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Gaussian stationary processes (GSP)

For T ∈ {R,Z}, a random function f : T 7→ R is a GSP if it is

Gaussian: (f (x1), ...f (xN)) ∼ NRN (0,Σx1,...,xN ),

Stationary (shift-invariant): (f (x1 + s), ...f (xN + s))
d∼ (f (x1), ...f (xN)),

for all N ∈ N, x1, ...,xN ,s ∈ T .
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Motivation: nearly any stationary noise.

Field fluctuations

Electromagnetic noise

Ocean waves

Vibrations of strings / membranes

Data traffic

...
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Gaussian stationary processes (GSP)

For T ∈ {R,Z}, a random function f : T 7→ R is a GSP if it is

Gaussian: (f (x1), ...f (xN)) ∼ NRN (0,Σx1,...,xN ),

Stationary (shift-invariant): (f (x1 + s), ...f (xN + s))
d∼ (f (x1), ...f (xN)),

for all N ∈ N, x1, ...,xN ,s ∈ T .

Covariance function

r(s, t) = E(f (s)f (t)) = r(s − t) t,s ∈ T .

Assumption: r(·) and f (·) continuous.

Spectral measure

r continuous and positive-definite ⇒ there exists a finite, non-negative,
symmetric measure ρ over T ∗ (Z∗ ≃ [−π,π] and R

∗ ≃ R) s.t.

r(t) = ρ̂(t) =

∫

T ∗

e
−iλt

dρ(λ).



Toy-Example Ia - Gaussian wave

ξj i.i.d. N (0,1)

f (x) = ξ0 sin(x) + ξ1 cos(x)

r(x) = cos(x)

ρ = 1
2 (δ1 + δ−1)
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Toy-Example Ib - Almost periodic wave

f (x) =ξ0 sin(x) + ξ1 cos(x)

+ ξ2 sin(
√

2x) + ξ3 cos(
√

2x)

r(x) =cos(x) + cos(
√

2x)

ρ = 1
2

(
δ1 + δ−1 + δ√

2 + δ−
√

2

)
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Example II - i.i.d. sequence

f (n) = ξn

r(n) = δn,0

dρ(λ) =
1

2π
1I[−π,π](λ)dλ
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Example IIb - Sinc kernel

f (x) =
∑

n∈N

ξn sinc(x − n)

r(x) =
sin(πx)

πx
= sinc(x)

dρ(λ) =
1

2π
1I[−π,π](λ)dλ
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Example III - Gaussian Covariance (Fock-Bargmann)

f (x) =
∑

n∈N

ξn
xn

√
n!

e
− x2

2

r(x) = e
− x2

2

dρ(λ) =
√

πe
− λ2

2 dλ
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Example IV - Exponential Covariance (Ornstein-Uhlenbeck)

r(x) = e
−|x|

dρ(λ) =
2

λ2 + 1
dλ
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Persistence Probability

Persistence

The persistence probability of a stochastic process f over a level ℓ ∈ R in the
time interval (0,N] is:F

Pf (N) := P

(
f (x) > ℓ, ∀x ∈ (0,N]

)
.
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Motivation: detection theory.
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Toy Examples

Xn i.i.d. PX (N) = 2−N

Yn = Xn+1 − Xn PY (N) = 1
(N+1)!

≍ e
−N logN

Zn ≡ Z0 PZ (N) = P(Z0 > 0) =
1

2
.
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Persistence (above the mean)

The persistence probability of a centered stochastic process f in the time
interval (0,N] is:F

Pf (N) := P

(
f (x) > 0, ∀x ∈ (0,N]

)
.

Question: For a GSP f , what is the behavior of Pf (N) as N → ∞?

Guess: with sufficient independence P(N) . e−θN .

Toy Examples

Xn i.i.d. PX (N) = 2−N

Yn = Xn+1 − Xn PY (N) = 1
(N+1)!

≍ e
−N logN

Zn ≡ Z0 PZ (N) = P(Z0 > 0) =
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History and Motivation

Engineering and Applied Mathematics (1940–1970)

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality: r1(x) ≥ r2(x) ⇒ P1(N) ≥ P2(N).
specific cases

1962 Newell & Rosenblatt
If r(x) → 0 as x → ∞, then P(N) = o(N−α) for any α > 0.

If |r(x)| < ax−α then logP(N) ≤

{−CN if α > 1

−CN/ logN if α = 1

−CNα if 0 < α < 1

examples for logP(N) > −C
√

N logN ≫ −CN (r(x) ≍ x−1/2).
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Applicable mainly when r is non-negative or absolutely summable.
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Engineering and Applied Mathematics (1940–1970)

1944 Rice - “Mathematical Analysis of Random Noise”.

Mean number of level-crossings (Rice formula)
Behavior of P(t) for t ≪ 1 (short range).

