Foundations of Secure Computation:

Perfect Security and Fairness

GILAD ASHAROV

Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat-Gan, Israel March, 2014
Approved: January, 2015






This work was carried out under the supervision of

Prof. Yehuda Lindell

Department of Computer Science, Bar-Ilan University






Acknowledgements

Ph.D. studies are full of challenges, personal achievements, friendships and sometimes even
failures. As this period is reaching its end, it is time to conclude by thanking the many people
who made these past few years some of the most enjoyable in my life.

First and foremost, I would like to thank my advisor, Prof. Yehuda Lindell. Yehuda in-
troduced me the field of Cryptography and to the research world. Yehuda taught me so many
important lessons during my studies and I am sure that he will continue to inspire me in the
future. His endless demand for excellence, his immense knowledge, his unwillingness to compro-
mise, along with his drive, enthusiasm and guidance are the major reasons for the achievements
in these studies. Yehuda has put a lot of time and effort in so that I could succeed and become
an independent researcher and I am deeply grateful for it. Aside for his outstanding professional
achievements, Yehuda also has a great personality and I feel greatly privileged that I had the
opportunity to work closely with him.

I would like also to thank our crypto group in Bar-Tlan: Benny Pinkas, Ran Cohen, Eran
Omri, Hila Zarosim, Claudio Orlandi, Carmit Hazay, Ben Riva, Rafi Chen, Yael Ejgenberg,
Moriya Farbstein, Meital Levy, Tali Oberman, Eli Oxman and Asaf Cohen. To our visitors: Tal
Malkin and Kobi Nissim, and to our own Yonit Homburger.

During my studies, I joined a very warm research community, and had the privilege to meet
so many talented people. Among them, I would like to mention some that influenced my work.
First, I would like to thank Ran Canetti and Tal Rabin, both who guided and inspired me over
the course of many hours of research, discussions and fun. I gratitude to Tal from my Summer
Internship at the cryptography group at IBM T.J. Watson in 2011. T am also grateful to Oded
Goldreich for the significant time and effort that he dedicated to improving this work. A special
note of thanks must also be given to Benny Pinkas and Yuval Ishai for some fruitful discussions.

This project would have never reached its ending without the help of my very talented
coauthors: Ran Canetti, Carmit Hazay, Abhishek Jain, Adriana Lopez-Alt, Claudio Orlandi, Tal
Rabin, Thomas Schneider, Eran Tromer, Vinod Vaikuntanathan, Daniel Wichs, Hila Zarosim
and Michael Zohner. Thank you all.

I am leaving Bar-Ilan University after many years of a great social atmosphere, and I am
sure that I will miss this place. I would like to thank my closest friends here who made these
years so wonderful. During the studies, I was fortuitous to also be a teaching assistant in the
Computer Science department at Bar-Ilan, and I would like to thank my many students, who
taught me some important lessons for life and gave me a lot of personal gratification.



Most importantly, I would like to thank my family. I especially thank my parents, Nina
and Yigal, for their endless support, love, concern, strength, patience, encouragement, care and
attention for all these years. To my brothers, my grandmother and grandfather - there are no
words to express how grateful I am, and how much I love them.

Gilad Asharov March, 2014



Contents

(1__Introduction|

[1.1 Secure Computation| . . . . . . . . . . . . e
1.2 Perfect Security | . . . . . . . .
(1.2.1 A Full Proof of the BGW Protocol (Chapter|[2)| . . . . .. ... ... ...
(L.2.2  Efficient Perfectly-Secure Multiplication Protocol (Chapter|3)|. . . . . . .
1.3 Complete Fairness in Secure T'wo-Party Computation| . . . . .. ... ... ...

[1.3.1 Fairness in Secure Computation — Related Work| . . . . .. .. ... ...
[1.3.2  The Work of Gordon, Hazay, Katz and Lindell [58] . . . . . ... ... ..
[L.3.3 A Full Characterization of Coin-Tossing (Chapter )| . . . . . . ... ...
[L.3.4 Towards Characterizing Complete Fairness (Chapter[5)[ . . . .. ... ..
[1.4  Organization| . . . . . . . . . . . . . e e e

(I Perfect Security|

2 A Full Proof of the BGW Protocol
2.1 Tntroductionl. . . . . . . . . .

[2.2.1  Perfect Security in the Presence of Semi-Honest Adversaries|. . . . . . . .

[2.2.2  Pertect Security in the Presence of Malicious Adversaries] . . . .. .. ..
[2.2.3  Modular Composition| . . . . . . . ... .. ... .. ... ...
[2.3  Shamir’s Secret Sharing Scheme [94] and Its Properties|. . . . . . ... ... ...
2.3.1 The Basic Scheme| . . . . . . . . . . .. ... ..
[2.3.2  Basic Properties| . . . . .. . ... .
[2.3.3  Matrix Representation| . . . . . . . ... ... o oL
2.4 The Protocol for Semi-Honest Adversaries| . . . . . . ... ... ... ... ....
2.4.1  Overviewl . . . . . . . . . e e e e e e e e
[2.4.2  Private Computation in the Fi,¢-Hybrid Modell . . . . . . .. . ... ..
[2.4.3  Privately Computing the Fi,¢ Functionality|. . . . . .. ... ... ...
2.4.4 Conclusionl . . .. . . . . .
[2.5  Verifiable Secret Sharing (VSS)[ . . . . . . . .. ...
[2.5.1 Background|. . . . . .. ...

[2.5.3  Bivariate Polynomials| . . . . ... ... ... ... o000




[2.5.4  The Verifiable Secret Sharing Protocol . . . . . . . .. .. ... ... ... 46

[2.5.5  Sharing a Bivariate Polynomial| . . . . . .. .. ... ... ... ... ... 49

[2.6  Multiplication in the Presence of Malicious Adversaries| . . . .. ... ... ... 57
[2.6.1 High-Level Overview| . . . . . . . . . . .. ... .. ... ... . ...... Y
[2.6.2  Corruption-Aware Functionalities and Their Usel . . . . . .. . ... ... 99
[2.6.3  Matrix Multiplication in the Presence of Malicious Adversaries| . . . . . . 63
|2.6.4 The F‘S,'gbgh“’"e Functionality for Sharing Shares| .............. 69
[2.6.5  The Fepq; Functionality for Evaluating a Shared Polynomial| . . . . . . . 75
|2.6.6 The F{}”‘S“ét Functionality for Sharing a Product of Sharesl ......... 81
[2.6.7 The Fi,q0¢ Functionality and its Implementation| . . . . . . . . . ... .. 91

[2.7  Secure Computation in the (Fyss, Fmuit)-Hybrid Modell . . . . . ... ... .. 99
[2.7.1  Securely Computing any Functionality| . . . . . .. . ... ... ... ... 99
[2.7.2  Communication and Round Complexity] . . . . . ... ... ... ..... 103

2.8 Adaptive Security, Composition and the Computational Setting| . . . . . . . . .. 104
[2.9 Multiplication in the Case of t < m /4] . . . . . . ... ... ... ... ... 106
[3  Efficient Perfectly-Secure Multiplication Protocoll 109
B.1 Introduction|. . . . . . . . . . 109
[3.1.1  An Overview of the Multiplication Protocol| . . . . . . .. ... ... ... 109
13.1.2  FSu2share for Free| . . . . . . .o 110
B.13 OurResultd. ... ... ... 111
3.2 Preliminaries and Definitions . . . . . .. .. ... ... ... L. 112
13.2.1  Properties of Bivariate Polynomials| . . . . . . ... ... ... ... ... 112
13.2.2  Verifiable Secret Sharing of a Bivariate Polynomialf . . . . . . . . . .. .. 114

[3.3  The Multiplication Protocoll . . . . . . . .. ... .. oo 114
3.3.1 A High-Level Overview| . . . . . ... ... ... ... ... ... .... 114

3.3.2 The Fegtend Functionality for Transforming Univariate to Bivariate | ... 116

3.3.3 The F f,u o, Functionality for Evaluating a Shared Bivariate Polynomiall .. 119

3.3.4  The F{/—"S“g Functionality for Sharing a Product of Sharesl ......... 122

3.3.5 The Fyy¢ Functionality and its Implementation| . . . . . . . .. ... .. 129
13.3.6  Wrapping Things Up — Pertectly-Secure Protocol| . . . . . . . .. ... .. 133

(II'  Complete Fairness in Secure T'wo-Party Computation| 135
[4 A Full Characterization of Functions that Imply Fair Coin-Tossing| 137
4.1 Introduction|. . . . . . . . . 137
4.2  Definitions and Preliminaried . . . . . .. .. ... ... 0oL 141
4.2.1  Secure Two-Party Computation with Fairness — Malicious Adversaries| . . 141
[4.2.2  Secure Two-Party Computation without Fairness (Security with Abort) . 142
4.2.3  Hybrid Model and Composition|. . . . . . . .. .. ... ... .. ..... 143
4.2.4  Coin-Tossing Definitions| . . . . . . . . . .. . ... ... ... .. 144

4.3 The Criterionl . . . . . . . . o . o 145
4.3.1 o-Balanced Functionsl . . .. ... ... ... .. o oo oL 145
4.3.2 The Criterionl . . . . . . . . .. o e 146




4.4 Strictly-Balanced Functions Imply Coin Tossing|. . . . . . .. .. ... ... ... 148
4.5  Unbalanced Functions Do Not Information-Theoretically Imply Coin Tossing] . . 150

4.6  Fairness in the Presence of Fail-Stop Adversaries| . . . . . . ... ... ... ... 166
[4.6.1 Fail-Stop I| . . . . . . . . .. 167

4.6.2 Fail-Stop 2| . . . . . . . 168

[> Towards Characterizing Complete Fairness 175
.1 Introductionl. . . . . . . . .. 175
BI1 OurResultd . . . .. o0 oo 177

5.2 Definitions and Preliminaries . . . . . . .. . ... .. ... ... . .. 179
[.2.1 Secure Computation — Definitions| . . . . .. ... ... ... ....... 179

[5.2.2 Mathematical Background|. . . . . . .. ... .. oo 0000 180

[5.3 The Protocol of Gordon, Hazay, Katz and Lindell [B58]| . . . . ... ... ... .. 182
5.3.1  The Protocoll . . . . . . . . . . 182

[5.3.2° Security| . . . . . .. 183

0.4 Our Criterial. . . . . . . . . . e e e e e e e e 186
[5.4.1  Possibility of Full-Dimensional Functions| . . . ... ... ... ... ... 186

5.4.2 Functions that Are Not Full-Dimensionall . . .. ... ... ... ... .. 191

15.4.3  Conclusion: Symmetric Boolean Functions with Finite Domain| . . . . . . 195

5.5 Extensions: Asymmetric Functions and Non-Binary Outputs| . . . . ... .. .. 197
[5.5.1  Asymmetric Functions| . . . . . . . ... .o oo oo 197

[5.5.2  Functions with Non-Binary Output|. . . . . . ... ... ... .. ... .. 199
[Appendix A Full Specification of the BGW Protocol| 205
[A.1 The Protocol for Semi-Honest Adversaries| . . . . . . .. ... ... ... ..... 205
[A 11 The Functionalitied . . . . . . . . ... .. o o o oo 205

[A.1.2 The Protocolsl. . . . . . . . .. . 206

[A.2 T'he Protocol for Malicious Adversaries|. . . . . . . . ... ... ... .. ..... 207
[A21 The Functionalitied . . . . . . . . ... ... ... ... 207
[A2.2 The Protocolsl. . . . . . . .. . 210
[Appendix B Full Specification of the Efficient Perfectly-Secure Multiplication |
[_Protocol 217
B.I Functionalities] . . . . . . . . . . 217
B.2 The Protocold . . . . . . . . . . 219
[Appendix C Security Proof for Protocol[5.3.3] 223
|C.1  Security with Respect to Corrupted Po| . . . . . . . . .. . ... ... ... ... 223
|C.2  Security with Respect to Corrupted Py| . . . . . . . . . ... ... ... ..... 224
Bibliography 229

Hebrew Abstract N






Abstract

In the setting of secure multiparty computation, several distrustful parties wish to carry out a
distributed computing task on their local private data while satisfying several security properties
such as correctness, privacy, independence of inputs and fairness. The aim of secure multiparty
computation (MPC) is to enable the parties to carry out the computation in a secure manner,
eliminating any attempt of an adversarial entity to harm the execution. The concept of secure
computation is very general and fundamental in cryptography, and models any distributed
computing task, including simple computations as coin-tossing and broadcast, as well as more
complex tasks such as electronic auctions and anonymous transactions. In this thesis, we study
two foundational aspects of secure computation: perfect security and fairness.

In the first part of this thesis, we study perfect security in secure computation. A protocol
that is perfectly secure cannot be broken even when the adversary has unlimited computational
power and its security holds unconditionally.

One of the most fundamental results of secure computation was presented by Ben-Or,
Goldwasser and Wigderson (BGW) in 1988. They demonstrated that any n-party function-
ality can be computed with perfect security, in the private channels model. When the adversary
is semi-honest this holds as long as ¢t < n/2 parties are corrupted, and when the adversary is
malicious this holds as long as ¢ < n/3 parties are corrupted. Unfortunately, a full proof of
these results was never published. In this thesis, we remedy this situation and provide a full
proof of security of the BGW protocol. This also includes a full description of the protocol for
the malicious setting.

In addition to the above, we observe that by some simple and natural modifications, the
BGW protocol can be significantly simplified and one of its expensive (and perhaps most com-
plicated) subprotocols can be saved. We present a new multiplication protocol that is based on
the original construction, but is simpler and achieves higher efficiency.

In the second part of this thesis, we study fairness in secure two party computation. In-
formally, the fairness property guarantees that if one party receives its output, then the other
party does too.

The well-known impossibility result of Cleve (STOC 1986) implies that, in general, it is
impossible to securely compute a function with complete fairness without an honest majority.
Until recently, the accepted belief has been that mothing non-trivial can be computed with
complete fairness in the two party setting. The surprising work of Gordon, Hazay, Katz and
Lindell (STOC 2008) shows that this belief is false, and that there exist some non-trivial
(deterministic, finite-domain) Boolean functions that can be computed fairly. This raises the
fundamental question of characterizing complete fairness in secure two-party computation.

We focus on this question and give both positive and negative results. We first characterize



which functions cannot be computed with complete fairness, since they are already ruled out
by Cleve’s impossibility. We define a simple property and show that any function that satisfies
the property implies fair coin-tossing (i.e., the existence of a fair protocol for computing the
function implies the existence of a fair coin-tossing protocol), and therefore is ruled out by
Cleve’s impossibility. On the other hand, we show that any function that does not satisfy the
property cannot be used to construct a fair coin-tossing protocol (in the information theoretic
setting). This extends our knowledge of what cannot be fairly computed, and provides a focus
on which functions may potentially be computed fairly.

In addition, we define another property and show that any function that satisfies this prop-
erty can be computed with complete fairness. Surprisingly, our results show not only that
some or few functions can be computed fairly, but rather an enormous number of functions
can be computed fairly, including very non-trivial functionalities like set-membership, private
evaluation of Boolean function, private matchmaking, set-disjointness and more. Finally, we
demonstrate that fairness can also be obtained in some cases in the class of asymmetric Boolean
functions (where the output of the parties is not necessarily the same), and in the class of non-
binary outputs.

ii



Chapter 1

Introduction

1.1 Secure Computation

In the setting of secure multiparty computation, a set of n parties with possibly private inputs
wish to securely compute some function of their inputs in the presence of adversarial behav-
ior. In a nutshell, the computation should be such that each party receives its correct output
(correctness), and none of the parties learn anything beyond their prescribed output (privacy).
The concept of secure computation is very general and fundamental in cryptography. It was
introduced by Yao in 1982 [99], and has been studied extensively since then. Several examples
for such computation tasks may be:

e Joint database computation. Assume that two hospitals hold medical databases on their
patients, including some sensitive information on the diseases of their patients, their family
background, habits, etc. These two hospitals wish to perform research, including analysis
and data-mining on the union of their databases. However, each one of the parties is
committed to the privacy of its patients, and the information of each patient is confidential.
Any unauthorized disclosure of private information can make the perpetrator subject to
criminal penalties. Secure computation enables performing research on the joint databases
without revealing any unnecessary information on the individuals.

o Private database access. We all ask “Google” for a name, term or a keyword, and re-
ceive a response. This operation is, in fact, an example of database access: One party
(“Google”) holds a huge database and an individual person queries this database. Some-
times, the queries may include some sensitive information, such as a personal question on
a disease, disability, education or employment. Using secure computation, one can query
the database without the database knowing what has been asked.

e FElectronic auctions. Consider the task of an auction, where several bidders bid for a work
contract over the Internet, and the lowest bid gets the contract. The bids should remain
private, and each bidder should choose its bid independently from the others.

The above are just a few examples of tasks that are possible due to secure computation, and
reflects the power that is concealed in this field.



Security in multiparty computation. In order to claim and prove that a protocol is secure,
or, alternatively, to claim that the adversary cannot manipulate the execution, a definition
for security of protocols is required. The security requirements from a secure protocol are
that nothing is learned from the protocol other than the output (privacy), that the output is
distributed according to the prescribed functionality (correctness), that parties cannot choose
their inputs as a function of the others’ inputs (independence of inputs), and that the corrupted
parties should receive their outputs if and only if the honest parties also receive their outputs
(fairness).

The actual definition [55], 85l 15, 27, 53] formalizes this by comparing the result of a real
protocol execution with the result of an execution in an ideal model where an incorruptible
trusted party carries out the computation for the parties. This definition has come to be known
as the “ideal/real simulation paradigm”. In more detail, in the ideal world execution, the parties
simply send their inputs to the trusted party who computes the desired function and passes
each party its prescribed output. Notice that all security requirements mentioned above are
ensured in this execution. In contrast, in the real world execution a real protocol is run by the
parties (with no trusted party). We define “security” by comparing the outcomes of these two
executions. Specifically, a protocol is secure if for any adversary in the real execution, there
exists an adversary in the ideal model such that the input/output distributions of the parties
in the real and ideal executions are the same. Since the adversary in the ideal model has no
ability to make any damage, it implies that the real world adversary cannot break the security
in the real model, and therefore security is guaranteed.

It is known that there exist functionalities that cannot be computed securely under the
above (informally stated) definition, where the property that is being breached is fairness [34].
In particular, under certain circumstances when there is no honest majority, honest parties may
not receive their prescribed output, and fairness is not always guaranteed. This imperfection is
inherent. However, protocols may still guarantee all security properties defined above, except
for fairness. Security in this case is formalized by relaxing the ideal model and “asking” the
adversary whether to give the output to the honest parties. Usually, full security (including
fairness) is considered when there is an honest majority, whereas security with no fairness
(“security-with-abort”) is considered when there is no honest majority. However, for some
particular functions, full security is possible also when there is no honest majority [58]. Jumping
ahead, characterizing for which functions fairness is possible is one of the goals of this thesis.

Feasibility of secure multiparty computation. There are many different settings within
which secure computation has been considered. Regarding the adversary, one can consider semi-
honest adversaries (who follow the protocol specification but try to learn more than they should
by inspecting the protocol transcript) or malicious adversaries (who may follow an arbitrary
strategy). In addition, an adversary may be limited to polynomial-time (as in the computational
setting) or unbounded (as in the information-theoretic setting). Finally, the adversary may be
static (meaning that the set of corrupted parties is fixed before the protocol execution begins) or
adaptive (meaning that the adversary can adaptively choose to corrupt throughout the protocol
execution).

The first feasibility result for secure computation was in the computational setting for the
two-party case with respect to semi-honest adversary, and was provided by [100]. Other feasi-
bility results were presented in the mid to late 1980’s. The most central of these are as follows,



where the adversary is assumed to be malicious: (n denotes the number of parties, ¢ denotes
the number of corrupted parties):

1. For t < n/3, secure multiparty computation (with fairness) can be achieved for any
function in a point-to-point network. This can be achieved both in the computational
setting [54] (under suitable cryptographic assumptions), and in the information theoretic
setting [22] [32].

2. For t < n/2, secure multiparty computation (with fairness) can be achieved for any
function assuming that the parties have access to a broadcast channel, both in the com-
putational setting [54] (under suitable cryptographic assumptions), and the information
theoretic setting [92] (with statistical security).

3. For t < n, secure multiparty computation with no fairness can be achieved for any function
in the computational setting, under suitable cryptographic assumptions, and assuming
access to a broadcast channel [54, [53].

1.2 Perfect Security

In the first part of this thesis, we focus on perfect security in secure computation. In this
setting, the adversary is not bound to any complexity class (and in particular, is not assumed
to be polynomial-time). Results in this model require no complexity or cryptographic hardness
assumption and security holds unconditionally.

1.2.1 A Full Proof of the BGW Protocol (Chapter )

Our focus is on the results of Ben-Or, Goldwasser and Wigderson (BGW) [22], who showed
that every functionality can be computed with perfect security in the presence of semi-honest
adversaries controlling a minority of parties, and in the presence of malicious adversaries con-
trolling less than a third of the parties. The discovery that secure computation can be carried
out information theoretically, and the techniques used by BGW, were highly influential. In
addition, as we shall see, the fact that security is perfect — informally meaning that there is a
zero probability of cheating by the adversary — provides real security advantages over protocols
that have a negligible probability of failure (cf. [75]). For this reason, we focus on the BGW
protocol [22] rather than on the protocol of Chaum et al. [32].

Our Results

The BGW protocol is widely regarded as a classic result and one of the fundamental theorems
of the field. It had a huge impact on the field of cryptography, and many papers and results
are built upon it. Despite the importance of this result, a full proof of its security has never
appeared. In addition, a full description of the protocol in the malicious setting was also never
published. In this thesis, we remedy this situation and provide a full description and proof of
the BGW protocol, for both the semi-honest and malicious settings. We prove security relative
to the ideal/real definition of security for multiparty computation. This also involves carefully

3



defining the functionalities and sub-functionalities that are used in order to achieve the result,
as needed for presenting a modular proof. Providing a full proof for the security of the BGW
protocol fulfills an important missing cornerstone in the field of secure computation.

Our main result is a proof of the following informally stated theorem:

Theorem 1 (basic security of the BGW protocol — informally stated): Consider a synchronous
network with pairwise private channels and a broadcast channel. Then:

1. Semi-honest: For every n-ary functionality f, there exists a protocol for computing f with
perfect security in the presence of a static semi-honest adversary controlling up tot < n/2
parties;

2. Malicious: For every n-ary functionality f, there exists a protocol for computing f with
perfect security in the presence of a static malicious adversary controlling up to t < n/3

partiesﬂ

Theorem [1]is proven in the classic setting of a static adversary and stand-alone computation
(where the latter means that security is proven for the case that only a single protocol execution
takes place at a time). However, using theorems stating that perfect security under certain
conditions derives security in some other more powerful adversarial models, we derive security
“for free” in these models. First, we show that the protocol is also secure under universal
composability (UC) [28], meaning that security is guaranteed to hold when many arbitrary
protocols are run concurrently with the secure protocol. Second, our proof refers to information-
theoretic security in the ideal private channels model (namely, the adversary cannot tap the
communication between two honest parties). We also derive a corollary to the computational
model with authenticated channels only (where the adversary can tap the communication),
assuming semantically secure encryption [56,[99]. Finally, we also derive security in the presence
of an adaptive adversary, alas with inefficient simulatorﬂ

1.2.2 Efficient Perfectly-Secure Multiplication Protocol (Chapter )

We observe that by some simple and natural modifications, the protocol of BGW can be signif-
icantly simplified and one of its expensive subprotocols can be saved.

Before going into further details, we first provide a high-level overview of the BGW protocol.
An important building block for the BGW protocol is Shamir’s secret sharing scheme [94]. In
a t-out-of-n secret sharing, a dealer can divide a secret into n shares, such that any subset of ¢
shares does not provide any information about the secret, and any subset of more than ¢ shares
uniquely defines the secret, and the latter can be efficiently reconstructed from these shares.

The BGW protocol works by having the parties compute the desired function f (without
loss of generality, from n inputs to n outputs) by securely emulating the computation of an
arithmetic circuit computing f. In this computation, the parties compute shares of the output

We remark that ¢ < n/3 is not merely a limitation of the way the BGW protocol works. In particular, the
fact that at most ¢ < n/3 corruptions can be tolerated in the malicious model follows immediately from the fact
that at most ¢ < n/3 corruptions can be tolerated for Byzantine agreement [87]. In contrast, we recall that given
a broadcast channel, it is possible to securely compute any functionality with information-theoretic (statistical)
security for any ¢ < n/2 [92} [I4].

2In [29)], it was shown that any protocol that is proven perfectly secure under the security definition of [41] is
also secure in the presence of adaptive adversaries, alas with inefficient simulation. We use this to derive security
in the presence of adaptive adversaries, albeit with the weaker guarantee provided by inefficient simulation (in
particular, this does not imply adaptive security in the computational setting).

4



of a circuit gate given shares of the input wires of that gate. To be more exact, the parties
first share their inputs with each other using Shamir’s secret sharing (in the case of malicious
adversaries, a verifiable secret sharing protocol (cf. [33, [54]) is used). The parties then emulate
the computation of each gate of the circuit, computing Shamir shares of the gate’s output from
the Shamir shares of the gate’s inputs. As we shall see, this secret sharing has the property that
addition gates in the circuit can be emulated using local computation only. Thus, the parties
only interact in order to emulate the computation of multiplication gates; this step is the most
involved part of the protocol. Finally, the parties reconstruct the secrets from the shares of the
output wires of the circuit in order to obtain their output.

We show that the multiplication protocol of BGW (where the parties emulate the computa-
tion of multiplication gate) can be significantly simplified and one of its expensive (and perhaps
most complicated) subprotocols can be saved. We propose a new protocol that is based on
the multiplication protocol of BGW, but utilizes the additional information given in a bivariate
polynomial sharing (as used in the verifiable secret sharing of BGW and Feldman [22],[45]) in or-
der to significantly improve the efficiency of each multiplication. We provide a full specification
and full proof of security for this new protocol.

Our protocol achieves perfect security, as in the original work of BGW. We stress that perfect
security is not just a question of aesthetics, but rather provides a substantive advantage over
protocols that are only proven statistically secure. Using the fact that our protocol is perfectly
secure, we also derive concurrent security and even adaptive security (albeit with the weaker
guarantee provided by inefficient simulator), exactly as with our proof of the BGW protocol.
We also derive a corollary to the computational model with authenticated channels (instead of
perfect security with ideal private channels).

1.3 Complete Fairness in Secure Two-Party Computation

In the second part of this thesis, we study complete fairness in secure two-party computation (in
the computational setting). Recall that complete fairness means, intuitively, that the adversary
learns the output if and only if the honest parties learn the output.

As we have mentioned, a basic feasibility result of secure computation states that when the
majority of the parties are honest, it is possible to securely compute any functionality with
complete fairness [54, 22, B2, 92, 53]. In the case when an honest majority is not guaranteed,
including the important case of the two-party settings where one may be corrupted, it is possible
to securely compute any function while satisfying all security properties except for fairness [100,
54, [53]. The deficiency of fairness is not just an imperfection of these constructions, but rather
a result of inherent limitation. The well-known impossibility result of Cleve [34] shows that
there exist functions that cannot be computed by two parties with complete fairness, and thus,
fairness cannot be achieved in general.

Specifically, Cleve showed that the coin-tossing functionality, where two parties toss an
unbiased fair coin, cannot be computed with complete fairness. This implies that any function
that can be used to toss a fair coin (like, for instance, the Boolean XOR function) cannot
be computed fairly as well. From Cleve’s result and until 2008, the accepted belief was that



only trivial functionsﬂ can be computed with complete fairness. This belief is not just a hasty
conclusion, and is based on a solid and substantiate intuition. In any protocol computing any
interesting function, the parties move from a state of no knowledge about the output to full
knowledge about it. Protocols proceed in rounds and the parties cannot exchange information
simultaneously, therefore, apparently, there must be a point in the execution where one party
has more knowledge about the output than the other. Aborting at that round yields the unfair
situation where one party learns the output alone.

Questions regarding fairness have been studied extensively since the early days of secure
computation. These questions do not deal with the notion of complete fairness, but rather on
several relaxations of fairness, possibly because of Cleve’s result. In 2008, the work of [58] was
published and showed very interesting feasibility results for complete fairness in the two-party
setting, and changed our perception regarding fairness. We will mainly focus on this work and
its ramifications. However, before describing the work of [58] and our goals in more detail, we
first give a high level overview of the history of fairness in secure computation. The enormous
amount of works on this topic reflects the importance of this topic and its significant to the
theory of secure computation.

1.3.1 Fairness in Secure Computation — Related Work

Impossibility of Complete Fairness

The first impossibility result of fairness appeared in 1980, even before secure computation was
introduced, in the work of Even and Yacobi [44]. The paper dealt with several applications
of digital signatures, and one of the studied questions was the task of exchanging signatures.
The paper showed impossibility of this latter task, by arguing that one party must have enough
information to efficiently produce a verifiable signature before its opponent. This was the first
impossibility for the “fair exchange” functionality (the first party holds secret input z, the
second party holds y, and the parties wish to exchange their secrets such that the first learns y
and the second learns ).

This work was later formalized and strengthened by the impossibility result of Cleve [34]. As
mentioned above, Cleve’s theorem showed that there does not exist a completely fair protocol
for enabling two parties to agree on an unbiased coin. In particular, Cleve showed that in any
r-round coin-tossing protocol, there exists an efficient adversary that can bias the output of the
honest party by ©(1/r). In fact, the adversary that is constructed in the proof is not even a
malicious adversary, but rather is only “fail-stop”, meaning that it behaves honestly throughout
the interaction with the only exception that it may halt the execution prematurely.

The relation between coin-tossing and fair exchange was also studied, and it was shown
that the task of coin-tossing is strictly “weaker” than the task of fair-exchange. That is, the
impossibility of coin-flipping implies the impossibility of fair-exchange, while the inverse does
not. In particular, impossibility of coin-flipping implies impossibility of the most degenerated
fair-exchange task (the Boolean XOR function), since the existence of a fair protocol for the
XOR function implies the existence of a fair protocol for coin-tossing. On the other hand, even if
coin-tossing would have been possible, the Boolean XOR, function is still impossible to compute
fairly [2].

3In our context, the term “trivial functions” refers to constant functions, i.e., functions that depend on only
one party’s input and functions where only one party receives output. It is easy to see that these functions can
be computed fairly.



Other impossibility results. Among other things, the work of [60] strengthened the diffi-
culty for achieving fairness, by showing the existence of a “fairness hierarchy”. Intuitively, they
showed that even given an using ideal box for exchanging “short” strings of length ¢ = O(log k)-
bits, no protocol can exchange £ + 1 bits. In fact, the result is even more general and enables
the parties to use any short ¢-bit primitive. The work of [2] proves impossibility for some other
randomized functions where the parties have no inputs (i.e., sampling outputs from some distri-
bution), where coin-tossing and the impossibility result of Cleve may be interpreted as a special
case of this result. This strengthens our understanding of when fairness is impossible.

Possibility of Partial Fairness

As we have seen, there exist functionalities that cannot be securely computed with complete
fairness when there is no honest majority. Despite this impossibility, some partial fairness is
still possible to achieve. A number of different approaches have been considered, with the aim
of finding “relaxed” models of fairness which can be achieved.

Gradual release. The extreme case of breaching fairness occurs when one party learns the
whole output alone, while the other party does not gain any information regarding the output.
This phenomenon can be reduced, using the notion of gradual release. The idea is that instead
of learning the output in “one shot”, the parties learn the output gradually, that is, a party
cannot learn its next piece of information before sending the other party its own piece. At any
point one of the parties has an advantage over the other, but the protocol keeps this advantage
relatively small (but this advantage cannot disappear). There are many papers that are based
on the notion of gradual release [23], 42} 52, 011, 43|, 100}, 25}, 67, B8, 24, [0, 89 [49], and we refer
the reader to [57] for a nice survey.

Probabilistic fairness. In a nutshell, the works of [80, [95] [16] [35] 55], [21] use similar approach
to gradual release, but conceptually a bit different. Here the players’ confidence in the solution
(correct output) increases over time, as opposed to the gradual release approach in which the
solution becomes cryptographically easier to find after each round.

For instance, the work of [80] considers the tasks of exchanging one bit. Here, in each round
the parties exchange random coins, where the distributions from which the coins are chosen are
getting closer to the true input with each round. That is, in the first round the coins are uniform
and independent from the actual inputs, whereas at the end of the executions the coins are the
true inputs (i.e., the bits that they transmit). In each round in-between, the distributions are
biased towards the actual inputs. By applying this approach, in any round the parties do not
have certainty regarding the correct output, but their confidence about it is increased with each
round. Beaver and Goldwasser [16] formalized the notion of fairness that is provided by this
protocol, and show how any Boolean function can be computed with this notion of fairness.

Optimistic exchange. A different notion of fairness involves some limited trusted party. This
trusted party remains offline during the computation, and is involved only when there is some
misbehaviour during the interaction (i.e., a “judge”). The approach was suggested by Micali [83]
and Asokan et al. [10] and is followed in the works of [I1], 13, 88|, 12, 48, 26, [84], 40l [77, (74, [73].

7



1/p-security. As mentioned above, the two common security definitions in the ideal-real
paradigm consider either full security (with complete fairness), or security with-abort (with no
fairness at all). Although many works achieve some sort of fairness, to the best of our knowledge,
there are few works that formalize partial fairness in the ideal-real simulation paradigm [49] 61
4]. The work of [61] formalizes partial fairness in this paradigm, and suggests the notion of 1/p-
security. Informally, instead of requiring computationally indistinguishability between the ideal
world and the real world (i.e., no efficient adversary can distinguish between an output of the
real execution and an output of the ideal execution with some non-negligible probability), the
requirement is relaxed such that the outputs cannot be efficiently distinguished with probability
greater than 1/p, for some specified polynomial p. This work also shows how to achieve this
notion for two-party functions, and the work of [19] shows possibility for this notion for the
multiparty case.

