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Security should be preserved even when some 
of the parties are corrupted 

– correctness, privacy, independence of inputs 
and.. fairness 
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• Complete fairness can be achieved in 
multiparty with honest majority 
[GMW87,BGW88,CCD88,RB89,Be91] 
 

• What about no honest majority? 

– Special case: Two party setting? 
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• End of execution – full 
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• Beginning of execution – no 
knowledge about the outputs  

• End of execution – full 
knowledge about it 

• Protocols proceed in rounds 

• The parties cannot exchange 
information simultaneously 

• There must be a point when a 
party knows more than the 
other  
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• In 1986, Cleve showed that fairness is 
impossible in general (two party) 

• The coin-tossing functionality is impossible: 

– both parties agree on the same uniform bit 

– no party can bias the result 

• Implies that the boolean XOR  
function is also impossible 

 



• Since 1986, the accepted belief was that 
nothing non-trivial can be computed fairly 
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• Since 1986, the accepted belief was that 
nothing non-trivial can be computed fairly 

• Many notions of partial fairness 
– Gradual release , Probabilistic fairness, Optimistic 

exchange, fairness at expectation 
[BeaverGoldwasser89][GoldwasserLevin90] 
[BonehNaor2000][Micali98]… 

• Even two definitions of security – one with 
fairness, one without 

• For two decades – no results on complete 
fairness 
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1 0 x1 

0 1 x2 

1 1 x3 
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computed with complete fairness? 
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• A fundamental question: 

What functions can and cannot be securely 
computed with complete fairness? 

 

• Impossibility: Cleve 

• Only few examples of functions that are 
possible 

 

 



• A Full Characterization of Functions that 
Imply Fair Coin Tossing and Ramifications 
to Fairness 
A, Lindell and Rabin [TCC 2013] 

 

• Towards Characterizing Complete Fairness 
in Secure Two-Party Computing 
A [TCC 2014] 
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Private Evaluation of a Boolean Function 
– X input: 𝑔 ∈ F    (𝐹 = {𝑔: Ω → 0,1 }) 

– Y input: 𝑦 ∈ Ω 

– The function 𝑓 𝑔, 𝑦 = 𝑔 𝑦  
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– X holds set of preferences (“what I am looking for”) 
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– Output: Does Y match X 

𝑨 ⊆ 𝑩: 
– X holds 𝐴 ⊆ Ω 
– Y holds 𝐵 ⊆ Ω 
– Output: 𝐴 ⊆ 𝐵? 

Set Disjointness: 
– X holds 𝐴 ⊆ Ω 
– Y holds 𝐵 ⊆ Ω 
– Output: 𝐴 ∩ 𝐵 = ∅? 
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Impossible 
𝐴 = 𝐵 

implies coin-tossing 
[ALR13] 

Possible 
𝐴 ⊆ 𝐵 

Unknown 
not coin-tossing 
not [GHKL08]* 



Asharov, Lindell, Rabin 

A Full Characterization of Functions 
that Imply Fair Coin Tossing and 

Ramifications to Fairness 



The coin-tossing functionality is impossible: 
𝑓 𝜆, 𝜆 = 𝑈, 𝑈  

 (𝑈 is the uniform distribution over {0,1}) 

– both parties agree on the same uniform bit 

– no party can bias the result 



The coin-tossing functionality is impossible: 
𝑓 𝜆, 𝜆 = 𝑈, 𝑈  

 (𝑈 is the uniform distribution over {0,1}) 

– both parties agree on the same uniform bit 

– no party can bias the result 

Which Boolean functions are ruled out by this 
impossibility? 
Which functions imply fair coin-tossing? 

Question: 



Assume a fair protocol for the XOR function 

How can we use it to toss a coin? 

Question: 



Assume a fair protocol for the XOR function 

How can we use it to toss a coin? 

Each party chooses a uniform bit, then XOR 
them 

Question: 

Answer: 
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if there exist probability vectors 𝒑 = 𝑝1, … , 𝑝𝑚 , 
𝒒 = 𝑞1, … , 𝑞ℓ   and  ⁡0 < 𝛿 < 1  s.t:  

⁡𝒑⁡ ⋅ 𝑀𝑓 = 𝛿 ⋅ 𝟏ℓ       AND       𝑀𝑓 ⋅ 𝒒𝑇 = 𝛿 ⋅ 𝟏𝑚
𝑇   
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𝒇 is 𝜹 balanced 

If 𝑓 is 𝛿-balanced then it implies fair coin-tossing 

Theorem 
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if 𝑓 is not 𝛿-balanced for any 0 < 𝛿 < 1, then it 
does not imply coin tossing* 

Theorem 

• We show that for any coin-tossing protocol in the 𝑓-hybrid 
model, there exists an adversary that can bias the result 

• Unlike Cleve – here we do have something simultaneously.  
A completely different argument is given 

• Caveat: the adversary is inefficient 

• However, impossibility holds also when the parties have 
OT-oracle (and so commitments, ZK, etc.) 
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Gordon, Hazay, Katz and Lindell [STOC08] 
presented a general protocol and 
 proved that a particular function  
can be computed using this protocol 



Gordon, Hazay, Katz and Lindell [STOC08] 
presented a general protocol and 
 proved that a particular function  
can be computed using this protocol 

What functions can be computed using this 
protocol? 

