
Information:

- Presentation 25 minutes + 5 minutes for questions.

- Presentation is on Wednesday, 11:30-12:00 in B05-B06

- Presentation is after: Abhi Shelat
(fast two-party secure computation with minimal assumptions)

- Presentation is before: Nigel Smart
(An architecture for practical actively secure MPC with dishonest majority)

- BF Private Set-Intersection protocol is 2 sessions after us

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 1

Gilad Asharov
Yehuda Lindell

Cryptography Research Group
Bar-Ilan University

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 2

More Efficient Oblivious Transfer
and Extensions for Faster Secure
Computation

Thomas Schneider
Michael Zohner

Engineering Cryptographic
Protocols Group
TU Darmstadt

1-out-of-2 Oblivious Transfer (OT)

Receiver BobSender Alice

- Input: Alice holds two strings (x0, x1), Bob holds a choice bit r

- Output: Bob receives xr but learns nothing about x1-r , Alice learns
nothing about r

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 3

Motivation

- OT is basis of many generic secure computation protocols
- Yao's garbled circuits protocol [Yao86]: one OT per input
- Goldreich-Micali-Wigderson [GMW87]: one OT per AND gate

- Several special purpose protocols directly use OT:
- Set-Intersection [DCW13]
- Biometric identification [BCP13]

- We focus on semi-honest (passive) adversaries
- Enables highly efficient protocols

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 4

OT via Public-Key Cryptography

- Several protocols for OT exist that use public-key cryptography
- e.g., by [NP01] in random-oracle and standard model
- Other protocols exist that require weaker security assumptions

- Impagliazzo and Rudich [IR86] proved that OT requires public-key
cryptography

- Since public-key cryptography is expensive, OT was believed inefficient

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 5

OT Extensions

- OT extensions use secret-key cryptography to efficiently extend OT
- OT on long strings by exchanging short seeds [Beaver96]
- Many OTs extended from few “real” OTs [IKNP03]

- Similar to hybrid encryption, where symmetric key is encrypted using
public-key cryptography

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 6

Our Contributions

- Optimizations for the OT extension protocol of [IKNP03]
- Algorithmic optimizations => less computation
- Protocol optimizations => less communication

- Specific OT functionalities for more efficient secure computation

- An open source OT extension implementation

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 7

OT Extension of [IKNP03] (1)

For each OT i :

- Alice holds m pairs of l-bit messages (xi,0 , xi,1)

- Bob holds m-bit string r and obtains xi,ri

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 8

OT Extension of [IKNP03] (2)

- Alice and Bob perform k “real” OTs on random seeds with reverse roles
(k is symmetric security parameter)

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 9

OT Extension of [IKNP03] (3)

- Bob obliviously transfers a random m x k bit matrix T

- The matrix is masked with the seeds of the “real” OTs

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 10

OT Extension of [IKNP03] (4)

- The V and T matrices are transposed

- Alice masks her inputs and obliviously sends them to Bob
- H is a correlation robust function (instantiated with a hash function)

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 11

Computation Complexity of OT Extension

Per OT:

PRG evaluations

H evaluations

1

2

2

1

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 12

Time distribution for 10 Mio. OTs (in 21s):

Algorithmic Optimization
Efficient Bit-Matrix Transposition

- Naive matrix transposition performs mk load/process/store operations

- Eklundh's algorithm reduces number of operations to O(m log2 k) swaps

- Use CPU register to swap multiple bit-values in parallel
- O(m/r log2 k) for register size r (e.g, r = 64)

- Time for transposing the m x k bit matrix is reduced by factor 9

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 13

Algorithmic Optimization
Parallelized OT Extension

- OT extension can easily be
parallelized by splitting the T
matrix into sub-matrices

- Since each column is
independent of the next, OT is
highly parallelizable

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 14

Communication Complexity of OT Extension

Per OT:

Bits sent by2l 2k

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 15

Protocol Optimization
General OT Extension (G-OT)

- Instead of using a random T matrix, we derice it from sj,0 :