Optimal coin-tossing. As we mentioned above, Cleve’s impossibility shows that for any
r-round coin-tossing protocol, there exists an efficient adversary that succeeds in biasing the
output of the honest party by €(1/r). This raises the question of whether this lower bound
is tight, i.e., whether there exists a protocol that guarantees maximal bias of O(1/r). This

“power” of the adversary in the real world, and how it can influence the

question addresses the
output of the honest party and has direct ramifications to fairness.

Cleve [34] gave a protocol for coin-tossing that guarantees maximal bias of O(1/4/7), when
assuming the existence of one-way functions. In 1993, Cleve and Impagliazzo [36] showed that for
any r-round coin-tossing protocol there exists an inefficient adversary that succeeds in biasing
the output of the honest party by Q(1/4/r), which suggests that Cleve’s protocol is optimal.
However, a recent result [86] shows that, assuming the existence of Oblivious Transfer [43] 53],
there exists a protocol for coin-tossing that guarantees maximal bias of O(1/r). This implies
that Cleve’s lower bound is optimal. This result was extended in the multiparty case, in which

less than 2/3 of the parties are corrupted [20].

Fairness with rational players. The work of Halpern and Teague introduced the notion
of “rational secret sharing and multiparty computation” [63]. In this model, we do not divide
the players into “good” (honest) and “bad” (malicious), but rather all are rational players (in
the game-theoretic sense) that wish to maximize their utilities. In particular, it is assumed
that each party prefers to learn the output rather then not learning it, and prefers to be the
only party that learns the output. This approach is incomparable to the standard notion of
fairness in secure computation: On the one hand, fairness is harder to achieve since all parties
are rational and there are no honest parties; and on the other hand, fairness is easier to achieve
since the “adversary” is rational and therefore we can predict its behavior. It has been shown
that fairness in this model can sometimes be achieved [Il, 8], [71l [70} 5l 47].

1.3.2 The Work of Gordon, Hazay, Katz and Lindell [58]

Our understanding regarding fairness was recently changed by the surprising work of Gordon,
Hazay, Katz and Lindell (GHKL) [58]. This work focuses on complete fairness, and shows
that there ezist some non-trivial (deterministic, finite-domain) Boolean functions that can be
computed in the malicious settings with complete fairness. The work re-opens the research on

8



this subject. The fact that some functions can be computed fairly, while some others were
proven to be impossible to compute fairly, raises the following fundamental question:

Which functions can be computed with complete fairness?

Since the publication of [58], there have been no other works that further our understanding
regarding which (Boolean) functions can be computed fairly without an honest majority in
the two party setting. Specifically, Cleve’s impossibility result is the only known function that
cannot be computed fairly, and the functions for which [58] shows possibility are the only known
possible functions. There is therefore a large class of functions for which we have no idea as to
whether or not they can be securely computed with complete fairness.

To elaborate further, the work of [58] shows that any (polynomial-size domain) function that
does not contain an embedded XOR (i.e., inputs x1, x2, y1, y2 such that f(x1,y1) = f(x2,y2) #
f(z1,y2) = f(x2,y1)) can be computed fairly. Examples of functions without an embedded
XOR include the Boolean OR / AND functions and the greater-than function. Given the
fact that Cleve’s impossibility result rules out completely fair computation of Boolean XOR, a
natural conjecture is that any function that does contain an embedded XOR is impossible to
compute fairly. However, [58] shows also that this conclusion is incorrect. It considers a specific
function that does contain an embedded XOR, and constructs a protocol that securely computes
this function with complete fairness. Furthermore, the paper presents a generalization of this
protocol that may potentially compute a large class of functions. It also shows how to construct
a (rather involved) set of equations for a given function, that indicates whether the function can
be computed fairly using this protocol. We later refer to this protocol as “the GHKL protocol”.

The results in [58] completely change our perception regarding fairness. The fact that some-
thing non-trivial can be computed fairly is surprising in that it contradicts the aforementioned
natural intuition and common belief, and raises many interesting questions. For instance, are
there many functions that can be computed fairly, or only a few? Which functions can be com-
puted fairly? Which functions can be computed using the generalized GHKL protocol? What
property distinguishes these functions from the functions that are impossible to compute fairly?

Our Work

1.3.3 A Full Characterization of Coin-Tossing (Chapter )

Motivated by the fundamental question of characterizing which functions can be computed with
complete fairness, in Chapter[] we analyze which functions cannot be computed fairly since they
are already ruled out by Cleve’s original result. That is, we show which finite-domain Boolean
functions “imply” the coin-tossing functionality. We provide a simple property (criterion) on
the truth table of a given Boolean function. We then show that for every function that satisfies
this property, it holds that the existence of a protocol that fairly computes the given function
implies the existence of a protocol for fair coin-tossing in the presence of a fail-stop adversary,
in contradiction to Cleve’s impossibility result. This implies that the functions that satisfy the
property cannot be computed fairly. The property is very simple, clean and general.

In a nutshell, the property that we define over the function’s truth table relates to the
question of whether or not it is possible for one party to singlehandedly change the probability
that the output of the function is 1 (or 0) based on how it chooses its input. That is, assume that

9



there exists a fair protocol that fairly computes the function and assume that each party has
some distribution over its inputs, such that once it chooses its input according to this distribution
in the execution of the protocol, the other party cannot bias the result of the execution. Once
these input distributions exist for both parties, it is easy to see that the function implies a fair-
coin tossing functionality. This is because a fair protocol for the function implies the existence
of a fair protocol for some d-coin. In order to obtain a fair coin, we can apply the method of
von-Neumann [97], and to conclude that this function implies fair coin-tossing.

The more challenging and technically interesting part of our work is a proof that the property
is tight. Namely, we show that a function f that does not satisfy the property cannot be used
to construct a fair coin-tossing protocol (in the information theoretic setting). More precisely,
we show that it is impossible to construct a fair two-party coin-tossing protocol, even if the
parties are given access to a trusted party that computes f fairly for them. We prove this
impossibility by showing the existence of an (inefficient) adversary that can bias the outcome
with non-negligible probability. Thus, we prove that it is not possible to toss a coin with
information-theoretic security, when given access to fair computations of f. We stress that
this “impossibility” result is actually a source of optimism, since it may be possible to securely
compute such functions with complete fairness. Indeed, the fair protocols presented in [58] are
for functions for which the property does not holdE| and in Chapter |5| we show possibility for
many more functions that do not satisfy this property.

It is important to note that our proof that functions that do not satisfy the property do
not imply coin tossing is very different to the proof of impossibility by Cleve. Specifically, the
intuition behind the proof by Cleve is that since the parties exchange messages in turn, there
must be a point where one party has more information than the other about the outcome of the
coin-tossing protocol. If that party aborts at this point, then this results in bias. This argument
holds since the parties cannot exchange information simultaneously. In contrast, in our setting,
the parties can exchange information simultaneously via the computation of f. Thus, our proof
is conceptually very different to that of Cleve, and in particular, is not a reduction to the proof
by Cleve.

1.3.4 Towards Characterizing Complete Fairness (Chapter D

Finally, in Chapter 5| we study which functions can be computed with complete fairness. We find
an interesting connection between a geometric representation of the function and the possibility
of fairness. We show that any function that defines a full-dimensional geometric object can be
computed with complete fairness. That is, we present a simple property on the truth table of
the function, and show that that for every function that satisfies this property, the function can
be computed fairly. This extends our knowledge of what can be computed fairly, and is another
important step towards a full characterization for fairness.

Our results deepen our understanding of fairness and show that many more functions can
be computed fairly than what has been thought previously. Using results from combinatorics,
we show that a random Boolean function with distinct domain sizes (i.e., functions f : X x
Y — {0,1} where |X| # |Y|) defines a full-dimensional geometric object with overwhelming
probability. Therefore, surprisingly, almost all functions with distinct domain sizes can be

4We remark that since our impossibility result is information theoretic, there is the possibility that some of
the functions for which the property does not hold do imply coin tossing computationally. In such a case, the
impossibility result of Cleve still applies to them. See further discussion in the body of the thesis.

10



computed with complete fairness. Although only one bit of information is revealed by output,
the class of Boolean functions that define full-dimensional geometric objects (and therefore can
be computed with complete fairness) is very rich, and includes a fortune of interesting and non-
trivial tasks, like set-membership, private evaluation of Boolean function, private matchmaking,
set-disjointness and more.

Furthermore, we provide an additional property that indicates that a function cannot be
computed using the protocol of GHKL (with the particular simulation strategy described
in [58]). This property is almost always satisfied in the case where |X| = |Y|. Thus, at
least at the intuitive level, almost all functions with |X| # |Y| can be computed fairly, whereas
almost all functions with | X| = |Y| cannot be computed using the only known possibility result
that we currently have for fairness. We emphasize that this negative result does not rule out
the possibility of these functions using some other protocol or even using the protocol of [58]
itself using some other simulation strategy. Moreover, we remark that when incorporating these
results with the full characterization of coin-tossing, our characterization for fairness is not
tight, and there exists a class of functions that do not imply fair coin-tossing (and therefore are
not ruled out by Cleve’s impossibility), and also cannot be computed using the protocol of [58]
(with that particular simulation strategy).

In addition to the above, we also consider larger families of functions rather than the sym-
metric Boolean functions with finite domain, and show that fairness is sometimes possible in
these classes. We consider the class of asymmetric functions where the parties do not necessarily
get the same output, as well as the class of functions with non-binary outputs. This is the first
time that fairness is shown to be possible in these families of functions, and shows that the
fairness property can be obtained in a much larger and wider class of functions than previously
known.

1.4 Organization

The thesis consists of two parts, both of which deal with aspects of secure computation. Part [[]
deals with perfect security in secure-computation, and Part [[T] deals with the question of com-
plete fairness. In spite of the risk of a small amount of repetition, each part is self-contained
and includes the necessary definitions and preliminaries. Each one of the parts also consists of
two closely related chapters. Chapter |3]is based on Chapter [2, and Chapter [5|is based on the
definitions that appear in Chapter Chapterswere published in [6], 8, 9} [3], respectively.

11



12



Part 1

Perfect Security

13






Chapter 2

A Full Proof of the BGW Protocol

One of the most fundamental results of secure computation was presented by Ben-Or, Goldwasser
and Wigderson (BGW) in 1988. They demonstrated that any n-party functionality can be com-
puted with perfect security, in the private channels model. When the adversary is semi-honest
this holds as long as ¢t < n/2 parties are corrupted, and when the adversary is malicious this
holds as long as t < n/3 parties are corrupted. Unfortunately, a full proof of these results was
never published. In this chapter, we provide a full proof of security of the BGW protocol. This
also includes a full description of the protocol for the malicious setting.

2.1 Introduction

2.1.1 The BGW Protocol

Our focus is on the results of Ben-Or, Goldwasser and Wigderson (BGW) [22], who showed that
every functionality can be computed with perfect security in the presence of semi-honest adver-
saries controlling a minority of parties, and in the presence of malicious adversaries controlling
less than a third of the parties. We have already discussed the importance of this protocol and
its historical context in the introduction, and thus we start with a high-level overview of the
protocol.

The BGW construction — an overview. The BGW protocol works by having the parties
compute the desired function f (from 7 inputs to n outputs) by securely emulating the compu-
tation of an arithmetic circuit computing f. In this computation, the parties compute shares of
the output of a circuit gate given shares of the input wires of that gate. To be more exact, the
parties first share their inputs with each other using Shamir’s secret sharing [94]; in the case
of malicious adversaries, a verifiable secret sharing protocol (cf. [33] [54]) is used. The parties
then emulate the computation of each gate of the circuit, computing Shamir shares of the gate’s
output from the Shamir shares of the gate’s inputs. As we shall see, this secret sharing has the
property that addition gates in the circuit can be emulated using local computation only. Thus,
the parties only interact in order to emulate the computation of multiplication gates; this step
is the most involved part of the protocol. Finally, the parties reconstruct the secrets from the
shares of the output wires of the circuit in order to obtain their output.

15



We proceed to describe the protocol in a bit more detail. Shamir’s secret sharing enables the
sharing of a secret s amongst n parties, so that any subset of £+ 1 or more parties can efficiently
reconstruct the secret, and any subset of ¢ or less parties learn no information whatsoever about
the secret. Let F be a finite field of size greater than n, let a1, ..., a, be n distinct non-zero
field elements, and let s € F. Then, in order to share s, a polynomial p(z) € F[z] of degree
t with constant term s is randomly chosen, and the share of the ith party P; is set to p(«y).
By interpolation, given any ¢ + 1 points it is possible to reconstruct p and compute s = p(0).
Furthermore, since p is random, its values at any ¢ or less of the a;’s give no information about s.

Now, let n denote the number of parties participating in the multiparty computation, and
let t be a bound on the number of corrupted parties. The first step of the BGW protocol is for
all parties to share their inputs using Shamir’s secret sharing scheme. In the case of semi-honest
adversaries, plain Shamir sharing with a threshold ¢ < n/2 is used, and in the case of malicious
adversaries verifiable secret sharing (VSS) with a threshold ¢ < n/3 is used. A verifiable secret
sharing protocol is needed for the case of malicious adversaries in order to prevent cheating,
and the BGW paper was also the first to construct a perfect VSS protocol.

Next, the parties emulate the computation of the gates of the circuit. The first observation
is that addition gates can be computed locally. That is, given shares p(«;) and g(a;) of the
two input wires to an addition gate, it holds that r(c;) = p(c;) + ¢(c) is a valid sharing of the
output wire. This is due to the fact that the polynomial r(x) defined by the sum of the shares
has the same degree as both p(x) and ¢(z), and r(0) = p(0) + ¢(0).

Regarding multiplication gates, observe that by computing r(«;) = p(«;) - ¢(«;) the parties
obtain shares of a polynomial r(z) with constant term p(0) - ¢(0) as desired. However, the
degree of r(x) is 2t, since the degrees of p(z) and ¢(z) are both ¢. Since reconstruction works
as long as the polynomial used for the sharing is of degree ¢, this causes a problem. Thus, the
multiplication protocol works by reducing the degree of the polynomial r(z) back to ¢. In the
case of semi-honest parties, the degree reduction can be carried out as long as ¢t < n/2 (it is
required that ¢t < n/2 since otherwise the degree of r(z) = p(x) - ¢(z) will be greater than or
equal to n, which is not fully defined by the n parties’ shares). In the case of malicious parties,
the degree reduction is much more complex and works as long as t < n/3. In order to obtain
some intuition as to why ¢ < n/3 is needed, observe that a Shamir secret sharing can also be
viewed as a Reed-Solomon code of the polynomial [82]. With a polynomial of degree ¢, it is
possible to correct up (n —t — 1)/2 errors. Setting t < n/3, we have that n > 3t + 1 and so
(n—t—1)/2 > t errors can be corrected. This means that if up to ¢ malicious parties send
incorrect values, the honest parties can use error correction and recover. Indeed, the BGW
protocol in the case of malicious adversaries relies heavily on the use of error correction in order
to prevent the adversary from cheating.

2.1.2 Our Results

Despite the importance of the BGW result, a full proof of its security has never appeared, and
a full description of the protocol in the malicious setting was also never published. We remedy
this situation, and our main result is a proof of the following informally stated theorem:

Theorem 2 (basic security of the BGW protocol — informally stated): Consider a synchronous
network with pairwise private channels and a broadcast channel. Then:

16



1. Semi-honest: For every n-ary functionality f, there exists a protocol for computing f with
perfect security in the presence of a static semi-honest adversary controlling up tot < n/2

parties;

2. Malicious: For every n-ary functionality f, there exists a protocol for computing f with
perfect security in the presence of a static malicious adversary controlling up to t < n/3

parties.

The communication complexity of the protocol is O(poly(n)-|C|) where C' is an arithmetic circuit

computing f, and the round complexity is linear in the depth of the circuit C'.

All of our protocols are presented in a model with pairwise private channels and secure
broadcast. Since we only consider the case of ¢ < n/3 malicious corruptions, secure broadcast
can be achieved in a synchronous network with pairwise channels by running Byzantine Gen-
erals [87, [76], 46]. In order to obtain (expected) round complexity linear in the depth of |C/|, an
expected constant-round Byzantine Generals protocol of [46] (with composition as in [79, [14])
is used.

Security under composition. Theorem [2)is proven in the classic setting of a static adversary
and stand-alone computation, where the latter means that security is proven for the case that
only a single protocol execution takes place at a time. Fortunately, it was shown in [75] that
any protocol that is perfectly secure and has a black-box non-rewinding simulator, is also secure
under universal composability [28] (meaning that security is guaranteed to hold when many
arbitrary protocols are run concurrently with the secure protocol). Since our proof of security
satisfies this condition, we obtain the following corollary, which relates to a far more powerful
adversarial setting:

Corollary 3 (UC information-theoretic security of the BGW protocol): Consider a synchronous
network with private channels. Then, for every n-ary functionality f, there exists a protocol
for computing f with perfect universally composable security in the presence of an static semi-
honest adversary controlling up to t < n/2 parties, and there exists a protocol for computing
f with perfect universally composable security in the presence of a static malicious adversary
controlling up to t < n/3 parties.

Corollary [3] refers to information-theoretic security in the ideal private channels model. We
now derive a corollary to the computational model with authenticated channels only. In order
to derive this corollary, we first observe that information-theoretic security implies security in
the presence of polynomial-time adversaries (this holds as long as the simulator is required
to run in time that is polynomial in the running time of the adversary, as advocated in [53]
Sec. 7.6.1]). Furthermore, the ideal private channels of the information-theoretic setting can
be replaced with computationally secure channels that can be constructed over authenticated
channels using semantically secure public-key encryption [56], [99]. We have:

Corollary 4 (UC computational security of the BGW protocol): Consider a synchronous net-
work with authenticated channels. Assuming the existence of semantically secure public-key
encryption, for every n-ary functionality f, there exists a protocol for computing f with uni-
versally composable security in the presence of a static malicious adversary controlling up to
t < n/3 parties.

17



We stress that unlike the UC-secure computational protocols of [31] (that are secure for any
t < n), the protocols of Corollary {4| are in the plain model, with authenticated channels but
with no other trusted setup (in particular, no common reference string). Although well-accepted
folklore, Corollaries [3| and [4] have never been proved. Thus, our work also constitutes the first
full proof that universally composable protocols exist in the plain model (with authenticated
channels) for any functionality, in the presence of static malicious adversaries controlling any
t < n/3 parties.

Adaptive security with inefficient simulation. In [29] it was shown that any protocol
that is proven perfectly secure under the security definition of [41] is also secure in the presence
of adaptive adversaries, alas with inefficient simulation. We use this to derive security in the
presence of adaptive adversaries, albeit with the weaker guarantee provided by inefficient sim-
ulation (in particular, this does not imply adaptive security in the computational setting). See
Section 2.8 for more details.

Organization. In Section we present a brief overview of the standard definitions of
perfectly secure multiparty computation and of the modular sequential composition theorem
that is used throughout in our proofs. Then, in Section [2.3] we describe Shamir’s secret sharing
scheme and rigorously prove a number of useful properties of this scheme. In Section [2.4] we
present the BGW protocol for the case of semi-honest adversaries. An overview of the overall
construction appears in Section [2.4.1) and an overview of the multiplication protocol appears
at the beginning of Section [2.4.3

The BGW protocol for the case of malicious adversaries is presented in Sections
In Section we present the BGW verifiable secret sharing (VSS) protocol that uses bivariate
polynomials. This section includes background on Reed-Solomon encoding and properties of
bivariate polynomials that are needed for proving the security of the VSS protocol. Next, in
Section [2.6] we present the most involved part of the protocol — the multiplication protocol for
computing shares of the product of shares. This involves a number of steps and subprotocols,
some of which are new. The main tool for the BGW multiplication protocol is a subprotocol
for verifiably sharing the product of a party’s shares. This subprotocol, along with a detailed
discussion and overview, is presented in Section Our aim has been to prove the security
of the original BGW protocol. However, where necessary, some changes were made to the
multiplication protocol as described originally in [22]. Finally, in Section the final protocol
for secure multiparty computation is presented. The protocol is proven secure for any VSS and
multiplication protocols that securely realize the VSS and multiplication functionalities that we
define in Sections and respectively. In addition, an exact count of the communication
complexity of the BGW protocol for malicious adversaries is given. We conclude in Section [2.8
by showing how to derive security in other settings (adaptive adversaries, composition, and the
computational setting).

The specification of the protocol is full of detailed and contain full proofs. As a result, the
specification of the protocol is not consecutive. A reader who may find it beneficial and more
convenient to read the full specification continuously may refer to Appendix [A]

18



2.2 Preliminaries and Definitions

In this section, we review the definition of perfect security in the presence of semi-honest and
malicious adversaries. We refer the reader to [53, Sec. 7.6.1] and [27] for more details and
discussion.

In the definitions below, we consider the stand-alone setting with a synchronous network,
and perfectly private channels between all parties. For simplicity, we will also assume that the
parties have a broadcast channel; as is standard, this can be implemented using an appropriate
Byzantine Generals protocol [87, [76]. Since we consider synchronous channels and the compu-
tation takes place in clearly defined rounds, if a message is not received in a given round, then
this fact is immediately known to the party who is supposed to receive the message. Thus,
we can write “if a message is not received” or “if the adversary does not send a message” and
this is well-defined. We consider static corruptions meaning that the set of corrupted parties is
fixed ahead of time, and the stand-alone setting meaning that only a single protocol execution
takes place; extensions to the case of adaptive corruptions and composition are considered in

Section 2.8

Basic notation. For a set A, we write a €g A when a is chosen uniformly from A. We
denote the number of parties by n, and a bound on the number of corrupted parties by ¢. Let
£ ({0,1}*)" — ({0,1}*)" be a possibly probabilistic n-ary functionality, where f;(x1,...,Zy)
denotes the ith element of f(z1,...,x,). We denote by I = {iy,...is} C [n] the indices
of the corrupted parties, where [n] denotes the set {1,...,n}. By the above, |I| < t. Let
Z=(x1,...,oy), and let Z7 and f;(Z) denote projections of the corresponding n-ary sequence
on the coordinates in I; that is, Zr = (2, ..., 2;,) and f1(Z) = (fi, (&), ..., fi,(Z)). Finally, to
ease the notation, we omit the index ¢ when we write the set {(, a;) }_; and simply write {a;}?";.
Thus, for instance, the set of shares {(i1, f(c,)), ..., (i, f(as,))} is denoted as {f(c)}icr-

Terminology. In this chapter, we consider security in the presence of both semi-honest and
malicious adversaries. As in [53], we call security in the presence of a semi-honest adversary
controlling ¢ parties t-privacy, and security in the presence of a malicious adversary control-
ling t parties t-security. Since we only deal with perfect security in this chapter, we use the
terms t-private and t-secure without any additional adjective, with the understanding that the
privacy /security is always perfect.

2.2.1 Perfect Security in the Presence of Semi-Honest Adversaries

We are now ready to define security in the presence of semi-honest adversaries. Loosely speaking,
the definition states that a protocol is ¢-private if the view of up to ¢t corrupted parties in a real
protocol execution can be generated by a simulator given only the corrupted parties’ inputs and
outputs.

The view of the ith party P; during an execution of a protocol m on inputs Z, denoted
VIEW] (Z), is defined to be (x;, rj;my,, ..., m;, ) where z; is P;’s private input, r; is its internal
coin tosses, and m;; is the jth message that was received by P; in the protocol execution.
For every I = {i1,...is}, we denote VIEW](Z) = (VIEW] (Z),...VIEW] (7)). The output of all

19



parties from an execution of 7 on inputs & is denoted OUTPUT™ (Z); observe that the output of
each party can be computed from its own (private) view of the execution.

We first present the definition for deterministic functionalities, since this is simpler than the
general case of probabilistic functionalities.

Definition 2.2.1 (t-privacy of n-party protocols — deterministic functionalities):
Let f:({0,1}*)" — ({0,1}*)" be a deterministic n-ary functionality and let ™ be a protocol.
We say that 7 is t-private for f if for every & € ({0,1}*)" where |x1| = ... = |zy],

OUTPUT  (Z1,...,Zpn) = f(z1,...,2n) (2.2.1)

and there exists a probabilistic polynomial-time algorithm S such that for every I C [n] of
cardinality at most t, and every & € ({0,1}*)™ where |x1| = ... = |z,|, it holds that:

{S(I,:EI, f1 (f))} = {vmw}r(f)} : (2.2.2)

The above definition separately considers the issue of output correctness (Eq. ) and
privacy (Eq. ), where the latter captures privacy since the ability to generate the cor-
rupted parties’ view given only the input and output means that nothing more than the input
and output is learned from the protocol execution. However, in the case of probabilistic func-
tionalities, it is necessary to intertwine the requirements of privacy and correctness and consider
the joint distribution of the output of S and of the parties; see [27), 53] for discussion. Thus, in
the general case of probabilistic functionalities, the following definition of ¢-privacy is used.

Definition 2.2.2 (¢-privacy of n-party protocols — general case): Let f : ({0,1}*)" — ({0,1}*)"
be a probabilistic n-ary functionality and let m be a protocol. We say that w is t-private for f if
there exists a probabilistic polynomial-time algorithm S such that for every I C [n] of cardinality
at most t, and every & € ({0,1}*)" where |z1| = ... = |xy,|, it holds that:

{(S(I, 71, 1(2)), f(f))} = {(VIEw;f(gz), OUTPUT”@))} . (2.2.3)

We remark that in the case of deterministic functionalities, the separate requirements of
Equations (2.2.1]) and (2.2.2)) actually imply the joint distribution of Eq. (2.2.3]). This is due to
the fact that when f is deterministic, f(&) is a single value and not a distribution.

Our presentation — deterministic functionalities. For the sake of simplicity and clarity,
we present the BGW protocol and prove its security for the case of deterministic functionalities
only. This enables us to prove the overall BGW protocol using Definition which makes the
proof significantly simpler. Fortunately, this does not limit our result since it has already been
shown that it is possible to t-privately compute any probabilistic functionality using a general
protocol for ¢t-privately computing any deterministic functionality; see [53] Sec. 7.3.1].

2.2.2 Perfect Security in the Presence of Malicious Adversaries

We now consider malicious adversaries that can follow an arbitrary strategy in order to carry
out their attack; we stress that the adversary is not required to be efficient in any way. Security
is formalized by comparing a real protocol execution to an ideal model where the parties just

20



send their inputs to the trusted party and receive back outputs. See [27], 53] for details on how
to define these real and ideal executions; we briefly describe them here.

Real model: In the real model, the parties run the protocol w. We consider a synchronous
network with private point-to-point channels, and an authenticated broadcast channel. This
means that the computation proceeds in rounds, and in each round parties can send private
messages to other parties and can broadcast a message to all other parties. We stress that the
adversary cannot read or modify messages sent over the point-to-point channels, and that the
broadcast channel is authenticated, meaning that all parties know who sent the message and
the adversary cannot tamper with it in any way. Nevertheless, the adversary is assumed to be
rushing, meaning that in every given round it can see the messages sent by the honest parties
before it determines the messages sent by the corrupted parties.

Let m be a n-party protocol, let A be an arbitrary machine with auxiliary input z, and
let I C [n] be the set of corrupted parties controlled by .A. We denote by REAL, 40, ;(Z) the
random variable consisting of the view of the adversary A and the outputs of the honest parties,
following a real execution of 7 in the aforementioned real model, where for every i € [n], party
P; has input z;.

Ideal model: In the ideal model for a functionality f, the parties send their inputs to an
incorruptible trusted party who computes the output for them. We denote the ideal adversary
by S (since it is a “simulator”), and the set of corrupted parties by I. An execution in the ideal
model works as follows:

e Input stage: The adversary S for the ideal model receives auxiliary input z and sees the
inputs x; of the corrupted parties P; (for all i € I ). S can substitute any z; with any a/ of
its choice under the condition that |z}| = |z;].

e Computation: Each party sends its (possibly modified) input to the trusted party; denote
the inputs sent by z/,...,z],. The trusted party computes (yi,...,yn) = f(z},...,2,) and
sends y; to P;, for every j € [n].

e Outputs: Each honest party P; (j ¢ I) outputs y;, the corrupted parties output L, and
the adversary S outputs an arbitrary function of its view.

Throughout the chapter, we will refer to communication between the parties and the functional-
ity. For example, we will often write that a party sends its input to the functionality; this is just
shorthand for saying that the input is sent to the trusted party who computes the functionality.
We denote by IDEALf s() (%) the outputs of the ideal adversary S controlling the corrupted
parties in I and of the honest parties after an ideal execution with a trusted party comput-
ing f, upon inputs z1,...,z, for the parties and auxiliary input z for §. We stress that the
communication between the trusted party and Pi,..., P, is over an ideal private channel.

Definition of security. Informally, we say that a protocol is secure if its real-world behavior
can be emulated in the ideal model. That is, we require that for every real-model adversary A
there exists an ideal-model adversary S such that the result of a real execution of the protocol
with A has the same distribution as the result of an ideal execution with §. This means that
the adversarial capabilities of A in a real protocol execution are just what S can do in the ideal
model.

21



In the definition of security, we require that the ideal-model adversary S run in time that
is polynomial in the running time of A, whatever the latter may be. As argued in [27, [53], this
definitional choice is important since it guarantees that information-theoretic security implies
computational security. In such a case, we say that S is of comparable complexity to A.

Definition 2.2.3 Let f : ({0,1}*)" — ({0,1}*)" be an n-ary functionality and let ™ be a
protocol. We say that m is t-secure for f if for every probabilistic adversary A in the real model,
there exists a probabilistic adversary S of comparable complexity in the ideal model, such that

n

for every I C [n] of cardinality at most t, every & € ({0,1}*)" where |x1| = ... = |z,|, and

every z € {0,1}*, it holds that:

{IDEALLS(Z)J(.%)} = {REALmA(z)J(f)} .

Reactive functionalities. The above definition refers to functionalities that map inputs to
outputs in a single computation. However, some computations take place in stages, and state is
preserved between stages. Two examples of such functionalities are mental poker (where cards
are dealt and thrown and redealt [54]) and commitment schemes (where there is a separate
commitment and decommitment phase; see [28] for a definition of commitments via an ideal
functionality). Such functionalities are called reactive, and the definition of security is extended
to this case in the straightforward way by allowing the trusted party to obtain inputs and send
outputs in phases; see [53, Section 7.7.1.3].

2.2.3 Modular Composition

The sequential modular composition theorem [27] is an important tool for analyzing the security
of a protocol in a modular way. Let 7; be a protocol for securely computing f that uses
a subprotocol m, for computing g. Then the theorem states that it suffices to consider the
execution of 7y in a hybrid model where a trusted third party is used to ideally compute g
(instead of the parties running the real subprotocol m,). This theorem facilitates a modular
analysis of security via the following methodology: First prove the security of 7y, and then
prove the security of 7 in a model allowing an ideal party for g. The model in which 7 is
analyzed using ideal calls to g, instead of executing 7, is called the g-hybrid model because it
involves both a real protocol execution and an ideal trusted third party computing g.

More formally, in the hybrid model, the parties all have oracle-tapes for some oracle (trusted
party) that computes the functionality g. Then, if the real protocol m¢ instructs the parties
to run the subprotocol 7, using inputs uq,...,u,, then each party P; simply writes u; to its
outgoing oracle tape. Then, in the next round, it receives back the output g;(u1,...,u,) on its
incoming oracle tape. We denote by HYBRID? FAG), ; () an execution of protocol 7y where each
call to 7, is carried out using an oracle computing g. See [27, (53] for a formal definition of this
model for both the semi-honest and malicious cases, and for proofs that if 7y is t-private (resp.,
t-secure) for f in the g-hybrid model, and =, is t-private (resp., t-secure) for g, then 7; when
run in the real model using 7, is t-private (resp., t-secure) for f.

22



2.3 Shamir’s Secret Sharing Scheme [94] and Its Properties

2.3.1 The Basic Scheme

A central tool in the BGW protocol is Shamir’s secret-sharing scheme [94]. Roughly speaking, a
(t+1)-out-of-n secret sharing scheme takes as input a secret s from some domain, and outputs n
shares, with the property that it is possible to efficiently reconstruct s from every subset of ¢ +1
shares, but every subset of ¢ or less shares reveals nothing about the secret s. The value £+ 1 is
called the threshold of the scheme. Note that in the context of secure multiparty computation
with up to ¢ corrupted parties, the threshold of ¢ 4+ 1 ensures that the corrupted parties (even
when combining all ¢ of their shares) can learn nothing.

A secret sharing scheme consist of two algorithm: the first algorithm, called the sharing
algorithm, takes as input the secret s and the parameters ¢t + 1 and n, and outputs n shares.
The second algorithm, called the reconstruction algorithm, takes as input ¢ + 1 or more shares
and outputs a value s. It is required that the reconstruction of shares generated from a value s
yields the same value s.

Informally, Shamir’s secret-sharing scheme works as follows. Let F be a finite field of size
greater than n and let s € F. The sharing algorithm defines a polynomial g(z) of degree ¢
in F[z], such that its constant term is the secret s and all the other coefficients are selected
uniformly and independently at random in IFE] Finally, the shares are defined to be ¢(«;) for
every ¢ € {1,...,n}, where ay,...,a, are any n distinct non-zero predetermined values in F.
The reconstruction algorithm of this scheme is based on the fact that any ¢t + 1 points define
exactly one polynomial of degree t. Therefore, using interpolation it is possible to efficiently
reconstruct the polynomial g(x) given any subset of t+1 points («a;, ¢(;)) output by the sharing
algorithm. Finally, given ¢(x) it is possible to simply compute s = ¢(0). We will actually refer
to reconstruction using all n points, even though ¢ 4 1 suffice, since this is the way that we use
reconstruction throughout the chapter.

