
 Limits on the Power of
 Indistinguishability

 Obfuscation
Gilad Asharov

Gil Segev

Limits on the Power of iO

• Limits on the Power of Indistinguishability
Obfuscation (and Functional Encryption)
• FOCS 2015

• On Constructing One-Way Permutations from
Indistinguishability Obfuscation
• TCC 2016A

Obfuscation
• Makes a program “unintelligible” while preserving

its functionality
for (i=0; i < M.length; i++) {
// Adjust position of clock hands
 var ML=(ns)?document.layers['nsMinutes'+i]:ieMinutes[i].style;
 ML.top=y[i]+HandY+(i*HandHeight)*Math.sin(min)+scrll;
 ML.left=x[i]+HandX+(i*HandWidth)*Math.cos(min);
}

for(O79=0;O79<l6x.length;O79++){var O63=(l70)?document.layers
["nsM\151\156u\164\145s"+O79]:ieMinutes[O79].style;
O63.top=l61[O79]+O76+(O79*O75)*Math.sin(O51)+l73;
O63.left=l75[O79]+l77+(O79*l76)*Math.cos(O51);}

Obfuscation
• [BarakGoldreichImpagliazzoRudichSahaiVadhanYang01] :

• Virtual black-box obfuscation (VBB)  
Obfuscated program reveals no more than a black box
implementing the program  
Impossible

• Indistinguishability obfuscation (iO)  
Obfuscations of any two functionally-equivalent programs
be computationally indistinguishable  
May be possible?

• [GargGentryHaleviRaykovaSahaiWaters12] :  
A candidate indistinguishability obfuscator (iO)

Indistinguishability
Obfuscation

• An efficient algorithm iO 
Receives a circuit C, outputs an obfuscated circuit Ĉ
• Preserves functionality: C(x)=Ĉ(x) for all x
• Indistinguishability: For every PPT distinguisher D,

for every pair of functionally-equivalent circuits  
C1 and C2

| Pr[D(iO(C1))=1] - Pr[D(iO(C2))=1] | < negl(n) 

• What can be constructed using iO?

The Power of
Indistinguishability Obfuscation
• Public-key encryption, short “hash-

and-sign” signatures, CCA-secure
public-key encryption, non-
interactive zero-knowledge proofs,
Injective trapdoor functions,
oblivious transfer [SW14]

• Deniable encryption scheme [SW14]
• One-way functions [KMN+14]
• Trapdoor permutations [BPW15]
• Multiparty key exchange [BZ14]
• Efficient traitor tracing [BZ14]
• Full-domain hash without random

oracles [HSW14]
• Multi-input functional encryption

[GGG+14, AJ15]

• Functional encryption for randomized
functionalities [GJK+15]

• Adaptively-secure multiparty computation
[GGH+14a, CGP15, DKR15, GP15]

• Communication-efficient secure
computation [HW15]

• Adaptively-secure functional encryption
[Wat14]

• Polynomially-many hardcore bits for any
one-way function [BST14]

• ZAPs and non-interactive witness-
indistinguishable proofs [BP15]

• Constant-round zero-knowledge proofs
[CLP14]

• Fully-homomorphic encryption [CLT+15]
• Cryptographic hardness for the

complexity class PPAD [BPR14]

(Last update: April 2015)

The Power of
Indistinguishability Obfuscation

Is there a natural task that
cannot be solved using

indistinguishability obfuscation?

Yes  
(probably…)

Black-Box Separations
• The main technique for proving lower bound in cryptography [IR89]:  

Black Box Separations

• The vast majority of constructions in cryptography are “black box”

“Building a primitive X from  
any implementation of a primitive Y”

• The construction and security proof rely only on the input-output
behavior of Y and of X's adversary

• The construction ignores the internal structure of Y

• Examples:
• PRF from PRG [GGM86], PRG from OWFs [HILL93]

Black-Box Separations
• Impossibility of black-box constructions

• Typically, show impossibility of “X ⇒Y” by:

“There exists an oracle relative to which Y exists
but X does not exist” 