Question: 



• Almost all functions with |X|≠ 𝐘 :  
can be computed using the protocol 

• Almost all functions with 𝐗 = |𝐘|:  
cannot be computed using the protocol 

– If the function has monochromatic input, it may 
be possible even if 𝑋 = 𝑌  

• Characterization of [GHKL08] is not tight! 

– There are functions that are left unknown 

 



• Special round 𝑖∗ 
• Until round 𝑖∗ - the outputs are random and 

uncorrelated (𝑓 𝑥, 𝑦 , 𝑓 𝑥 , 𝑦 ) 
• Starting at 𝑖∗ - the outputs are correct 
• At 𝑖∗, Px learns before Py 

           
                                           

                                          

                                          
                                                



• Special round 𝑖∗ 
• Until round 𝑖∗ - the outputs are random and 

uncorrelated (𝑓 𝑥, 𝑦 , 𝑓 𝑥 , 𝑦 ) 
• Starting at 𝑖∗ - the outputs are correct 
• At 𝑖∗, Px learns before Py 

• Security: 
– Py is always the second to receive output 

• Simulation is possible for all functions 

– Px is always the first to receive output 
• Simulation is possible only for some functions 

 



Trusted Party 

 



Trusted Party 

 

𝑦 



Trusted Party 

 

𝑦 𝑥⁡ 



Trusted Party 

 

𝑦 𝑥⁡ 

𝑓(𝑥, 𝑦) 



Trusted Party 

 

𝑦 𝑥⁡ 

𝑓(𝑥, 𝑦) 
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0 1 x2 1/2 1/2+𝜖 
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1/2) (1/2+𝝐 

Before 𝑖∗ : 𝑓(𝑥 , 𝑦) 
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1) General for multiparty computation: 
“The power of the ideal adversary”  

– Geometric representation 

2) Specific for the [GHKL08] protocol: 
Adding more rounds – less to correct! 
 



REAL Before 𝒊∗: 
𝑓(𝑥 , 𝑦) for uniform 𝑥  (1/3,1/3,1/3) 

⇒(2/3, 2/3) 

𝐸 𝑅 = 5 𝐸 𝑅 = 100 



All points that the simulator needs are inside some “ball” 
• The center – the output distribution of REAL 
• The radius – a function of number of rounds 
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• Let 𝑓: 𝑥1, … , 𝑥ℓ × 𝑦1, … , 𝑦𝑚 → {0,1} 
• Consider the ℓ points 𝑋1, … , 𝑋ℓ in ℝ𝑚 (the “rows” of the 

matrix) 



• Let 𝑓: 𝑥1, … , 𝑥ℓ × 𝑦1, … , 𝑦𝑚 → {0,1} 
• Consider the ℓ points 𝑋1, … , 𝑋ℓ in ℝ𝑚 (the “rows” of the 

matrix) 

 

 

If the geometric object defined by ⁡⁡𝑋1, … , 𝑋ℓ ∈ ℝ𝑚 is 
of dimension 𝑚, 
Then the function is full-dimensional 

 

Definition 
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• We use the protocol of [GHKL08] 
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If 𝑓 is of full-dimension, then it can be computed 
with complete fairness 

 

• We use the protocol of [GHKL08] 

• We show that all the points that the simulator needs are 
inside a small “ball” 
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If 𝑓 is of full-dimension, then it can be computed 
with complete fairness 

 

• We use the protocol of [GHKL08] 

• We show that all the points that the simulator needs are 
inside a small “ball” 

• The ball is embedded inside the geometric object defined by 
the function 

 

Theorem 

Proof: 



y3 y2 y1 

0 0 1 x1 

0 1 0 x2 

1 0 0 x3 

1 1 1 x4 



• In ℝ2 - all points do not lie on a single LINE 
• In ℝ3 - all points do not lie on a single PLANE 
• … 
• In ℝ𝑚 - all points do not lie on a single HYPERPLANE 

• In ℝ2 - 𝑧1, 𝑧2   
        ∃ 𝑞1, 𝑞2, 𝛿 ∈ ℝ s.t. 𝑞1𝑧1 + 𝑞2𝑧2 = 𝛿? 