In order to see that any subset of ¢ or less shares reveals nothing about s, observe that for
every set of ¢ points («;, ¢(«;)) and every possible secret s’ € IF, there exists a unique polynomial
¢'(z) such that ¢'(0) = s’ and ¢'(a;) = q(c;). Since the polynomial is chosen randomly by the
sharing algorithm, there is the same likelihood that the underlying polynomial is g(x) (and so
the secret is s) and that the polynomial is ¢/(xz) (and so the secret is s’). We now formally
describe the scheme.

Shamir’s (t 4 1)-out-of-n secret sharing scheme. Let F be a finite field of order greater
than n, let a1, ..., a, be any distinct non-zero elements of F, and denote & = (a1, ..., a,). For

a polynomial ¢ Let evalz(q(z)) = (¢(a1),. .., q(an)).

e The sharing algorithm for «;, ..., a,: Let sharez(s, t+1) be the algorithm that receives
for input s and t + 1 where s € F and ¢t < n. Then, share;z chooses ¢t random values
q1,---q €R F, independently and uniformly distributed in F, and defines the polynomial:

() =s+qz+... qz"

!Throughout, when we refer to a polynomial of degree ¢, we mean of degree at most t.

23



where all calculations are in the field F. Finally, it outputs evalz(g(x)) = (¢(a1), ..., q(an)),
where g(a;) is the share of party P;.

e The reconstruction algorithm: Algorithm reconstructz(f1,...,53,) finds the unique
polynomial g(x) of degree ¢ such that for every i = 1,...,n it holds that ¢(«;) = 5;, when
such a polynomial exists (this holds as long as f1,..., 8, all lie on a single polynomial).
The algorithm then outputs the coefficients of the polynomial ¢(x) (note that the original
secret can be obtained by simply computing s = ¢(0)).

By the above notation, observe that for every polynomial ¢(x) of degree t < n, it holds that
reconstructg(evalz(q(z))) = q(x). (2.3.1)

Notation. Let P%! be the set of all polynomials with degree less than or equal to t with
constant term s. Observe that for every two values s, s’ € F, it holds that [P*t| = |P*"t| = |F|.

2.3.2 Basic Properties

In this section, we prove some basic properties of Shamir’s secret sharing scheme (the proofs of
these claims are standard but appear here for the sake of completeness). We first show that the
value of a polynomial chosen at random from P*! at any single non-zero point is distributed
uniformly at random in F; this can be generalized to hold for any ¢ points.

Claim 2.3.1 For everyt > 1, and for every s,a,y € F with o # 0, it holds that:

1
P —y = —.
e [q (o) = y] ]

Proof: Fix s, y and a with a # 0. Denote the ith coefficient of the polynomial ¢(z) by ¢;, for
i=1,...,t. Then:

Prig(a)=y] = Pr [yz s+ go
=1

t
=Pr [yzs—kqla—quiai]

=2

where the probability is taken over the random choice of ¢ €r P*!, or equivalently of the
coefficients ¢1,...,¢ €r F. Fix g¢,...,q and denote v = 25:2 gio. Then, for a randomly
chosen q; € F we have that

Pefa@=s] = Prfy=ssmats
= Pr[qla:y—s—v}

B -
1
[F|
where the third equality holds since « € F and « # 0 implying that « has an inverse, and the
last equality is due to the fact that ¢; €r F is randomly chosen. [ |
In the protocol for secure computation, a dealer hides a secret s by choosing a polynomial
f(z) at random from P!, and each party P; receives a share, which is a point f(c;). In this

24



context, the adversary controls a subset of at most ¢ parties, and thus receives at most t shares.
We now show that any subset of at most ¢ shares does not reveal any information about the
secret. In Section [2.3.1] we explained intuitively why the above holds. This is formalized in the
following claim that states that for every subset I C [n] with |I| <t and every two secrets s, s,
the distribution over the shares seen by the parties P; (i € I) when s is shared is identical to
when s’ is shared.

Claim 2.3.2 For any set of distinct non-zero elements aq,...,co, € F, any pair of values
s,s' € F, any subset I C [n] where |I| = ¢ < t, and every § € F¢ it holds that:
. . 1
P 7= Weoka)] = Pr (7= (sedher)] = o7

f(@)erPs? g(z)ERPs’t
where f(z) and g(x) are chosen uniformly and independently from P> and P, respectively.
Proof: We first prove the claim for the special case that £ = t. Fix s,s’ € F, fix non-zero

elements aq,...,a, € F, and fix I C [n] with |I| = t. Moreover, fix i € F'. Let y; be the ith
element of the vector 7 for every i € {1,...,t}. We now show that:

7= (Wb = pear

Pr
f(xz)erPst

The values of 7 define a unique polynomial from P*!. This is because there exists a single
polynomial of degree ¢ that passes through the points (0, s) and {(«;, y;) bier- Let f'(x) be this
unique polynomial. By definition we have that f'(z) € P*! and so:

7= (Uahen)] = Prlfe) = £'0)] = i

Pr
f(z)erPst

where the latter is true since f(x) is chosen uniformly at random from P*% and f’(z) is a fixed
polynomial in P!,

Using the same reasoning, and letting ¢’(x) be the unique polynomial that passes through
the points (0,s") and {(o,y:)},c; we have that:

— ! 1
R 7= (9@ }bicr) | = Pr[g() = g'()] = P

The proof for the case of £ =t is concluded by observing that for every s and s’ in F, it holds
that [Pt = |P**| = |F|*, and so:

Pr [372 ({f(al)}zef)] = Pbr {jl]': ({g(ai)}id)} - I;V

f(x)erPt g(x)erPs't
For the general case where |I| = ¢ may be less than ¢, fix J C [n] with |[J| = ¢ and T C J.
Observe that for every vector i € F¢:
pr 7= ({feken)] = X Pr|@d) = ({F@lier A @)} ens) ]
f(@)ERP! 7 Ct—£
y' el
Bt =

FE T E

25



This holds for both s and s’ and so the proof is concluded. [ |
As a corollary, we have that any ¢ < t points on a random polynomial are uniformly

distributed in the field F. This follows immediately from Claim because stating that
every ¢ appears with probability 1/ \F\e is equivalent to stating that the shares are uniformly
distributed. That is:

Corollary 2.3.3 For any secret s € F, any set of distinct non-zero elements aq,..., o, € F,
and any subset I C [n] where |I| = ¢ <'t, it holds that { {f(ai)}iel} = {U(l), e Iée)}, where

f(x) is chosen uniformly at random from P*' and Uﬂgl),...,Ug) are ¢ independent random
variables that are uniformly distributed over F.

Multiple polynomials. In the protocol for secure computation, parties hide secrets and
distribute them using Shamir’s secret sharing scheme. As a result, the adversary receives m - ||
shares, {fi(ci),..., fm()}ier, for some value m. The secrets f1(0),..., fn(0) may not be
independent. We therefore need to show that the shares that the adversary receives for all
secrets do not reveal any information about any of the secrets. Intuitively, this follows from the
fact that Claim is stated for any two secrets s, s’, and in particular for two secrets that
are known and may be related. The following claim can be proven using standard facts from
probability:

Claim 2.3.4 For any m € N, any set of non-zero distinct values aq,...,a, € F, any two sets
of secrets (ai,...,am) € F™ and (by,...,bn) € F™, and any subset I C [n] of size |I| < t, it
holds that:

{{h(@), -, Fuleicr } = { {100, gm0 }ier }

where for every j, fi(x), g;(x) are chosen uniformly at random from P%:t and P%t, respectively.

Hiding the leading coefficient. In Shamir’s secret sharing scheme, the dealer creates shares
by constructing a polynomial of degree ¢, where its constant term is fixed and all the other
coefficients are chosen uniformly at random. In Claim [2.3.2] we showed that any ¢ or fewer
points on such a polynomial do not reveal any information about the fixed coefficient which is
the constant term.

We now consider this claim when we choose the polynomial differently. In particular, we now
fix the leading coefficient of the polynomial (i.e., the coefficient of the monomial z¢), and choose
all the other coefficients uniformly and independently at random, including the constant term.
As in the previous section, it holds that any subset of ¢ or fewer points on such a polynomial
do not reveal any information about the fixed coefficient, which in this case is the leading
coefficient. We will need this claim for proving the security of one of the sub-protocols for the
malicious case (in Section .

Let P]f}fd be the set of all the polynomials of degree ¢ with leading coefficient s. Namely,
the polynomials have the structure: f(x) = ag + a1z + ...a;_12'~! + sz, The following claim
is derived similarly to Corollary

Claim 2.3.5 For any secret s € F, any set of distinct non-zero elements aq,...,a, € F, and
any subset I C [n| where |I| =€ <t, it holds that:

{{retier} = {0, 00"}

26



lead )

where f(x) is chosen uniformly at random from PS¢ and Uﬂgl),...,Uﬂg are ¢ independent

random variables that are uniformly distributed over F.

2.3.3 Matrix Representation

In this section we present a useful representation for polynomial evaluation. We being by
defining the Vandermonde matrix for the values oy, ..., a,. As is well known, the evaluation of
a polynomial at ay, ..., a, can be obtained by multiplying the associated Vandermonde matrix

with the vector containing the polynomial coefficients.

Definition 2.3.6 (Vandermonde matrix for (ai,...,an)): Let aq,...,a, be n distinct non-
zero elements in F. The Vandermonde matriz Vz for & = (aq,...,ay) is the n X n matriz over
F defined by Vz[i, j] o (o)=Y, That is,
I ar ... ()"t
1 ay ... (a2)n71
725 ' (2.3.2)
1 an ... (o)™t

The following fact from linear algebra will be of importance to us:

Fact 2.3.7 Letd = (aq,...,qy), where all o; are distinct and non-zero. Then, Vg is invertible.

Matrix representation of polynomial evaluations. Let V; be the Vandermonde matrix
for @ and let ¢ = qo + q1x + - -- + g:x* be a polynomial where ¢ < n. Define the vector ¢ of
length n as follows: J(iéf (o, ---qt,0,...,0). Then, it holds that:

1 a; ... (Oél)nil q0 q(al)
1 ay ... (042)"_1
Va-q= aqt =
0
I an ... (ap)™t 0 q(an)
which is the evaluation of the polynomial ¢(x) on the points aq,. .., ay,.

2.4 The Protocol for Semi-Honest Adversaries

2.4.1 Overview

We now provide a high-level overview of the protocol for t-privately computing any deterministic
functionality in the presence of a semi-honest adversary who controls up to at most t < n/2

27



parties. Let F be a finite field of size greater than n and let f : F* — F” be the functionality
that the parties wish to compute. Note that we assume that each party’s input and output is a
single field element. This is only for the sake of clarity of exposition, and the modifications to
the protocol for the general case are straightforward. Let C' be an arithmetic circuit with fan-in
of 2 that computes f. We assume that all arithmetic operations in the circuit are carried out
over F. In addition, we assume that the arithmetic circuit C' consists of three types of gates:
addition gates, multiplication gates, and multiplication-by-a-constant gates. Recall that since
a circuit is acyclic, it is possible to sort the wires so that for every gate the input wires come
before the output wires.

The protocol works by having the parties jointly propagate values through the circuit from
the input wires to the output wires, so that at each stage of the computation the parties obtain
Shamir shares of the value on the wire that is currently being computed. In more detail, the
protocol has three phases:

e The input sharing stage: In this stage, each party creates shares of its input using
Shamir’s secret sharing scheme using threshold ¢+ 1 (for a given ¢t < n/2), and distributes
the shares among the parties.

e The circuit emulation stage: In this stage, the parties jointly emulate the computation
of the circuit C, gate by gate. In each step, the parties compute shares of the output of
a given gate, based on the shares of the inputs to that gate that they already have. The
actions of the parties in this stage depends on the type of gate being computed:

1. Addition gate: Given shares of the input wires to the gate, the output is computed
without any interaction by each party simply adding their local shares together. Let
the inputs to the gate be a and b and let the shares of the parties be defined by
two degree-t polynomials f,(z) and f,(z) (meaning that each party P; holds f,(a;)
and f(c;) where f,(0) = a and f;(0) = b). Then the polynomial f,4(x) defined by
shares fo1p(i) = fa(as) + fo(aq), for every i, is a degree-t polynomial with constant
term a + b. Thus, each party simply locally adds its own shares f,(«;) and fi(;)
together, and the result is that the parties hold legal shares of the sum of the inputs,
as required.

2. Multiplication-by-a-constant gate: This type of gate can also be computed without
any interaction. Let the input to the gate be a and let f,(x) be the t-degree polyno-
mial defining the shares, as above. The aim of the parties is to obtain shares of the
value ¢ - a, where ¢ is the constant of the gate. Then, each party P; holding f,(«;)
simply defines its output share to be fe.q(;) = ¢+ fo(ay). Tt is clear that f.q(z) is a
degree-t polynomial with constant term c - a, as required.

3. Multiplication gate: As in (1) above, let the inputs be a and b, and let f,(z) and
fv(x) be the polynomials defining the shares. Here, as in the case of an addition gate,
the parties can just multiply their shares together and define h(a;) = fa(ou) - fo(cu).
The constant term of this polynomial is a - b, as required. However, h(z) will be of
degree 2t instead of t; after repeated multiplications the degree will be n or greater
and the parties’ n shares will not determine the polynomial or enable reconstruction.
In addition, h(x) generated in this way is not a “random polynomial” but has a
specific structure. For example, h(z) is typically not irreducible (since it can be

28



expressed as the product of f,(x) and f;(z)), and this may leak information. Thus,
local computation does not suffice for computing a multiplication gate. Instead,
the parties compute this gate by running an interactive protocol that ¢-privately
computes the multiplication functionality Fj,,;, defined by

Fonate ((fal01), fol@n), -, (alan), fo(an))) = (Janlar), oo fa(en))  (2:41)

where fo(x) €R Pabt s a random degree-t polynomial with constant term a - bE|

e The output reconstruction stage: At the end of the computation stage, the parties
hold shares of the output wires. In order to obtain the actual output, the parties send
their shares to one another and reconstruct the values of the output wires. Specifically, if
a given output wire defines output for party F;, then all parties send their shares of that
wire value to P;.

Organization of this section. In Section 2:4.2] we fully describe the above protocol and
prove its security in the Fj,,-hybrid model. (Recall that in this model, the parties have
access to a trusted party who computes Fj,,;; for them, and in addition exchange real protocol
messages.) We also derive a corollary for ¢-privately computing any linear function in the plain
model (i.e., without any use of the Fi,,; functionality), that is used later in Section m
Then, in Section [2.4.3] we show how to t-privately compute the Fj,,;; functionality for any
t < n/2. This involves specifying and implementing two functionalities F% , and Ffeegu o) SCE

the beginning of Section for an overview of the protocol for t-privately computing Fj,.;
and for the definition of these functionalities.

2.4.2 Private Computation in the F,,;;~-Hybrid Model

In this section we present a formal description and proof of the protocol for t-privately computing
any deterministic functionality f in the Fj,,;;-hybrid model. As we have mentioned, it is
assumed that each party has a single input in a known field F of size greater than n, and that
the arithmetic circuit C' is over F. See Protocol for the description.

We now prove the security of Protocol 2.4.1] We remark that in the F,,,;;-hybrid model,
the protocol is actually t-private for any ¢t < n. However, as we will see, in order to t-privately
compute the F,,;; functionality, we will need to set t < n/2.

Theorem 2.4.2 Let F be a finite field, let f : F™ — F™ be an n-ary functionality, and let t < n.
Then, Protocol is t-private for f in the Fy,.-hybrid model, in the presence of a static
semi-honest adversary.

Proof: Intuitively, the protocol is t-private because the only values that the parties see until
the output stage are random shares. Since the threshold of the secret sharing scheme used is
t+1, it holds that no adversary controlling ¢ parties can learn anything. The fact that the view
of the adversary can be simulated is due to the fact that ¢ shares of any two possible secrets are
identically distributed; see Claim [2.3.2] This implies that the simulator can generate the shares

2This definition of the functionality assumes that all of the inputs lie on the polynomials f,(z), f»(x) and
ignores the case that this does not hold. However, since we are dealing with the semi-honest case here, the
inputs are always guaranteed to be correct. This can be formalized using the notion of a partial functionality [53],
Sec. 7.2].

29



PROTOCOL 2.4.1 (t-Private Computation in the Fy,.,;:-Hybrid Model)

e Inputs: Each party P, has an input z; € F.

e Auxiliary input: Each party P; has an arithmetic circuit C over the field F, such that
for every ¥ € F™ it holds that C(Z) = f(&), where f : F* — F". The parties also have
a description of F and distinct non-zero values aq,...,a, in F.

e The protocol:

1. The input sharing stage: Each party P; chooses a polynomial g;(z) uniformly
from the set P%'* of all polynomials of degree ¢ with constant term x;. For every
j €{1,...,n}, P; sends party P; the value ¢;(c;).
Each party P; records the values ¢1(a;), ..., ¢ (a;) that it received.

2. The circuit emulation stage: Let Gi,...,Gy be a predetermined topological
ordering of the gates of the circuit. For k = 1,..., ¢ the parties work as follows:

— Case 1 — G}, is an addition gate: Let B¥ and vF be the shares of input
wires held by party P;. Then, P; defines its share of the output wire to be
5F = BF +f.

— Case 2 — Gy, is a multiplication-by-a-constant gate with constant c: Let B be
the share of the input wire held by party P;. Then, P; defines its share of the
output wire to be 6¥ = ¢ gF.

— Case 3 — Gy, is a multiplication gate: Let B and vF be the shares of input
wires held by party P;. Then, P; sends (8F,+F) to the ideal functionality
Fo e of Eq. and receives back a value 6. Party P; defines its share
of the output wire to be 6¥.

3. The output reconstruction stage: Let o04,...,0, be the output wires, where
party P;’s output is the value on wire o;,. For every k = 1,...,n, denote by
BY, ..., B the shares that the parties hold for wire oy. Then, each P; sends P,
the share S¥.

Upon receiving all shares, P, computes reconstructz (37, ..., 3%) and obtains a
polynomial gi(z) (note that ¢t + 1 of the n shares suffice). Py then defines its
output to be gx(0).

based on any arbitrary value, and the resulting view is identical to that of a real execution.
Observe that this is true until the output stage where the simulator must make the random
shares that were used match the actual output of the corrupted parties. This is not a problem
because, by interpolation, any set of ¢ shares can be used to define a t-degree polynomial with
its constant term being the actual output.

Since C' computes the functionality f, it is immediate that OUTPUT™ (z1,...,z,) equals
f(x1,...,2,), where m denotes Protocol We now proceed to show the existence of a
simulator & as required by Definition Before describing the simulator, we present some
necessary notation. Our proof works by inductively showing that the partial view of the ad-
versary at every stage is identical in the simulated and real executions. Recall that the view
of party P; is the vector (z;,r;; mzl7 . ,mf
mf is the kth message that it receives in the execution, and £ is the overall number of messages

), where z; is the party’s input, r; its random tape,

received (in our context here, we let mf equal the series of messages that P; receives when the
parties compute gate Gy). For the sake of clarity, we add to the view of each party the values

1 Jf , where af equals the shares on the wires that Party P; holds after the parties emulate

[oF S

30



the computation of gate Gi. That is, we denote

VIEW] (Z) = (mi,m;m},ail, . ,mf,o’f) .
We stress that since the af values can be efficiently computed from the party’s input, random
tape and incoming messages, the view including the Uf values is equivalent to the view without
them, and this is only a matter of notation.
We are now ready to describe the simulator S. Loosely speaking, S works by simply sending
random shares of arbitrary values until the output stage. Then, in the final output stage S sends
values so that the reconstruction of the shares on the output wires yield the actual output.

The Simulator S:

e Input: The simulator receives the inputs and outputs, {x;};cr and {y;}icr respectively, of
all corrupted parties.

e Simulation:

1. Simulating the input sharing stage:

(a) For everyi € I, the simulator S chooses a uniformly distributed random tape for
PB;; this random tape and the input x; fully determines the degree-t polynomial
¢i(z) € P*>t chosen by P; in the protocol.

(b) For every j & I, the simulator S chooses a random degree-t polynomial q;(x) €R
POL with constant term 0.

(c) The view of the corrupted party P; in this stage is then constructed by S to be
the set of values {qj(c;)}jgr (i-e., the share sent by each honest P; to P;). The
view of the adversary A consists of the view of P; for everyi € I.

2. Simulating the circuit emulation stage: For every Gy, € {G1,...,Gy}:

(a) Gy is an addition gate: Let {fo(a;)}ier and {fo(ci)}ier be the shares of the
input wires of the corrupted parties that were generated by S (initially these are
input wires and so the shares are defined by q).(x) above). For every i € I, the
simulator S8 computes fo(a;) + foloi) = (fo+ fo)(au) which defines the shares of
the output wire of Gy.

(b) G is a multiplication-with-constant gate: Let {f,(a;)}ier be the shares of the
input wire and let ¢ € F be the constant of the gate. S computes ¢ - fq(c;) =
(¢ fa)(cy) for every i € I which defines the shares of the output wire of Gy.

(c) Gy is a multiplication gate: S chooses a degree-t polynomial fu,(z) uniformly at
random from POt (irrespective of the shares of the input wires), and defines the
shares of the corrupted parties of the output wire of Gy, to be { fup(ci)}bier.

S adds the shares to the corrupted parties’ views.

3. Simulating the output reconstruction stage: Let o1, ..., 0, be the output wires. We now
focus on the output wires of the corrupted parties. For every k € I, the simulator
S has already defined |I| shares {Bi}icr for the output wire o. S thus chooses a
random polynomial g, (z) of degree t under the following constraints:

31



(a) g,,(0) = yi, where yy is the corrupted Py’s output (the polynomial’s constant

term is the correct output).

(b) For every i € I, g, (c;) = Bi (i.e., the polynomial is consistent with the shares
that have already been defined).

(Note that if |I| = t, then the above constraints yield t + 1 equations, which in turn
fully determine the polynomial g).(z). However, if |I| < t, then S can carry out the
above by choosing t — |I| additional random points and interpolating.)

Finally, S adds the shares {g;(c11), ..., g.(cn)} to the view of the corrupted party Py.
4. S outputs the views of the corrupted parties and halts.

Denote by \m}r(a_:’) the VIEW of the corrupted parties up to the output reconstruction stage
(and not including that stage). Likewise, we denote by S (I,Z;, f7 (Z)) the view generated by
the simulator up to but not including the output reconstruction stage.

We begin by showing that the partial views of the corrupted parties up to the output
reconstruction stage in the real execution and simulation are identically distributed.

Claim 2.4.3 For every ¥ € F™ and every I C [n] with |I]| <t,
{viwi @} = {7 1@}

Proof: The only difference between the partial views of the corrupted parties in a real and
simulated execution is that the simulator generates the shares in the input-sharing stage and in
multiplication gates from random polynomials with constant term 0, instead of with the correct
value defined by the actual inputs and circuit. Intuitively, the distributions generated are the
same since the shares are distributed identically, for every possible secret.

Formally, we construct an algorithm H that receives as input n— ||+ sets of shares: n—|I|
sets of shares {(, 8}) }ier, - -, {(i,ﬂ?_m)}ie[ and ¢ sets of shares {(i,7}) }ier, - -, {(i,7)) bier-
Algorithm H generates the partial view of the corrupted parties (up until but not including the
output reconstruction stage) as follows:

e H uses the jth set of shares {,Bf}lel as the shares sent by the jth honest party to the
corrupted parties in the input sharing stage (here j =1,...,n — |I|),

e H uses the kth set of shares {'yf}ie 7 are viewed as the shares received by the corrupted
parties from F),,;; in the computation of the k gate G, if it is a multiplication gate (here
kE=1,...,0).

Otherwise, H works exactly as the simulator S.

It is immediate that if H receives shares that are generated from random polynomials that all
have constant term 0, then the generated view is exactly the same as the partial view generated
by S. In contrast, if H receives shares that are generated from random polynomials that have
constant terms as determined by the inputs and circuit (i.e., the shares ﬂg are generated using
the input of the jth honest party, and the shares ’yf are generated using the value on the output
wire of Gy which is fully determined by the inputs and circuit), then the generated view is
exactly the same as the partial view in a real execution. This is due to the fact that all shares
are generated using the correct values, like in a real execution. By Claim [2.3.2] these two sets of
shares are identically distributed and so the two types of views generated by H are identically

32



distribution; that is, the partial views from the simulated and real executions are identically
distributed. B

It remains to show that the output of the simulation after the output reconstruction stage
is identical to the view of the corrupted parties in a real execution. For simplicity, we assume
that the output wires appear immediately after multiplication gates (otherwise, they are fixed
functions of these values).

Before proving this, we prove a claim that describes the processes of the real execution and
simulation in a more abstract way. The aim of the claim is to prove that the process carried out
by the simulator in the output reconstruction stage yields the same distribution as in a protocol
execution. We first describe two processes and prove that they yield the same distribution, and
later show how these are related to the real and simulation processes.

Random Variable X (s) Random Variable Y (s)

(1) Choose q(z) €g P! (1) Choose ¢'(x) €g P

(2) Vi € 1, set B; = q() (2) Vi eI, set Bl = ¢ (i)

(3) (3) Choose r(z) €g P! s.t. Vi € I r(a;) = f3;
(4) Output g(x) (4) Output r(x)

Observe that in Y (s), first the polynomial ¢'(z) is chosen with constant term 0, and then
r(x) is chosen with constant term s, subject to it agreeing with ¢’ on {«;}icr.

Claim 2.4.4 For every s € F, it holds that {X(s)} = {Y(s)}.

Proof: Intuitively, this follows from the fact that the points {q(«;)}ic; are distributed identi-
cally to {¢'(c)}ier. Formally, define X (s) = (X1, X2) and Y (s) = (Y1, Y2), where X; (resp., Y1)
are the output values from step (2) of the process, and X, (resp., Y3) are the output polynomials
from step (4) of the process. From Claim it immediately follows that {X;} = {Y1}. It
therefore suffices to show that {Xs | X1} = {Y2 | Y1}. Stated equivalently, we wish to show
that for every set of field values {3;}ic; and every h(z) € P51,

Pr [ Xo(x) = h(2) | (Vi) Xa(as) = B;] = Pr [Ya(e) = h(2) | (¥i)Ya(a:) = B

where {3;};cr are the conditioned values in X; and Y7 (we use the same £3; for both since these
are identically distributed and we are now conditioning them). First, if there exists an i € [
such that h(a;) # B; then both probabilities above are 0. We now compute these probabilities
for the case that h(a;) = ; for all i € I. We first claim that

1

Pr [ Ya(z) = h(z) | (Vi)Ya(a;) = @} =

This follows immediately from the process for generating the random variable Y'(s), because
Ya(xz) = r(x) is chosen at random under the constraint that for every i € I, r(a;) = f;. Since
|I|+1 points are already fixed (the f3; values and the constant term s), there are |F|'*~/| different
polynomials of degree-t that meet these constraints, and Y5 is chosen uniformly from them.

It remains to show that

1

Pr [XQ(x) = h(z) | (Vi) Xa(ew) = B;| = G

33



In order to see this, observe that
Pr|Xo(z) = h(z) A (Vi) Xa(as) = Bz} — Pr [Xm) - h(x)}

because in this case, we consider only polynomials h(z) for which h(q;) = f; for all + € I, and
so the conditioning adds nothing. We conclude that

Pr [Xg(a:) = h(z) A (Vi)Xa(a;) = 51}
Pr [(\ﬁ))@(ai) = 62}
Pr [Xg(m) - h(m)} )

I S L ——
Pr [(Vi)XQ(ozi) - 54 || ||t

Pr [ Xo(x) = h(2) | (Vi) Xa(ai) = ;] =

where the last equality follows because q(z) = X»(x) €g P*! and by Claim [2.3.2]the probability
that the points X(cy) = f; for all i € I equals |F|~11. [ ]

The random variables X (s) and Y (s) can be extended to X(5) and Y (5) for any 5 € F™
(for some m € N); the proof of the analogous claim then follows. From this claim, we get:

Claim 2.4.5 If {ViEw] (@)} = {S(I,f[, fr (f))}, then {VIEWT(Z)} = {S (I, 71, f1 (1))}

Proof: In the output reconstruction stage, for every k € I, the corrupted parties receive the
points gg(ai),..., gr(ay) in the real execution, and the points g;(a1),. .., g} (o) in the simu-
lation. Equivalently, we can say that the corrupted parties receive the polynomials {gx(x)}rer
in a real execution, and the polynomials {g; (z)}recs in the simulation.

In the protocol execution, functionality F},,;; chooses the polynomial félz) (z) for the output
wire of P, uniformly at random in PY+!, and the corrupted parties receive values 3; = f(y;) ()
(for every i € I). Finally, as we have just described, in the output stage, the corrupted parties
receive the polynomials fi’g) (z) themselves. Thus, this is the process X (yx). Extending to all
k € I, we have that this is the extended process X (5) with § being the vector containing the
corrupted parties’ output values {yg}xer-

In contrast, in the simulation of the multiplication gate leading to the output wire for party
Py, the simulator S chooses the polynomial f gg) (x) uniformly at random in P%* (see Step in
the specification of S above), and the corrupted parties receive values 3; = fgg) (o) (for every
i € I). Then, in the output stage, S chose g} (z) at random from PY:! under the constraint
that g (a;) = B for every ¢ € I. Thus, this is the process Y (yx). Extending to all k € I, we
have that this is the extended process Y (3) with § being the vector containing the corrupted

parties’ output values {yx}rer. The claim thus follows from Claim [2.4.4 [ ]
Combining Claims and we have that {S (I, 2y, f1(Z))} = {VIEWT (&)}, as required.
|

Privately computing linear functionalities in the real model. Theorem states
that every function can be t-privately computed in the Fj,,;-hybrid model, for any t < n.
However, a look at Protocol 2.4.1] and its proof of security show that F,,;; is only used for
computing multiplication gates in the circuit. Thus, Protocol 2.4.1] can actually be directly used
for privately computing any linear functionality f, since such functionalities can be computed

34



by circuits containing only addition and multiplication-by-constant gates. Furthermore, the
protocol is secure for any ¢ < n; in particular, no honest majority is needed. This yields the
following corollary.

Corollary 2.4.6 Lett < n. Then, any linear functionality f can be t-privately computed in the
presence of a static semi-honest adversary. In particular, the matriz-multiplication functionality
FA (Z) = A- % for matriz A € F™™ can be t-privately computed in the presence of a static
semi-honest adversary.

Corollary is used below in order to compute the degree-reduction functionality, which
is used in order to privately compute Fjq;.

2.4.3 Privately Computing the F),,;; Functionality

We have shown how to t-privately compute any functionality in the Fj,,;-hybrid model. In
order to achieve private computation in the plain model, it remains to show how to privately
compute the F,,;+ functionality. We remark that the threshold needed to privately compute
Frut is t < n/2, and thus the overall threshold for the generic BGW protocol is t < n/2. Recall
that the F),,;; functionality is defined as follows:

Pt ((falen). fof@n))s- - (falan), fo(@n))) = (fan(@n), - Fan(n) )

where f,(z) € P, fy(x) € PP, and fu(x) is a random polynomial in P01,

As we have discussed previously, the simple solution where each party locally multiplies its
two shares does not work here, for two reasons. First, the resulting polynomial is of degree 2t and
not t as required. Second, the resulting polynomial of degree 2¢ is not uniformly distributed
amongst all polynomials with the required constant term. Therefore, in order to privately
compute the F),,;; functionality, we first randomize the degree-2t polynomial so that it is
uniformly distributed, and then reduce its degree to t. That is, Fj,.¢ is computed according to
the following steps:

1. Each party locally multiplies its input shares.

2. The parties run a protocol to generate a random polynomial in P%2, and each party
receives a share based on this polynomial. Then, each party adds its share of the product
(from the previous step) with its share of this polynomial. The resulting shares thus define
a polynomial which is uniformly distributed in P*®2t.

3. The parties run a protocol to reduce the degree of the polynomial to ¢, with the result
being a polynomial that is uniformly distributed in P%®!, as required. This computation
uses a t-private protocol for computing matriz multiplication. We have already shown how
to achieve this in Corollary

The randomizing (i.e., selecting a random polynomial in P%2!) and degree-reduction function-
alities for carrying out the foregoing steps are formally defined as follows:

e The randomization functionality: The randomization functionality is defined as follows:

F2L (O 0 A) = (r(ar), ... r(an)),

rand

35



where r(z) €g P%? is random, and A denotes the empty string. We will show how to
t-privately compute this functionality in Section [2.4.3]

o The degree-reduction functionality: Let h(x) = ho+ ...+ ho2?' be a polynomial, and denote
by truncy(h(x)) the polynomial of degree t with coefficients hy, . .., hy. That is, trunc,(h(x)) =
ho+hixz + ...+ hyat (observe that this is a deterministic functionality). Formally, we define

~

Fied o(h(0n), - h(an)) = (h(an), .. (o))

where h(z) = truncy(h(z)). We will show how to t-privately compute this functionality in
Section [2.4.3]

Privately Computing F,,; in the (F?2 Fdeg )-Hybrid Model

rand’® " reduce

We now prove that Fy,,; is reducible to the functionalities F2  and Fﬁ:juce; that is, we
construct a protocol that t-privately computes F,,,,;+ given access to ideal functionalities Frd : 5u ce
and chfnd. The full specification appears in Protocol

Intuitively, this protocol is secure since the randomization step ensures that the polynomial
defining the output shares is random. In addition, the parties only see shares of the randomized
polynomial and its truncation. Since the randomized polynomial is of degree 2t, seeing 2t shares
of this polynomial still preserves privacy. Thus, the ¢t shares of the randomized polynomial
together with the ¢ shares of the truncated polynomial (which is of degree t), still gives the
adversary no information whatsoever about the secret. (This last point is the crux of the
proof.)

PROTOCOL 2.4.7 (t-Privately Computing F,,.it)

e Input: Each party P; holds values 3;,7;, such that reconstructz(81,- .., 3,) € P%t and
reconstructz (71, .. .,7,) € P% for some a,b € F.
e The protocol:
1. Each party locally computes s; = f3; - ;-

2. Randomize: Each party P; sends A to F2! . (formally, it writes A on its oracle
tape for F2t

2 4)- Let o; be the oracle response for party P;.