• Examples:
• No key agreement from OWFs [IR89]
• No CRHF from OWFs [Sim98]

Our Challenge:  
Non-Black-Box Constructions

• Constructions that are based on iO, almost always have some
non-black-box ingredient

• Typical example  
From private-key to public-key encryption [SW14] (simplified)
• Private-key scheme:
• Public-key scheme:  
 
 
 
 

Enc(K ,m) = (r,PRF(K ,r)⊕m)
SK = K , PK = iO(Enc(K ,⋅))

Non-black-box ingredient:  
Need the specific evaluation circuit of the PRF

How can one reason about such non-black-box techniques?

• Overcome this challenge by considering iO for a
richer class of circuits:

 oracle-aided circuits
(circuits with oracle gates) 
 

Our Solution

+

+

+ +*

*

+

+

*f

f f

Possible gates:

• Transform almost all iO-based constructions from non-black-
box to black-box  
 
 
 
 
(possible due to [GGM86]+[HILL89])

• Constructing iO for oracle-aided circuits  
 is clearly as hard as than  
constructing iO for standard circuits

• Limits on the power of iO for oracle-aided circuits  
 thus imply  
limits on the power of iO for standard circuits

iO(r,PRF(K ,r)⊕m))

iO(r,COWF (K ,r)⊕m)

Our Solution

Techniques We Don’t
Capture

• Constructions that use NIZK proofs for languages that are
defined relative to a computational primitive

• NIZK proof
• Uses Cook-Levin reduction to SAT
• This reduction uses the circuit for deciding L (representing

its computation state as boolean formula) - non-black-box

• [BKSY11] seems as a promising approach for extending our
framework to capture such constructions

• Other (less common) techniques (so far not used with iO)

L = {(d,r)�∃r s.t. d = Enc(i;r)}

 On Constructing
 One-Way Permutations from
Indistinguishability Obfuscation

One-Way Permutation

• One of the most fundamental primitives in
cryptography

• Enabling elegant constructions of a wide variety of
cryptographic primitives
• Universal one-way hash function
• Pseudorandom generators

One-Way Permutation
• One-Way Functions: Many candidates
• One-Way Permutations: Only few candidates

• Based on hardness of problems related to
discrete logarithms and factoring

• [Rudich88,…]:  
No black-box construction of a one-way
permutation from a one-way function

TDP from iO+OWF 
[BitanskyPanethWichs15]

(i,PRFK(i))
Elements:

(i,PRFK(i)) (i+1,PRFK(i+1))

TDP from iO+OWF 
[BitanskyPanethWichs15]

(i,PRFK(i)) (i+1,PRFK(i+1))

Next(x):
 If x=(i,PRFK(i)) 
 Output (i+1,PRFK(i+1))
 Output ⊥

TDP from iO+OWF 
[BitanskyPanethWichs15]

(i,PRFK(i)) (i+1,PRFK(i+1))

Next(x):
 If X=(i,PRFK(i)) 
 Output (i+1,PRFK(i+1))
 Output ⊥

The obfuscated program:  
The Index of the permutation

Question 1:

Can we construct a single one-way
permutation over {0,1}n  

from iO+OWF?

The [BPW15] Domain
(i,PRFK(i))

The domain depends on the specific PRF
For the same K, different underlying PRF - different domain!

(i,PRF’K(i))

Question 2:

Can we construct a family where the
domain does not depend on the

underlying building blocks (iO+OWF)?

We call a construction where the domain does not depend on
the underlying building blocks as “domain invariant”

Back to [Rudich88,…]

• Separation of OWP from OWF
• Rules out only a single domain-invariant

permutation
• Rudich assumes that the domain is independent

of the OWF

Question 3:

Can we construct a  
non-domain-invariant  

OWP (family) from a OWF?

Our Results

NO.
Can we construct a single one-way permutation

over {0,1}n from iO+OWF?

Can we construct a family where the domain does not
depend on the underlying building blocks (iO+OWF)?