• In ℝ3 - (𝑧1, 𝑧2, 𝑧3) 

           ∃ 𝑞1, 𝑞2, 𝑞3, 𝛿 ∈ ℝ⁡ s.t. 𝑞1𝑧1 + 𝑞2𝑧2 + 𝑞3𝑧3 = 𝛿? 

Not Full-Dimensional 



• Full-dimensional function 

• The function is right-unbalanced: 

– For every non-zero 𝒒 ∈ ℝ𝑚, 𝛿 ∈ ℝ it holds that: 
𝑀𝑓 ⋅ 𝒒 ≠ 𝛿 ⋅ 𝟏 



• Full-dimensional function 

• The function is right-unbalanced: 

– For every non-zero 𝒒 ∈ ℝ𝑚, 𝛿 ∈ ℝ it holds that: 
𝑀𝑓 ⋅ 𝒒 ≠ 𝛿 ⋅ 𝟏 

Easy to Check Criterion: 

No solution 𝒒 for: 𝑀𝑓 ⋅ 𝒒 = 𝟏 

Only trivial solution for: 𝑀𝑓 ⋅ 𝒒 = 𝟎 
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Balanced with respect to probability vector: IMPOSSIBLE!  

Unbalanced with respect to probability vector, 
balanced with respect to arbitrary vectors: 

 

• If the hyperplanes do not contain the origin:   
cannot be computed using [GHKL08]  
(with particular simulation strategy) 

 

• If the hyperplanes contain the origin:  
not characterized (sometimes the GHKL protocol is possible) 

 

 

Unbalanced with respect to arbitrary vectors: FAIR! 



CONCLUSIONS 
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– Tao and Vu [STOC 05]:  
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– Best known today [Vu and Hood 09]: 
  (1/√2+o(1))d 



• Pd: The probability that a 0/1 
matrix is singular? 

– Conjecture: (1/2+o(1))d 
(roughly the probability to have two rows that are 
the same) 

– Komlos (67):  
0.999𝑑  

– Tao and Vu [STOC 05]:  
  (3/4+o(1))d 

– Best known today [Vu and Hood 09]: 
  (1/√2+o(1))d 



• Pd: The probability that a 0/1 
matrix is singular? 

– Conjecture: (1/2+o(1))d 
(roughly the probability to have two rows that are 
the same) 

– Komlos (67):  
0.999𝑑  

– Tao and Vu [STOC 05]:  
  (3/4+o(1))d 

– Best known today [Vu and Hood 09]: 
  (1/√2+o(1))d 

d Pd 

1 0.5 

5 0.627 

10 0.297 

15 0.047 

20 0.0025 

25 0.0000689 

30 0.0000015 



• The 𝑑 + 1 random 0/1-points in ℝ𝑑 defines full-
dimensional geometric object?  
 1- Pd      (tends to 1) 

• 𝑑 points in ℝ𝑑 define hyperplane that passes 
through 0,1? 
 4Pd          (tends to 0) 

 



• The 𝑑 + 1 random 0/1-points in ℝ𝑑 defines full-
dimensional geometric object?  
 1- Pd      (tends to 1) 

• 𝑑 points in ℝ𝑑 define hyperplane that passes 
through 0,1? 
 4Pd          (tends to 0) 

 
• Almost all functions with |X|≠ 𝑌 :  

can be computed with complete fairness 
• Almost all functions with 𝑋 = |𝑌|:  

cannot be computed with [GHKL08] framework 



•𝒅 × 𝒅 functions with monochromatic 
input 

– Define hyperplanes that pass through 0 or 1 

– Almost always – possible 

•Asymmetric functions 

–𝑓 𝑥, 𝑦 = 𝑓1, 𝑓2  

– If 𝑓1 or 𝑓2 are full-dimensional ⇒ possible! 

•Non-binary outputs 𝒇:𝑿 × 𝒀 → 𝚺 
–General criteria, holds when 𝑋 /|𝑌| > Σ − 1 

y1 y2 

x1 0 1 

x2 1 0 

x3 1 1 

x4 2 0 

x5 1 2 



• The characterization is not complete 

• We have a better understanding of the 
“power” of the ideal world adversary 

• We have no real understanding of the “power” 
of the real-world adversary  

• Open problem: 

– Finalize the characterization! 

– Almost all functions with 𝑋 = 𝑌  are unknown 
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• Open problem: 

– Finalize the characterization! 

– Almost all functions with 𝑋 = 𝑌  are unknown 

 
Thank you! 