3. Reduce the degree: Each party P; sends (s; + 0;) to Ff:dguce. Let &; be the
oracle response for P;.

e Output: Each party P; outputs 6;.

We therefore have:

Proposition 2.4.8 Lett < n/2. Then, Protocolz's t-private for Fouy in the (F2t [

rand’ ~ reduce
hybrid model, in the presence of a static semi-honest adversary.

Proof: The parties do not receive messages from other parties in the oracle-aided protocol;
rather they receive messages from the oracles only. Therefore, our simulator only needs to
simulate the oracle-response messages. Since the F),,;; functionality is probabilistic, we must
prove its security using Definition [2.2.2]

In the real execution of the protocol, the corrupted parties’ inputs are {f,(a;)}ier and
{fo(a;) }icr- Then, in the randomize step of the protocol they receive shares o; of a random

36



polynomial of degree 2¢ with constant term 0. Denoting this polynomial by r(x), we have that
the corrupted parties receive the values {r(«;)};cr. Next, the parties invoke the functionality
Fiedgu .. and receive back the values ¢; (these are points of the polynomial trunc;(fo(z) - fp(x) +
r(z))). These values are actually the parties’ outputs, and thus the simulator must make the
output of the call to F €9 e the shares {d; }ier of the corrupted parties outputs.

reduce

The simulator S:

e Input: The simulator receives as input I, the inputs of the corrupted parties {(B;, Vi) }icr,
and their outputs {d; }icr.

e Simulation:

— S chooses |I] values uniformly and independently at random, {v;}icr.

— For every i € I, the simulator defines the view of the party P; to be: (B;,7i,vi, i),
where (B;,7;) represents P;’s input, v; represents P;’s oracle response from F>*

rand’
. B deg
and 0; represents P;’s oracle response from F, 5 .

We now proceed to prove that the joint distribution of the output of all the parties, together
with the view of the corrupted parties is distributed identically to the output of all parties as
computed from the functionality Fj,.;; and the output of the simulator. We first show that the
outputs of all parties are distributed identically in both cases. Then, we show that the view of
the corrupted parties is distributed identically, conditioned on the values of the outputs (and
inputs) of all parties.

The outputs. Since the inputs and outputs of all the parties lie on the same polynomials, it
is enough to show that the polynomials are distributed identically. Let f,(z), fp(x) be the input
polynomials. Let r(z) be the output of the F2 _ functionality. Finally, denote the truncated

rand
result by h(z) aof trunc(fo(z) - fo(z) + r(x)).

In the real execution of the protocol, the parties output shares of the polynomial ﬁ(x) From
the way h(z) is defined, it is immediate that h(z) is a degree-t polynomial that is uniformly
distributed in P*%*. (In order to see that it is uniformly distributed, observe that with the
exception of the constant term, all the coefficients of the degree-2t polynomial f,(z)- fp(x)+r(x)
are random. Thus the coefficients of z, ..., 2! in h(x) are random, as required.)

Furthermore, the functionality F},,;; return shares for a random polynomial of degree t with
constant term f,(0) - f5(0) = a - b. Thus, the outputs of the parties from a real execution and
from the functionality are distributed identically.

The view of the corrupted parties. We show that the view of the corrupted parties in the
real execution and the simulation are distributed identically, given the inputs and outputs of all
parties. Observe that the inputs and outputs define the polynomials f,(z), fi(z) and fup(x).
Now, the view that is output by the simulator is

{{fa(ai)y folaq), vi, fab(ai)}iel}

where all the v; values are uniformly distributed in F, and independent of f,(x), fp(z) and fqp(x).
It remains to show that in a protocol execution the analogous values — which are the outputs

37



received by the corrupted parties from ngnd — are also uniformly distributed and independent
of fa(z), fo(z) and h(z) (where h(x) is distributed identically to a random fu(x), as already

shown above).

In order to prove this, it suffices to prove that for every vector ¥ € FHI

L - 1
Pr 7= 71 fol@): fo@), @) = (2.4.2)
where 7 = (r(a,),...,r(y ) for I = {i1,...,ip}; that is, 7 is the vector of outputs from
Frz;nd, computed from the polynomial 7(x) €r P%2?!, that are received by the corrupted parties.

We write 7(x) = r1(z) + 2 - m2(z), where r1(z) €g P%! and ro(z) €g PY'. In addition, we
write fo(2) - fy(x) = hi(z) + 2t - ha(x), where hy(x) € P®* and hy(x) € PO, Observe that:

h(x) = trunc (fu(@) - (@) + () = trunc (hi(2) + 71(2) + 2' - (ha(@) + 72(2)) ) = b (@)+71(2)

where the last equality holds since the constant term of both hgo(x) and ra(x) is 0. Rewriting
Eq. 1) we need to prove that for every vector i € FHI,

1

Pr 7= 71 fola), o(e)s n(@) + @) =

where the kth element 7 of 7is 71 (v, ) + (v, ) -r2(cv, ). The claim follows since ro(z) is random
and independent of f,(z), fo(z), hi(x) and ri(x). Formally, for any given y; € F, the equality
yr = 11 (i) + (ag,)" - ra(ag, ) holds if and only if ro(ay,) = (au, )" - (yx — m1(v,)). Since ay,,
yr and r1(ay, ) are all fixed by the conditioning, the probability follows from Claim m

We conclude that the view of the corrupted parties is identically distributed to the output
of the simulator, when conditioning on the inputs and outputs of all parties. [ |

Privately Computing Fflfnd in the Plain Model

Recall that the randomization functionality is defined as follows:

F2 O\ .. 0 = (r(o),...,m(an)), (2.4.3)

rand

where r(z) €g P%?, and \ denotes the empty string. The protocol for implementing the
functionality works as follows. Each party P; chooses a random polynomial ¢;(z) €z P%? and
sends the share ¢;(c;) to every party P;. Then, each party P; outputs &; = > ,_; qx(cv). Clearly,
the shares 41, . .., 0, define a polynomial with constant term 0, because all the polynomials in the
sum have a zero constant term. Furthermore, the sum of these random 2¢-degree polynomials
is a random polynomial in P%2?*, as required. See Protocol for a formal description.

38



PROTOCOL 2.4.9 (Privately Computing F2 )

a
e Input: The parties do not have inputs for this protocol.
e The protocol:

— Each party P; chooses a random polynomial ¢;(x) €g P%2t. Then, for every
j€{l,...,n} it sends s; ; = gi(c;) to party P;.

. n
— Each party P; receives s1,..., 55, and computes §; = ijl 55

e Output: Each party P; outputs d;.

We now prove that Protocol is t-private for Ffjnd.

Claim 2.4.10 Lett < n/2. Then, Protocol is t-private for the Ff;nd functionality, in the
presence of a static semi-honest adversary.

Proof: Intuitively, the protocol is secure because the only messages that the parties receive
are random shares of polynomials in P%2. The simulator can easily simulate these messages
by generating the shares itself. However, in order to make sure that the view of the corrupted
parties is consistent with the actual output provided by the functionality, the simulator chooses
the shares so that their sum equals ¢;, the output provided by the functionality to each P;.

The simulator S:

e Input: The simulator receives as input I and the outputs of the corrupted parties {0;}icr.

e Simulation:

1. Fix l ¢ T

2. S chooses n — 1 random polynomials q;(x) € P2 for every j € [n] \ {€}. Note that
for i € I, this involves setting the random tape of P; so that it results in it choosing
().

3. S sets the values of the remaining polynomial q;(x) on the points {a;}ier by computing
qp(ci) = 0i — 340 q(cvi) for everyi € I.

4. S sets (qy(ci),...,q, (i) as the incoming messages of corrupted party P; in the
protocol; observe that all of these points are defined.

e Output: S sets the view of each corrupted P; (i € I) to be the empty input A, the random
tape determined in Step (2) of the simulation, and the incoming messages determined in

Step (4).

We now show that the view of the adversary (containing the views of all corrupted parties)
and the output of all parties in a real execution is distributed identically to the output of the
simulator and the output of all parties as received from the functionality in an ideal execution.

In order to do this, consider an fictitious simulator &’ who receives the polynomial r(x)
instead of the points {§; = () }ier. Simulator S’ works in exactly the same way as S except
that it fully defines the remaining polynomial gy(«) (and not just its values on the points {c; }icr)
by setting ¢;(z) = r(z) — ;.. ¢;(x). Then, &’ computes the values g;(c;) for every i € I from
qy(x). The only difference between the simulator S and the fictitious simulator S’ is with respect

39



to the value of the polynomial gj(z) on points outside of {c;}ic;. The crucial point to notice
is that S does not define these points differently to S’; rather S does not define them at all.
That is, the simulation does not require S to determine the value of gj(x) on points outside of
{a;}ier, and so the distributions are identical.

Finally observe that the output distribution generated by S’ is identical to the output of a
real protocol. This holds because in a real protocol execution random polynomials g1 (), . . ., g, ()
are chosen and the output points are derived from 2?21 ¢;j(x), whereas in the fictitious simula-
tion with &’ the order is just reversed; i.e., first 7(z) is chosen at random and then ¢} (z), . .., ¢, (z)
are chosen at random under the constraint that their sum equals r(x). Note that this uses the
fact that r(z) is randomly chosen. [ |

Privately Computing F%9 in the Plain Model

reduce

Recall that the F9° functionality is defined by

reduce
FI9 (h(ar),...,h(an)) = (h(ar), ..., h(an))

where h(z) = trunc,(h(x)) is the polynomial h(z) truncated to degree t (i.e., the polynomial
with coefficients hy, ..., h;). We begin by showing that in order to transform a vector of shares
of the polynomial h(x) to shares of the polynomial trunc,(h(z)), it suffices to multiply the input
shares by a certain matrix of constants.

Claim 2.4.11 Lett < n/2. Then, there exists a constant matriz A € F"*™ such that for every
degree-2t polynomial h(x) = E?tzo hj-x? and truncated h(z) = truncy(h(z)), it holds that:

(h(al), . .,h(an))T =A- <h(al)» e h(an))

Proof: Let h = (hoy ...y hty...,ho,0,...0) be a vector of length n, and let Vz be the n x

n Vandermonde matrix for & = (aq,...,a,). As we have seen in Section m Vi AT =

(h(e), ..., h(an))T. Since Vg is invertible, we have that h? = Vo{l - (h(aq), ..., h(ap)T.
g A A ~ o T g

Similarly, letting h = (ho, ..., ht,0,...0) we have that (h(al), ol h(an)) =V hT.

Now, let T'={1,...,t}, and let Pr be the linear projection of T’; i.e., Pr is an n x n matrix

T

such that Pr(i,j) = 1 for every ¢ = j € T, and Pr(i,7) = 0 for all other values. It thus follows
that Pr-h? = AT, Combining all of the above, we have that

. . T . .
(h(al), ce h(%)) =Va BT =Vz-Pr-h" =Vz - Pr V' (h(on), ..., hion)".

The claim follows by setting A = V5 - Pr-V_ L [ ]

By the above claim it follows that the parties can compute F%¢ by simply multiplying

reduce
their shares with the constant matrix A from above. That is, the entire protocol for t-privately
computing F;i : é]u e Works by the parties t-privately computing the matrix multiplication func-
tionality F4 ,(Z) with the matrix A. By Corollary (see the end of Section , FA (&)
can be t-privately computed for any ¢ < n. Since the entire degree reduction procedure consists

of t-privately computing FA4 ,(#), we have the following proposition:

Proposition 2.4.12 For every t < n/2, there exists a protocol that is t-private for Fieg n

reduce’
the presence of a static semi-honest adversary.

40



2.4.4 Conclusion

In Section [2.4.3| we proved that there exists a t-private protocol for computing the Fj,,;; func-
tionality in the (F2  F%9 ) hybrid model, for any ¢ < n/2. Then, in Sections and

rand’ = reduce

we showed that Fr%fnd and F;l : é’u <> Tespectively, can be t-privately computed (in the plain model)
for any t < n/2. Finally, in Theorem we showed that any n-ary functionality can be pri-
vately computed in the Fj,,;:-hybrid model, for any ¢ < n. Combining the above with the

modular sequential composition theorem (described in Section [2.2.3)), we conclude that:

Theorem 2.4.13 Let F be a finite field, let f : F* — F™ be an n-ary functionality, and let
t < n/2. Then, there exists a protocol that is t-private for f in the presence of a static semi-
honest adversary.

2.5 Verifiable Secret Sharing (VSS)

2.5.1 Background

Verifiable secret sharing (VSS), defined by Chor et al. [33], is a protocol for sharing a secret
in the presence of malicious adversaries. Recall that a secret sharing scheme (with threshold
t + 1) is made up of two stages. In the first stage (called sharing), the dealer shares a secret so
that any ¢+ 1 parties can later reconstruct the secret, while any subset of ¢ or fewer parties will
learn nothing whatsoever about the secret. In the second stage (called reconstruction), a set
of t + 1 or more parties reconstruct the secret. If we consider Shamir’s secret-sharing scheme,
much can go wrong if the dealer or some of the parties are malicious (e.g., consider the use
of secret sharing in Section . First, in order to share a secret s, the dealer is supposed to
choose a random polynomial ¢(-) of degree ¢ with ¢(0) = s and then hand each party P; its share
q(c;). However, nothing prevents the dealer from choosing a polynomial of higher degree. This
is a problem because it means that different subsets of £ + 1 parties may reconstruct different
values. Thus, the shared value is not well defined. Second, in the reconstruction phase each
party P; provides its share ¢(«;). However, a corrupted party can provide a different value,
thus effectively changing the value of the reconstructed secret, and the other parties have no
way of knowing that the provided value is incorrect. Thus, we must use a method that either
prevents the corrupted parties from presenting incorrect shares, or ensures that it is possible to
reconstruct the correct secret s given n —t correct shares, even if they are mixed together with
t incorrect shares (and no one knows which of the shares are correct or incorrect). Note that in
the context of multiparty computation, n parties participate in the reconstruction and not just
t + 1; this is utilized in the following construction.

The BGW protocol for verifiable secret sharing ensures that (for ¢ < n/3) the shares received
by the honest parties are guaranteed to be ¢(«;) for a well-defined degree-t polynomial ¢, even
if the dealer is corrupted. This “secure sharing step” is the challenging part of the protocol.
Given such a secure sharing it is possible to use techniques from the field of error-correcting
codes in order to reconstruct ¢ (and thus ¢(0) = s) as long as n — ¢ correct shares are provided
and ¢ < n/3. This is due to the fact that Shamir’s secret-sharing scheme when looked at in this

41



context is exactly a Reed-Solomon code, and Reed-Solomon codes can efficiently correct up to
t errors, for t < n/3.

2.5.2 The Reed-Solomon Code

We briefly describe the Reed-Solomon code, and its use in our context. First, recall that a linear
[n, k, d]-code over a field F of size ¢ is a code of length n (meaning that each codeword is a
sequence of n field elements), of dimension k (meaning that there are ¢* different codewords),
and of distance d (meaning that every two codewords are of Hamming distance at least d from
each other).

We are interested in constructing a code of length n, dimension & = ¢ 4+ 1, and distance
n —t. The Reed-Solomon code for these parameters is constructed as follows. Let F be a finite
field such that |F| > n, and let aq,...,a, be distinct field elements. Let m = (mo,...,m;) be
a message to be encoded, where each m; € F. The encoding of m is as follows:

1. Define a polynomial p,,(x) = mg + miz + ... + myat of degree t.
2. Compute the codeword C(m) = (pm (1), ..., pm(an)).

It is well known that the distance of this code is n — ¢. (In order to see this, recall that for any
two different polynomials p; and ps of degree at most ¢, there are at most ¢ points a for which
p1(a) = pa(«). Noting that m # m’ define different polynomials p,, # py, we have that C(m)
and C'(m') agree in at most ¢ places.) Let d(x,y) denote the Hamming distance between words
x,y € F™. The following is a well-known result from the error correcting code literature:

Theorem 2.5.1 The Reed-Solomon code is a linear [n,t + 1,n — t]-code over F. In addition,

there exists an efficient decoding algorithm that corrects up to ”_TH errors. That is, for every

m € F'! and every x € F"* such that d(z,C(m)) < "_5_1, the decoding algorithm returns m.

Let t <n/3, and so n > 3t+ 1. Plugging this into Theorem we have that it is possible

St+1—t—1
2

to efficiently correct up to =t errors.

Reed-Solomon and Shamir’s secret-sharing. Assume that n parties hold shares {q(c;) }ic|n]
of a degree-t polynomial, as in Shamir’s secret-sharing scheme. That is, the dealer distributed
shares {q(a;) };epn) where ¢ €g P** for a secret s € F. We can view the shares (g(1), . .., q(an))
as a Reed-Solomon codeword. Now, in order for the parties to reconstruct the secret from the
shares, all parties can just broadcast their shares. Observe that the honest parties provide their
correct share g(«;), whereas the corrupted parties may provide incorrect values. However, since
the number of corrupted parties is ¢ < n/3, it follows that at most ¢ of the symbols are incorrect.
Thus, the Reed-Solomon reconstruction procedure can be run and the honest parties can all
obtain the correct polynomial ¢, and can compute ¢(0) = s.

We conclude that in such a case the corrupted parties cannot effectively cheat in the re-
construction phase. Indeed, even if they provide incorrect values, it is possible for the honest
parties to correctly reconstruct the secret (with probability 1). Thus, the main challenge in
constructing a verifiable secret-sharing protocol is how to force a corrupted dealer to distribute
shares that are consistent with some degree-t polynomial.

42



2.5.3 Bivariate Polynomials

Bivariate polynomials are a central tool used by the BGW verifiable secret sharing protocol (in
the sharing stage). We therefore provide a short background to bivariate polynomials in this
section.

A bivariate polynomial of degree t is a polynomial over two variables, each of which has degree
at most ¢t. Such a polynomial can be written as follows:

tot
= ZZ% eyl
i=0 j=0
We denote by B%! the set of all bivariate polynomials of degree t and with constant term s.
Note that the number of coefficients of a bivariate polynomial in B is (¢t +1)% — 1 = 2 + 2¢
(there are (t + 1)? coefficients, but the constant term is already fixed to be s).

Recall that when considering univariate polynomials, t+1 points define a unique polynomial
of degree t. In this case, each point is a pair (ag, Sr) and there exists a unique polynomial f such
that f(ay) = By for all t + 1 given points {(ay, B)}i ). The analogous statement for bivariate
polynomials is that £+ 1 univariate polynomials of degree t define a unique bivariate polynomial
of degree t; see Claim below. For a degree-t bivariate polynomial S(z,y), fixing the y-value
to be some a defines a degree-t univariate polynomial f(x) = S(z,«). Likewise, any t + 1 fixed
values o, . . ., apy1 define t+1 degree-t univariate polynomials fi(z) = S(x, ax). What we show
now is that like in the univariate case, this works in the opposite direction as well. Specifically,
given t + 1 values aq,...,a441 and ¢t + 1 degree-t polynomials fi(x),..., fi+1(z) there exists a
unique bivariate polynomial S(z,y) such that S(z,ax) = fx(x), for every k =1,...,¢t+ 1. This
is formalized in the next claim, which was proven in [46]:

Claim 2.5.2 Let t be a nonnegative integer, let aq, ..., a1 be t + 1 distinct elements in F,
and let f1(x),..., fix1(x) be t + 1 polynomials of degree t. Then, there exists a unique bivariate
polynomial S(x,y) of degree t such that for every k =1,...,t+ 1 it holds that

S(z,ar) = fr(x). (2.5.1)
Proof: Define the bivariate polynomial S(z,y) via the Lagrange interpolation:
t+1

];ﬁi(y —aj)
= e )

It is easy to see that S(z,y) has degree t. Moreover, for every k = 1,...,¢+ 1 it holds that:
t+1

St = Xl [P

[ (o — ) [1zi(ok — aj)
- g). =27 T 3 e L
ful) [1z (o — ) t;}\{k}f( 2 Hﬁél(ai — )

= fk(l') +0= fk(.%')

and S(x,y) therefore satisfies Eq. (2.5.1)). It remains to show that S is unique. Assume that there
exist two different ¢-degree bivariate polynomials Si(z,y) and So(x,y) that satisfy Eq. (2.5.1)).

43



Define the polynomial

t t
def 1,.J
R(J:?y) = Sl(J:?y) - SQ(LU,y) = ZZT}JQJ y]'
1=0 j=0

We will now show that R(x,y) = 0. First, for every k € [t + 1] it holds that:

t
R($7O‘k’) = Z ri,jxi(ak)j = Sl(waak’) - 52('r704k) = fk(x) - fk(x) = Oa
i,j—0

where the last equality follows from Eq. (2.5.1). We can rewrite the univariate polynomial
R(z, ay) as
t t

R(z,ap) = Z Zri,j(ak)j -zt

i=0 j=0

As we have seen, R(x,a) = 0 for every z. Thus, its coefficients are all zeroesﬁ implying that
for every fixed i € [t + 1] it holds that E;:o 7;.;(ax)? = 0. This in turn implies that for every
fixed ¢ € [t + 1], the polynomial h;(z) = Z;ZO r; ;@7 is zero for t + 1 points (i.e., the points
ai,...,ou41), and so hi(z) is also the zero polynomial. Thus, its coefficients r; ; equal 0 for
every j € [t + 1]. This holds for every fixed ¢, and therefore for every i, j € [t + 1] we have that
ri; = 0. We conclude that R(z,y) = 0 for every « and y, and hence S (z,y) = Sa(z,y). [ |

Verifiable secret sharing using bivariate polynomials. The verifiable secret-sharing pro-
tocol works by embedding a random univariate degree-t polynomial ¢(z) with ¢(0) = s into the
bivariate polynomial S(z,y). Specifically, S(x,y) is chosen at random under the constraint that
S(0, z) = q(z); the values g(a1), ..., q(ay) are thus the univariate Shamir-shares embedded into
S(z,y). Then, the dealer sends each party P; two univariate polynomials as intermediate shares;
these polynomials are f;j(z) = S(z, ;) and g;(y) = S(wi,y). The “actual” share of each party
is fi(0), which is a share of a univariate polynomial, as in the semi-honest case. However, the
two polynomials are given in order perform the verification and consistency of the sharing.

By the definition of these polynomials, it holds that f;(a;) = S(aj, ;) = gj(0s), and
gi(aj) = S(ay,a5) = fj(cy). Thus, any two parties P; and P; can verify that the univariate
polynomials that they received are pairwise consistent with each other by checking that f;(a;) =
gj(a;) and g;(a;) = fj(a;). As we shall see, this prevents the dealer from distributing shares
that are not consistent with a single bivariate polynomial. Finally, party P; defines its output
(i.e., “Shamir share”) as f;(0) = ¢(o), as required.

We begin by proving that pairwise consistency checks as described above suffice for uniquely
determining the bivariate polynomial S. Specifically:

Claim 2.5.3 Let K C [n] be a set of indices such that |K| >t + 1, let {fr(x), gx(y) }rerx be a
set of pairs of degree-t polynomials, and let {ay}rex be distinct non-zero elements in F. If for

3In order to see that all the coefficients of a polynomial which is identical to zero are zeroes, let p(x) =
ZE:O a;x", where p(z) = 0 for every z. Let @ be a vector of the coefficients of p, and let § be some vector of
size t + 1 of some distinct non-zero elements. Let Vg be the Vandermonde matrix for E Then, VE -d =0, and

therefore @ = V/{l -0=0.

44



every i,j € K, it holds that fi(c) = gj(), then there exists a unique bivariate polynomial S
of degree-t in both variables such that fi(x) = S(x,ar) and gr(y) = S(ak,y) for every k € K.

Proof: Let L be any subset of K of cardinality exactly ¢t + 1. By Claim there exists a
unique bivariate polynomial S(x,y) of degree-t in both variables, for which S(z, ay) = fo(x) for
every ¢ € L. We now show if f;(a;) = gj(a;) for all 4, j € K, then for every k € K it holds that
fi(@) = Sz, ar) and gi(y) = S(ax, y).

By the consistency assumption, for every k € K and ¢ € L we have that gi(ay) = fo(ag).
Furthermore, by the definition of S from above we have that f;(ax) = S(ag,ar). Thus, for all
k € K and ¢ € L it holds that gx(cay) = S(ag, ). Since both gi(y) and S(ag,y) are degree-t
polynomials, and gx(ay) = S(agx, ) for t + 1 points ay, it follows that gi(y) = S(ak,y) for
every k € K.

It remains to show that fi(z) = S(z,a) for all k € K (this trivially holds for all k € L
by the definition of S from above, but needs to be proven for £ € K \ L). By consistency,
for every j,k € K, we have that fi(a;) = gj(ay). Furthermore, we have already proven that
gj(a) = S(aj,ay) for every j,k € K. Therefore, fr(a;) = S(oj,ay) for every j k € K,
implying that fx(x) = S(x,ax) for every k € K (because they are degree-t polynomials who
have the same value on more than ¢ points). This concludes the proof. [ |

We now proceed to prove a “secrecy lemma” for bivariate polynomial secret-sharing. Loosely
speaking, we prove that the shares {f;(z), g:(v)}icr (for |I| < t) that the corrupted parties
receive do not reveal any information about the secret s. In fact, we show something much
stronger: for every two degree-t polynomials ¢; and g2 such that ¢;(c;) = g2(c;) = f;(0) for
every i € I, the distribution over the shares {f;(x), gi(y) }scr received by the corrupted parties
when S(z,y) is chosen based on ¢;(z) is identical to the distribution when S(z,y) is chosen
based on ¢2(z). An immediate corollary of this is that no information is revealed about whether
the secret equals s; = ¢1(0) or s2 = ¢2(0).

Claim 2.5.4 Let ay,...,a, € F be n distinct non-zero values, let I C [n] with |I| <t, and let
q1 and g2 be two degree-t polynomials over F such that q1(c;) = qa(e) for every i € I. Then,

{10, S1(2.00), S1(00 9D} ey } = { {0 Salw,00). Sl )}y |

where S1(z,y) and So(x,y) are degree-t bivariate polynomial chosen at random under the con-
straints that S1(0,z) = q1(z) and S2(0, z) = ga2(2), respectively.

Proof: We begin by defining probability ensembles S; and Sy, as follows:

S1 = {{(z‘,Sl(x, o), S (i, y) Yier | S1€r Bt st.51(0,2) = q1(2)

Sy = {{(ia Sa(w, 0), Sa(eui, y)) bier | Sz €r B2OT st 85(0,2) = QZ(Z)}
Given this notation, an equivalent formulation of the claim is that S; = S,.

In order to prove that this holds, we first show that for any set of pairs of degree-t polynomials
Z = A{(4i, fi(x),9i(y)) }icr, the number of bivariate polynomials in the support of S; that are
consistent with Z equals the number of bivariate polynomials in the support of So that are
consistent with Z, where consistency means that f;(z) = S(z,«;) and g;(y) = S, y).

45



First note that if there exist 4, j € I such that fj(«;) # gj(o;) then there does not exist any
bivariate polynomial in the support of S; or Sy that is consistent with Z. Also, if there exists
an ¢ € I such that f;(0) # ¢1(c;), then once again there is no polynomial from S; or Sy that is
consistent (this holds for S; since f;(0) = S(0, ;) = qi(a;) should hold, and it holds similarly
for Sy because ¢q1(a;) = g2(a;) for all ¢ € I).

Let Z = {(4, fi(z), gi(y)) }icr be a set of degree-t polynomials such that for every i, € I it
holds that f;(a;) = g;(a;), and in addition for every ¢ € I it holds that f;(0) = ¢1(a;) = g2(cy).
We begin by counting how many such polynomials exist in the support of S;. We have that Z
contains |I| degree-t polynomials {f;(x)}icr, and recall that ¢ + 1 such polynomials f;(x) fully
define a degree-t bivariate polynomial. Thus, we need to choose ¢ + 1 — |I| more polynomials
fj(x) (j # ) that are consistent with ¢;(z) and with {g;(y)}ics. In order for a polynomial f;(x)
to be consistent in this sense, it must hold that f;(o;) = gi(«a;) for every i € I, and in addition
that f;(0) = ¢i(a;). Thus, for each such fj(x) that we add, |I| + 1 values of f; are already
determined. Since the values of f; at ¢+ 1 points determine a degree-¢ univariate polynomial, it
follows that an additional ¢t — |I| points can be chosen in all possible ways and the result will be
consistent with Z. We conclude that there exist (|F|*~/1 ‘)(t+1—\1|)
to S; that will be consistent. (Note that if |[I| = ¢ then there is just one way.) The important
point here is that the exact same calculation holds for S5 chosen according to Sg, and thus

ways to choose 51 according

exactly the same number of polynomials from S; are consistent with Z as from Ss.

Now, let Z = {(4, fi(x), 9i(y)) }scr be a set of |I| pairs of univariate degree-t polynomials. We
have already shown that the number of polynomials in the support of S; that are consistent with
Z equals the number of polynomials in the support of Sy that are consistent with Z. Since the
polynomials S; and Ss (in S; and Se, respectively) are chosen randomly among those consistent
with Z, it follows that the probability that Z is obtained is exactly the same in both cases, as
required. [ |

2.5.4 The Verifiable Secret Sharing Protocol

In the VSS functionality, the dealer inputs a polynomial g(x) of degree ¢, and each party P,
receives its Shamir share ¢(«;) based on that polynomial. The “verifiable” part is that if ¢ is of
degree greater than ¢, then the parties reject the dealer’s shares and output L. The functionality
is formally defined as follows:

FUNCTIONALITY 2.5.5 (The Fygs functionality)

Fuag (q(x),)\,...,/\)z{ Ei(fl_).:j)’q(a”)) gt}ierig?slgt

Observe that the secret s = ¢(0) is only implicitly defined in the functionality; it is however
well defined. Thus, in order to share a secret s, the functionality is used by having the dealer
first choose a random polynomial ¢ €g P! (where P*! is the set of all degree-t univariate
polynomials with constant term s) and then run Fygg with input ¢(x).

We implement the sharing of univariate polynomial using a different verifiable sharing func-
tionality for distribution a bivariate polynomial. This gives a modular exposition of the pro-
tocol. In addition, sharing bivariate polynomial is an important building block in our con-
struction of the simpler multiplication protocol, that we will describe in Chapter |3} Thus, this

46



sub-functionality is important in its own right.

In functionality for distributing bivariate polynomial (denote by F vss), the dealer holds a
bivariate polynomial S(z,y) of degree-t in both variables, and each party P; receives its shares
on this polynomial — f;(z), g;(y) based on S. The trusted party verifies that if the S is of
degree greater than t, then the parties reject and output L. We define the functionality ﬁvss
as follows:

FUNCTIONALITY 2.5.6 (The ﬁvss functionality)

ﬁvss(s(x,y)J\,---,)\) _ { Egl(x):il)(y)%’(fn(x)7gn(y))) gt}ii%v(ig <t ,

where f;(z) = S(z,a;), g:(y) = S(e,y).

We describe the protocol for sharing a bivariate polynomial in the next subsection.

Implementing Fygs in the ﬁvsg-hybrid model. We now proceed to the protocol that
implements sharing of a univariate polynomial using a functionality for sharing a bivariate
polynomial. The protocol is very simple, and there is no interaction between the parties rather
than the invocation of ﬁvgg—functionality. Specifically, the dealer holds as input a polynomial
q(z) and chooses a bivariate polynomial S(z,y) of degree-t uniformly at random under the
constraint that S(0,z) = ¢(z). The parties then invoke the Fygs functionality, where the
dealer inputs S(x,y). Then, upon receiving outputs f;(z), g:(y), the parties simply outputs
£:(0) = S(0, ;) = q(a;). By the security of Fyygg, S(0, 2) is a univariate polynomial of degree-t,
and thus ¢(z) is well-defined. See Protocol

PROTOCOL 2.5.7 (Securely Computing Fygs in the ﬁvss-hybrid model)

e Input: The dealer D = P holds a polynomial g(z) of degree at most ¢ (if not, then the
honest dealer just aborts at the onset). The other parties P, ..., P, have no input.

e Common input: The description of a field F and n non-zero elements aq, ..., a, € F.
e The protocol:

1. The dealer selects a uniformly distributed bivariate polynomial S(z,y) € B4,
under the constraint that S(0, z) = ¢(2).

2. The parties invoke the Fy gg functionality where P; is dealer and inputs S(z,y),
each other party has no input.

e Output If the output of Fygs is (fi(x),gi(y)), output f;(0). Otherwise, output L.

Theorem 2.5.8 Let t < n/3. Then, Protocol is t-secure for the Fygg functionality in
the Fygs-hybrid model, in the presence of a static malicious adversary.

Proof: We separately deal with the case that the dealer is honest and the case where the
dealer is corrupted. When the dealer is corrupted, security is a simple reduction to the security
of ﬁvgs, and the guarantee that the outputs of ivss are shares on bivariate polynomial of
degree-t. When the dealer is honest, a rather more involved argument is needed. In particular,

“Note that Fysg denotes sharing a bivariate polynomial, whereas Fy ss denotes sharing a univariate polyno-
mial.

47



giving the output shares (which are shares of a univariate polynomial), the simulator has to
give shares of a bivariate polynomial to the corrupted parties. However, using Claim the
simulator can just choose this bivariate polynomial uniformly at random.

Case 1 — the Dealer is Honest

In the ideal execution, the dealer sends g(z) to the trusted party computing Fygs and each
honest party P; receives ¢(c;), outputs it, and never outputs L. The corrupted parties have no
input and so the adversary has no influence on the output of the honest parties.