- Reduces data Bob sends by factor 2

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 16

Specific OT Functionalities

- Secure computation protocols often require a specific OT functionality
- Yao's garbled circuits with free XOR [KS08] requires correlated inputs
- GMW with multiplication triples can use random inputs

- We introduce two OT functionalities for secure computation protocols:
- Correlated OT: random x0 and x1 = x0 ⊕ ∆
- Random OT: random x0 and x1

Correlated OT Random OT

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 17

Specific OT Functionalities
Correlated OT Extension (C-OT)

- Choose xi,0 as random output of H

- Compute xi,1 as xi,0 ⊕ ∆i to obliviously transfer correlated values

- Reduces data Alice sends by factor 2

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 18

Specific OT Functionalities
Random OT Extension (R-OT)

- Choose xi,0 and xi,1 as random outputs of H

- Removes last communication step

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 19

Empirical Performance Evaluation

- Performance evaluation of 10 million OT extensions on 80-bit strings

- Two network types: Gigabit LAN and WiFi 802.11g

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 20

Empirical Performance Evaluation
Original Implementation

- C++ code of [SZ13] implementing OT extension of [IKNP03]

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 21

Empirical Performance Evaluation
Efficient Matrix Transposition

- Efficient matrix transposition => improved computation

- Only decreases runtime in LAN where computation is the bottleneck

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 22

Empirical Performance Evaluation
General Oblivious Transfer

- Generate T from seeds => improved communication (Bob → Alice)

- WiFi runtime decreases only slightly, since communication Alice → Bob
becomes the bottleneck

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 23

Empirical Performance Evaluation
Correlated Oblivious Transfer

- Correlated OT => improved communication (Alice → Bob)

- WiFi runtime decreases by factor 2

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 24

Empirical Performance Evaluation
Random Oblivious Transfer

- Random OT => improved communication (Alice → Bob)

- WiFi runtime does not decrease since communication Bob → Alice
becomes the bottleneck

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 25

Empirical Performance Evaluation
Parallelized Oblivious Transfer

- Parallel OT extension with 2 and 4 threads => improved computation

- LAN runtime decreases linear in # of threads

- WiFi runtime remains the same (communication is the bottleneck)

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 26

Empirical Performance Evaluation
Conclusion

- LAN profits mostly from improved computation

- WiFi profits from improved communication

- Communication has become the bottleneck for OT extension

Gigabit LAN WiFi 802.11g

5

10

15

20

25

30

0

R
un

tim
e

(s
)

Orig EMT G-OT C-OT R-OT 2T 4T

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 27

Summary

- Communication has become the bottleneck for OT

- New OT functionalities for more efficient secure computation
- Correlated OT for correlated values
- Random OT for random values

- Our OT implementation is available at http://encrypto.de/code/OTExtension
- A Java wrapper will be available in SCAPI

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 28

Thanks for your attention.

Contact: http://encrypto.de

More Efficient Oblivious Transfer and
Extensions for Faster Secure
Computation

Questions?

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 29

Protocol Overview

Special Purpose Protocols Generic Protocols

Arithmetic Circuit Boolean Circuit

Homomorphic Encryption

Symmetric CryptoPublic Key Crypto

GMWYao

OT

One-Time Pad>> >>

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 30

Generating Multiplication Triples via R-OT

- A multiplication triple has the form (a1 ⊕ a2) (b1 ⊕ b2) = c1 ⊕ c2
=(a1b1) (⊕ a1b2) (⊕ a2b1) (⊕ a2b2)

- P1 and P2 generate a multiplication using two R-OTs as follows:
1) P2 chooses a2 ∈R

 {0,1}

2) P1 and P2 perform a random OT, where P1 gets (x1,x2) and P2 gets xa2

3) P1 computes b1 = x1 ⊕ x2
4) P1 and P2 repeat steps 1-3 with reverse roles to get a1 and b2

5) Pi computes ci = (aibi) ⊕ x1 ⊕ xai

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 31

Efficient OT without Random Oracles

TODO:
Outline the protocol steps for the proposed base-OT

29.10.13 | More Effiicient Oblivious Transfer | Michael Zohner | Slide 32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

