
More Efficient  
Oblivious Transfer Extensions

with Security for Malicious
Adversaries

Gilad Asharov Hebrew University
Yehuda Lindell Bar-Ilan University
Thomas Schneider Darmstadt
Michael Zohner Darmstadt

EUROCRYPT 2015

From Theory to Practice

Secure computation becomes practical! 
[MNPS04,LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,

FJN14,NNOB12,LOS14,DZ13,DLT14,DCW13,JKO13]

[Yao82,Yao86,GMW87,BGW88,CCD88,RB89,…]

1-out-of-2 Oblivious Transfer

• INPUT: Sender holds two strings (x0,x1), Receiver holds r

• OUTPUT: Sender learns nothing, Receiver learns xr,

ReceiverSender

• OT is a basic ingredient in (almost) all protocols for
secure computation

• Protocols based on Garbled Circuits (Yao): 
1 OT per input  
[LP07,LPS08,PSSW09,KSS12,FN13,SS13,LR14,HKK+14,FJN14]

• Protocols based on GMW:  
1+ OT per AND-gate  
TinyOT [NNOB12,LOS14] MiniMac protocols [DZ13,DLT14]

Oblivious Transfer and
Secure Computation

How Many OT’s?
• The AES circuit: Uses 219 OTs  

(when evaluated with TinyOT)

• The PSI circuit: (for b=32,n=216) Uses 230 OTs  
(when evaluated with TinyOT)

• Using [PeikertVaikuntanathanWaters08]: 350 OTs per second

• 1M (220) OTs > 45 minutes(!)

• 1G (230) OTs > 45000 minutes > 1 month…

• [ChouOrlandi15] - 10000 OTs per second (?)

Many
 OTs

OT Extensions

+
(cheap) private-key crypto

Small amount of base OTs
(security parameter)

OT Extension and
Related Work

• Introduced in [Beaver96]

• Ishai, Kilian, Nissim, Petrank [IKNP03]  
“Extending Oblivious Transfer Efficiently”

• Optimizations semi-honest: [KK13, ALSZ13]

• Optimizations malicious:
[Lar14,NNOB12,HIKN08,Nie07]

This Work
• Efficient protocol for OT extension, malicious

adversary, based on IKNP
• It outperforms all previous constructions
• Optimizations, implementation

• This Talk:
• IKNP protocol
• Our protocol, its security
• (Implementation) and performance

Extending OT Efficiently1  
[IKNP03]

1Semi-honest

IKNP - Idea

m Many  
OTs

expensive

IKNP - Idea

Few OTs of long
stringsk

m

m Many  
OTs

IKNP - Implementation

Few Short 
OTs k

k

m Many  
OTs

m

long  
messages

+

k

In Practice [ALSZ,CCS13]

Few Short 
OTs k

k

+
long  

messages

Many  
OTs

m

Implementation: see SCAPI 
https://github.com/cryptobiu/scapi

https://github.com/cryptobiu/scapi

ui = G(ki
0)⊕G(ki

1)⊕ r

IKNP
{x j

0, x j
1} j=1

m r = (r1,...,rm)

u1,...,uℓ
TQ *

yj
0, yj

1yj
0 = x j

0 ⊕H (q j)

yj
1 = x j

1⊕H (q j ⊕ s)*

Base OTs {ki
0,ki

1}i=1
ℓ

s = (s1,..., sℓ)
k1
s1 ,...,kℓ

sℓ

• The protocol is already secure with respect to
malicious Sender

• The Receiver sends many messages of the same form

• Security against malicious Receiver: we must
guarantee that it uses the same value r in these
messages

When Moving to Malicious

ui = G(ki
0)⊕G(ki

1)⊕ ru1,...,uℓ

The Protocol{x j
0, x j

1} j=1
m r = (r1,...,rm)

Base OTs

T
ui = G(ki

0)⊕G(ki
1)⊕ ru1,...,uℓ

Q

yj
0, yj

1yj
0 = x j

0 ⊕H (q j)

yj
1 = x j

1⊕H (q j ⊕ s)