The simulator SZM.
o STM internally invokes A on the auziliary input z.

e Interacting with the trusted party: SZM receives the output of the corrupted parties

{q(i) }ier-

o STM chooses any polynomial ¢'(x) of degree-t under the constraint that: ¢'(cv) = q(ay)
for every ¢ € I.

e STM chooses a bivariate polynomial S'(x,y) of degree-t in both variables under the con-
straint that S'(0,z) = ¢'(z).

e SIM internally gives the adversary A the bivariate shares {S'(x, «;), S (i, y) }icr as the
output of Fygs functionality, outputs whatever A outputs and halts.

We need to show that the joint distribution of the outputs of the honest parties and the
view of the adversary is identical in both executions. It is clear that the output of the honest
parties is the same in both executions, since the dealer is honest. In the real execution, the
input of the dealer is always a degree-t polynomial, and by the security of ﬁvsg the output of
each honest party is f;(0) = S(0, ;) = g(c;). In the ideal execution, the output of the honest
parties is clearly ¢(a;), as required. Next, the view of the parties is simply the output of the
ﬁvsg—functionality. Using Cleaim the distribution of the shares on the random bivariate
polynomial S(x,y) (chosen in the real execution), is identical to the distribution of the shares of
the random bivariate polynomial S’(z,y) (chosen in the ideal execution), since the underlying
univariate polynomials ¢(z), ¢’ (z), respectively, satisfy ¢(o;) = ¢/(a;) for every i € I. This
concludes the proof for honest dealer.

Case 2 — the Dealer is Corrupted

This case is straightforward. The simulator receives from the corrupted dealer the polynomial
S(z,y) — its input to the (internally simulated) Fygs. In case S(z,y) is valid, it sends the
univariate polynomial ¢(y) df g (0,y) to the trusted parties, and each honest party P; receives
its shares on S(xz,y) and outputs ¢(c;). In case S(x,y) is invalid, the simulator sends the trusted
party an invalid polynomial %! (i.e., univariate polynomial with degree greater than t), and
each honest party outputs 1. This is exactly as in the real execution — where here ﬁvsg checks
the polynomial and gives the parties their (bivariate) shares on this polynomial, and then each
party outputs its share f;(0). For completeness, we formally describe the simulator SZM.

48



The simulator SZM.
o STM internally invokes the adversary A on the auxiliary input z.

o STM internally receives from A the input S(x,y) of the dealer Py to the functionality
Fyss.

o If S(x,y) is of degree-t in both variables, STM sends the univariate polynomial S(0, z)
to the trusted party computing Fygs, and gives the adversary A the bivariate shares
{S(ei,y), S(z, ) bier as the outputs of the simulated Fygs functionality.

o If S(x,y) is of degree higher than t, STM sends x?* (i.e., an invalid polynomial) to the
trusted party computing Fygg, and gives the adversary the values {L}icr as outputs from

Fygs.

o STM outputs whatever A outputs and halts.

2.5.5 Sharing a Bivariate Polynomial

We now proceed to the implementation of ﬁvgs functionality. We recall that the functionality
is defined as follows (Functionality [2.5.6)):

((fl(x)v gl(y))’ ) (fn(x)a gn(y))) if deg(S) <t

F A =
VSS(S(J’, y)7 A, ) )\) { (J_, e J_) otherwise ’

where f;(z) = S(z, i), gi(y) = S(c, y).

The protocol idea. We present the VSS protocol of BGW with the simplification of the
complaint phase suggested by [45]. The protocol uses private point-to-point channels between
each pair of parties and an authenticated broadcast channel (meaning that the identity of the
broadcaster is given).

The input of the dealer is the polynomial S(z,y) of degree-t in both variables. The dealer
then sends each party P; two polynomials that are derived from S(x,y): the polynomial f;(x) =
S(z,a;) and the polynomial ¢;(y) = S(as,y). As we have shown in Claim t pairs of
polynomials f;(z), g;(y) received by the corrupted parties reveal nothing about the constant
term of S (i.e., the secret being shared). In addition, given these polynomials, the parties can
verify that they have consistent inputs. Specifically, since g;(a;) = S(c, ;) = fj(cy), it follows
that each pair of parties P; and P; can check that their polynomials fulfill f;(a;) = g;(ay)
and g;(a;) = fj(oy) by sending each other these points. If all of these checks pass, then by
Claim it follows that all the polynomials are derived from a single bivariate polynomial
S(z,y), and thus the sharing is valid and the secret is fully determined.

The problem that arises is what happens if the polynomials are not all consistent; i.e., if
P;j receives from P; values fi(«;), gi(a;) such that fj(ay) # gi(ej) or gj(as) # fi(ey). This can
happen if the dealer is corrupted, or if P; is corrupted. In such a case, P; issues a “complaint”
by broadcasting its inconsistent values (j, 4, fj(c), g;j(a;)) defined by the shares f;(z), g;(y) it
received from the dealer. Then, the dealer checks if these values are correct, and if they are

49



not then it is required to broadcast the correct polynomials for that complaining party. We
stress that in this case the dealer broadcasts the entire polynomials f;j(x) and g¢;(y) defining
Pj’s share, and this enables all other parties P} to verify that these polynomials are consistent
with their own shares, thus verifying their validity. Note that if the values broadcast are correct
(e.g., in the case that the dealer is honest and P; sent P; incorrect values) then the dealer does
not broadcast P;’s polynomials. This ensures that an honest dealer does not reveal the shares
of honest parties.

This strategy is sound since if the dealer is honest, then all honest parties will have consistent
values. Thus, the only complaints will be due to corrupted parties complaining falsely (in which
case the dealer will broadcast the corrupted parties polynomials, which gives them no more
information), or due to corrupted parties sending incorrect values to honest parties (in which
case the dealer does not broadcast anything, as mentioned). In contrast, if the dealer is not
honest, then all honest parties will reject and output L unless it re-sends consistent polynomials
to all, thereby guaranteeing that S(z,y) is fully defined again, as required. This complaint
resolution must be carried out carefully in order to ensure that security is maintained. We defer
more explanation about how this works until after the full specification, given in Protocol

50



PROTOCOL 2.5.9 (Securely Computing ﬁvss)

e Input: The dealer D = P; holds a bivariate polynomial S(z,y) of degree at most ¢ in
both variables (if not, then the honest dealer just aborts at the onset). The other parties
Ps, ..., P, have no input.

e Common input: The description of a field F and n non-zero elements a;,...,a, € F.
e The protocol:

1. Round 1 (send shares) — the dealer:

(a) For every i € {1,...,n}, the dealer defines the polynomials f;(x) & S(x, ;) and

9i(y) def S(a,y). It then sends to each party P; the polynomials f;(z) and g;(y).
2. Round 2 (exchange subshares) — each party P;:

(a) Store the polynomials f;(x) and g;(y) that were received from the dealer. (If f;(x)
or g;(y) is of degree greater than ¢ then truncate it to be of degree ¢.)

(b) For every j € {1,...,n}, send f;(c;) and g;(c;) to party P;.

3. Round 3 (broadcast complaints) — each party P;:
(a) For every j € {1,...,n}, let (u;,v;) denote the values received from player P; in
Round 2 (these are supposed to be u; = f;(a;) and v; = gj()).
If u; # gi(cyj) or vj # fi(ay), then broadcast complaint(z, 7, fi(a;), gi(e)).
(b) If no parties broadcast a complaint, then every party P; outputs f;(0) and halts.
4. Round 4 (resolve complaints) — the dealer: For every complaint message received,
do the following;:

(a) Upon viewing a message complaint(i, j,u,v) broadcast by P;, check that u =
S(aj,a;) and v = S(ay, oj). (Note that if the dealer and P; are honest, then it
holds that u = f;(a;) and v = g;(a;).) If the above condition holds, then do
nothing. Otherwise, broadcast reveal(s, f;(z), g:(y))-

5. Round 5 (evaluate complaint resolutions) — each party P;:

(a) For every j # k, party P; marks (j,k) as a joint complaint if it viewed two
messages complaint(k, j,u1,v1) and complaint(j, k, ug, v2) broadcast by P, and
Pj, respectively, such that u; # vp or vi # ug. If there exists a joint com-
plaint (j,%) for which the dealer did not broadcast reveal(k, fx(x), gx(y)) nor

reveal(j, f;(x), g;(y)), then go to Step [6] (and do not broadcast consistent). Oth-
erwise, proceed to the next step.
(b) Consider the set of reveal(j, fj(x), g;(y)) messages sent by the dealer (truncating
the polynomials to degree t if necessary as in Step :
i. If there exists a message in the set with j = i then reset the stored polynomials
fi(x) and g;(y) to the new polynomials that were received, and go to Step [f]
(without broadcasting consistent).
ii. If there exists a message in the set with j # ¢ and for which f;(«o;) # g;(v)
or gi(a;) # fi(a), then go to Step [6] (without broadcasting consistent).
If the set of reveal messages does not contain a message that fulfills either one of
the above conditions, then proceed to the next step.
(¢) Broadcast the message consistent.

6. Output decision (if there were complaints) — each party P;: If at least n — ¢
parties broadcast consistent, output (f;(x),gi(y)). Otherwise, output L.

The security of Protocol Before we prove that Protocol is t-secure for the ﬁvgs
functionality, we present an intuitive argument as to why this holds. First, consider the case that
the dealer is honest. In this case, all of the polynomials received by the parties are consistent

o1



(i.e., for every pair P;, P; it holds that f;(c;) = gj(cu) and fj(e;) = gi(a;)). Thus, an honest
party P; only broadcasts a complaint if a corrupted party sends it incorrect values and the
values included in that complaint are known already to the adversary. However, if this occurs
then the dealer will not send a reveal of the honest party’s polynomials (because its values are
correct). Furthermore, if any corrupted party P; broadcasts a complaint with incorrect values
(u,v), the dealer can send the correct reveal message (this provides no additional information to
the adversary since the reveal message just contains the complainant’s shares). In such a case,
the check carried out by each honest party P; in Step will pass and so every honest party
will broadcast consistent. Thus, at least n—t parties broadcast consistent (since there are at least
n — t honest parties) and so every honest party P; outputs fj(x) = S(z, ®;),9;(y) = S(e;j,y).

Next, consider the case that the dealer is corrupted. In this case, the honest parties may
receive polynomials that are not consistent with each other; that is, honest P; and P, may receive
polynomials f;(x),g;(y) and fi(x), gx(y) such that either f;(ax) # gr(ey) or fi(a;) # gj(ax).
However, in such a case both honest parties complain, and the dealer must send a valid reveal
message (in the sense described below) or no honest party will broadcast consistent. In order
for n — t parties to broadcast consistent, there must be at least (n —t) —t = ¢t 4+ 1 honest parties
that broadcast consistent. This implies that these ¢t + 1 or more honest parties all received
polynomials f;(z) and g;(y) in the first round that are pairwise consistent with each other and
with all of the “fixed” values in the reveal messages. Thus, by Claim the polynomials
fj(z) and g;(y) of these t + 1 (or more) parties are all derived from a unique degree-t bivariate
polynomial S(z,y), meaning that f;(x) = S(z,a;) and g;(y) = S(aj,y). (The parties who
broadcasted consistent are those that make up the set K in Claim m)

The above suffices to argue that the polynomials of all the honest parties that broadcast
consistent are derived from a unique S(x,y). It remains to show that if at least ¢ + 1 honest
parties broadcast consistent, then the polynomials of all the other honest parties that do not
broadcast consistent are also derived from the same S(x,y). Assume that this is not the case.
That is, there exists an honest party P; such that f;j(z) # S(z, ;) (an analogous argument
can be made with respect to g;(z) and S(«aj,y)). Since fj(x) is of degree-t this implies that
fijlag) = S(ag,a;) for at most ¢ points . Thus, P;’s points are pairwise consistent with at
most ¢ honest parties that broadcast consistent (since for all of these parties gi(y) = S, y)).
This implies that there must have been a joint complaint between P; and an honest party
P, who broadcasted consistent, and so this complaint must have been resolved by the dealer
broadcasting polynomials f;(x) and g;(y) such that f;(ax) = gx(c ) for all P, who broadcasted
consistent (otherwise, they would not have broadcasted consistent). We now proceed to the
formal proof.

Theorem 2.5.10 Lett < n/3. Then, Protocol 1s t-secure for the ﬁvsg functionality in
the presence of a static malicious adversary.

Proof: Let A be an adversary in the real world. We show the existence of a simulator SZM
such that for any set of corrupted parties I and for all inputs, the output of all parties and
the adversary A in an execution of the real protocol with A is identical to the outputs in an
execution with SZM in the ideal model. We separately deal with the case that the dealer is
honest and the case that the dealer is corrupted. Loosely speaking, when the dealer is honest
we show that the honest parties always accept the dealt shares, and in particular that the
adversary cannot falsely generate complaints that will interfere with the result. In the case that

592



the dealer is corrupted the proof is more involved and consists of showing that if the dealer
resolves complaints so that at least n — t parties broadcast consistent, then this implies that at
the end of the protocol all honest parties hold consistent shares, as required.

Case 1 — the Dealer is Honest

In this case in an ideal execution, the dealer sends S(x,y) to the trusted party and each honest
party P; receives S(z,a;),S(a;,y) from the trusted party, outputs it, and never outputs L.
Observe that none of the corrupted parties have input and so the adversary has no influence on
the output of the honest parties. We begin by showing that this always holds in a real ezecution
as well; i.e., in a real execution each honest party P; always outputs S(x, a;), S(;,y) and never
outputs L.

Since the dealer is honest, its input is always a valid bivariate polynomial and sends
each party the prescribed values. In this case, an honest party P; always outputs either
S(x,a;),S(aj,y) or L. This is due to the fact that its polynomial f;(x) will never be changed,
because it can only be changed if a reveal(j, f}(x), g;(y)) message is sent with fi(z) # f;().
However, an honest dealer never does this. Thus, it remains to show that P; never outputs
L. In order to see this, recall that an honest party outputs bivariate shares and not L if and
only if at least n — ¢ parties broadcast consistent. Thus, it suffices to show that all honest par-
ties broadcast consistent. An honest party P; broadcasts consistent if and only if the following
conditions hold:

1. The dealer resolves all conflicts: Whenever a pair of complaint messages complaint(k, ¢, w1, v1)
and complaint(¢, k, ua, v2) were broadcast such that u; # v and vy # ug for some k and
¢, the dealer broadcasts a reveal message for £ or k or both in Step (or else P; would
not broadcast consistent as specified in Step .

2. The dealer did not broadcast reveal(j, f;(x), gj(y)). (See Step [5(b)i)

3. Every revealed polynomial fits P;’s polynomials: Whenever the dealer broadcasts a mes-
sage reveal(k, fy(z), gi(y)), it holds that ge(ay) = fi(ax) and filay) = gy(ar). (See

Step B(b)ill)

Since the dealer is honest, whenever there is a conflict between two parties, the dealer will
broadcast a reveal message. This is due to the fact that if u; # ve or us # vy, it cannot hold
that both (ui,v1) and (ug,v2) are consistent with S(z,y) (i.e., it cannot be that u; = S(ay, ax)
and v; = S(ag, ay) as well as ug = S(ag,ay) and vo = S(ay,ax)). Thus, by its instructions,
the dealer will broadcast at least one reveal message, and so condition (1) holds. In addition,
it is immediate that since the dealer is honest, condition (3) also holds. Finally, the dealer
broadcasts a reveal(j, f;(x), g;(y)) message if and only if P; sends a complaint with an incorrect
pair (u,v); i.e., P; broadcast (j, k, u,v) where either u # fj(og) or v # g;(ay). However, since
both the dealer and P; are honest, any complaint sent by P; will be with the correct (u,v)
values. Thus, the dealer will not broadcast a reveal of P;’s polynomials and condition (2) also
holds. We conclude that every honest party broadcasts consistent and so all honest parties P;
output f;(x),g;(y), as required.

Since the outputs of the honest parties are fully determined by the honest dealer’s input, it
remains to show the existence of an ideal-model adversary/simulator SZM that can generate the

93



view of the adversary A in an execution of the real protocol, given only the outputs f;(x), gi(y)
of the corrupted parties P; for every i € I.

The simulator SZTM:
o STM invokes A on the auxiliary input z.
e Interaction with the trusted party: STM receives the output values { fi(x), 9:(y) }icr-

e Generating the view of the corrupted parties: SZM chooses any polynomial S'(x,y)
under the constraint that S'(xz,0;) = fi(x) and S (eu,y) = gi(y) for every i € I (Such
a polynomial always exists. In particular, fi(x),g;(y) are derived from such a bivariate
polynomial). Then, STM runs all honest parties (including the honest dealer) in an
interaction with A, with the dealer input polynomial as S’ (x,y).

o STM outputs whatever A outputs, and halts.

We now prove that the distribution generated by SZM is as required. First, observe that
all that the corrupted parties see in the simulation by SZM is determined by the adversary and
the sequence of polynomial pairs {(fi(z), gi(y)) }ier, where f;(x) and g;(y) are selected based on
S’(x,y), as described in the protocol. In order to see this, note that the only information sent
after Round 1 are parties’ complaints, complaint resolutions, and consistent messages. However,
when the dealer is honest any complaint sent by an honest party P; can only be due it receiving
incorrect (u;,v;) from a corrupted party P; (i.e., where either u; # f;j(c;) or v; # g;(a;) or
both). Such a complaint is of the form (j,1, fj(a;), g;j(c;)), which equals (4,1, gi(;), fi(e))
since the dealer is honest, and so this complaint is determined by (f;(x), gi(x)) where ¢ € I. In
addition, since the honest parties’ complaints always contain correct values, the dealer can only
send reveal messages reveal(i, fi(z), gi(xz)) where i € I; once again this information is already
determined by the polynomial pairs of Round 1. Thus, all of the messages sent by SZM in
the simulation can be computed from the sequence {(fi(x), gi(y))}icr only. Next, observe that
the above is also true for a real protocol execution as well. Thus, the only difference between
the real and ideal executions is whether the sequence {(fi(z),g:(y)}icr is based on the real
polynomial S(x,y) or the simulator-chosen polynomial S’(z,y). However, by the way S'(z,y)
is chosen in the simulation, these polynomials are exactly the same. This completes the proof
of the case that the dealer is honest.

Case 2 — the Dealer is Corrupted

In this case, the adversary A controls the dealer. Briefly speaking, the simulator SZM just
plays the role of all honest parties. Recall that all actions of the parties, apart from the dealer,
are deterministic and that these parties have no inputs. If the simulated execution is such
that the parties output L, the simulator sends an invalid polynomial (say S(z,y) = 2?!) to
the trusted party. Otherwise, the simulator uses the fact that it sees all “shares” sent by A to
honest parties in order to interpolate and find the polynomial S(x,y), which it then sends to
the trusted party computing the functionality. That is, here the simulator invokes the trusted

party after simulating an execution of the protocol. We now formally describe the simulator:

o4



The simulator SZM:
1. SIM invokes A on its auxiliary input z.

2. SIM plays the role of all the n — |I| honest parties interacting with A, as specified by the
protocol, running until the end.

3. Let num be the number of (honest and corrupted) parties P; that broadcast consistent in
the simulation:

(a) If num < n —t, then STM sends the trusted party the polynomial S'(x,y) = 2% as
the dealer input (this causes the trusted party to send L as output to all parties in
the ideal model).

(b) If num > n—t, then SIM defines a polynomial S'(x,y) as follows. Let K C [n]\T be
the set of all honest parties that broadcast consistent in the simulation. STM finds
the unique degree-t bivariate polynomial S" that is guaranteed to ewist by Claimw
for this set K (later we will show why Claim[2.5.9 can be used). SIM sends S'(z,y)
to the trusted party (we stress that S’(x,y) is not necessarily equal to the polynomial
S(z,y) that the dealer — equivalently Py — receives as input).

SIM receives the output {q'(a;)}icr of the corrupted parties from the trusted party.
(Since these values are already known to SIM, they are not used. Nevertheless,
SIM must send ¢'(x) to the trusted party since this results in the honest parties
receiving their output from Fygs.)

4. SITM halts and outputs whatever A outputs.

Observe that all parties, as well as the simulator, are deterministic. Thus, the outputs of all
parties are fully determined both in the real execution of the protocol with A and in the ideal
execution with SZM. We therefore show that the outputs of the adversary and the parties in
a real execution with A are equal to the outputs in an ideal execution with SZM.

First, observe that the simulator plays the role of all the honest parties in an ideal execution,
following the exact protocol specification. Since the honest parties have no input, the messages
sent by the simulator in the ideal execution are exactly the same as those sent by the honest
parties in a real execution of the protocol. Thus, the value that is output by A in a real
execution equals the value that is output by A in the ideal execution with SZM. It remains to
show that the outputs of the honest parties are also the same in the real and ideal executions.
Let ouTPUT; denote the outputs of the parties P; for all j € J. We prove:

Claim 2.5.11 Let J = [n]\ I be the set of indices of the honest parties. For every adversary A
controlling I including the dealer, every polynomial S(x,y) and every auziliary input z € {0,1}*

for A, it holds that:
OUTPUT (REALmA(z)J (S(x,y), Ay ..oy )\)> = OUTPUT (IDEALR,, ¢ s(2).1 (S(2,9), A, ..., A)) .

Proof: Let ¥ = (S(z,y), A, ..., ) be the vector of inputs. We separately analyze the case that
in the real execution some honest party outputs L and the case where no honest party outputs
1.

95



Case 1: There exists a j € J such that oUTPUT;(Z) = L. We show that in this case
all the honest parties output L in both the real and ideal executions. Let j be such that
OUTPUTj(REALn,A(z),I(f)) = 1. By the protocol specification, an honest party P; outputs L
(in the real world) if and only if it receives less than n —¢ “consistent” messages over the broad-
cast channel. Since these messages are broadcast, it holds that all the parties receive the same
messages. Thus, if an honest P; output L in the real execution, then each honest party received
less than n — ¢ such “consistent” messages, and so every honest party outputs L (in the real
execution).

We now claim that in the ideal execution, all honest parties also output L. The output of
the honest parties in the ideal execution are determined by the trusted third party, based on
the input sent by SZM. It follows by the specification of STM that all honest parties output
L if and only if STM sends 2% to the trusted third party. As we have mentioned, the simulator
SZIM follows the instructions of the honest parties exactly in the simulation. Thus, if in a real
execution with A less than n — ¢ parties broadcast consistent, then the same is also true in the
simulation with SZM. (We stress that ezactly the same messages are sent by A and the honest
parties in a real protocol execution and in the simulation with SZM.) Now, by the instructions
of STM, if less than n — t parties broadcast consistent, then num < n — ¢, and SZTM sends
S(z,y) = x?* to the trusted party. We conclude that all honest parties output L in the ideal
execution as well.

Case 2: For every j € J it holds that OUTPUTj(REALmA(Z)J(:E’)) # 1. By what we have
discussed above, this implies that in the simulation with STM, at least n — t parties broadcast
consistent. Since n > 3t + 1 this implies that at least 3t + 1 — ¢ > 2¢ 4+ 1 parties broadcast
consistent. Furthermore, since there are at most ¢ corrupted parties, we have that at least ¢t +1
honest parties broadcast consistent. Recall that an honest party P; broadcasts consistent if and
only if the following conditions hold (cf. the case of honest dealer):

1. The dealer resolves all conflicts (Step [6alof the protocol).
2. The dealer did not broadcast reveal(j, fj(x), g;(y)) (Step of the protocol).

3. Every revealed polynomial fits P;’s polynomials (Step of the protocol).

Let K C [n] be the set of honest parties that broadcast consistent as in Step of SIM.
For each of these parties the above conditions hold. Thus, for every i,j € K it holds that
filaj) = g;(0y) and so Claim can be applied. This implies that there exists a unique
bivariate polynomial S’(z,y) such that S’(x, ax) = fx(z) and S’ (o, y) = gi(y) for every k € K.
Now, since SZM sends S’(z,y) to the trusted party in an ideal execution, we have that all
honest parties P; output S’(z, o), S'(ej, y) in an ideal execution. We now prove that the same
also holds in a real protocol execution.

We stress that the polynomial S’(z,y) is defined as a deterministic function of the tran-
script of messages sent by A in a real or ideal execution. Furthermore, since the execution
is deterministic, the exact same polynomial S’(z,y) is defined in both the real and ideal ex-
ecutions. It therefore remains to show that each honest party P; outputs S'(z,c;), S (aj,y)
in a real execution. We first observe that any honest party Py for & € K clearly outputs
fr(x) = S (x,an),9k(y) = S’ (o, y). This follows from the fact that by the protocol descrip-
tion, each party P; that does not output L outputs these polynomials. Thus, each such P

outputs (fx(z), gx(v))-

o6



It remains to show that every honest party P; for j ¢ K also outputs S’(z,a;), S (aj,y);
i.e., it remains to show that every honest party P; who did not broadcast consistent also outputs
univariate polynomials that are consistent with S’(z,y) defined by the parties that did broadcast
consistent. Let f(x) and g;(z) be the polynomials that P; holds after the possible replacement
in Step of the protocol (note that these polynomials may be different from the original
polynomials that P; received from the dealer at the first stage). We stress that this party P;
did not broadcast consistent, and therefore we cannot rely on the conditions above. However,
for every party Py (k € K) who broadcast consistent, we are guaranteed that the polynomials
fr(z) and gi(y) are consistent with the values of the polynomials of Pj; that is, it holds that
fr(ay) = gj(ax) and gi(aj) = fi(ax). This follows from the fact that all conflicts are properly
resolved (and so if they were inconsistent then a reveal message must have been sent to make
them consistent). This implies that for ¢ + 1 points k € K, it holds that fj(ax) = S"(a, o),
and so since f]’- () is a polynomial of degree ¢ (by the truncation instruction; see the protocol
specification) it follows that fi(z) = S'(z, ;) (because both are degree-t polynomials in ),
and gg(y) = 5'(e,y), and thus the honest parties j ¢ K also output consistent polynomials on
S’(x,y). This completes the proof. [ |

This completes the proof of Theorem [2.5.10 [ |

Efficiency. We remark that in the case that no parties behave maliciously in Protocol
the protocol merely involves the dealer sending two polynomials to each party, and each party
sending two field elements to every other party. Specifically, if no party broadcasts a complaint,
then the protocol can conclude immediately after Round 3.

2.6 Multiplication in the Presence of Malicious Adversaries

2.6.1 High-Level Overview

In this section, we show how to securely compute shares of the product of shared values, in the
presence of a malicious adversary controlling any ¢ < n/3 parties. We use the simplification of
the original multiplication protocol of [22] that appears in [51]. We start with a short overview
of the simplification of [51] in the semi-honest model, and then we show how to move to the
malicious case.

Assume that the values on the input wires are a and b, respectively, and that each party
holds degree-t shares a; and b;. Recall that the values a; - b; define a (non random) degree-2¢
polynomial that hides a - b. The semi-honest multiplication protocol of [22] works by first re-
randomizing this degree-2¢ polynomial, and then reducing its degree to degree-t while preserving
the constant term which equals a - b (see Section . Recall also that the degree-reduction
works by running the BGW protocol for a linear function, where the first step involves each
party sharing its input by a degree-t polynomial. In our case, the parties’ inputs are themselves
shares of a degree-2t polynomial, and thus each party “subshares” its share.

The method of [51] simplifies this protocol by replacing the two different stages of rerandom-
ization and degree-reduction with a single step. The simplification is based on an observation
that a specific linear combination of all the subshares of all a; - b; defines a random degree-t

57



polynomial that hides a - b (where the randomness of the polynomial is derived from the ran-
domness of the polynomials used to define the subshares). Thus, the protocol involves first
subsharing the share-product values a; - b;, and then carrying out a local linear combination of
the obtained subshares.

The main problem and difficulty that arises in the case of malicious adversaries is that
corrupted parties may not subshare the correct values a;-b;. We therefore need a mechanism that
forces the corrupted parties to distribute the correct values, without revealing any information.
Unfortunately, it is not possible to simply have the parties VSS-subshare their share products
a; - b; and then use error correction to correct any corrupt values. This is due to the fact that
the shares a; - b; lie on a degree-2¢ polynomial, which in turn defines a Reed-Solomon code of
parameters [n, 2t + 1,n — 2t]. For such a code, it is possible to correct up to “=2=1 errors (see
Section ; plugging in n = 3t + 1 we have that it is possible to correct up to % errors.
However, there are ¢ corrupted parties and so incorrect values supplied by more than half of
them cannot be correctedﬁ The BGW protocol therefore forces the parties to distribute correct
values, using the following steps:

1. The parties first distribute subshares of their input shares on each wire (rather than the
product of their input shares) to all other parties in a verifiable way. That is, each party
P; distributes subshares of a; and subshares of b;. Observe that the input shares are
points on degree-t polynomials. Thus, these shares constitute a Reed-Solomon code with
parameters [n, t+1,n—t] for which it is possible to correct up to ¢ errors. There is therefore
enough redundancy to correct errors, and so any incorrect values provided by corrupted
parties can be corrected. This operation is carried out using the Ff}g’gh”e functionality,
described in Section 2.6.4

2. Next, each party distributes subshares of the product a; - b;. The protocol for subsharing
the product uses the separate subshares of a; and b; obtained in the previous step, in order
to verify that the correct product a; - b; is shared. Stated differently, this step involves a
protocol for verifying that a party distributes shares of a; - b; (via a degree-t polynomial),
given shares of a; and shares of b; (via degree-t polynomials). This step is carried out
using the F‘C’g‘g functionality, described in Section In order to implement this step,
we introduce a new functionality called F,,, in Section [2.6.5

3. Finally, after the previous step, all parties verifiably hold (degree-t) subshares of all the
products a;-b; of every party. As described above, shares of the product a - b can be
obtained by computing a linear function of the subshares obtained in the previous step.

Thus, each party just needs to carry out a local computation on the subshares obtained.
This is described in Section 2.6.71

Before we show how to securely compute the F‘%f’gh‘m functionality, we present relevant
preliminaries in Sections and Specifically, in Section we introduce the notion
of corruption-aware functionalities. These are functionalities whose behavior may depend on

SWe remark that in the case of ¢t < n/4 (i.e., n > 4t + 1), the parties can correct errors directly on degree-2t
polynomials. Therefore, the parties can distribute subshares of the products a; - b;, and correct errors on these
shares using (a variant of) the F{9s" ™ functionality directly. Thus, overall, the case of t < n/4 is significantly
simpler, since there is no need for the F"/”Sufgt subprotocol that was mentioned in the second step described above.
A full specification of this simplification is described in Section 2.9} the description assumes familiarity with the
material appearing in Sections [2.6.2] [2.6.3] [2.6.4] and [2.6.7] and therefore should be read after these sections.

o8



which parties are corrupted. We use this extension of standard functionalities in order to prove
the BGW protocol in a modular fashion. Next, in Section [2.6.3] we present a subprotocol for
securely computing matrix multiplication over a shared vector. This will be used in the protocol
for securely computing Ff/g’gh”e, which appears in Section m

2.6.2 Corruption-Aware Functionalities and Their Use

In the standard definition of secure computation (see Section[2.2.2]and [27,53]) the functionality
defines the desired input/output behavior of the computation. As such, it merely receives inputs
from the parties and provides outputs. However, in some cases, we wish to provide the corrupted
parties, equivalently the adversary, with some additional power over the honest parties.

In order to see why we wish to do this, consider the input sharing phase of the BGW protocol,
where each party distributes its input using secret sharing. This is achieved by running n
executions of VSS where in the ith copy party P; plays the dealer with a polynomial ¢;(x)
defining its input. The question that arises now is what security is obtained when running
these VSS invocations in parallel, and in particular we need to define the ideal functionality that
such parallel VSS executions fulfills. Intuitively, the security of the VSS protocol guarantees
that all shared values are independent. Thus, one could attempt to define the “parallel VSS”
functionality as follows:

FUNCTIONALITY 2.6.1 (Parallel VSS (naive attempt) — F{}g¢)

1. The parallel F{} ¢ functionality receives inputs ¢1(z), . . ., ¢, (z) from parties P, ..., Py,
respectively. If P; did not send a polynomial ¢;(x), or deg(g;) > t, then F{}q¢ defines
gi(x) = L for every x.

2. For every ¢ = 1,...,n, the functionality F{}gq sends (¢1(c), ..., qn(c)) to party P;.

This is the naive extension of the single Fygg functionality (Functionality , and at
first sight seems to be the appropriate ideal functionality for a protocol consisting of n parallel
executions of Protocol for computing Fygs. However, we now show that this protocol
does not securely compute the parallel VSS functionality as defined.

Recall that the adversary is rushing, which means that it can receive the honest parties’
messages in a given round before sending its own. In this specific setting, the adversary can see
the corrupted parties’ shares of the honest parties’ polynomials before it chooses the corrupted
parties’ input polynomials (since these shares of the honest parties’ polynomials are all sent to
the corrupted parties in the first round of Protocol . Thus, the adversary can choose the
corrupted parties’ polynomials in a way that is related to the honest parties’ polynomials. To
be specific, let P; be an honest party with input ¢;(z), and let P; be a corrupted party. Then,
the adversary can first see P;’s share ¢;(c;), and then choose ¢;(x) so that ¢;(c;) = ¢;(a;), for
example. In contrast, the adversary in the ideal model with Iy} ¢ cannot achieve this effect since
it receives no information about the honest parties’ polynomials before all input polynomials,
including those of the corrupted parties, are sent to the trusted party. Thus, n parallel executions
of Protocol does not securely compute F{}¢q as defined in Functionality

Despite the above, we stress that in many cases (and, in particular, in the application of
parallel VSS in the BGW protocol) this adversarial capability is of no real concern. Intuitively,
this is due to the fact that ¢;(c;) is actually independent of the constant term ¢;(0) and so mak-
ing gi(c;) depend on ¢;(a;) is of no consequence in this application. Nevertheless, the adversary

99



can set g;(x) in this way in the real protocol (due to rushing), but cannot do so in the ideal
model with functionality F{}¢¢ (as in Functionality . Therefore, the protocol consisting
of n parallel calls to Fygg does not securely compute the Fy; g functionality. Thus, one has to
either modify the protocol or change the functionality definition, or both. Observe that the fact
that in some applications we don’t care about this adversarial capability is immaterial: The
problem is that the protocol does not securely compute Functionality and thus something
has to be changed.