1962 Slepian - “One-sided barrier problem”.

Slepian’s Inequality: r1(x) ≥ r2(x) ⇒ P1(N) ≥ P2(N).
specific cases

1962 Newell & Rosenblatt
If r(x) → 0 as x → ∞, then P(N) = o(N−α) for any α > 0.

If |r(x)| < ax−α then logP(N) ≤

{−CN if α > 1

−CN/ logN if α = 1

−CNα if 0 < α < 1

examples for logP(N) > −C
√

N logN ≫ −CN (r(x) ≍ x−1/2).

Physics (1990–2010)

GSPs used in models for electrons in matter, diffusion, spin systems.

Majumdar et al.: Heuristics explaining why logPf (N) ≍ −θN “generically”.



History and Motivation

Probability and Anlysis (2000+)

hole probability for Gaussian analytic functions

in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)

for sinc-kernel: e−cN < P(N) < 2−N (Antezana-Buckley-Marzo-Olsen, ‘12)



History and Motivation

Probability and Anlysis (2000+)

hole probability for Gaussian analytic functions

in the plane (Sodin-Tsirelson, Nishry), hyperbolic disc (Buckley et al.)

for sinc-kernel: e−cN < P(N) < 2−N (Antezana-Buckley-Marzo-Olsen, ‘12)

Absence of zeroes in random polynomials,
relations with non-stationary diffusion processes
(Dembo-Mukherjee 2013, 2015)
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independent GSPs.

Observation
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First Spectral Result
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∫
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First Spectral Result

Assumptions: ∃δ > 0 :
∫

|λ|δdρ(λ) < ∞ (“finite polynomial moment”),
ρAC 6= 0 (“non-trivial absolutely continuous component”).

Theorem 1 (Feldheim & F., 2013)

Suppose that ρ has density w(λ) in [−a,a] with 0 < m ≤ w(x) ≤ M.
Then logPf (N) ≍ −N, that is, for some c1,c2,

−c1N ≤ logPf (N) ≤ −c2N.

Confirms and expands upon the intuition of Majumdar et al.

Given in terms of ρ (not r).

Applicable to sign-changing, slow-decaying covariance functions.

Toy Examples

Xn i.i.d. ⇒ PX (N) = 2−N
w = 1I[−π,π]

Yn = Xn+1 − Xn ⇒ PY (N) ≍ e
−N log N

w = 2(1 − cosλ)1I[−π,π]

Zn ≡ Z0 ⇒ PZ (N) =
1

2
ρ = δ0
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New questions and conjectures

Questions:

1 How does logP(N) behave if the spectrum explodes or vanishes near 0?

Guess: explodes ⇒ log P(N) ≫ −aN, vanishes ⇒ log P(N) ≪ −aN.

2 What is the smallest possible P(N)? (under ρAC 6= 0 )

Spectral gap conjecture (Sodin, Krishanpur):
log P(N) ≍ −N2 when ρ vanishes on an interval around 0.

Recent progress:

Non-negative correlations – Dembo & Mukherjee (2013, 2015):

Improve upon the methods of Newell & Rosenblatt.
In case r(x) ≥ 0, pinpoint the behaviour of logP(N) up to a constant.

Lower bounds for GSP on Z – Krishna & Krishnapur (2016):

log P(N) ≥ −CN2 (assuming ρAC 6= 0 )

log P(N) ≥ −CN logN if in some interval around 0 the spectral
measure has density w(λ) with w(λ) ≥ cλα (c > 0).



New spectral results
(a well-behaved case)

Persistence is largely determined by the spectral behaviour near 0.

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [−a,a] the spectral measure has density w(λ) which satisfies
c1λα ≤ w(λ) ≤ c2λα for some α > −1. Then:

log Pf (N)





≍ −N1+α log N, −1 < α < 0 (exploding spec. at 0)

≍ −N, α = 0 (bounded spec. at 0)

. −αN logN, α > 0 (vanishing spec. at 0).

Moreover, if w(λ) vanishes on an interval around 0, then logPf (N) ≤ −CN2.
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. −αN logN, α > 0 (vanishing spec. at 0).

Moreover, if w(λ) vanishes on an interval around 0, then logPf (N) ≤ −CN2.

