑
ϕ∈Ci

̂diam(ϕ) + |Ci |. According to Claim 4, and Claim 3, Di is not-increasing.

Claim 6. For every r ≥ 1, D(r−1)μ − D(r+1)μ = � 
(|Vr | · kg(r−1)μ

)
.

Proof. Consider some i-level heavy cluster C . Let C be all the i − 1 clusters contained in C . Let D be the potential function 
on the graph induced by C . Then by Claim 3,

Di = ̂diam(C) + 1 ≤
∑
C ′∈C

̂diam(C ′) − |C| gi−1k

2c
+ 1

≤ 1

2

∑
C ′∈C

̂diam(C ′) + 1 ≤ 1

2

(∑
C ′∈C

̂diam(C ′) + |C|
)

= 1

2
·Di−1 .

Let Vr be all the (r − 1)μ clusters contained in C . For i > (r − 1)μ

Di ≤ 1

2
·Di−1 ≤ 1

2
·D(r−1)μ = D(r−1)μ − 1

2
·
⎛
⎝ ∑

ϕ∈Vr

̂diam(ϕ) + |Vr |
⎞
⎠

≤ D(r−1)μ − 1

2
·
⎛
⎝ ∑

ϕ∈Vr

(
g(r−1)μk

c
+ 1

)⎞
⎠ = D(r−1)μ − �

(
|Vr | g(r−1)μk

)
.

By applying this on all the maximal heavy clusters and get the claim. �
Now we ready to prove Lemma 8.

Proof of Lemma 8. Fix some r. Note that the minimal weight of an edge in Sr is kg(r−1)μ/ε , while by Lemma 7, wr(Mr) ≤
O  

(|Vr | · kg(r−1)μ/ε
)
. Using Lemma 5,

w(Hr) ≤ wr(Hr) ≤ O ε

(
|Vr | 1

k · log

(
k

ε

))
· wr(Mr) = O ε

(
n

1
k · log k · |Vr | · kg(r−1)μ

)
.

The total weight of the spanners added during the second phase is bounded by

�k/μ�−1∑
r=1

w(Hr) = O ε

⎛
⎝n

1
k · log k ·

�k/μ�−1∑
r=1

|Vr | · kg(r−1)μ

⎞
⎠

= O ε

⎛
⎝n

1
k · log k ·

�k/μ�−1∑
r=1

D(r−1)μ − D(r+1)μ

⎞
⎠

= O ε

(
n

1
k · log k · (D0 + D1)

)
= O ε

(
n1+ 1

k · log k
)

,

where the last step follows as D1, D0 ≤ D−1 = |V | = n, as all the −1-clusters are simply vertices of G . �
12. Halperin Zwick spanner

In this section we state and analyze the spanner construction of [20].

Theorem 10 ([20]). For any unweighted graph G = (V , E) and integer k ≥ 1, a (2k − 1)-spanner with O (n1+1/k) edges can be built 
in O (m) time.
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Algorithm 6: HZ-Spanner(G = (V , E), k).

1 H = (V , ∅). V ′ = V . n = |V |. Throughout the algorithm, G ′ denotes G[V ′]
2 while V ′ = ∅ do
3 Let v ∈ V ′ be arbitrary vertex.

4 Let r ∈N be minimal such that |BG ′ (v, r)| · n
1
k ≥ |BG ′ (v, r + 1)|.

5 Let T be a BFS tree in BG ′ (v, r + 1), rooted at v
6 H ← H ∪ T
7 V ′ ← V ′ \ BG ′ (v, r)
8 return H

Proof. We analyze Algorithm 6. Note that in line 4, necessarily r ≤ k − 1 as otherwise

|BG(v, r)| ≥ |BG(v,k)| > |BG(v,k − 1)| · n
1
k > · · · > |BG(v,k − i)| · n

i
k > |BG(v,0)| · n

k
k = n .