One possible modification to both the protocol and functionality is to run the Fy gg execu-
tions sequentially in the real protocol and define an ideal (reactive) functionality where each
party P; first receives its shares qi(«;),...,¢i—1(c;) from the previous VSS invocations before
sending its own input polynomial g;(x). This solves the aforementioned problem since the ideal
(reactive) functionality allows each party to make its polynomial depend on shares previously
received. However, this results in a protocol that is not constant round, which is a significant
disadvantage.

Another possible modification is to leave the protocol unmodified (with n parallel calls to
Fyss), and change the ideal functionality as follows. First, the honest parties send their input
polynomials ¢;(z) (for every j ¢ I). Next, the corrupted parties receive their shares on these
polynomials (i.e., gj(cy) for every j ¢ I and i € I), and finally the corrupted parties send their
polynomials ¢;(z) (for every i € I) to the trusted party. This reactive functionality captures
the capability of the adversary to choose the corrupted parties’ polynomials based on the shares
¢;(a;) that it views on the honest parties’ polynomials, but nothing more. Formally, we define:

FUNCTIONALITY 2.6.2 (Corruption-aware parallel VSS — F{}.)
FJ} o5 receives a set of indices I C [n] and works as follows:

1. F{gg receives an input polynomial g;(x) from every honest P; (j ¢ I).

2. F{}45 sends the (ideal model) adversary the corrupted parties’ shares {q;(c;)};qs for
every i € I, based on the honest parties’ polynomials.

3. F{}gg receives from the (ideal model) adversary an input polynomial ¢;(x) for every
i€l

4. F{lgg sends the shares (¢i(;),...,qn(c;)) to every party P; (j =1,... ,n)ﬁ

This modification to the definition of Fj}qq solves our problem. However, the standard
definition of security, as referred in Section does not allow us to define a functionality
in this way. This is due to the fact that the standard formalism does not distinguish between
honest and malicious parties. Rather, the functionality is supposed to receive inputs from
each honest and corrupt party in the same way, and in particular does not “know” which
parties are corrupted. We therefore augment the standard formalism to allow corruption-aware
functionalities (CA functionalities) that receive the set I of the identities of the corrupted parties
as additional auziliary input when invoked. We proceed by describing the changes required
to the standard (stand-alone) definition of security of Section in order to incorporate
corruption awareness.

5Tt actually suffices to send the shares (qi(a;),...,qn(c;)) only to parties P; for j ¢ I since all other parties
have already received these values. Nevertheless, we present it in this way for the sake of clarity.

60



Definition. The formal definition of security for a corruption-aware functionality is the same
as Definition [2.2.3] with the sole change being that f is a function of the subset of corrupted
parties and the inputs; formally, f : 20" x ({0,1}*)" — ({0,1}*)". We denote by f;(Z) = f(I, %)
the function f with the set of corrupted parties fixed to I C [n]. Then, we require that
for every subset I (of cardinality at most t), the distribution IDEALf, s ;(Z) is distributed
identically to REAL. 4., ;(Z). We stress that in the ideal model, the subset I that is given
to a corruption-aware functionality as auxiliary input (upon initialization) is the same subset
I of corrupted parties that the adversary controls. Moreover, the functionality receives this
subset I at the very start of the ideal process, in the exact same way as the (ideal model)
adversary receives the auxiliary input z, the honest parties receive their inputs, and so on. We
also stress that the honest parties (both in the ideal and real models) do not receive the set I,
since this is something that is of course not known in reality (and so the security notion would
be nonsensical). Formally,

Definition 2.6.3 Let f : 2" x ({0,1}*)" — ({0,1}*)" be a corruption-aware n-ary functionality
and let w be a protocol. We say that m is t-secure for f if for every probabilistic adversary A in the
real model, there exists a probabilistic adversary S of comparable complexity in the ideal model,
such that for every I C [n| of cardinality at most t, every & € ({0,1}*)" where |x1| = ... = |zy],
and every z € {0, 1}*, it holds that: {IDEALfI’S(Z)J(f)} = {REALn,A(z),I(f)

We stress that since we only consider static adversaries here, the set I is fully determined
before the execution begins, and thus this is well defined.

This idea of having the behavior of the functionality depend on the adversary and/or the
identities of the corrupted parties was introduced by [28] in order to provide more flexibility in
defining functionalities, and is heavily used in the universal composability frameworkﬂ

The hybrid model and modular composition. In the hybrid model, where the parties
have oracle tapes for some ideal functionality (trusted party), in addition to regular communi-
cation tapes, the same convention for corruption awareness is followed as in the ideal model.
Specifically, an execution in the Gr-hybrid model, denoted HYBRID% A2), ;(Z), is parameterized
by the set I of corrupted parties, and this set [ is given to functionality G upon initialization
of the system just like the auxiliary input is given to the adversary. As mentioned above, [ is
fixed ahead of time and so this is well-defined. We stress again that the honest parties do not
know the set of indices I, and real messages sent by honest parties and their input to the ideal
functionality are independent of I.

In more detail, in an ideal execution the behavior of the trusted party depends heavily on
the set of corrupted parties I, and in some sense, its exact code is fixed only after we determine
the set of corrupted parties I. In contrast, in a real execution the specification of the protocol
is independent of the set I, and the code that the honest parties execute is fixed ahead of time
and is the same one for any set of corrupted parties I. An execution in the hybrid model is
something in between: the code of the honest parties is independent of I and is fixed ahead of

"In the UC framework, the adversary can communicate directly with the ideal functionality and it is mandated
that the adversary notifies the ideal functionality (i.e., trusted party) of the identities of all corrupted parties.
Furthermore, ideal functionalities often utilize this information (i.e., they are corruption aware) since the way
that the universal composability framework is defined typically requires functionalities to treat the inputs of
honest and corrupted parties differently. See Section 6 of the full version of [28] for details.

61



time (like in the real model); however, the code of the aiding functionality is fixed only after we
set I (as in the ideal model).

In our proof below, some of the functionalities are corruption aware and some are not; in
particular, as we will describe, our final functionality for secure computation with the BGW
protocol is mot corruption aware. In order to be consistent with respect to the definition, we
work with corruption-aware functionalities only and remark that any ordinary functionality f
(that is not corruption aware) can be rewritten as a fictitiously corruption-aware functionality
fr where the functionality just ignores the auxiliary input I. An important observation is
that a protocol that securely computes this fictitiously corruption-aware functionality, securely
computes the original functionality in the standard model (i.e., when the functionality does not
receive the set I as an auxiliary input). This holds also for protocols that use corruption-aware
functionalities as subprotocols (as we will see, this is the case with the final BGW protocol).
This observation relies on the fact that a protocol is always corruption unaware, and that the
simulator knows the set I in both the corruption aware and the standard models. Thus, the
simulator is able to simulate the corruption-aware subprotocol, even in the standard model.
Indeed, since the corruption-aware functionality f; ignores the set I, and since the simulator
knows I in both models, the two ensembles IDEAL, sy ;(Z) (in the corruption-aware model)
and IDEALy (. 1(Z) (in the standard model) are identical. Due to this observation, we are able
to conclude that the resulting BGW protocol securely computes any standard (not corruption
aware) functionality in the standard model, even though it uses corruption-aware subprotocols.

Regarding composition, the sequential modular composition theorems of [27, 53] do not con-
sider corruption-aware functionalities. Nevertheless, it is straightforward to see that the proofs
hold also for this case, with no change whatsoever. Thus, the method described in Section [2.2.3
for proving security in a modular way can be used with corruption-aware functionalities as well.

Discussion. The augmentation of the standard definition with corruption-aware functionali-
ties enables more flexibility in protocol design. Specifically, it is possible to model the situation
where corrupted parties can learn more than just the specified output, or can obtain some other
“preferential treatment” (like in the case of parallel VSS where they are able to set their input
polynomials as a partial function of the honest parties’ input). In some sense, this implies a
weaker security guarantee than in the case where all parties (honest and corrupted) receive the

“weakness” is

same treatment. However, since the ideal functionality is specified so that the
explicitly stated, the adversary’s advantage is well defined.

This approach is not foreign to modern cryptography and has been used before. For exam-
ple, secure encryption is defined while allowing the adversary a negligible probability of learning
information about the plaintext. A more significant example is the case of two-party secure com-
putation. In this case, the ideal model is defined so that the corrupted party explicitly receives
the output first and can then decide whether or not the honest party also receives output. This
is weaker than an ideal model in which both parties receive output and so “complete fairness” is
guaranteed. However, since complete fairness cannot be achieved (in general) without an honest
majority, this weaker ideal model is used, and the security weakness is explicitly modeled.

In the context of this paper, we use corruption awareness in order to enable a modular analy-
sis of the BGW protocol. In particular, for some of the subprotocols used in the BGW protocol,
it seems hard to define an appropriate ideal functionality that is not corruption aware. Nev-
ertheless, our final result regarding the BGW protocol is for standard functionalities. That is,

62



when we state that every functionality can be securely computed by BGW (with the appropriate
corruption threshold), we refer to regular functionalities and not to corruption-aware ones.

The reason why the final BGW protocol works for corruption unaware functionalities only
is due to the fact that the protocol emulates the computation of a circuit that computes the
desired functionality. However, not every corruption-aware functionality can be computed by
a circuit that receives inputs from the parties only, without also having the identities of the
set of corrupted parties as auxiliary input. Since the real protocol is never allowed to be “cor-
ruption aware”, this means that such functionalities cannot be realized by the BGW protocol.
We remark that this is in fact inherent, and there exist corruption-aware functionalities that
cannot be securely computed by any protocol. In particular, consider the functionality that
just announces to all parties who is corrupted. Since a corrupted party may behave like an
honest one, it is impossible to securely compute such a functionality.

Finally, we note that since we already use corruption awareness anyhow in our definitions of
functionalities (for the sake of feasibility and/or efficiency), we sometimes also use it in order to
simplify the definition of a functionality. For example, consider a secret sharing reconstruction
functionality. As we have described in Section when t < n/3, it is possible to use Reed-
Solomon error correction to reconstruct the secret, even when up to ¢ incorrect shares are
received. Thus, an ideal functionality for reconstruction can be formally defined by having the
trusted party run the Reed-Solomon error correction procedure. Alternatively, we can define the
ideal functionality so that it receive shares from the honest parties only, and reconstructs the
secret based on these shares only (which are guaranteed to be correct). This latter formulation is
corruption aware, and has the advantage of making it clear that the adversary cannot influence
the outcome of the reconstruction in any way.

Convention. For the sake of clarity, we will describe (corruption-aware) functionalities as
having direct communication with the (ideal) adversary. In particular, the corrupted parties
will not send input or receive output, and all such communication will be between the adversary
and functionality. This is equivalent to having the corrupted parties send input as specified by
the adversary.

Moreover, we usually omit the set of corrupted parties I in the notation of a corruption-aware
functionality (i.e., we write G instead of Gy). However, in the definition of any corruption-aware
functionality we add an explicit note that the functionality receives as auxiliary input the set
of corrupted parties I. In addition, for any protocol in the corruption-aware hybrid model, we
add an “aiding ideal-functionality initialization” step, to explicitly emphasize that the aiding
ideal functionalities receive the set I upon initialization.

2.6.3 Matrix Multiplication in the Presence of Malicious Adversaries

We begin by showing how to securely compute the matrix-multiplication functionality, that
maps the input vector Z to Z - A for a fixed matrix A, where the ith party holds z; and all
parties receive the entire vector Z - A for output. Beyond being of interest in its own right, this
serves as a good warm-up to secure computation in the malicious setting. In addition, we will
explicitly use this as a subprotocol in the computation of Ff}zg’gh‘"e in Section m

The basic matrix-multiplication functionality is defined by a matrix A € F**™, and the

aim of the parties is to securely compute the length-m vector (yi,...,ym) = (z1,...,2y) - A,

63



where x1, ...,x, € F are their respective inputs. We will actually need to define something more
involved, but we begin by explaining how one can securely compute the basic functionality. Note
first that matrix multiplication is a linear functionality (i.e., it can be computed by circuits
containing only addition and multiplication-by-constant gates). Thus, we can use the same
methodology as was described at the end of Section for privately computing any linear
functionality, in the semi-honest model. Specifically, the inputs are first shared. Next, each party
locally computes the linear functionality on the shares it received. Finally, the parties send their
resulting shares in order to reconstruct the output. The difference here in the malicious setting
is simply that the wverifiable secret sharing functionality is used for sharing the inputs, and
Reed-Solomon decoding (as described in Section is used for reconstructing the output.
Thus, the basic matrix multiplication functionality can be securely computed as follows:

1. Input sharing phase: Each party P; chooses a random polynomial g;(x) under the con-
straint that g;(0) = x;. Then, P; shares its polynomial g;(z) using the ideal Fy gg func-
tionality. After all polynomials are shared, party P; has the shares g1(«;), ..., gn(;).

2. Matrix multiplication emulation phase: Given the shares from the previous step, each
party computes its Shamir-share of the output vector of the matrix multiplication by
computing 7 = (g1(ay), ..., gn(;)) - A. Note that:

ari1 ... Q1im

. a1 ... a2m
¥ = (91(0%), cee ,gn(ai)) A= [91(041')792(%')7 e ,gn(%‘)] :

Gn,1 --- Qnm

and so the jth element in ¢ equals >_}._; g¢(c;)-ap ;. Denoting the jth element in ' by y},
we have that yjl-, ...,y are Shamir-shares of the jth element of ¥ = (g1(0),...,9,(0)) - A.

3. Output reconstruction phase:

(a) Each party P; sends its vector ¢* to all other parties.

(b) Each party P; reconstructs the secrets from all the shares received, thereby obtaining
¥ =(91(0),...,9n(0)) - A. This step involves running (local) error correction on the
shares, in order to neutralize any incorrect shares sent by the malicious parties.
Observe that the vectors sent in the protocol constitute the rows in the matrix

—~ 7 - S gelar) cagn o Ypq ge(ar) - apm
— 7 = || Xihigle) a0 YU gea) - anm
— g*n — Z?:l gf(an) cQpl v Z?:l g@(an) cAym

and the jth column of the matrix constitutes Shamir-shares on the polynomial with
constant term >y ; g¢(0) - aj, which is the jth element in the output. Thus, Reed-
Solomon error correction can be applied to the columns in order to correct any
incorrect shares and obtain the correct output.

The above protocol computes the correct output: The use of Fy gg in the first step prevents any
malicious corrupted party from sharing an invalid polynomial, while the use of error correction
in the last step ensures that the corrupted parties cannot adversely influence the output.

64



However, as we have mentioned, we need matrix multiplication in order to secure compute
the Fﬁ?gh“re functionality in Section In this case, the functionality that is needed is a
little more involved than basic matrix multiplication. First, instead of each party P; inputting
a value x;, we need its input to be a degree-t polynomial g;(z) and the constant term g;(0)
takes the place of ;| Next, In addition to obtaining the result = (g1(0),...,gn(0)) - A of the
matrix multiplication, each party P; also outputs the shares g1(«;), ..., gn(®;) that it received
on the input polynomials of the parties. Based on the above, one could define the functionality
as

F;éat(glv s Gn) = ((Z], {ge(ar)}yy) (U {ge(a2)}iy) - - (¥, {gé(an>}?=1>) )

where ¥ = (g1(0),...,9n(0)) - A. Although this looks like a very minor difference, as we shall
see below, it significantly complicates things. In particular, we will need to define a corruption
aware variant of this functionality.

We now explain why inputting polynomials gi(z),..., gn,(z) rather than values z1,...,z,
(and likewise outputting the shares) makes a difference. In the protocol that we described
above for matrix multiplication, each party P; sends its shares ¢ of the output. Now, the
vectors i1, ..., §" are fully determined by the input polynomials g;(x), ..., gn(x). However, in
the ideal execution, the simulator only receives a subset of the shares and cannot simulate all of
them. (Note that the simulator cannot generate random shares since the 3" vectors are fully and
deterministically determined by the input.) To be concrete, consider the case that only party P;
is corrupted. In this case, the ideal adversary receives as output ¥ = (g1(0),...,g,(0)) - A and
the shares g1(1),...,gn(a1). In contrast, the real adversary sees all of the vectors /2, ..., "
sent by the honest parties in the protocol. Now, these vectors are a deterministic function of the
input polynomials g1(z), ..., gn(z) and of the fixed matrix A. Thus, the simulator in the ideal
model must be able to generate the eract messages sent by the honest parties (recall that the
distinguisher knows all of the inputs and outputs and so can verify that the output transcript is
truly consistent with the inputs). However, it is impossible for a simulator who is given only ¥
and the shares g;(«), ..., gn(a1) to generate these exact messages, since it doesn’t have enough
information. In an extreme example, consider the case that m = n, the matrix A is the identity
matrix, and the honest parties’ polynomials are random. In this case, i = (g1(), ..., gn(as)).
By the properties of random polynomials, the simulator cannot generate i for i # 1 given only
7 =1(91(0),...,9n(0)), the shares (g1(1),...,9n(a1)) and the polynomial g (z).

One solution to the above is to modify the protocol by somehow adding randomness, thereby
making the ¢ vectors not a deterministic function of the inputs. However, this would add
complexity to the protocol and turns out to be unnecessary. Specifically, we only construct
this protocol for its use in securely computing F‘S}fgbgh”e, and the security of the protocol for
computing F‘S}fé’gh”e is maintained even if the adversary explicitly learns the vector of m poly-
nomials Y (z) = (Y1(2),...,Ym()) = (g1(2),...,gn(x)) - A. (Denoting the jth column of A by
(a1, an;)T, we have that Yj(x) = >}, ge(2) - as;.) We therefore modify the functionality
definition so that the adversary receives 17(:1:), thereby making it corruption aware (observe
that the basic output (g1(0),...,g,(0))- A is given by }7(0)) Importantly, given this additional
information, it is possible to simulate the protocol based on the methodology described above

8This is needed because in F35"* ™ the parties need to output g; (z) and so need to know it. It would be

possible to have the functionality choose g;(x) and provide it in the output, but then exactly the same issue
would arise.

65



(VSS sharing, local computation, and Reed-Solomon reconstruction), and prove its security.

Before formally defining the FZ,, functionality, we remark that we also use corruption
awareness in order to deal with the fact that the first step of the protocol for computing F,
involves running parallel VSS invocations, one for each party to distribute shares of its input
polynomial. As we described in Section this enables the adversary to choose the corrupted
parties’ polynomials g;(x) (for ¢ € I) after seeing the corrupted parties’ shares on the honest
parties’ polynomials (i.e., gj(c;) for every j ¢ I and ¢ € I). We therefore model this capability

in the functionality definition.

FUNCTIONALITY 2.6.4 (Functionality F;:at for matrix multiplication, with A € FP*™)

The F4 ,-functionality receives as input a set of indices I C [n] and works as follows:
1. F2,, receives the inputs of the honest parties {g;(z)};¢s; if a polynomial g;(z) is not

received or its degree is greater than ¢, then F,, resets gj(z) = 0.

2. F2,, sends shares {g;(;)};¢1.er to the (ideal) adversary.

m

3. FA,, receives the corrupted parties’ polynomials {g;(x)}icr from the (ideal) adversary;

if a polynomial g;(x) is not received or its degree is greater than ¢, then F4_, resets
gi(x) =0.

4. FAat computes Y (z) = (Yi(x),..., Y (x)) = (¢1(x), ..., gn(2)) - A.

m

ot

(a) For every j ¢ I, functionality F,, sends party P; the entire length-m vector
y =Y (0), together with P;’s shares (g1(c;), ..., gn(c;)) on the input polynomials.

(b) In addition, functionality F4 , sends the (ideal) adversary its output: the vec-
tor of polynomials Y (z), and the corrupted parties’ outputs (¥ together with
(91(ci), ..., gn(ay)), for every i € I).

We have already described the protocol intended to securely compute Functionality 2.6.4 and
motivated its security. We therefore proceed directly to the formal description of the protocol
(see Protocol and its proof of security. We recall that since all our analysis is performed
in the corruption-aware model, we describe the functionality in the corruption-aware hybrid
model. Thus, although the Fy gg functionality (Functionality is a standard functionality,
we refer to it as a “fictitiously corruption-aware” functionality, as described in Section [2.6.2

The figure below illustrates Step [f] of Protocol Each party receives a vector from
every other party. These vectors (placed as rows) all form a matrix, whose columns are at most

distance t from codewords who define the output.

<« §'(a1) — }/}1(&1) YAvk(al) m(al)
— )3(042) - | _ Yi(ag) -+ Yi(az) - V(o)
— }:;(an) — 371(‘%) . Yk(;xn) . Ym(.an)

Figure 2.1: The vectors received by P; form a matrix; error correction is run on the columns.

66



PROTOCOL 2.6.5 (Securely computing Fn‘iat in the Fygs-hybrid model)
e Inputs: Each party P; holds a polynomial g;(z).
e Common input: A field description F, n distinct non-zero elements ag,...,a, € F,
and a matrix A € F?x™,

e Aiding ideal functionality initialization: Upon invocation, the trusted party com-
puting the (fictitiously corruption-aware) functionality Fy gg is given the set of corrupted
parties I.

e The protocol:

1. Each party P; checks that its input polynomial is of degree-t; if not, it resets
gi(x) = 0. It then invokes the Fygs functionality as dealer with g;(z) as its
private input.

2. At the end of Step [l each party P; holds the values g1(a;),...,gn(a;). If any
value equals |, then P; replaces it with O.

3. Denote # = (g1(ci),...,gn(c)). Then, each party P; locally computes §° =
7 - A (equivalently, for every k¥ = 1,...,m, each P; computes Yi(a;) =
Sy ge(e) - agp where (aiy,...,an)? is the kth column of A, and stores

g = Yi(ag), ..., Yi(ai))).
4. Each party P; sends §* to every P; (1 < j <n).

5. For every j = 1,...,n, denote the vector received by P; from P; by ?(ozj) =
(Yi(a), ..., Ym(a;)). (If any value is missing, it replaces it with 0. We stress that
different parties may hold different vectors if a party is corrupted.) Each P; works
as follows:

— For every k = 1,...,m, party P; locally runs the Reed-Solomon decod-
ing procedure (with d = 2t + 1) on the possibly corrupted codeword
(Yi(an), ..., Yi(am)) to get the codeword (Vi (1), ..., Yi(an)); see Figure
It then reconstructs the polynomial Y (z) and computes y, = Y3 (0).

e Output: P; outputs (y1,...,ym) as well as the shares g1 (), ..., gn().

Theorem 2.6.6 Lett < n/3. Then, Protocol is t-secure for the FA ., functionality in the
Fyss-hybrid model, in the presence of a static malicious adversary.

Proof: We begin by describing the simulator S. The simulator S interacts externally with the

trusted party computing F,fb and internally invokes the (hybrid model) adversary A, hence

at»

simulating an execution of Protocol for A. As such, § has external communication with

the trusted party computing F£ and internal communication with the real adversary A. As

at»
part of the internal communication with A, the simulator hands .4 messages that A4 expects to
see from the honest parties in the protocol execution. In addition, S simulates the interaction
of A with the ideal functionality Fygs and hands it the messages it expects to receives from

Fyss in Protocol S works as follows:
1. S internally invokes A with the auziliary input z.

S re-

ceives shares {g;(ci)}jgrics on its (external) incoming communication tape from Fi,,

(see Step[3 in Functionality .

2. After the honest parties send their inputs to the trusted party computing Frﬁ

at’

67



3. S internally simulates the ideal Fygs invocations for the honest dealers (Step |1| in Pro-
tocol: For every j & I, S simulates the invocation of Fyyss where P plays as the
dealer, and sends to the adversary A the shares {g;(c;)}icr (where g;(a;) is the appropri-
ate value received from FA . in the previous step).

4. S internally simulates the Fygs invocations for the corrupted dealers (Step |1| in Proto-
col: For every i € I, the simulator S receives from A the polynomial g;(x) that A
sends as input to the Fygs functionality with P; as dealer.

(a) If deg(gi(x)) <'t, then S stores g;(x) and internally hands A the output {g;(a)trer
that A expects to receive as the corrupted parties’ outputs from this Fyygg invocation.

(b) If deg(gi(z)) >t or was not sent by A, then S replaces it with the constant polynomial
gi(x) = 0, and internally hands A the output L that A expects to receive as the
corrupted parties’ outputs from this Fygg invocation.

5. S externally sends the trusted party computing FA_, the polynomials {g;(x)}icr as the
inputs of the corrupted parties (see Step @ in Functionality .

6. At this point, the functionality Fqﬁat has all the parties’ inputs, and so it computes the
vector of polynomials ?(x) = (g1(x),...,gn(x)) - A, and S receives back the following
output from F.. (see Step @ in Functionality :

(a) The vector of polynomials Y (z) = (g1(2),.. ., gn(z)) - A,
(b) The output vector ¥ = (y1,...,Ym), and
(c) The shares (g1(c;), ..., gn(;)) for every i € I.

7. Foreveryj € I andi € I, S internally hands the adversary A the vector i = (Yi(a;), ..., Ym(a;))
as the vector that honest party P; sends to all other parties (in Step |4 of Pmtocol.

8. S outputs whatever A outputs and halts.

We now prove that for every I C [n] with |I| < ¢:

HYBRID.VSS

z€{0,1}*;7€Fn = { ”7“4(2)71(:6)}ze{O,l}*;feF”' (26.1)

{IDEALFgat,S(z),I(f)}
In order to see why this holds, observe first that in the Fy gg-hybrid model, the honest parties
actions in the protocol are deterministic (the randomness in the real protocol is “hidden” inside
the protocol for securely computing Fygg), as is the simulator S and the ideal functionality
FA .. Thus, it suffices to separately show that the view of the adversary is identical in both
cases, and the outputs of the honest parties are identical in both cases.

By inspection of the protocol and simulation, it follows that the shares {(g1 (), ..., gn(ai)) }ier
of the corrupted parties on the honest parties inputs and the vector of polynomials 17(:13) as re-
ceived by S, provide it all the information necessary to generate the exact messages that the
corrupted parties would receive in a real execution of Protocol Thus, the view of the
adversary is identical in the ideal execution and in the protocol execution.

Next, we show that the honest party’s outputs are identical in both distributions. In order to
see this, it suffices to show that the vector of polynomials Y (z) = (Y1(z),. .., Y;n(z)) computed
by FA.. in Step H| of the functionality specification is identical to the vector of polynomials

68



(Y1(z),...,Yn(z)) computed by each party in Step [5| of Protocol (since this defines the
outputs). First, the polynomials of the honest parties are clearly the same in both cases.
Furthermore, since the adversary’s view is the same it holds that the polynomials g;(z) sent
by S to the trusted party computing F,Qat are exactly the same as the polynomials used by A
in Step [I] of Protocol This follows from the fact that the Fy gg functionality is used in
this step and so the polynomials of the corrupted parties obtained by S from A are exactly the
same as used in the protocol. Now, observe that each polynomial Y} (z) computed by the honest
parties is obtained by applying Reed-Solomon decoding to the word (Yk (a1),... ,?k(an)). The
crucial point is that the honest parties compute the values Yk(ai) correctly, and so for every j ¢ I
it holds that Yy (c;) = Yi(a;). Thus, at least n — ¢ elements of the word (Y (1), ..., Vi(aw))
are “correct” and so the polynomial Yj(z) reconstructed by all the honest parties in the error
correction is the same Y(x) as computed by F4 . (irrespective of what the corrupted parties
send). This completes the proof. [ |

2.6.4 The F3ubshare Functionality for Sharing Shares

Defining the functionality. We begin by defining the F‘iqubgha” functionality. Informally
speaking, this functionality is a way for a set of parties to verifiably give out shares of val-
ues that are themselves shares. Specifically, assume that the parties P,..., P, hold values
flan),..., f(ay), respectively, where f is a degree-t polynomial either chosen by one of the
parties or generated jointly in the computation. The aim is for each party to share its share
f(a;) — and not any other value — with all other parties (see Figure . In the semi-honest
setting, this can be achieved simply by having each party P; choose a random polynomial g;(x)
with constant term f(a;) and then send each P; the share g;(a;). However, in the malicious
setting, it is necessary to force the corrupted parties to share the correct value and nothing
else; this is the main challenge. We stress that since there are more than ¢ honest parties, their
shares fully determine f(z), and so the “correct” share of a corrupted party is well defined.
Specifically, letting f(z) be the polynomial defined by the honest parties’ shares, the aim here
is to ensure that a corrupted P; provides shares using a degree-t polynomial with constant term

f ().

Value on wire: f(0)

Shares of value f(0): f(a;) f(a) Y i (-7 R i ()

Subshares of f (a;): gi(ay) gi(az) ... gi(ay)

Figure 2.2: The subsharing process: P; distributes shares of its share f(q;)

The functionality definition is such that if a corrupted party P; does not provide a valid
input (i.e., it does not input a degree-t polynomial g;(x) such that g;(0) = f(«;)), then F{jqubgh”e

69



defines a new polynomial gj(x) which is the constant polynomial ¢(z) = f(«;) for all z, and uses
gi(z) in place of g;(x) in the outputs. This ensures that the constant term of the polynomial is
always f(«a;), as required.

We define Fishare as a corruption-aware functionality (see Section . Among other
reasons, this is due to the fact that the parties distributes subshares of their shares. As we
described in Section[2.6.2] this enables the adversary to choose the corrupted parties’ polynomials
gi(z) (for i € I) after seeing the corrupted parties’ shares of the honest parties’ polynomials
(i.e., gj(ay) for every j ¢ I and i € I).
functionality (Functionality [2.6.4))
with (the transpose of) the parity-check matrix H of the appropriate Reed-Solomon code (this

In addition, in the protocol the parties invoke the F4
matrix is specified below where we explain its usage in the protocol). This adds complexity
to the definition of F#share because additional information revealed by Fii,, to the adversary
needs to be revealed by Fé”gl’gham as well. We denote the matrix multiplication functionality with
(the transpose of) the parity-check matrix H by F . from here on. Recall that the adversary’s
output from FX , includes Y (z) = (g1(x),...,gn(x)) - HT; see Step [5| in Functionality m
Thus, in order to simulate the call to F

deal with this in the same way as in F .| by having the functionality F‘S/fgbgha’“e provide the

the ideal adversary needs this information. We

ideal adversary with the additional vector of polynomials (g1(x), ..., gn(x))- HT. As we will see
later, this does not interfere with our use of F“j?g)gh”e in order to achieve secure multiplication
(which is our ultimate goal). Although it is too early to really see why this is the case, we
nevertheless remark that when H is the parity-check matrix of the Reed-Solomon code, the
vector (g1(0),...,9,(0))-H” can be determined based on the corrupted parties’ inputs (because
we know that the honest parties’ values are always “correct”), and the vector (g1(x), ..., gn(z))-
HT is random under this constraint. Thus, these outputs can be simulated.

FUNCTIONALITY 2.6.7 (Functionality Fgs"eme for subsharing shares)
Fgubshare receives a set of indices I C [n] and works as follows:

1. Fgubshare receives the inputs of the honest parties {Bj}jer- Let f(x) be the unique
degree-t polynomial determined by the points {(a;, 5j)}j¢1E|

2. For every j ¢ I, F‘ﬁqubgha’“e chooses a random degree-t polynomial g;(z) under the con-
straint that ¢;(0) = 5, = f(a;).

3. Fybshare sends the shares {g;(a;)}j¢rier to the (ideal) adversary.

4. Fgubshare yeceives polynomials {g;(z)}ier from the (ideal) adversary; if a polynomial
gi(z) is not received or if g;(x) is of degree higher than ¢, then F§%@share sets g;(x) = 0.

5. Fybshare determines the output polynomials gi(z), ..., gl (z):
(a) For every j & I, Fgibshare sets g5(z) = g;(v).

(b) Foreveryi € I, if g;(0) = f(c;) then Fgbshare sets gi(z) = g;(z). Otherwise it sets

gi(z) = f(ay), (i-e., gi(x) is the constant polynomial equalling f(«;) everywhere).
6. (a) For every j & I, Fy¢s" sends the polynomial gj(x) and the shares
(91(@), -+, gn(ej)) to party P;.

(b) Functionality Fgubshare sends the (ideal) adversary the vector of polynomials
Y(z) = (91(2),...,gn(x)) - HT, where H is the parity-check matrix of the ap-
propriate Reed-Solomon code (see below). In addition, it sends the corrupted
parties’ outputs g}(z) and (g} (), ..., g, (a;)) for every i € I.

70



Background to implementing F{","gbgyha’"e. Let G € Ft+DXn he the generator matrix for
a (generalized) Reed-Solomon code of length n = 3t + 1, dimension k£ = t 4+ 1 and distance

d = 2t + 1. In matrix notation, the encoding of a vector @ = (ag,...,a;) € FIT! is given by
a - G, where:
1 1 1
a déf Ofl 85 an
ol o oAl

Letting f(x) = ZE:O a¢ - #° be a degree-t polynomial, the Reed-Solomon encoding of @ =
(ag,...,az) is the vector (f(ay),..., f(an)). Let H € F?**" be the parity-check matrix of G;
that is, H is a rank 2¢ matrix such that G - HT = 00+D*2t W l.o.g, the matrix H is of the
form:

1 1 1
U1 0
a1 a9 e (7%
w=| ¢ ' "o (2.6.2)
: : : 0
a%tfl agtfl e a?f‘l on
for non-zero values v, ..., v,. The syndrome of a word BelFnis given by S(E) = (- HT e F2t.

A basic fact from error-correcting codes is that, for any codeword E = a - G, it holds that
S(3) = 0%. Moreover, for every error vector & € {0,1}", it holds that S(3 + &) = S(&). If &
is of distance at most ¢ from 0 (i.e., Y e; < t), then it is possible to correct the vector 3 + &
and to obtain the original vector 5 An important fact is that a sub-procedure of the Reed-
Solomon decoding algorithm can extract the error vector € from the syndrome vector S(€) alone.
That is, given a possibly corrupted codeword ¥ = 5 + €, the syndrome vector is computed as
S(¥) = S(€) and is given to this sub-procedure, which returns €. From € and ¥, the codeword
ﬁ can be extracted easily.