Implications:

generalize Dembo-Mukherjee to sign-changing covariance.

obtain upper bound in the spectral gap conjecture.

the first example of logP(N) ≤ −CN log N.

with Krishna-Krishnapur: pinpoints log Pf (N) up to a constant over Z.
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Formulated using ρ([0,λ]) for λ ≪ 1.



New spectral results
(a well-behaved case)

Persistence is largely determined by the spectral behaviour near 0.

Theorem 2 (Feldheim, F., Nitzan, 2017)

Suppose that in [−a,a] the spectral measure has density w(λ) which satisfies
c1λα ≤ w(λ) ≤ c2λα for some α > −1. Then:

log Pf (N)





≍ −N1+α log N, −1 < α < 0 (exploding spec. at 0)

≍ −N, α = 0 (bounded spec. at 0)

. −αN logN, α > 0 (vanishing spec. at 0).

Moreover, if w(λ) vanishes on an interval around 0, then logPf (N) ≤ −CN2.

Furthermore:

w(λ) ≤ c2λα ⇒ upper bounds, w(λ) ≥ c1λα ⇒ lower bounds.

Formulated using ρ([0,λ]) for λ ≪ 1.

Question: What about lower bound over R when α > 0?
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New spectral results
the interplay with the tail

Persistence is largely determined by the spectral behavior near 0...

Theorem 2’ (Feldheim, F., Nitzan, 2017)

If the spectral measure vanishes on an interval containing 0, then

logPf (N) ≤ −CN
2.

... and near ∞.

Theorem 3 (Feldheim, F., Nitzan, 2017)

Let T = R. If the spectral measure vanishes on an interval containing 0, and
on [1,∞) it has density w(λ) such that w(λ) ≥ λ−100, then

logPf (N) ≤ −e
CN .

heavy tail ⇒ f is “rough” ⇒ tiny persistence.

light tail ⇒ f is smooth ⇒ matching lower bounds as over Z [in progress]



Ideas from the proof.
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Bounded spectrum: upper bound

Lemma 1 - average of a GSP

1
N

∑N
n=1 g(n) ∼ NR(0,σ2

N), where σ2
N ≤ C

N
.

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.
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Bounded spectrum: upper bound

Lemma 1 - average of a GSP

1
N

∑N
n=1 g(n) ∼ NR(0,σ2

N), where σ2
N ≤ C

N
.

Sketch:

σ2
N = E

(
1
N

N∑

1

f (n)

)2

=
1

N2

N∑

1

N∑

1

r(n − k) =
1

N

∑

|j|<N

(
1 − |j|

N

)
r(j)

=

∫
π

−π

sin2(N λ
2 )

N2 sin2( λ
2 )

dρ(λ) ≈ ρ([0, 1
N

]).

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.
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Bounded spectrum: upper bound

Pf (N) ≤ P

(
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Lemma 2 - persistence of distorted i.i.d.

If Z1, . . . ,ZN ∼ N (0,1) i.i.d. and 1
N

∑N

j=1 bj < 1, then

P

(
Zj + bj > 0, 1 ≤ j ≤ N

)
≤ P(Z1 < 1)N .

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.
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Bounded spectrum: upper bound
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N

∑N

j=1 bj < 1, then

P

(
Zj + bj > 0, 1 ≤ j ≤ N

)
≤ P(Z1 < 1)N .

Proof:

logP(Zj > −bj , 1 ≤ j ≤ N) = log
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j=1

Φ(bj ) =

N∑

j=1

logΦ(bj )
concav.

≤ N logΦ

(
1

N

∑
bj

)
≤ N logΦ(1).

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.
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Exploding spectrum: upper bound

f = S ⊕ g , where (S(nk))n∈Z are i.i.d.
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Bounded or exploding spectrum: lower bound

Lemma 3 - “atom-like” behaviour

P(A > ℓ on (0,N]) ≥ 1
2P(σNZ > 2ℓ)

for every ℓ > 0, where Z ∼ N (0,1) and σ2
N = ρ([−1/N,1/N]).

f = A ⊕ h, where ρA = ρ|
[−

1
N

,
1
N

]
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Bounded or exploding spectrum: lower bound

Lemma 3 - “atom-like” behaviour

P(A > ℓ on (0,N]) ≥ 1
2P(σNZ > 2ℓ)

for every ℓ > 0, where Z ∼ N (0,1) and σ2
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Strategy: build an event ⊂ {f > 0 on (0,N]}: large atom-like part, small noise.

P(f > 0 on (0,N]) ≥ P(A > ℓ on (0,N]) ·P (|h| ≤ ℓ on (0,N]).

