
Information: 

- Presentation 25 minutes + 5 minutes for questions. 

- Presentation is on Wednesday, 11:30-12:00 in B05-B06

- Presentation is after: Abhi Shelat 
(fast two-party secure computation with minimal assumptions)

- Presentation is before: Nigel Smart
(An architecture for practical actively secure MPC with dishonest majority)

- BF Private Set-Intersection protocol is 2 sessions after us
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1-out-of-2 Oblivious Transfer (OT)

Receiver BobSender Alice

- Input: Alice holds two strings (x0, x1), Bob holds a choice bit r

- Output: Bob receives xr  but learns nothing about x1-r , Alice learns 
nothing about r
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Motivation

- OT is basis of many generic secure computation protocols
- Yao's garbled circuits protocol [Yao86]: one OT per input
- Goldreich-Micali-Wigderson [GMW87]: one OT per AND gate

- Several special purpose protocols directly use OT: 
- Set-Intersection [DCW13]
- Biometric identification [BCP13]

- We focus on semi-honest (passive) adversaries
- Enables highly efficient protocols
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OT via Public-Key Cryptography

- Several protocols for OT exist that use public-key cryptography
- e.g., by [NP01] in random-oracle and standard model
- Other protocols exist that require weaker security assumptions

- Impagliazzo and Rudich [IR86] proved that OT requires public-key 
cryptography

- Since public-key cryptography is expensive, OT was believed inefficient 

29.10.13  |  More Effiicient Oblivious Transfer  |  Michael Zohner |  Slide  5



OT Extensions

- OT extensions use secret-key cryptography to efficiently extend OT
- OT on long strings by exchanging short seeds [Beaver96]
- Many OTs extended from few “real” OTs [IKNP03]

- Similar to hybrid encryption, where symmetric key is encrypted using 
public-key cryptography
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Our Contributions

- Optimizations for the OT extension protocol of [IKNP03] 
- Algorithmic optimizations => less computation
- Protocol optimizations => less communication 

- Specific OT functionalities for more efficient secure computation

- An open source OT extension implementation 
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OT Extension of [IKNP03] (1) 

For each OT i :

- Alice holds m pairs of l-bit messages (xi,0 , xi,1)

- Bob holds m-bit string r and obtains xi,ri
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OT Extension of [IKNP03] (2) 

- Alice and Bob perform k “real” OTs on random seeds with reverse roles 
(k is symmetric security parameter)
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OT Extension of [IKNP03] (3) 

- Bob obliviously transfers a random m x k bit matrix T

- The matrix is masked with the seeds of the “real” OTs
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OT Extension of [IKNP03] (4) 

- The V and T matrices are transposed

- Alice masks her inputs and obliviously sends them to Bob
- H is a correlation robust function (instantiated with a hash function)
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Computation Complexity of OT Extension

Per OT:

# PRG evaluations

# H evaluations

1

2

2

1
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Time distribution for 10 Mio. OTs (in 21s):



Algorithmic Optimization 
Efficient Bit-Matrix Transposition

- Naive matrix transposition performs mk load/process/store operations 

- Eklundh's algorithm reduces number of operations to O(m log2 k) swaps 

- Use CPU register to swap multiple bit-values in parallel
- O(m/r log2 k) for register size r (e.g, r = 64)

- Time for transposing the m x k bit matrix is reduced by factor 9
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Algorithmic Optimization 
Parallelized OT Extension

- OT extension can easily be 
parallelized by splitting the T 
matrix into sub-matrices

- Since each column is 
independent of the next, OT is 
highly parallelizable
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Communication Complexity of OT Extension

Per OT:

Bits sent by2l 2k
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Protocol Optimization
General OT Extension (G-OT)

- Instead of using a random T matrix, we derice it from sj,0 :

- Reduces data Bob sends by factor 2
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Specific OT Functionalities

- Secure computation protocols often require a specific OT functionality
- Yao's garbled circuits with free XOR [KS08] requires correlated inputs
- GMW with multiplication triples can use random inputs