Consistency Check of r

The Consistency
Checks

Consistency Check
ui = G(ki

0)⊕G(ki
1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

Consistency Check

ui ⊕u j = t i
0 ⊕ t i

1⊕ t j
0 ⊕ t j

1

ui = t i
0 ⊕ t i

1⊕ r

u j = t j
0 ⊕ t j

1 ⊕ r
⊕

ui ⊕u j ⊕ t i
si ⊕ t j

s j ? = t i
1−si ⊕ t j

1−s j

H(ui ⊕u j ⊕ t i
si ⊕ t j

s j) ? = H(t i
1−si ⊕ t j

1−s j)

ui = G(ki
0)⊕G(ki

1)⊕ r

u j = G(k j
0)⊕G(k j

1)⊕ r

hi, j
1−si ,1−s j ? = H (ui ⊕u j ⊕ t i

si ⊕ t j
s j)

hi, j
si ,s j ? = H (t i

si ⊕ t j
s j)

Alice checks that every pair (i,j):

Consistency Check
hi, j
0,0 = H (t i

0 ⊕ t j
0)

hi, j
0,1 = H (t i

0 ⊕ t j
1)

hi, j
1,0 = H (t i

1⊕ t j
0)

hi, j
1,1 = H (t i

1⊕ t j
1)

For every pair
(i,j)

u1,...,uℓ {hi, j0,0 ,hi, j0,1,hi, j1,0 ,hi, j1,1}i, j

Does it work?
• Our check is not sound:

• The adversary can still send ui, uj, with ri ≠ rj

• But, it takes a risk…
• Effectively, in order to pass the verification of (i,j)

it has to guess either si or sj

• Our check guarantees the following:  

If the adversary tries to cheat with ui, uj 
it gets caught with probability 1/2!

• But wait… you have amount of checks  
Do we really need this huge amount of checks?

Consistency Check
• Receiver cannot cheat in many messages

• with each cheat - one bit of s is leaked

• s is the “secret key” of the sender

• Solution - increase the size of s

k k ρ
ℓ

ℓ2

How many checks do we
really need?

r1
r12

r2

r3

r4

r5
r6

r7

r8

r9

r10

r11

How many checks do we
really need?

r1
r12

r2

r3

r4

r5
r6

r7

r8

r9

r10

r11

How many checks do we
really need?

r
r

r

r

r
r

r7

r

r

r10

r

r3

How many checks do we
really need?

r
r

r

r

r
r

r7

r

r

r10

r

r3

r
r

r

r

r
r

r7

r

r

r10

r

r3

The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

How many checks do we
really need?

r1
r12

r2

r3

r4

r5
r6

r7

r8

r9

r10

r11

How many checks do we
really need?

r1
r

r2

r

r4

r
r

r

r

r

r

r

How many checks do we
really need?

r1
r

r2

r

r4

r
r

r

r

r

r

r

How Many Checks?

• We show that random d-regular graph satisfies the above
(for appropriate set of parameters)
• For k=128, p=40

• 168 base OTs, complete graph: 14028
• 190 base OTs, d=2, checks: 380
• 177 base OTs, d=3, checks: 531

• Covert: (168 base OTs) probability 1/2, just random 7
checks!

The needed property:  
For any “large enough" set of bad vertices  
(> p=40), there exists p-matching with the good vertices

Instantiation of H
• [IKNP] assumes that H is Correlation-Robust

• Sometimes, in order to gain more efficiency,
protocols need some stronger properties of H, and
so it is assumed to be a Random-Oracle

• Correlation-robustness is much more plausible
assumption than random-oracle

• We have some leakage of s, and so H is assumed
to be Min-Entropy Correlation Robustness

Performance

Empirical Evaluation
• Benchmark: 223=8M OTs

• Local scenario (LAN):  
Two servers in the same room  
(network with low latency and high bandwidth) 
12 sec (190 base OTs, 380 checks)

• Cloud scenario (WAN):  
Two servers in different continents  
(network with high latency and low bandwidth)  
64 sec (174 base OTs, 696 checks)

Comparison - LAN Setting

Comparison - WAN setting

Conclusions
• More efficient OT extension - more efficient

protocols for MPC

• Optimized OT extension protocol, malicious
adversary

• Combination of theory and practice

Thank You!

