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From Theory to Practice

Secure computation becomes practical! 
[MNPS04,LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14, 

FJN14,NNOB12,LOS14,DZ13,DLT14,DCW13,JKO13]

[Yao82,Yao86,GMW87,BGW88,CCD88,RB89,…]



1-out-of-2 Oblivious Transfer

• INPUT: Sender holds two strings (x0,x1), Receiver holds r  

• OUTPUT: Sender learns nothing, Receiver learns xr, 

ReceiverSender



• OT is a basic ingredient in (almost) all protocols for 
secure computation 

• Protocols based on Garbled Circuits (Yao): 
1 OT per input  
[LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14] 

• Protocols based on GMW:  
1+ OT per AND-gate  
TinyOT [NNOB12,LOS14] MiniMac protocols [DZ13,DLT14]

Oblivious Transfer and 
Secure Computation



How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT) 

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT) 

• Using [PeikertVaikuntanathanWaters08]: 350 OTs per second 

• 1M (220) OTs > 45 minutes(!)   

• 1G (230) OTs > 45000 minutes > 1 month… 

• [ChouOrlandi15] - 10000 OTs per second (?)



Many
 OTs

OT Extensions

+
(cheap) private-key crypto

Small amount of base OTs
(security parameter)



OT Extension and  
Related Work

• Introduced in [Beaver96] 

• Ishai, Kilian, Nissim, Petrank [IKNP03]  
“Extending Oblivious Transfer Efficiently” 

• Optimizations semi-honest: [KK13, ALSZ13] 

• Optimizations malicious: 
[Lar14,NNOB12,HIKN08,Nie07]



This Work
• Efficient protocol for OT extension, malicious 

adversary, based on IKNP 
• It outperforms all previous constructions 
• Optimizations, implementation  

• This Talk: 
• IKNP protocol 
• Our protocol, its security 
• (Implementation) and performance



Extending OT Efficiently1  
[IKNP03]

1Semi-honest



IKNP - Idea

m Many  
OTs

expensive



IKNP - Idea

Few OTs of long 
stringsk

m

m Many  
OTs



IKNP - Implementation
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In Practice [ALSZ,CCS13]

Few Short 
OTs k

k

+
long  

messages

Many  
OTs

m

Implementation: see SCAPI 
https://github.com/cryptobiu/scapi

https://github.com/cryptobiu/scapi
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• The protocol is already secure with respect to 
malicious Sender 

• The Receiver sends many messages of the same form 

• Security against malicious Receiver: we must 
guarantee that it uses the same value r in these 
messages

When Moving to Malicious
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The Consistency 
Checks



Consistency Check
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Consistency Check
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hi, j
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Does it work?
• Our check is not sound:

• The adversary can still send ui, uj, with ri ≠ rj 

• But, it takes a risk… 
• Effectively, in order to pass the verification of (i,j) 

it has to guess either si or sj 

• Our check guarantees the following:  

If the adversary tries to cheat with ui, uj 
it gets caught with probability 1/2! 



• But wait… you have      amount of checks  
Do we really need this huge amount of checks?

Consistency Check
• Receiver cannot cheat in many messages 

• with each cheat - one bit of s is leaked 

• s is the “secret key” of the sender 

• Solution - increase the size of s

k k ρ
ℓ

ℓ2



How many checks do we 
really need?
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The needed property:  
For any “large enough" set of bad vertices  
(> p=40 ), there exists p-matching with the good vertices
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How Many Checks?

• We show that random d-regular graph satisfies the above 
(for appropriate set of parameters) 
• For k=128, p=40 

• 168 base OTs, complete graph: 14028 
• 190 base OTs, d=2, checks: 380 
• 177 base OTs, d=3,  checks: 531 

• Covert: (168 base OTs) probability 1/2, just random 7 
checks!

The needed property:  
For any “large enough" set of bad vertices  
(> p=40 ), there exists p-matching with the good vertices



Instantiation of H
• [IKNP] assumes that H is Correlation-Robust 

• Sometimes, in order to gain more efficiency, 
protocols need some stronger properties of H, and 
so it is assumed to be a Random-Oracle 

• Correlation-robustness is much more plausible 
assumption than random-oracle 

• We have some leakage of s, and so H is assumed 
to be Min-Entropy Correlation Robustness



Performance 



Empirical Evaluation
• Benchmark: 223=8M OTs 

• Local scenario (LAN):  
Two servers in the same room  
(network with low latency and high bandwidth) 
12 sec (190 base OTs, 380 checks) 

• Cloud scenario (WAN):  
Two servers in different continents  
(network with high latency and low bandwidth)  
64 sec (174 base OTs, 696 checks)



Comparison - LAN Setting



Comparison - WAN setting



Conclusions
• More efficient OT extension - more efficient 

protocols for MPC 

• Optimized OT extension protocol, malicious 
adversary 

• Combination of theory and practice 

Thank You!