The protocol. In the protocol, each party P; chooses a random polynomial g;(z) whose
constant term equals its input share 5;; let 5 = (B1,...,0n). Recall that the input shares
are the shares of some polynomial f(z). Thus, for all honest parties P; it is guaranteed that
9j(0) = B; = f(c;). In contrast, there is no guarantee regarding the values g;(0) for corrupted
P;. Let ¥ = (g1(0),...,9x(0)). It follows that 4 is a word that is at most distance ¢ from the
vector B = (f(a1),..., f(an)), which is a Reed-Solomon codeword of length n = 3¢ + 1. Thus,
it is possible to correct the word 4 using Reed-Solomon error correction. The parties send the
(i.e., Functionality for matrix multiplication
with the transpose of the parity-check matrix H described above). F!

mat

chosen polynomials (g1 (), ..., gn(z)) to K,
hands each party P;
the output (g1(cs), ..., gn(c;)) and (s1,...,s9:) =7+ H', where the latter equals the syndrome

S(¥) of the input vector 4. The parties use the syndrome in order to each locally carry out error

9Tf all of the points sent by the honest parties lie on a single degree-t polynomial, then this guarantees that f(x)
is the unique degree-t polynomial for which f(a;) = §; for all j ¢ I. If not all the points lie on a single degree-t
polynomial, then no security guarantees are obtained. However, since the honest parties all send their prescribed
input, f(z) will always be as desired. This can be formalized using the notion of a partial functionality [53]
Sec. 7.2]. Alternatively, it can be formalized by having the ideal functionality give all of the honest parties’
inputs to the adversary and letting the adversary singlehandedly determine all of the outputs of the honest
parties, in the case that the condition does not hold. This makes any protocol secure vacuously (since anything
can be simulated).

71



correction and obtain the error vector € = (e1,...,e,) =7 — 3. Note that & has the property
that for every i, g;(0) —e; = f(«;), and it can be computed from the syndrome alone, using the
sub-procedure mentioned above. This error vector now provides the honest parties with all the
information that they need to compute the output. Specifically, if e; = 0, then this implies that
P; used a “correct” polynomial g;(x) for which g;(0) = f(«;), and so the parties can just output

the shares g;(a;) that they received as output from F, I . In contrast, if e; # 0 then the parties

mat*
know that P; is corrupted, and can all send each other the shares g;(c;) that they received from

FH

¢ This enables them to reconstruct the polynomial g;(x), again using Reed-Solomon error

correction, and compute ¢;(0) —e; = f(a;). Thus, they obtain the actual share of the corrupted
party and can set gj(x) = f(a;), as required in the functionality definition. See Protocol
for the full specification.

One issue that must be dealt with in the proof of security is due to the fact that the syndrome
7-H7T is revealed in the protocol, and is seemingly not part of the output. However, recall that

the adversary receives the vector of polynomials Y (z) = (g1(z), ..., gn(2z)) - H' from F3share
and the syndrome is just }7(0) This is therefore easily simulated.

PROTOCOL 2.6.8 (Securely computing F3%s"e™ in the FH  -hybrid model)

e Inputs: Each party P; holds a value ;; we assume that the points (a;, 3;) of the honest
parties all lie on a single degree-t polynomial (see the definition of F¥shr above and
Footnote [0] therein).

e Common input: A field description F and n distinct non-zero elements oy, ..., a, € F,
which determine the matrix H € F2**" which is the parity-check matrix of the Reed-
Solomon code (with parameters as described above).

e Aiding ideal functionality initialization: Upon invocation, the trusted party com-

puting the corruption-aware functionality FI . receives the set of corrupted parties I.

e The protocol:

1. Each party P; chooses a random degree-t polynomial g;(x) under the constraint
that g;(0) = 5;
2. The parties invoke the FX_, functionality (i.e., Functionality for matrix mul-

tiplication with the transpose of the parity-check matrix H). Each party P; inputs

the polynomial g; () from the previous step, and receives from FX , as output the

shares g1(c;), ..., gn(;), the degree-t polynomial g;(z) and the length 2t vector
§=(s1,...,52) = (91(0),...,9,(0)) - HT. Recall that 5 is the syndrome vector of
the possible corrupted codeword ¥ = (g1(0), ..., gn(0)).

3. Each party locally runs the Reed-Solomon decoding procedure using § only, and
receives back an error vector €= (eq,...,e,).

4. For every k such that e, = 0: each party P; sets gj.(a;) = gr (o).

5. For every k such that ey # 0:
(a) Each party P; sends gi(c;) to every P;.
(b) Each party P; receives gi(aq),...,gr(ay); if any value is missing, it sets it

to 0. P; runs the Reed-Solomon decoding procedure on the values to recon-
struct gg(z).

(c) Each party P; computes g5 (0), and sets g;.(e;) = gx(0) — ex (which equals
flag)).

e Output: P; outputs g;(x) and ¢f (), ..., g5 ().

72



Theorem 2.6.9 Let t < n/3. Then, Protocol is t-secure for the Ff,%%hwe functionality
in the FX . _hybrid model, in the presence of a static malicious adversary.

Proof: We begin by describing the simulator §. The simulator interacts externally with the
ideal functionality F{j’g’gh“’"e, while internally simulating the interaction of A with the honest
parties and FH ..

1

2.

8.

. § internally invokes A with the auxiliary input z.

After the honest parties send their polynomials {g;(x)}jgr to the trusted party computing
Fgubshare S recejves the shares {g;(ci)}igricr from FSRshare (see Step @ in Functional-

ity 207

. 8 begins to internally simulate the invocation of F, by sending A the shares {g;(ci)}jgricr
as its first output from the call to Frf{at in the protocol (that is, it simulates Step@ in Func-

tionality .

. S internally receives from A the polynomials {g;(x) }ics that A sends to FH . in the protocol

(Step [ of Functionality .

S externally sends the F{%’gh“m functionality the polynomials {g;(x)}ier that were received
in the previous step (as expected by Step |4| in Functionality . For the rest of the
execution, if deg(g;) >t for some i € I, S resets g;(x) = 0.

S externally receives its output from F‘S/%bghme (Step @ of Functionality [2.6.7), which is
comprised of the vector of polynomials Y (z) = (g1(2),. .., gn(x)) - HT, and the corrupted
parties’ outputs: polynomials {g.(z)}icr and the shares {gi(cu), ..., g, (o)} ier. Recall
that g;(x) = gj(x) for every j & I. Moreover, for every i € I, if g;(0) = f(ou) then
gi(z) = gi(x), and g.(z) = f(o) otherwise.

S concludes the internal simulation of FII , by preparing the output that the internal A
expects to receive from FII, (Step@ of Functionality in the protocol, as follows:

(a) A expects to receive the vector of polynomials Y (z) = (g1(x), ..., gn(x)) - HT from
FI . however, S received this exact vector of polynomials from F{?fgbgh”e and so just
hands it internally to A.

(b) In addition, A expects to receive the corrupted parties’ outputs i = 17(0) and the
shares {(g1(), ..., gn(a;))}icr. Simulator S can easily compute ¥ = Y (0) since it
has the actual polynomials Y (). In addition, S already received the shares {g;(ci)} j¢riicr
from Fgubshare and can compute the missing shﬁares using the polynomials {g;(z) }icr-

Thus, S internally hands A the values § = Y (0) and {(g1(c), ..., gn(ci))}ier, as
expected by A.

S proceeds with the simulation of the protocol as follows. S computes the error vector
€= (e1,...,en) by running the Reed-Solomon decoding procedure on the syndrome vector
§, that it computes as § = Y (0) (using Y (x) that it received from Fgubshare ) Then, for
every i € I for which e; # 0 and for every j ¢ I, S internally simulates P; sending g;(c;)

to all parties (Step of Protocol.

73



9. S outputs whatever A outputs and halts.

We now prove that for every I C [n] with |I| < ¢:

{ () Tt (@)
IDEAL rsubshare Xz } = {HYBRID ma X } .
F3es ,S(2),1 2€{0,1}*;F€Fn m,A(2),1 2€{0,1}*:7cFn

The main point to notice is that the simulator has enough information to perfectly emulate
the honest parties’ instructions. The only difference is that in a real protocol execution, the
honest parties P; choose the polynomials g;(x), whereas in an ideal execution the functionality
Fé?gh”e chooses the polynomials g;(x) for every j ¢ I. However, in both cases they are chosen
at random under the constraint that g;(0) = 3;. Thus, the distributions are identical. Apart
from that, & has enough information to generate the exact messages that the honest parties
would send. Finally, since all honest parties receive the same output from FZ4 , in the protocol
execution, and this fully determines €, we have that all honest parties obtain the exact same
view in the protocol execution and thus all output the exact same value. Furthermore, by the
error correction procedure, for every k such that ey # 0, they reconstruct the same gx(x) sent
by A to F2,, and so all define g} (aj) = gx(0) — ex.

A fictitious simulator S’. We construct a fictitious simulator 8" who generates the entire
output distribution of both the honest parties and adversary as follows. For every j ¢ I,
simulator S’ receives for input a random polynomial g;(x) under the constraint that g;(0) = f;.
Then, S’ invokes the adversary A and emulates the honest parties and the aiding functionality
FI . in a protocol execution with A, using the polynomials gj(x). Finally, &' outputs whatever
A outputs, together with the output of each honest party. (Note that S’ does not interact with

a trusted party and is a stand-alone machine.)

The output distributions. It is clear that the output distribution generated by S’ is identical
to the output distribution of the adversary and honest parties in a real execution, since the
polynomials g;(x) are chosen randomly exactly like in a real execution and the rest of the
protocol is emulated by & exactly according to the honest parties’ instructions.

It remains to show that the output distribution generated by S’ is identical to the output
distribution of an ideal execution with & and a trusted party computing F“}’g’gh“m. First,
observe that both &’ and S are deterministic machines. Thus, it suffices to separately show
that the adversary’s view is identical in both cases (given the polynomials {g;(x)};¢r), and the
outputs of the honest parties are identical in both case (again, given the polynomials {g;(z)}j¢r)-
Now, the messages generated by S and S’ for A are identical throughout. This holds because
the shares {g;(a;)};¢rier of the honest parties that A receives from FX,, are the same (S
receives them from Fﬁqg’gh‘m and S’ generates them itself from the input), as is the vector
Y(z) = (g1(2),...,gn(z)) - HT and the rest of the output from FX  for A. Finally, in Step

of the specification of S above, the remainder of the simulation after F

o 1s carried out by

running the honest parties’ instructions. Thus, the messages are clearly identical and A’s view
is identical in both executions by S and S'.

We now show that the output of the honest parties’ as generated by S’ is identical to their
output in the ideal execution with S and the trusted party, given the polynomials {g;(x)};¢r.
In the ideal execution with S, the output of each honest party P; is determined by the trusted

subshare
S

party computing F2share to be g;(w) and (¢i(aj),...,g,(cy)). For every j & I, Fy'g sets

74



g} (x) = gj(x). Likewise, since the inputs of all the honest parties lie on the same degree-t
polynomial, denoted f (and so f(«;) = B; for every j ¢ I), we have that the error correction

procedure of Reed-Solomon decoding returns an error vector € = (ej,...,e,) such that for
every k for which gx(0) = f(ay) it holds that e; = 0. In particular, this holds for every j ¢ I.
H

Furthermore, F,

mat guarantees that all honest parties receive the same vector 5§ and so the error

correction yields the same error vector € for every honest party. Thus, for every j,¢ ¢ I we have
that each honest party 1 sets gj(cr) = gj(cw), as required.

Regarding the corrupted parties’ polynomials g;(z) for i € I, the trusted party computing
Fgubshare sets gl (x) = gi(z) if g;(0) = f(oy), and sets g}(z) to be a constant polynomial equalling
f(a;) everywhere otherwise. This exact output is obtained by the honest parties for the same
reasons as above: all honest parties receive the same § and thus the same €. If e; = 0 then all
honest parties P; set g;(a;) = gi(a;), whereas if e; # 0 then the error correction enables them
to reconstruct the polynomial g;(z) exactly and compute f(«;) = ¢;(0). Then, by the protocol
every honest P; sets its share ¢;(a;) = f(a;) — e;, exactly like the trusted party. This completes
the proof. B

2.6.5 The F,,, Functionality for Evaluating a Shared Polynomial

In the protocol for verifying the multiplication of shares presented in Section (The F&ngg
functionality), the parties need to process “complaints” (which are claims by some of the
parties that others supplied incorrect values). These complaints are processed by evaluat-
ing some shared polynomials at the point of the complaining party. Specifically, given shares
flar),..., f(ay), of a polynomial f, the parties need to compute f(ay) for a predetermined k,
without revealing anything else. (To be more exact, the shares of the honest parties define a
unique polynomial f, and the parties should obtain f(«y) as output.)

We begin by formally defining this functionality. The functionality is parameterized by
an index k that determines at which point the polynomial is to be evaluated. In addition, we
define the functionality to be corruption-aware in the sense that the polynomial is reconstructed
from the honest party’s inputs alone (and the corrupted parties’ shares are ignored). We stress
that it is possible to define the functionality so that it runs the Reed-Solomon error correction
procedure on the input shares. However, defining it as we do makes it clear that the corrupted
parties can have no influence whatsoever on the output. See Functionality for a full
specification.

FUNCTIONALITY 2.6.10 (Functionality F% . for evaluating a polynomial on ay,)

eval

Fk . receives a set of indices I C [n] and works as follows:

1. The F* , functionality receives the inputs of the honest parties {f; }igr- Let f(z) be
the unique degree-t polynomial determined by the points {(c;, 3;)};¢r. (If not all the
points lie on a single degree-t polynomial, then no security guarantees are obtained; see
Footnote [9])

2. (a) Forevery j ¢ I, F¥ , sends the output pair (f(a;), f(ax)) to party P;.
(b) For every i € I, FE . sends the output pair (f(c), f(au)) to the (ideal) adversary,

ev

as the output of P;.

Equivalently, in function notation, we have:

75



Fh (B 380) = (((F@n). F@n) - (Flan). S ()

where f is the result of Reed-Solomon decoding on (f1, ..., ,). We remark that although each
party P; already holds f(«;) as part of its input, we need the output to include this value in
order to simulate. This will not make a difference in its use, since f(q;) is anyway supposed to
be known to F;.

Background. We show that the share f(aj) can be obtained by a linear combination of all

the input shares (f1,. .., 3,). The parties’ inputs are a vector e def (51, -, Bn) where for every
J ¢ I it holds that 3; = f(«;). Thus, the parties’ inputs are computed by

g:V&'f_T7

where Vjz is the Vandermonde matrix (see Eq. ), and f is the vector of coefficients for
the polynomial f(z). We remark that f is of length n, and is padded with zeroes beyond the
(t + 1)th entry. Let ap = (1, ag, (ag)?, ..., (ax)" 1) be the kth row of V. Then the output of
the functionality is

flog) =y 1.
We have:

- fM=ar (Vi Va) - f7 = (@ V') (V& : fT) = (@ Vi) - 67 (2.6.3)

and so there exists a vector of fized constants (dl - Vd_l) such that the inner product of this

vector and the inputs yields the desired result. In other words, Ff

" o1 18 simply a linear function

of the parties’ inputs.

The protocol. Since F ekval is a linear function of the parties’ inputs (which are themselves
shares), it would seem that it is possible to use the same methodology for securely computing
FA

A . (or even directly use F

at). However, this would allow the parties to input any value
they wish in the computation. In contrast, the linear function that computes F fml (i.e., the
linear combination of Eq. ) must be computed on the correct shares, where “correct”
means that they all lie on the same degree-t polynomial. This problem is solved by having the
parties subshare their input shares using a more robust input sharing stage that guarantees that
all the parties input their “correct share”. Fortunately, we already have a functionality that
fulfills this exact purpose: the F{%’gh”e functionality of Section Therefore, the protocol
consists of a robust input sharing phase (i.e., an invocation of F‘ilfgbghwe), a computation phase
(which is non-interactive), and an output reconstruction phase. See Protocol for the full
description.

Informally speaking, the security of the protocol follows from the fact that the parties only
see subshares that reveal nothing about the original shares. Then, they see n shares of a random
polynomial Q(z) whose secret is the value being evaluated, enabling them to reconstruct that
secret. Since the secret is obtained by the simulator/adversary as the legitimate output in the
ideal model, this can be simulated perfectly.

The main subtlety that needs to be dealt with in the proof of security is due to the fact
that the F“jf‘fgbgh”e functionality actually “leaks” some additional information to the adversary,
beyond the vectors (¢} (), ..., g, (a;)) for all ¢ € I. Namely, the adversary also receives the

76



vector of polynomials Y (z) = (g1(2), ..., gn(x)) - HT, where H is the parity-check matrix for
the Reed-Solomon code, and g;(x) is the polynomial sent by the adversary to F“j?fgbghm"e for the
corrupted P; and may differ from g}(z) if the constant term of g;(x) is incorrect (for honest
parties gj(z) = g;(x) always).

PROTOCOL 2.6.11 (Securely computing F¥ ; in the F"}%bss’“"e-hybrid model)

eva

e Inputs: Each party P, holds a value §3;; we assume that the points («;,5;) for every
honest P; all lie on a single degree-t polynomial f (see the definition of F* , above and
Footnote E[)

¢ Common input: The description of a field F and n distinct non-zero elements
at,...,0n €F.

e Aiding ideal functionality initialization: Upon invocation, the trusted party com-
puting the corruption-aware functionality F§7§b§ha’""‘ receives the set of corrupted parties
1.

e The protocol:

1. The parties invoke the F3@share functionality with each party P; using §; as its
private input. At the end of this stage, each party P; holds ¢7(«;), ..., g, (a;), where
all the g.(z) are of degree ¢, and for every i, g;(0) = f(a).

2. Each party P; locally computes: Q(a;) = Y ,_; A - gy(i), where (A1,...,\,) =
dr - V', Each party P; sends Q(a;) to all P;.

3. Each party P; receives all the shares Q(aj) from each other party 1 < j < n (if
any value is missing, replace it with 0). Note that some of the parties may hold
different values if a party is corrupted. Then, given the possibly corrupted codeword
(Q(al), R Q(an)), each party runs the Reed-Solomon decoding procedure and re-
ceives the codeword (Q(ay),...,Q(ay)). It then reconstructs Q(z) and computes

Q(0).
e Output: Each party P; outputs (8;, Q(0)).

The intuition as to why this vector of polynomials ?(x) can be simulated is due to the
following special property of the syndrome function. Let ¥ = (v1,...,7,) be the inputs of the
parties (where for ¢ ¢ I it may be the case that v; # f(«;)). (We denote the “correct” input
vector by § — meaning 3 = (f(a1),...,f(om)) — and the actual inputs used by the parties
by 4.) The vector 4 defines a word that is of distance at most ¢ from the valid codeword
(f(a1),..., f(an)). Thus, there exists an error vector € of weight at most ¢ such that ¥ —
& = (f(a1),..., f(an)) = B. The syndrome function S(Z) = & - HT has the property that
S(7) = S(3 + &) = S(&); stated differently, (B1,...,8,) - HT = &- HT. Now, € is actually fully

known to the simulator. This is because for every i € I it receives f(c;) from FF

al» and so

when A sends g;(z) to F{%’gh”e in the protocol simulation, the simulator can simply compute
ei = gi(0) — f(o;). Furthermore, for all j ¢ I, it is always the case that e; = 0. Thus, the
simulator can compute &- HT = 3 - HT = (g1(0),...,9,(0)) - HT = Y (0) from the corrupted
parties’ input and output only (and the adversary’s messages). In addition, the simulator has the
values g1(c;),. .., gn(a;) for every i € I and so can compute Y (o) = (g1(%), - .., gn(c)) - HT.
As we will show, the vector of polynomials }7(1') is a series of random degree-t polynomials
under the constraints Y (0) and {Y (a;)}ies that S can compute. (Actually, when |I| = t there
are t + 1 constraints and so this vector is fully determined. In this case, its actually values
are known to the simulator; otherwise, the simulator can just choose random polynomials that

77



fulfill the constraints.) Finally, the same is true regarding the polynomial Q(x): the simulator
knows |I| + 1 constraints (namely Q(0) = f(ou) and Q(a;) = >y, Ar - gy(a;)), and can choose
@ to be random under these constraints in order to simulate the honest parties sending Q(a;)
for every j ¢ I. We now formally prove this.

Theorem 2.6.12 Lett < n/3. Then, Protocol|2.6.11| is t-secure for the Ffwl functionality in
the Fé?ghare—hybrid model, in the presence of a static malicious adversary.
Proof: The simulator interacts externally with a trusted party computing F' ekv al
simulating the interaction of A with the trusted party computing F“%’ghm’e and the honest
parties. We have already provided the intuition behind how the simulator works, and thus
proceed directly to its specification.

while internally

The simulator S:

1. S receives the ideal adversary’s output from FF . : the pair (f(a;), f(ay)) for every i € I

eval*

recall that the corrupted parties have no input in FX . and so it just receives output).
eval

2. S internally invokes A with the auxiliary input z, and begins to simulate the protocol
execution.

3. § internally simulates the Fé%%hare invocations:

(a) S simulates A receiving the shares {g;(ci)}jgrier (Step@ in the Fgubshare function-
ality): For every j & I, S chooses uniformly at random a polynomial g;(z) from Pt
and sends A the values {g;(qi)} gy ic;-

(b) S internally receives from A the inputs {g;()},c; of the corrupted parties to Fgibghare
(Step |4 in the F‘ilg’ghare specification). If for any i € I, A did not send some polyno-
mial g;(x), then S sets g;(x) = 0.

(c) For every i € I, S checks that deg(g;) < t and that g;(0) = f(as). If this check
passes, S sets gj(x) = gi(x). Otherwise, S sets gi(z) = f(c;). (Recall that S has
f(ay) from its output from Ffval.)

(d) For every j ¢ I, S sets g;(z) = gj(z).

e) S internally gives the adversary A the outputs (as in Ste of the Fsvbshare fypc
g Y P P VSs
tionality):
1. The vector of polynomials }7(33), which is chosen as follows:
o S sets (e1,...,en) such that ej = 0 for every j ¢ I, and e; = g;(0) — f(o)
for every i € I.

e S chooses ?(x) to be a random wvector of degree-t polynomials under the
constraints that 17(0) = (e1,...,en) - HT, and for every i € I it holds that

1?(041;) = (g1(ci), -, gn(as)) - HT.
Observe that if |I| = t, then all of the polynomials in ?(:c) are fully determined

by the above constraints.

ii. The polynomials and values g.(z) and {g}(a), ..., g,(c;)} for everyi e I

4. S simulates the sending of the shares Q(a):

78



(a) S chooses a random polynomial Q(z) of degree t under the constraints that:

* Q(0) = f(ou).
o Foreveryi eI, Q(ou) =717 g)(cu).
(b) For every j ¢ I, S internally simulates honest party P; sending the value Q(a;)

(Step 4 in Protocol[2.6.11)).

5. S outputs whatever A outputs and halts.

We now prove that for every I C [n], such that |I| <t,

s Fsubshare —
IDEAL }q = {HYBRID vss }d .
{ Ffval’s(z)’l(ﬁ) BeF™,z€{0,1}* ™A1 (/6) BeF™,2€{0,1}*

There are three differences between the simulation with & and A, and an execution of
Protocol with A. First, S chooses the polynomials g;(x) to have constant terms of 0
instead of constant terms f(«; ) for every j ¢ I. Second, S computes the vector of polynomials
37(55) based on the given constraints, rather that it being computed by Fé%@hare based on the
polynomials (g1 (), ..., gn(x)). Third, S chooses a random polynomial Q(z) under the described
constraints, rather than it being computed as a function of all the polynomials ¢} (z), ..., g, (z).

We construct three fictitious hybrid simulators, and modify S one step at a time.

The fictitious simulator S;: Simulator S; is exactly the same as S, except that it receives
for input the values 8; = f(a;), for every j = 1,...,n. Then, for every j ¢ I, instead of
choosing g;(z) €r P!, the fictitious simulator S; chooses g;(x) €g Pf(@)t. We stress that S
runs in the ideal model with the same trusted party running F ekv o @ S, and the honest parties
receive output as specified by F ekval when running with the ideal adversary S or S;.

We claim that for every I C [n], such that || <t,

IDEAL - (B = JIDEAL 6)
{ Ffvazvsl(zﬁ)vf(ﬁ)}EEIF”,ze{O,l}* { Ffval’s(z)’l(ﬂ)}EelF”,ze{O,l}*

In order to see that the above holds, observe that both & and S; can work when given the points
of the inputs shares {g;(c;)}icr jgr and they don’t actually need the polynomials themselves.
Furthermore, the only difference between & and S; is whether these points are derived from
polynomials with zero constant terms, or with the “correct” ones. That is, there exists a
machine M that receives points {g;(;)}icr;j¢r and runs the simulation strategy with A while

interacting with F ekv o, in an ideal execution, such that:

e If g;j(0) = 0 then the joint output of M and the honest parties in the ideal execution is

exactly that of IDEAL px l,S(z),I(g>? i.e., an ideal execution with the original simulator.

e If g;(0) = f(c;) then the joint output of M and the honest parties in the ideal execution is

—,

exactly that of IDEAL FE S (=), ;(B); i.e., an ideal execution with the fictitious simulator.

By Claim the points {g;j(a;)}ierj¢r when g;(0) = 0 are identically distributed to the
points {g;(;) }ier;j¢r when g;(0) = f(a;). Thus, the joint outputs of the adversary and honest
parties in both simulations are identical.

79



The fictitious simulator S3:  Simulator S is exactly the same as Sy, except that it computes

subshare computes it in the real execution.

the vector of polynomials 37(55) in the same way that I
Specifically, for every j ¢ I, Sy chooses random polynomials gj(x) under the constraint that
9j(0) = f(« ) just like honest parties. In addition, for every i € I, it uses the polynomials g;(z)

sent by A. We claim that for every I C [n], such that |I]| < ¢,

—,

eval’sl(z"g) (/8)}56117",26{0,1}*

=,

{IDEAL i

s IDEAL
Feval’SZ(z’B)’I(ﬁ)}EG]Fn,ZE{O,l}* {

This follows from the aforementioned property of the syndrome function S(&) = #- H”. Specifi-
cally, let ¥ be the parties’ actually inputs (for j ¢ I we are given that v; = f(c;), but nothing is
guaranteed about the value of v; for i € I), and let €= (eq, ..., e,) be the error vector (for which
vi = f(a;) + e;). Then, S(¥) = S(€). If |I| = t, then the constraints fully define the vector of
polynomials 17'(3:), and by the property of the syndrome these constraints are identical in both
simulations by & and Sy. Otherwise, if |I| < ¢, then &; chooses Y () at random under ¢ + 1
constraints, whereas Sy computes Y (z) from the actual values. Consider each polynomial Yy ()
separately (for £ = 1,...,2t — 1). Then, for each polynomial there is a set of ¢t + 1 constraints
and each is chosen at random under those constraints. Consider the random processes X (s)
and Y (s) before Claim in Section [2.4.2| (where the value “s” here for Y;(x) is the ¢th value
in the vector - HT). Then by Claim [2.4.4] the distributions are identical.

The fictitious simulator S3: Simulator S3 is the same as S, except that it computes the
polynomial Q(x) using the polynomials ¢ (x),..., g, (x) instead of under the constraints. The
fact that this is identical follows the exact same argument regarding }_}g(:c) using Claim in
Section 2:4.2] Thus,

=,

Ss(,3),1(P)

=,

IDEAL } .
EUGZ,SQ(Z,,B ( ) BeFn,z€{0,1}*

{IDEAL

e'ual’

}Eew,ze{o,l}* - {

Completing the proof: Observe that the view of A in IDEAL, FE Sa(z)T (,6_") is exactly the
same as in a real execution. It remains to show that the honest parties output the same in both
this execution and in the F‘S/gf’ghare—hybrid execution of Protocol Observe that Sz (and
§1/82) send no input to the trusted party in the ideal model. Thus, we just need to show that
the honest parties always output f(«g) in a real execution, when f is the polynomial defined
by the input points {Bj}jg ; of the honest parties. However, this follows immediately from
the guarantees provided the Fs“b‘"’h‘”’6 functionality and by the Reed-Solomon error correction

procedure. In particular, the only values received by the honest parties in a real execution are

as follows:
1. Each honest P;j receives ¢ (a;j),..., g, (ca;), where it is guaranteed by F3@share that for
every i =1,...,n we have ¢;(0) = f(c;). Thus, these values are always correct.

2. Bach honest P; receives values (Q(a1),...,Q(ay)). Now, since n — t of these values
are sent by honest parties, it follows that this is a vector that is of distance at most ¢
from the codeword (Q(a1),...,Q(ay)). Thus, the Reed-Solomon correction procedure
returns this codeword to every honest party, implying that the correct polynomial Q(x)
is reconstructed, and the honest party outputs Q(0) = f(ay), as required.

This completes the proof. [

80



2.6.6 The F{}g‘gf Functionality for Sharing a Product of Shares

Recall that in the semi-honest protocol for multiplication, each party locally computes the
product of its shares on the input wires and distributes shares of this product to all other
parties (i.e., it defines a polynomial with constant term that equals the product of its shares).
In the protocol for malicious adversaries, the same procedure needs to be followed. However,
in contrast to the semi-honest case, a mechanism is needed to enforce the malicious parties

to indeed use the product of their shares. As in F*

vals We can force the malicious parties to

distribute subshares of their “correct” shares using the F‘s}g’gvh“"e functionality. Given a correct
subsharing of shares, it is possible to obtain a subsharing of the product of the shares. This

qult

second step is the aim of the Fy/'¢y functionality.

In more detail, the F‘%‘g functionality is used after the parties have all obtained subshares
of each other’s shares. Concretely, the functionality has a dealer with two degree-t polynomials
A(z) and B(z) for input, and all parties already have shares of these polynomials. (In the
use of the functionality in F),,;; for actual multiplication, A(z) and B(z) are such that A(0)
is the dealer’s share on one value and B(0) is the dealer’s share on another value.) Then, the
output of the functionality is shares of a random polynomial with constant term A(0)- B(0) for
all parties. Given that A(0) and B(0) are the dealer’s shares on the original polynomials, the
output is a subsharing of the product of shares, exactly as in the semi-honest case. See formal
description of the functionality in Functionality

FUNCTIONALITY 2.6.13 (Functionality F{'% for sharing a product of shares)

Fmult veceives a set of indices I C [n] and works as follows:

1. The FyPul! functionality receives an input pair (aj,b;) from every honest party P; (j ¢
I). (The dealer P; also has polynomials A(z), B(z) such that A(a;) = a; and B(a;) =
b;, for every j ¢ I.)

2. F{/”g‘ét computes the unique degree-t polynomials A and B such that A(«e;) = a; and
B(ay) = b; for every j ¢ I (if no such A or B exist of degree-t, then FI74! behaves
differently as in Footnote E[)

3. If the dealer P; is honest (1 ¢ I), then:
(a) Fydlt chooses a random degree-t polynomial C' under the constraint that C(0) =
A(0) - B(0).
(b) Outputs for honest: Fir¥Y sends the dealer P; the polynomial C(x), and for every
j ¢ Iit sends C(a;) to P;.
(c) Outputs for adversary: FI'4Y sends the shares (A(«;), B(a;), C(a;)) to the (ideal)
adversary, for every i € I.

4. If the dealer P is corrupted (1 € I), then:
(a) Fydlt sends (A(x), B(z)) to the (ideal) adversary.

(b) Fl receives a polynomial C as input from the (ideal) adversary.

(c) If either deg(C) >t or C'(0) # A(0) - B(0), then F{r¥Y resets C(x) = A(0) - B(0);
that is, the constant polynomial equalling A(0) - B(0) everywhere.

(d) Outputs for honest: FP4l sends C(ay) to Pj, for every j ¢ 1.
(There is no more output for the adversary in this case.)

81



We remark that although the dealing party P; is supposed to already have A(x), B(x) as
part of its input and each party P; is also supposed to already have A(«a;) and B(«;) as part of
its input, this information is provided as output in order to enable simulation. Specifically, the
simulator needs to know the corrupted parties “correct points” in order to properly simulate
the protocol execution. In order to ensure that the simulator has this information (since the
adversary is not guaranteed to have its correct points as input), it is provided by the func-

tionality. In our use of F{}”‘gfgt

in the multiplication protocol, this information is always known
to the adversary anyway, and so there is nothing leaked by having it provided again by the
functionality.

As we have mentioned, this functionality is used once the parties already hold shares of a
and b (where a and b are the original shares of the dealer). The aim of the functionality is for
them to now obtain shares of a-b via a degree-t polynomial C such that C(0) = A(0)-B(0) = a-b.
We stress that a and b are not values on the wires, but rather are the shares of the dealing

party of the original values on the wires.

The protocol idea. Let A(x) and B(x) be polynomials such that A(0) = a and B(0) = b;
i.e., A(x) and B(z) are the polynomials used to share a and b. The idea behind the protocol is
for the dealer to first define a sequence of ¢ polynomials D1(x),..., Di(z), all of degree-t, such
that C'(x) def A(x)-B(z) = Y,_, ' Dy(z) is a random degree-t polynomial with constant term
equalling a-b; recall that since each of A(x) and B(z) are of degree ¢, the polynomial A(x)- B(x)
is of degree 2t. We will show below how the dealer can choose D1 (z),. .., Di(z) such that all the
coefficients from ¢+ 1 to 2t in A(x) - B(x) are canceled out, and the resulting polynomial C(x)
is of degree-t (and random). The dealer then shares the polynomials D;(z),..., Di(z) and each
party locally computes its share of C'(x). An important property is that the constant term of
C(z) equals A(0) - B(0) = a - b for every possible choice of polynomials Di(x), ..., D¢(x). This
is due to the fact that each Dy(x) is multiplied by z‘ (with ¢ > 1) and so these do not affect
C(0). This guarantees that even if the dealer is malicious and does not choose the polynomials
Di(z),...,Di(x) correctly, the polynomial C(z) must have the correct constant term (but it
will not necessarily be of degree ¢, as we explain below).