NO.
Can we construct a non-domain-invariant  

OWP (family) from a OWF?

NO.

Using	
the	kn

own 

	techn
iques

iO+OWF ⇏ DI-OWPs
• Theorem 1:  

There is no fully black-box construction of  
a domain-invariant one-way permutation family
from
• a one-way function f and
• an indistinguishability obfuscator for all oracle-

aided circuits Cf

• Unless with an exponential security loss 
(rules out sub-exponential hardness as well!)

OWF ⇏ DNI-OWPs
• Theorem 2:  

There is no fully black-box construction of  
a non-domain-invariant one-way permutation
family from
• a one-way function f

• Unless with an exponential security loss 
(rules out sub-exponential hardness as well!)

So.. What do we have?

OWF iO + OWF

Domain-invariant
OWP

Domain-invariant
OWP family OWP family

[BPW15][Rud88,…] Thm. 1.1Thm. 1.2

Proof Sketch
• Builds upon and generalizes  

[Rudich88, MatsudaMatsuura11, AsharovSegev15]

• We define an oracle ℾ such that relative to it:
1. There exists a one-way function f
2. There exists an indistinguishability obfuscator
for all oracle-aided circuits Cf

3. There does not exist a domain-invariant one-
way permutation family

The Oracle ℾ
 The one-way function f
f = { fn}n , where each fn :{0,1}n → {0,1}n is a uniformly chosen function

Eval(!C,a) with | !C |= 10n, | a |= n
Looks for the pair (C,r)∈{0,1}2n such that On (C,r) = !C
If exists, returns C f (a)
Otherwise, returns ⊥

 O and Eval

O = {On}n∈! , where each On is a uniformly chosen injective function {0,1}2n → {0,1}10n

• We implement iO as follows:
• On input oracle-aided circuit C (with |C|=n), choose a random r
• Outputs !C =On (C,r)

Ĉ(⋅) = iO(C)

We Need to Show

• We define an oracle ℾ such that relative to it:
1. There exists a one-way function f

(somewhat similar to [AS15])

2. There exists an indistinguishability obfuscator
for all oracle-aided circuits Cf

(somewhat similar to [AS15])

3. There does not exist a domain-invariant one-
way permutation family

Warm-up: Rudich's Attack in
the Random-Oracle Model

f Random oracle
Pf One-Way Permutation over domain D  

for every function f

There exists an oracle-aided adversary A that makes
polynomially many queries, such that for every f,x*

Pr[A f (y*)= x*]=1
where y*=Pf(x*)

Theorem:

The Adversary
• Input: some element y* ∈ D
• Oracle access: the random oracle f

• Initializes a set of queries Q  
(initially empty. always consistent with f)

• Repeats the following for polynomially many times:
• Simulation: A finds an input x’ ∈ D and a set of

oracle/queries f’ that is consistent with Q, such that
Pf’(x’)=y*

• Evaluation: A evaluates Pf(x’). If y* - found!
• Update: A asks f for all queries in f’ that are not in Q,

and update Q

The Claim

• In every iteration, one of the following:
• A finds x*, (i.e., x’=x* where Pf(x*)=y*) or
• In the update phase, A queries f with at least one

query that is made in the computation of
Pf(x*)=y*

• Input: some element y* ∈ D
• Oracle access: f

• Initializes a set of queries Q  
(initially empty. always consistent with f)

• Repeats the following for polynomially many times:
• Simulation: A finds an input x’ ∈ D and a set of oracle/

queries f’ that is consistent with Q, such that P
f’
(x’)=y*

• Evaluation: A evaluates P
f
(x’). If y* - found!