- We introduce two OT functionalities for secure computation protocols:
- Correlated OT: random x0  and x1 = x0 ⊕ ∆
- Random OT: random x0 and x1 

Correlated OT Random OT
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Specific OT Functionalities
Correlated OT Extension (C-OT)

- Choose xi,0 as random output of H

- Compute xi,1 as xi,0 ⊕ ∆i to obliviously transfer correlated values

- Reduces data Alice sends by factor 2

29.10.13  |  More Effiicient Oblivious Transfer  |  Michael Zohner |  Slide  18



Specific OT Functionalities
Random OT Extension (R-OT)

- Choose xi,0 and xi,1 as random outputs of H

- Removes last communication step 
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Empirical Performance Evaluation

- Performance evaluation of 10 million OT extensions on 80-bit strings

- Two network types: Gigabit LAN and WiFi 802.11g
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Empirical Performance Evaluation
Original Implementation

- C++ code of [SZ13] implementing OT extension of [IKNP03]

Gigabit LAN WiFi 802.11g
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Empirical Performance Evaluation
Efficient Matrix Transposition

- Efficient matrix transposition => improved computation

- Only decreases runtime in LAN where computation is the bottleneck

Gigabit LAN WiFi 802.11g
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Empirical Performance Evaluation
General Oblivious Transfer

- Generate T from seeds => improved communication (Bob → Alice)

- WiFi runtime decreases only slightly, since communication Alice → Bob 
becomes the bottleneck

Gigabit LAN WiFi 802.11g
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Empirical Performance Evaluation
Correlated Oblivious Transfer

- Correlated OT => improved communication (Alice → Bob)

- WiFi runtime decreases by factor 2

Gigabit LAN WiFi 802.11g
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Empirical Performance Evaluation
Random Oblivious Transfer

- Random OT => improved communication (Alice → Bob) 

- WiFi runtime does not decrease since communication Bob → Alice 
becomes the bottleneck

Gigabit LAN WiFi 802.11g
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Empirical Performance Evaluation
Parallelized Oblivious Transfer

- Parallel OT extension with 2 and 4 threads => improved computation

- LAN runtime decreases linear in # of threads 

- WiFi runtime remains the same (communication is the bottleneck)

Gigabit LAN WiFi 802.11g
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Empirical Performance Evaluation
Conclusion

- LAN profits mostly from improved computation 

- WiFi profits from improved communication

- Communication has become the bottleneck for OT extension
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Summary

- Communication has become the bottleneck for OT

- New OT functionalities for more efficient secure computation
- Correlated OT for correlated values 
- Random OT for random values

- Our OT implementation is available at http://encrypto.de/code/OTExtension
- A Java wrapper will be available in SCAPI
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Thanks for your attention.

Contact: http://encrypto.de

More Efficient Oblivious Transfer and 
Extensions for Faster Secure 
Computation

Questions?
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Protocol Overview

Special Purpose Protocols Generic Protocols

Arithmetic Circuit Boolean Circuit

Homomorphic Encryption

Symmetric CryptoPublic Key Crypto

GMWYao

OT

One-Time Pad>> >>
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Generating Multiplication Triples via R-OT

- A multiplication triple has the form (a1  ⊕ a2) (b1  ⊕ b2) = c1  ⊕ c2 
=(a1b1)  (⊕ a1b2)  (⊕ a2b1)  (⊕ a2b2)

- P1 and P2 generate a multiplication using two R-OTs as follows: 
1) P2 chooses a2 ∈R

 {0,1} 

2) P1 and P2 perform a random OT, where P1 gets (x1,x2) and P2 gets xa2 

3) P1 computes b1 = x1  ⊕ x2
4) P1 and P2 repeat steps 1-3 with reverse roles to get a1 and b2

5) Pi computes ci = (aibi)  ⊕ x1  ⊕ xai
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Efficient OT without Random Oracles

TODO: 
Outline the protocol steps for the proposed base-OT
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