To bound the stretch of H , consider an edge e = (x, y). Let vx, rx (resp. v y, ry) such that x (resp. y) was removed from V ′
as part of BG ′ (vx, rx) (resp.BG ′(v y, ry)). If vx = v y , then dH (x, y) ≤ rx + ry ≤ 2(k − 1). Otherwise, assume w.l.o.g. that vx

was removed before v y . As y is neighboring vertex of BG ′(vx, rx), necessarily there is a vertex z ∈ BG ′(vx, rx), such that we 
added (z, y) to H . By triangle inequality

dH (x, y) ≤ dH (x, z) + dH (z, y) ≤ 2 · rx + 1 ≤ 2k − 1 .

To bound the sparsity, note that when deleting BG ′(v, r), we add |BG ′ (v, r + 1)| − 1 ≤ |BG ′(v, r)| · n
1
k edges. Thus by 

charging n
1
k on each deleted vertex, we can bound the total number of edges by O (n1+ 1

k ).
The runtime is straightforward, as we consider each edge at most twice. �

12.1. Modified [20] spanner

Algorithm 6 picks an arbitrary vertex in line 3 and grows a ball around it. Our spanner in Theorem 6 uses Algorithm 6
as sub-procedure. However we will need additional property from the spanner. Specifically, we will prefer to pick a vertex 
with at least n

1
k − 1 active neighbors. The modified algorithm presented in Algorithm 7. We denote by degG ′(v), the degree 

of v in G ′ .

Algorithm 7: Modified-HZ-Spanner(G = (V , E), k).

1 H = (V , ∅). V ′ = V . n = |V |. Throughout the algorithm, G ′ denotes G[V ′]
2 while V ′ = ∅ do

3 If possible, pick v ∈ V ′ such that degG ′ (v) ≥ n
1
k − 1. If not, pick arbitrary vertex v ∈ V ′ .

4 Let r ∈N be minimal such that |BG ′ (v, r)| · n
1
k ≥ |BG ′ (v, r + 1)|.

5 Let T be a BFS tree in BG ′ (v, r + 1), rooted at v
6 H ← H ∪ T
7 V ′ ← V ′ \ BG ′ (v, r)
8 return H

Lemma 9 (Modified [20]). Given an unweighted graph G = (V , E) and a parameter k, Algorithm 7 returns a (2k − 1)-spanner H with 
O (n1+1/k) edges in O (m) time. Moreover, it holds that

1. V is partitioned into sets S1, . . . , S R , such that at iteration i of the loop, Si was deleted from V ′ .
2. For every i, diamH (Si) ≤ 2k − 2.

3. When deleting Si , Algorithm 7 adds less than |Si | · n
1
k edges. All these edges are either internal to Si or going from Si to ∪ j>i S j .

4. There is an index t, such that for every i ≤ t, |Si| ≥ n1/k, and for every i > t, |Si| = 1 (called singletons).

Proof. The stretch and sparsity follows from Theorem 10 as we only specify (the prior arbitrary) order of choosing vertices 
in line 3. Property 2 follows as the radius chosen in line 4 bounded by k − 1. Properties 1, 3, 4 are straightforward from line 
3 of Algorithm 7. Thus we only need to bound the running time.

It will be enough to provide an efficient way to pick vertices in line 3. We will maintain deg(v) for every vertex v , and 
a set A of all the vertices with degree at least n

1
k . The degrees are computed in the beginning of the algorithm, and all the 

relevant vertices inserted to A. Then, in iteration i, after deleting Si , we go over each deleted vertex, decrease the degree 
of each neighboring vertex, and update A accordingly. Using A, the decision in line 3 can be executed in constant time. 
The maintenance of A and the degrees can be done in O (m) time, as we refer to each edge at most constant number of 
times. �
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[14] Paul Erdős, Extremal problems in graph theory, in: Theory of Graphs and Its Applications, 1964, pp. 29–36.
[15] Even Shimon, Yossi Shiloach, An on-line edge-deletion problem, J. ACM 28 (1) (1981) 1–4.
[16] Michael Elkin, Shay Solomon, Fast constructions of lightweight spanners for general graphs, ACM Trans. Algorithms 12 (3) (2016) 29. See also SODA’13.
[17] Arthur M. Farley, Andrzej Proskurowski, Daniel Zappala, Kurt Windisch, Spanners and message distribution in networks, Discrete Appl. Math. 137 (2) 