• Update: A asks f for all queries in f’ that are not in Q,
and update Q

Otherwise

Pf’(x’)=y* Pf(x*)=y*Q

Pf”(x’)=y* Pf”(x*)=y*

ɑ in Q: f”(ɑ):= f(ɑ)
ɑ appears in Pf’(x’): f”(ɑ):= f’(ɑ)
ɑ appears in Pf(x*): f”(ɑ):= f(ɑ)

• In every iteration, one of the following:
• A finds x*, or
• In the update phase, A queries f with

at least one query that is made in the
computation of Pf(x*)=y*

Define f”

Otherwise

Pf’(x’)=y* Pf(x*)=y*Q

Pf”(x’)=y* Pf”(x*)=y*

• In every iteration, one of the following:
• A finds x*, or
• In the update phase, A queries f with at

least one query that is made in the
computation of Pf(x*)=y*

x’≠x*

ɑ in Q: f”(ɑ):= f(ɑ)
ɑ appears in Pf’(x’): f”(ɑ):= f’(ɑ)
ɑ appears in Pf(x*): f”(ɑ):= f(ɑ)

Define f”

In Our Setting
• Challenges:

• Family and not just a single permutation
• Our oracle ℾ is much more structured than just a random oracle

• ℾ consists of:
• Length preserving function f
• Injective length-increasing function O
• “Evaluation” oracle Eval

Recall [BPW15]:  
Relative to ℾ there exists a construction of  

a non-domain invariant one-way permutation family!!

Regarding O
• ℾ consists of:

• length preserving function f
• injective length-increasing function O
• “evaluation” oracle Eval

PΓ’(x’)=y* PΓ(x*)=y*

O’(ɑ)=β O(δ)=β

Q

O”(ɑ)=β O”(δ)=β

Non-injective!

Regarding O and Eval
• ℾ consists of:

• length preserving function f
• injective length-increasing function O
• “evaluation” oracle Eval

PΓ’(x’)=y* PΓ(x*)=y*

O’(C,r)=Ĉ Eval(Ĉ,d)=⊥

Q

O”(C,r)=Ĉ Eval”(Ĉ,d)=Cf(d)

incorrect!

The Proof
• Very subtle
• Carefully define the dependencies between oracles in

order to avoid the above scenarios

• Regarding O: choose the oracle O’ uniformly at random
from the set of all oracles that are consistent with Q
• We show that with high probability

• O’ avoids the image of O
• O’ avoids the invalid Eval calls
• It is possible to construct the hybrid oracle ℾ”
• Relies on the fact that O is length-increasing

Further details: see the paper

OWF ⇏ DNI-OWPs
• Theorem:  

There is no fully black-box construction of  
a non-domain-invariant one-way permutation
family from
• a one-way function f

• Unless with an exponential security loss 
(rules out sub-exponential hardness as well!)

Non-Domain-Invariant
Family

α←Genf(1n) x←Sampf(α) y←Pf(α,x)

The domain
Dαf:

depends
both on α, f

Different f:  
completely different set  

of indices 
(different family)

Careful! 
α may be invalid w.r.t f

x may not be in Dαf

A non-domain-invariant family (uses both OWF and iO):
The index depends on iO+OWF
The domain depends on OWF only (and not on the index)

Example [BPW15]

Challenges:  
Constructing the Hybrid Oracle

Pf’(α,x’)=y* Pf(α,x*)=y*Q

ɑ in Q: f”(ɑ):= f(ɑ)
ɑ appears in Pf’(α,x’): f”(ɑ):= f’(ɑ)
ɑ appears in Pf(α,x*): f”(ɑ):= f(ɑ)

Define f”

(1) No guarantee that α is a valid index relative to f”
(2) No guarantee that y* is in the domain of Dαf”

(3) The same for x’ and x*

Solutions
• Adversary is given α, y*

• Sample in addition to f’:
• A “certificate” that α is a valid index respectively to f’
• A “certificate” that x’ is a valid element in the domain

of α respective to f’
• For α, x* there also exist certificates such that

• α is a valid index respectively to f
• x* is a valid element in the domain of α respective to f

• Using these certificate, build f”
• Guarantees that α, x’, x*, y* are valid respective to f”

Further details: see the paper

Conclusions

OWF iO + OWF

Domain-invariant
OWP

Domain-invariant
OWP family OWP family

[BPW15][Rud88,…] Thm. 1.1Thm. 1.2

Thank You!