Lemma 4 - ball estimate (extend Talagrand, Shao & Wang 1994)

There exists q, ℓ0 > 0 such that for ℓ ≥ ℓ0:

P(|h| < ℓ on (0,N]) ≥ P(|h(0)| < qℓ)N .

Balancing equation:
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Vanishing spectrum: intuition

A GSP with vanishing spectrum is the derivative (or difference) of another GSP.

Sample path
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Main tools

Spectral decomposition

ρ = ρ1 + ρ2 ⇒ f = f1 ⊕ f2.

Process integration

If
∫

1
λ2 dρ(λ) < ∞, then there exists a GSP h such that h′ d

= f

(and also a GSP h such that h(x + 1) − h(x) = f (x)).

Proof: E[h(t)h(s)] =
∫
R

e−iλ(t−s)dµ(λ) ⇒ E[h′(t)h′(s)] =
∫
R

e−iλ(t−s)λ2dµ(λ).



Vanishing spectrum: upper bound
Main tools

Spectral decomposition

ρ = ρ1 + ρ2 ⇒ f = f1 ⊕ f2.

Process integration

If
∫

1
λ2 dρ(λ) < ∞, then there exists a GSP h such that h′ d

= f

(and also a GSP h such that h(x + 1) − h(x) = f (x)).

Borell-TIS inequality

P(sup[0,N] |h| > ℓ) ≤ e
− ℓ2

2varh(0) for a GSP h.

Anderson’s lemma

P(supn |Xn ⊕ Yn| ≤ ℓ) ≤ P(supn |Xn| ≤ ℓ) for Xn,Yn Gaussian centred.



Vanishing spectrum: upper bound
Key lemma

Analytic lemma (FFN)

If h : T → R is such that h′ > 0 on [0,N], then there exists a set R ⊆ [0,N] of
measure |R| ≥ N

2 such that supR |h′| ≤ 2
N

· sup[0,N] |h|.
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Analytic lemma (FFN) – degree p

If h : T → R is such that h(p) > 0 on [0,N], then there exists a set R ⊆ [0,N] of

measure |R| ≥ N
2 such that supR |h(p)| ≤ ( 2p

N
)p · sup[0,N] |h|.



Vanishing spectrum: upper bound
Key lemma

Analytic lemma (FFN) – degree p

If h : T → R is such that h(p) > 0 on [0,N], then there exists a set R ⊆ [0,N] of

measure |R| ≥ N
2 such that supR |h(p)| ≤ ( 2p

N
)p · sup[0,N] |h|.

Proof uses:

Chebyshev polynomials
(minimizers of sup-norm on [−1, 1] among monic polynomials)

Hermite-Genocchi formula
(for leading coefficient of an interpolation polynomial)

Splines
(for moving from R to Z)
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By Borell-TIS, P(Gc) ≤ P(aZ > ℓ) = e−ℓ2/2a.
If {f > 0} ∩ G occurred, by the analytic lemma there is a large set R ⊆ [0,N]
(|R| ≥ N

2 ) such that |f | < 2ℓ
N

on R.
By the spectral decomposition, f (kn) = Zn ⊕ gn where Zn are i.i.d.
By Anderson’s lemma,

P({f > 0} ∩ G) ≤ P

(
sup

n
|Zn ⊕ gn| ≤ 2ℓ

N

)
≤ P

(
|Z1| ≤ 2ℓ

N

)qN

.

Balancing equation

e
−ℓ2/2a ≈ P(aZ > ℓ) ≍ P

(
|Z | ≤ ℓ

N

)qN

≈
(

ℓ

N

)qN
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ℓ =
√

N log N ⇒ both sides are e−CN log N .



Under the rug

high order vanishing

ρac 6= 0:
ρ = m1IE +µ, E 6= 1I[−a,a] ⇒ “almost i.i.d.” on a dense subset of the lattice
(Restricted Invertibility Theorem by Bourgain-Tzafriri)

tiny persistence:
optimize over E = E(ρ,N).



Future directions

tight upper and lower bounds over R

(interplay between spec. at 0 and ∞)

intermediate rates of log Pf (N)

high dimensions



Future directions

tight upper and lower bounds over R

(interplay between spec. at 0 and ∞)

intermediate rates of log Pf (N)

high dimensions

singular measures

existence of limiting exponent
(e.g. limN→∞

log Pf (N)

N
)

non-stationary processes



Thank you.
“Persistence can grind an iron beam down into a needle.”

– – Chinese Proverb.