(2004) 159–171.
[18] Arnold Filtser, Shay Solomon, The greedy spanner is existentially optimal 49 (2020) 429–447.
[19] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, Dynamic approximate all-pairs shortest paths: breaking the o(mn) barrier and deran-

domization, SIAM J. Comput. 45 (3) (2016) 947–1006. See also FOCS’13.
[20] Shay Halperin, Uri Zwick, Linear time deterministic algorithm for computing spanners for unweighted graphs, 1996.
[21] Joseph B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc. 7 (1) (February 1956) 48–50.
[22] Ioannis Koutis, Shen Chen Xu, Simple parallel and distributed algorithms for spectral graph sparsification, ACM Trans. Parallel Comput. 3 (2) (2016) 14.
[23] Gary L. Miller, Richard Peng, Adrian Vladu, Shen Chen Xu, Improved parallel algorithms for spanners and hopsets, in: Proc. 27th ACM Symposium on 

Parallel Algorithms and Architectures (SPAA), 2015, pp. 192–201.
[24] David Peleg, Alejandro A. Schäffer, Graph spanners, J. Graph Theory 13 (1) (1989) 99–116.
[25] David Peleg, Jeffrey D. Ullman, An optimal synchronizer for the hypercube, in: Proc. 6th ACM Symposium on Principles of Distributed Computing 

(PODC), 1987, pp. 77–85.
[26] David Peleg, Eli Upfal, A tradeoff between space and efficiency for routing tables, in: Proc 20th ACM Symposium on Theory of Computing (STOC), 1988, 

pp. 43–52.
[27] Liam Roditty, Mikkel Thorup, Uri Zwick, Deterministic constructions of approximate distance oracles and spanners, in: Proc. 32nd International Collo-

quium on Automata, Languages and Programming (ICALP), 2005, pp. 261–272.
[28] Liam Roditty, Uri Zwick, On dynamic shortest paths problems, Algorithmica 61 (2) (2011) 389–401.
[29] Liam Roditty, Uri Zwick, Dynamic approximate all-pairs shortest paths in undirected graphs, SIAM J. Comput. 41 (3) (2012) 670–683. See also FOCS’04.
[30] Robert Endre Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM 22 (2) (apr 1975) 215–225.
[31] Mikkel Thorup, Uri Zwick, Compact routing schemes, in: Proc. 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA), 2001, pp. 1–10.
[32] Mikkel Thorup, Uri Zwick, Approximate distance oracles, J. ACM 52 (1) (January 2005) 1–24. See also STOC’01.
[33] Christian Wulff-Nilsen, Approximate distance oracles with improved preprocessing time, in: Proc. 23rd ACM/SIAM Symposium on Discrete Algorithms 

(SODA), 2012, pp. 202–208.
[34] Christian Wulff-Nilsen, Approximate distance oracles with improved query time, in: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium 

on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, 2013, pp. 539–549.
[35] Christian Wulff-Nilsen, Fully-dynamic minimum spanning forest with improved worst-case update time, in: Proceedings of the 49th Annual ACM 

SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19–23, 2017, 2017, pp. 1130–1143.
31

http://refhub.elsevier.com/S0304-3975(22)00040-8/bib07F0B73C4FB8DF4589F2C85EF705089Fs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib07F0B73C4FB8DF4589F2C85EF705089Fs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibADE90F9CEDD64A276E2AA753EB0765C5s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibBE7608908FBB15A63E30F558A6B47040s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibBE7608908FBB15A63E30F558A6B47040s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib80F0A5133D10E2BE44F9BDD848F3C0E9s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib80F0A5133D10E2BE44F9BDD848F3C0E9s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibB9D43FFD6E28A93A76F50B63E7D76677s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibB9D43FFD6E28A93A76F50B63E7D76677s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib0394F71C29212A35F223AC0BC636BCC3s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib0394F71C29212A35F223AC0BC636BCC3s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibFDBBEC36B2B9B92C89BAB802494C1EB7s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibFDBBEC36B2B9B92C89BAB802494C1EB7s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib607F99C0AF07BACB51512B4C5674911As1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib607F99C0AF07BACB51512B4C5674911As1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibC75A054DD756AB5F8B740BDB843B3241s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibF1C6C8FFABAE04427AEF9C8172AA461Fs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib4625AA72572A1D9E028EC31EC46A12EBs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibB2233B298BF5949378A88CF99732B222s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib7A3669FB0B3367B6BDD498498043922As1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibF9223C8C6C5FA476F29829FB8E420295s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib0E7C132D7A0D404059353949BBE9B2B4s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibF614FA2F7B8369FD327C73A5B59432D7s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib46D92DF310CEC33788C46D09C8AD24F4s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib46D92DF310CEC33788C46D09C8AD24F4s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibD74E94C5AAE27228BBF1FF870225DB72s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibE5C9CC9621CD940F5890574A7B9AAC05s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibE5C9CC9621CD940F5890574A7B9AAC05s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibE535F11DDB6D8743CA8F690AB630A7EDs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib246FA201198AAF902FA79251275FE9DFs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib00549B8B522744FA68ABBC53E670F7E4s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib00549B8B522744FA68ABBC53E670F7E4s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib639870E88BE952CA9641A2067C1B6F6As1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibC43B3728D228B0F9CF0983F5EF383B19s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibC43B3728D228B0F9CF0983F5EF383B19s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib7314AC92D3053C12046B40A661DDF9BBs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib7314AC92D3053C12046B40A661DDF9BBs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib2E6C14DF4710DE945EBF9BA301FA6FBEs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib2E6C14DF4710DE945EBF9BA301FA6FBEs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibC0F69F7CCE1CD768B2F3F57F37EF1CD0s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib79076BB73E5165A0C1A4E33AA3DD1D42s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib6872E3017EE2D255B19A45D52CD46A3As1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibCAD0AC5C34E5B86815152520C75AC8B3s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib98ACA380A6FC1EFBB33E04B2FADB2BECs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibE028F541D01DED8312FA8D7C0840B5C3s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibE028F541D01DED8312FA8D7C0840B5C3s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib53EA822D99D08C3EA16C1B614659FFACs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bib53EA822D99D08C3EA16C1B614659FFACs1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibD84291299A08915DDF9D97DD8F94B070s1
http://refhub.elsevier.com/S0304-3975(22)00040-8/bibD84291299A08915DDF9D97DD8F94B070s1

	Constructing light spanners deterministically in near-linear time
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	3 Paper overview
	4 A framework for creating light spanners efficiently
	5 Efficient approximate greedy spanner
	5.1 Details of the almost-greedy spanner
	5.2 Near-quadratic time implementation

	6 Almost linear spanner
	6.1 Details of the construction
	6.2 Exact implementation of Algorithm 2

	7 Proof of Theorem 6
	7.1 Algorithm
	7.2 Stretch
	7.3 Sparsity
	7.4 Running time
	7.5 Prophet union/find

	8 Deterministic incremental distance oracles for small distances
	8.1 The distance oracle
	8.2 Bounding time and stretch

	9 A note on the lightness of other spanners
	10 Proof of Lemma 5
	11 Missing proofs from the analysis
	11.1 Stretch
	11.2 Proofs of Lemma 7 and Lemma 8

	12 Halperin Zwick spanner
	12.1 Modified [20] spanner

	Declaration of competing interest
	References