In more detail, after defining D1 (z),..., Di(z), the dealer shares them all using Fy gg; this
ensures that all polynomials are of degree-t and all parties have correct shares. Since each party
already holds a valid share of A(x) and B(x), this implies that each party can locally compute
its share of C'(z). Specifically, given A(«;), B(c;) and Di(a;), ..., Di(e; ), party P; can simply
compute C(a;) = A(e;) - B(aj) — 35—, (a;)’ - De(a;). The crucial properties are that (a) if the
dealer is honest, then all the honest parties hold valid shares of a random degree-t polynomial
with constant term a - b, as required, and (b) if the dealer is malicious, all honest parties are
guaranteed to hold valid shares of a polynomial with constant term a-b (but with no guarantee
regarding the degree). Thus, all that remains is for the parties to verify that the shares that
they hold for C'(x) define a degree-t polynomial.

It may be tempting to try to solve this problem by having the dealer share C(x) using
Fygg, and then having each party check that the share that it received from this Fygg equals
the value C(«;) that it computed from its shares A(c;), B(a;), D1(a ), ..., Di(cy). If not, then
like in Protocol for VSS, the parties broadcast complaints. If more than ¢ complaints are
broadcast then the honest parties know that the dealer is corrupted (more than ¢ complaints are
needed since the corrupted parties can falsely complain when the dealer is honest). They can

82



then broadcast their input shares to reconstruct A(z), B(z) and all define their output shares
to be a-b= A(0) - B(0). Since Fygg guarantees that the polynomial shared is of degree-t and
we already know that the computed polynomial has the correct constant term, this seems to
provide the guarantee that the parties hold shares of a degree-t polynomial with constant term
A(0) - B(0). However, the assumption that ¢t + 1 correct shares (as is guaranteed by viewing
at most t complaints) determines that the polynomial computed is of degree-t, or that the
polynomial shared with VSS has constant term A(0) - B(0) is false. This is due to the fact that
it is possible for the dealer to define the polynomials Dq(z),..., Di(z) so that C(x) is a degree
2t polynomial that agrees with some other degree-t polynomial C’(z) on up to 2t of the honest
parties’ points «;, but for which C’(0) # a - b. A malicious dealer can then share C’(z) using
Fyss and no honest parties would detect any cheatingm Observe that at least one honest
party would detect cheating and would complain (because C'(z) can only agree with C’(z) on
2t of the points, and there are at least 2¢ + 1 honest parties). However, this is not enough to
act upon because, as described, when the dealer is honest up to t of the parties could present
fake complaints because they are malicious.

We solve this problem by having the parties unequivocally verify every complaint to check
if it is legitimate. If the complaint is legitimate, then they just reconstruct the initial shares a
and b and all output the constant share a -b. In contrast, if the complaint is not legitimate, the
parties just ignore it. This guarantees that if no honest parties complain (legitimately), then
the degree-t polynomial C’(z) shared using Fygg agrees with the computed polynomial C(x)
on at least 2t 4 1 points. Since C(z) if of degree at most 2¢, this implies that C'(z) = C’(z) and
so it is actually of degree-t, as required. In order to unequivocally verify complaints, we use the
new functionality defined in Section called F,,, that reconstructs the input share of the
complainant (given that all honest parties hold valid shares of a degree-t polynomial). Now, if
a party P}, complains legitimately, then this implies that C”(ay,) # A(aw) - B(ag) — Sy (ax)’ -
Dy(ay). Observe that the parties are guaranteed to have valid shares of all the polynomials
C'(z), D1(x), ..., Di(x) since they are shared using Fygg, and also shares of A(z) and B(x)
by the assumption on the inputs. Thus, they can use Fekml to obtain all of the values A(ay),
B(ag), Di(ag),...,Di(ag), and C’(ax) and then each party can just check if C'(ay) equals
C(ayg) def Alag) - Blag) — Sh_ (1) De(a). Tf yes, then the complaint is false, and is ignored.
If no, then the complaint is valid, and thus they reconstruct a - b.

Observe that if the dealer is honest, then no party can complain legitimately. In addition,
when the dealer is honest and an illegitimate complaint is sent by a corrupted party, then this
complaint is verified using F,, which reveals nothing more than the complainants shares. Since
the complainant in this case is corrupted, and so its share is already known to the adversary,
this reveals no additional information.

Constructing the polynomial C(x). As we have mentioned above, the protocol works by
having the dealer choose t polynomials Dj(x),..., Di(x) that are specially designed so that
C(z) = A(z) - B(x) — Y5, 2* - Dy(x) is a uniformly distributed polynomial in P*>! where

10 An alternative strategy could be to run the verification strategy of Protocolfor VSS on the shares C'(«;)
that the parties computed in order to verify that it is a degree-t polynomial. The problem with this strategy is
that if C'(z) is not a degree-t polynomial, then the protocol for Fy ss changes the points that the parties receive
so that it is a degree-t polynomial. However, in this process, the constant term of the resulting polynomial may
also change. Thus, there will no longer be any guarantee that the honest parties hold shares of a polynomial
with the correct constant term.

83



A(0) = a and B(0) = b. We now show how the dealer chooses these polynomials. The dealer
first defines the polynomial D(z):

def

D(z) = A(z)-B(z) =a-b+diz+ ...+ dga?

(D(x) is of degree 2t since both A(z) and B(x) are of degree-t). Next it defines the polynomials:

-1 t
Di(x) = rmo+rgax+...+ry—1x " +dyx
t—1 t
Dii(xz) = r1o+r—11c+ ... +r—1 12 4 (dor—1 —rep—1) - @
t—1 ¢
Di_o(x) = rioo+r—o1r+...+r—0i12 4+ (dop—2 —r—14-1 — Tt 1—2) - X
t—1 t
Di(x) = rmo+rigz+...rig2 A+ (degr — 11 —T—12— ... —T24-1)

where all r;; €gp F are random values, and the d; values are the coefficients from D(z) =
A(x)-B (x) That is, in each polynomial Dy(x) all coefficients are random expect for the '
coefficient, which is included in the (¢ + ¢)th coefficient of D(x). More exactly, for 1 < ¢ <t
polynomial Dy(z) is defined by:

t
Dy(z) =rgo+rgy-x+-+ 71041 '+ (dtw - Z Tm,t+€m> -zt (2.6.4)
m=,¢+1

and the polynomial C(x) is computed by:

C(z) = D(x) = Y " Dy(a).
/=1

Before proceeding, we show that when the polynomials Dq(x),..., Di(z) are chosen in this
way, it holds that C'(x) is a degree-t polynomial with constant term A(0) - B(0) = a - b. Specifi-
cally, the coefficients in D(x) for powers greater than ¢ cancel out. For every polynomial Dy(x),
we have that: Dy(z) =rp0+7r1 -2+ +7rpp—1 - 271+ Ry - 2t, where

t
Ryt =dio— Z T t-+l—m- (2.6.5)
m=(+1
(Observe that the sum of the indices (i,7) of the 7;; values inside the sum is always t + ¢
exactly.) We now analyze the structure of the polynomial Zzzl z! - Dy(x). First, observe that
it is a polynomial of degree 2¢ with constant term 0 (the constant term is 0 since £ > 1). Next,
the coefficient of the monomial z¢ is the sum of the coefficients of the ¢th column in Table
in the table, the coefficients of the polynomial Dy(x) are written in the ¢th row and are shifted
¢ places to the right since Dy(x) is multiplied by .
We will now show that for every k = 1,...,t the coefficient of the monomial z*t* in the
polynomial $°)_; #¢ - Dy(z) equals diyr. Now, the sum of the (t + k)th column of the above

table (for 1 <k <t) is
t

Ryt +rpp1p—1+Thqo—2+ -+ rpp = Ry + E Tm,t+k—m-
m=k-+1

"1The naming convention for the r; ; values is as follows. In the first t — 1 coefficients, the first index in
every r;; value is the index of the polynomial and the second is the place of the coefficient. That is, r; ; is the
jth coefficient of polynomial D;(z). The values for the " coefficient are used in the other polynomials as well,
and are chosen to cancel out; see below.

84



x | 22| 23 xt ot | gt a2 | g2l ] g2
Dy 40 1 T2 Tep—2 | Tee—1 | Ry
D; 4 coe | memag || 12 | =13 | e | Tem1—1 | e
Dy coe | Ti—22 || Te—23 | Tt—24 | ... Ry 94
D3 73,0 | ... | T34-3 || T34-2 | 3,01
Dy ro0 |21 | ... | T2g—2 | T2i—1 | Roy
Dy |[mo|rma|riz2| o [Tt | Rag

Table 2.1: Coefficients of the polynomial >,_, x* - Dy(z).

Combining this with the definition of R} ; in Eq. , we have that all of the r; ; values
cancel out, and the sum of the (¢ 4+ k)th column is just dy4. We conclude that the (¢ + k)th
coefficient of C(z) = D(z) — 3"y, 2* - Dy(z) equals dyyy — diyx = 0, and thus C(x) is of degree
t, as required. The fact that C(0) = a - b follows immediately from the fact that each Dy(z) is
multiplied by ¢ and so this does not affect the constant term of D(z). Finally, observe that the
coefficients of x, 2%, ..., 2! are all random (since for every i = 1,..., ¢ the value r; ¢ appears only
in the coefficient of ). Thus, the polynomial C(x) also has random coefficients everywhere

except for the constant term.

The protocol. See Protocol m 5| for a full specification in the (Fyvgs, FlL ;.- F" ;)-
hybrid model. From here on, we write the Fg,q-hybrid model to refer to all n functionalities
Felval7"'7F£Jal'

We have the following theorem:

Theorem 2.6.14 Lett < n/3. Then, Protocol is t-secure for the F; m“lt functionality in
the (Fvss, Feval)-hybrid model, in the presence of a static malicious adversary.

Proof: We separately prove the security of the protocol when the dealer is honest and when
the dealer is corrupted.

Case 1 — the dealer P; is honest: The simulator interacts externally with ﬂg‘g, while

internally simulating the interaction of A with the honest parties and Fygg, Feye in Proto-
col 2.6.15] Since the dealer is honest, in all invocations of Fy gg the adversary has no inputs to
these invocations and just receives shares. Moreover, as specified in the Fy; m“” ‘¢ functionality, the
ideal adversary/simulator S has no input to Fy/ m“lt and it just receives the correct input shares
(A(i), B(ay)) and the output shares C(a;) for every ¢ € I. The simulator S simulates the view
of the adversary by choosing random degree-t polynomials Ds(z), ..., Di(x), and then choosing
D;(z) randomly under the constraint that for every i € I it holds that
t
a; - Di(oy) = A(ay) - B(ay) — Z Dg ;).
(=2
This computation makes sense because

C(z) = D(z) = Y a' Dy(z) = A(z) - B(z) —z - Di(z Zx Dy(x

/=1

implying that t

xz-Di(x) = Ax) - B(z) — C(x) — er - Dy()
=2

85



PROTOCOL 2.6.15 (Securely computing F{,né‘ét in the Fyss-Feyqi-hybrid model)

e Input:

1. The dealer P; holds two degree-t polynomials A and B.

2. Each party P; holds a pair of shares a; and b; such that a; = A(a;) and b; = B(ay).
e Common input: A field description F and n distinct non-zero elements o, ..., «,, € F.

e Aiding ideal functionality initialization: Upon invocation, the trusted party com-
puting the (fictitiously corruption-aware) functionality Fy gs and the corruption-aware
functionality Fl,,; receives the set of corrupted parties I.

e The protocol:
1. Dealing phase:
(a) The dealer P; defines the degree-2¢t polynomial D(z) = A(z) - B(z); denote
D(x)=a-b+ Z?tzl dy - x*.
(b) Pp chooses t* values {ry ;} uniformly and independently at random from F,
where k=1,...,¢t,and j =0,...,t — 1.
(c) For every £ =1,...,t, the dealer P, defines the polynomial D,(x):

t—1 t
Dy(z) = <Z Te,m xm) + <d£+t - > rm,tJer) -t
m=0

m=~+1

(d) P; computes the polynomial: .

C(z) = D(z) — in - Dy(x).
=1

(e) Py invokes the Fygg functionality as dealer with input C(z); each party P;
receives C(a;).
(f) Py invokes the Fygg functionality as dealer with input Dy(z) for every ¢ =
1,...,t; each party P; receives Dy(a;).
2. Verify phase: Fach party P; works as follows:
(a) If any of the C(ay), D¢(ay;) values equals L then P; proceeds to the reject
phase (note that if one honest party received L then all did).
(b) Otherwise, P; computes ¢; = a; - b; — Zzzl(ai)f - Dy(a;). If ¢ # C(a;) then
P; broadcasts (complaint, ).
(¢) If any party Py broadcast (complaint, k) then go to the complaint resolution
phase.
3. Complaint resolution phase: Run the following for every (complaint, k) message:

(a) Run ¢+ 3 invocations of F, ekv .- in each of the invocations each party F; inputs
the corresponding value a;, b;, C(a;), D1 (), ..., Di(a;).

(b) Let A(aw), B(ag),C(ak), Di(aw), ..., Di(ay) be the respective outputs that
all parties receive from the invocations. Compute C'(ay,) = A(ay) - B(ag) —
Zzzl(ak)e - Dy(ay). (We denote these polynomials by C, Dy, ... since if the
dealer is not honest they may differ from the specified polynomials above.)

(c) If C(au) # C'(ay), then proceed to the reject phase.

4. Reject phase (skip to the output if not explicitly instructed to run the reject phase):

(a) Every party P; broadcasts the pair (a;,b;). Let @ = (ai,...,a,) and b =
(b1,...,b,) be the broadcast values (where zero is used for any value not
broadcast). Then, P; computes A’(x) and B’(z) to be the outputs of Reed-
Solomon decoding on @ and g, respectively.

(b) Every party P; sets C(ay;) = A’(0) - B'(0).

e Output: Every party P; outputs C(«;).

86




As we will see, the polynomials Dy(x) chosen by an honest dealer have the same distribution
as those chosen by S (they are random under the constraint that

t
Cla;) = Aoy Z Dé ;)

=1
for all ¢ € I). In order to simulate the complaints, observe that no honest party broadcasts
a complaint. Furthermore, for every (complaint,i) value broadcast by a corrupted P; (i €
I), the complaint resolution phase can easily be simulated since & knows the correct values
A(oy) = A(ay), B(ai) = B(ay), Coy) = C(ey). Furthermore, for every £ = 1,...,t, S uses
Dy(e;) = Dy(a;) as chosen initially in the simulation as the output from F! . We now formally
describe the simulator.

The simulator S:
1. § internally invokes the adversary A with the auxiliary input z.

2. S externally receives from FI the values (A(a;), B(y),C(cy)) for everyi € I (Step
in Functionality . (Recall that the adversary has no input to F{PY in the case that
the dealer is honest.)

3. S chooses t — 1 random degree-t polynomials Da(x), ..., D(x).

4. For everyi € I, S computes:

¢
Di(a;) = (o)~ (A(ai) - B(o) — Claq) = > (ai)" - Dz@éi))
(=2
5. S simulates the Fygg invocations, and simulates every corrupted party P; (for everyi € I)
internally receiving outputs C(«;), D1(c;), ..., Di(cy) from Fygg in the respective invo-

cations (Steps[1d and[1f of Protocol .

6. For every k € I for which A instructs the corrupted party Py to broadcast a (complaint, k)
message, S simulates the complaint resolution phase (Step@ of Protocolm by inter-

nally simulating the t + 3 invocations of Fewl For every i € I, the simulator internally

hands the adversary (A(q;), A(ow)), (B(a), B(ag)), (C(ai), Caw)) and {(D¢(c;), De(ou)) Yoy

as P;’s outputs from the respective invocation of Ffml.
7. S outputs whatever A outputs, and halts.

We prove that for every for every I C [n], every z € {0,1}* and all vectors of inputs Z,

{HYBRIDFVSS’FEWZ (Z) } .

{IDEALF"}ng,S(z),I (-f)} m,A(z),I

We begin by showing that the outputs of the honest parties are distributed identically in an
ideal execution with § and in a real execution of the protocol with A (the protocol is actually run
in the (Fyss, Fevar)-hybrid model, but we say “real” execution to make for a less cumbersome
description). Then, we show that the view of the adversary is distributed identically, when the
output of the honest parties is given.

87



The honest parties’ outputs. We analyze the distribution of the output of honest parties.
Let the inputs of the honest parties be shares of the degree-t polynomials A(x) and B(z). Then,
in the ideal model the trusted party chooses a polynomial C'(z) that is distributed uniformly at
random in PA©O) B¢ and sends each party P; the output (A(«;), B(ay), C(ay)).

In contrast, in a protocol execution, the honest dealer chooses Di(z),...,Di(x) and then
derives C(z) from D(z) = A(z)-B(z) and the polynomial D;(z), ..., Di(z); see Steps[lato[ld]in
Protocol It is immediate that the polynomial C' computed by the dealer in the protocol
is such that C'(0) = A(0) - B(0) and that each honest party P; outputs C(«a;). This is due to
the fact that, since the dealer is honest, all the complaints that are broadcasted are resolved
with the result that C(ay,) # C'(ay,), and so the reject phase is never reached. Thus, the honest
parties output shares of a polynomial C'(x) with the correct constant term. It remains to show
that C(z) is of degree-t and is uniformly distributed in PAO)BO)t In the discussion above, we
have already shown that deg(C) < ¢, and that every coefficient of C(z) is random, except for
the constant term.

We conclude that C(z) as computed by the honest parties is uniformly distributed in
PAO)BO)t and so the distribution over the outputs of the honest parties in a real protocol
execution is identical to their output in an ideal execution.

The adversary’s view. We now show that the view of the adversary is identical in the real
protocol and ideal executions, given the honest parties’ inputs and outputs. Fix the honest
parties’ input shares (A(c;), B(c;)) and output shares C(a;) for every j ¢ I. Observe that
these values fully determine the degree-t polynomials A(x), B(z),C(z) since there are more
than t points. Now, the view of the adversary in a real protocol execution is comprised of the

{Dl(ai)}iel - {Dt(ai)}id , {C(ai)}id (2.6.6)

received from the Fy gg invocations, and of the messages from the complaint resolution phase.

shares

In the complaint resolution phase, the adversary merely sees some subset of the shares in
Eq. . This is due to the fact that in this corruption case where the dealer is honest, only
corrupted parties complain. Since C(z) is fixed (since we are conditioning over the input and
output of the honest parties), we have that it suffices for us to show that the Dj(«;), ..., Di(a;)
values are identically distributed in an ideal execution and in a real protocol execution.

Formally, denote by D (z), ..., Dy (x) the polynomials chosen by S in the simulation, and
by Di(z), ..., D¢(x) the polynomials chosen by the honest dealer in a protocol execution. Then,
it suffices to prove that

{D¥(@)..... D} (@) | A@). B@).C@)} = {Di(@)...... Difes) | Ale), B(x). C(x) }

il
(2.6.7)
In order to prove this, we show that for every £ =1,... ¢,
{Df(@) | Aw), B(2). C(2). D s (), ..., D)}
= {Dg(ai) | A(z), B(z), C(2), Dot (), . . ,Dt(ai)}iel (2.6.8)

Combining all of the above (from ¢ = ¢ downto ¢ = 1), we derive Eq. (2.6.7)).
We begin by proving Eq. (2.6.8) for £ > 1, and leave the case of £ = 1 for last. Let

88



¢ € {2,...,t}. It is clear that the points {DJ (;)}ies are uniformly distributed, because the
simulator S chose Dy (z) uniformly at random, and independently of A(x), B(x),C(x) and
Dfﬂ(az), ..., D?(2). In contrast, in the protocol, there seems to be dependence between Dy(x)
and the polynomials A(x), B(z),C(z) and Dyi1(z),. .., Di(z). In order to see that this is not
a problem, note that

¢
Dy(x) =rpo+re1 -+ 10412 <d€+t Z T t4-l— m) T
m=~+1

where the values 7¢0,...,7,;—1 are all random and do not appear in any of the polynomials
Dyy1(x), ..., Di(x), nor of course in A(z) or B(x); see Table Thus, the only dependency is
in the t'® coefficient (since the values r,, ;1 , appear in the polynomials Dy 1(z), ..., Di(x)).
However, by Claim it holds that if Dy(x) is a degree-t polynomial in which its first ¢
coefficients are uniformly distributed, then any ¢ points {Dy(c;)}ics are uniformly distributed.
Finally, regarding the polynomial C(z) observe that the m'" coefficient of C(z), for 1 <m <t
in the real protocol includes the random value r; ,,—1 (that appears in no other polynomials; see
Table , and the constant term is always A(0) - B(0). Since 71,,—1 are random and appear
only in Dj(z), this implies that Dy(z) is independent of C(x). This completes the proof of
Eq. for £ > 1.

It remains now to prove Eq. for the case £ = 1; i.e., to show that the points
{D?(a;) }ier and {D1(;)}ier are identically distributed, conditioned on A(z), B(x), C(z) and
all the points { D2 (), ..., Di(;) }icr. Observe that the polynomial D;(z) chosen by the dealer
in the real protocol is fully determined by C(x) and Dy(z), ..., D¢(x). Indeed, an equivalent
way of describing the dealer is for it to choose all Da(x),..., Di(z) as before, to choose C(x)
uniformly at random in P%%* and then to choose D;(z) as follows:

¢
Di(z) =2t (A(x) -B(z) = C(z) — Y _a* Dk(x)> . (2.6.9)
k=2

Thus, once Dy(z),...,Di(z), A(x), B(z),C(z) are fixed, the polynomial D;(x) is fully deter-
mined. Likewise, in the simulation, the points {Dj(«;)}ier are fully determined by { D2 (), . . .,
Di(ai), A(ai), B(ag), C(ai)bier. Thus, the actual values {D;(a;)}ier are the same in the ideal
execution and real protocol execution, when conditioning as in Eq. . (Intuitively, the
above proof shows that the distribution over the polynomials in a real execution is identical
to choosing a random polynomial C(z) € PAOBO)t and random points Da(ay),. .., D(as),
and then choosing random polynomials Dy(x), ..., Di(z) that pass through these points, and
determining D1 (z) so that Eq. holds.)

We conclude that the view of the corrupted parties in the protocol is identically distributed to
the adversary’s view in the ideal simulation, given the outputs of the honest parties. Combining
this with the fact that the outputs of the honest parties are identically distributed in the protocol
and ideal executions, we conclude that the joint distributions of the adversary’s output and the
honest parties’ outputs in the ideal and real executions are identical.

Case 2 — the dealer is corrupted: In the case that the dealer P; is corrupted, the ideal
adversary sends a polynomial C(z) to the trusted party computing F‘ng If the polynomial is
of degree at most ¢ and has the constant term A(0) - B(0), then this polynomial determines the

89



output of the honest parties. Otherwise, the polynomial C'(x) determining the output shares of
the honest parties is the constant polynomial equalling A(0) - B(0) everywhere.

Intuitively, the protocol is secure in this corruption case because any deviation by a cor-
rupted dealer from the prescribed instructions is unequivocally detected in the verify phase
via the F,,q invocations. Observe also that in the (Fygg, Fepq)-hybrid model, the adversary
receives no messages from the honest parties except for those sent in the complaint phase. How-
ever, the adversary already knows the results of these complaints in any case. In particular,
since the adversary (in the ideal model) knows A(z) and B(x), and it dealt the polynomials
C(z), D1(z), ..., Di(x), it knows exactly where a complaint will be sent and it knows the values
revealed by the Fekv o calls.

We now formally describe the simulator (recall that the ideal adversary receives the poly-
nomials A(x), B(x) from F{P¥; this is used to enable the simulation).

The simulator S:
1. § internally invokes A with the auziliary input z.

2. S externally receives the polynomials A(x), B(x) from FIU (Step in Functional-
ity|2.0.15).

3. S internally receives the polynomials C(x), Di(x), ..., Di(x) that A instructs the corrupted
dealer to use in the Fygg invocations (Steps[1d and[Lf of Protocol .

4. If deg(C) > t or if deg(Dy) > t for some 1 < £ < t, then S proceeds to Step [§ below
(simulating reject).

5. For every k ¢ T such that C(ag) # A(aw) - B(aw) — o4y (ar)’ - Dy(aw), the simulator S
simulates the honest party Py broadcasting the message (complaint, k). Then, S internally
simulates the “complaint resolution phase” (Step @ mn Protocol. In this phase, S
uses the polynomials A(x), B(x),C(z) and D1(x), ..., Di(x) in order to compute the values

output in the Fekval invocations. If there exists such a k ¢ I as above, then S proceeds to
Step [§ below.

6. For every (complaint, k) message (with k € I) that was internally broadcast by the ad-
versary A in the name of a corrupted party Py, the simulator S uses the polynomials
A(z), B(z),C(z) and D1(x),..., Di(z) in order to compute the values output in the FX
invocations, as above. Then, if there exists an i € I such that C(ay) # A(ax) - B(ag) —
S (ag)t - Dy(aw), simulator S proceeds to Step @ below.

7. If S reaches this point, then it externally sends the polynomial C(z) obtained from A above
to F@%‘g (Step |48 in Functionality . It then skips to Step @ below.

8. Simulating reject: (Step |4 in Protocol

(a) S externally sends C(z) = z'+! to the trusted party computing Frull (e, S sends
a polynomial C such that deg(C) > t).

(b) S internally simulates every honest party P; broadcasting a; = A(c;) and bj = B(a)
as in the reject phase.

©

S outputs whatever A outputs, and halts.

90



The simulator obtains A(z), B(z) from F{'¥¥ and can therefore compute the actual inputs
a; = A(cy) and b; = B(a;) held by all honest parties P; (j ¢ I). Therefore, the view of the
adversary in the simulation is clearly identical to its view in a real execution. We now show
that the output of the honest parties in the ideal model and in a real protocol execution are
identical, given the view of the corrupted parties/adversary. We have two cases in the ideal
model/simulation:

1. Case 1 — S does not simulate reject (S does not run Step @ This case occurs if

(a) All the polynomials C(x), Di(x),..., Di(z) are of degree-t, and
(b) For every j ¢ I, it holds that C(«;) = A(ay) - B(ay) — Yo, () - De(a), and

(c) If any corrupt P; broadcast (complaint,i) then C(a;) = A(a;) - B(a;) — 35—, (a;)’ -
Dg(ai).

The polynomials obtained by S from A in the simulation are the same polynomials used
by A in the Fygg calls in the real protocol. Thus, in this case, in the protocol execution
it is clear that each honest party P; will output C(«;).

In contrast, in the ideal model, each honest P; will outputs C'(a;) as long as deg(C) <t
and C(0) = A(0)- B(0). Now, let C'(x) = A(z)- B(z) — >.h_, 2°- Dy(x). By the definition
of C’ and the fact that each Dy(x) is guaranteed to be of degree-t, we have that C’(x) is of
degree at most 2¢t. Furthermore, in this case, we know that for every j ¢ I, it holds that
C(ay) = A(ey) - B(aj) — Yy (@) - Dy(ej) = C'(aj). Thus, C(x) = C'(z) on at least
2t 41 points {a;};¢r. This implies that C(x) = C'(z), and in particular C(0) = C'(0).
Since C'(0) = A(0) - B(0) irrespective of the choice of the polynomials Di(x),..., Di(x),
we conclude that C(0) = A(0) - B(0). The fact that C(x) is of degree-t follows from the
conditions of this case. Thus, we conclude that in the ideal model, every honest party P;
also outputs C'(a;), exactly as in a protocol execution.

2. Case 2 - S simulates reject (S runs Step[§): This case occurs if any of (a), (b) or (c) above
do not hold. When this occurs in a protocol execution, all honest parties run the reject
phase in the real execution and output the value A(0) - B(0). Furthermore, in the ideal
model, in any of these cases the simulator S sends the polynomial C () = 2!t to F{/”S“ét
Now, upon input of C(z) with deg(C) > ¢, functionality FIF4l sets C(z) = A(0) - B(0)
and so all honest parties output the value A(0) - B(0), exactly as in a protocol execution.

This concludes the proof. [ |

2.6.7 The F,,,; Functionality and its Implementation

We are finally ready to show how to securely compute the product of shared values, in the
presence of malicious adversaries. As we described in the high-level overview in Section [2.6.1
the multiplication protocol works by first having each party share subshares of its two input
shares (using F“j%bgh”e), and then share the product of the shares (using F‘%i‘ét) Finally, given
shares of the product of each party’s two input shares, a sharing of the product of the input
values is obtained via a local computation of a linear function by each party.

91



The functionality. We begin by defining the multiplication functionality for the case of
malicious adversaries. In the semi-honest setting, the F},,,;; functionality was defined as follows:

Fnate ((falen): fo(@n))s- -, (falan), fo(@n))) = (fan(@n); - Fan(n) )

where f,; is a random degree-t polynomial with constant term f,(0) - f5(0) = a-b. We stress
that unlike in F{/”g‘fgt, here the values a and b are the actual values on the incoming wires to the
multiplication gate (and not shares).

In the malicious setting, we need to define the functionality with more care. First, the cor-
rupted parties are able to influence the output and determine the shares of the corrupted parties
in the output polynomial. In order to see why this is the case, recall that the multiplication
works by the parties running F{}?g multiple times (in each invocation a different party plays the
dealer) and then computing a linear function of the subshares obtained. Since each corrupted
party can choose which polynomial C(x) is used in F(/”gfg when it is the dealer, the adversary
can singlehandedly determine the shares of the corrupted parties in the final polynomial that
hides the product of the values. This is similar to the problem that arises when running Fy gg in
parallel, as described in Section We therefore define the Fj,,;; multiplication functionality

as a reactive corruption-aware functionality. See Functionality [2.6.16| for a full specification.

FUNCTIONALITY 2.6.16 (Functionality F,,,;: for emulating a multiplication gate)

Fput receives a set of indices I C [n] and works as follows:

1. The Fyuy functionality receives the inputs of the honest parties {(3;,7;j)};¢r. Let
fa(), fo(x) be the unique degree-t polynomials determined by the points {(«a;, 8;)},¢1,
{(j,74)}j¢r, respectively. (If such polynomials do not exist then no security is guar-
anteed; see Footnote [9])

2. Frur sends {(fa(ay), fo(e;)) bier to the (ideal) adversaryE

3. Fiuz receives points {d; }ier from the (ideal) adversary (if some §; is not received, then
it is set to equal 0).

4. Fput chooses a random degree-t polynomial f,;(z) under the constraints that:
(a) fab(o) = fa(o) : fb(0)7 and
(b) For every i € I, fap(c) = 0;.
(such a degree-t polynomial always exists since |[I| < t).

5. The functionality F,.;; sends the value fu5(c;) to every honest party P; (j € I).

Before proceeding, we remark that the F),,;; functionality is sufficient for use in circuit
emulation. Specifically, the only difference between it and the definition of multiplication in the
semi-honest case is the ability of the adversary to determine its own points. However, since fu
is of degree-t, the ability of A to determine ¢ points of f,; reveals nothing about fu,(0) = a - b.
A formal proof of this is given in Section

The protocol idea. We are now ready to show how to multiply in the F{%bgh“re and F(/”é‘fqt

hybrid model. Intuitively, the parties first distribute subshares of their shares and subshares of

12 As with F.,q and F(/”S“ét, the simulator needs to receive the correct shares of the corrupted parties in order to
simulate, and so this is also received as output. Since this information is anyway given to the corrupted parties,
this makes no difference to the use of the functionality for secure computation.

92



the product of their shares, using Féﬁ‘é’ghwe and F‘Té‘g, respectively. Note that F{}?ét assumes

that the parties already hold correct subshares,; this is achieved by first running F‘ngbgh”e on
the input shares. Next, we use the method from [51] to have the parties directly compute
shares of the product of the values on the input wires, from the subshares of the product of
their shares. This method is based on the following observation. Let f,(x) and fy(z) be
two degree-t polynomials such that f,(0) = a and f,(0) = b, and let h(x) = fu(x) - fo(z) =
a-b+hy-x+hy-z2+... +hy -2t Letting V5 be the Vandermonde matrix for &, and recalling
that V3 is invertible, we have that

ab ab
hl hl
: h(aq) . h(a1)
) h(a ) h(o
Va-| ho | = ( 2) and so hot | = Vc{l . ( 2)
0 : 0 :
h(an) h(an)
0 0

Let Ay, ..., Ay be the first row of Vo{l. It follows that
a-b=X-h(ar)+ ...+ - hlan) =M1 - falar) - folar) + ...+ X - falan) - folan).

Thus the parties simply need to compute a linear combination of the products fu(ay) - fp(ay) for
£=1,...,n. Using F‘S}fqbgh““ and F{}‘é‘g, as described above, the parties first distribute random
shares of the values fo(ay)- fo(cw), for every £ = 1,...,n. Thatis, let C(x),...,Cp(z) be random
degree-t polynomials such that for every ¢ it holds that Cy(0) = f,(ay) - fy(ay); the polynomial
Cy(z) is shared using F{"4Y where P is the dealer (since Pp’s input shares are f, () and fy(ap)).
Then, the result of the sharing via F{"#¥ is that each party P; holds Cy (o), ..., Cp(;). Thus,
each P; can locally compute Q(a;) =Y, A - Cy(;) and we have that the parties hold shares
of the polynomial Q(x) = >_;_; A¢ - C¢(z). By the fact that Cy(0) = fa(cvw) - fo(c) for every ¢,
it follows that . .
Q0) = "X~ C(0) = " Ar- falow) - folaw) =a . (2.6.10)
=1 =1
Furthermore, since all the Cy(z) polynomials are of degree-t, the polynomial Q(z) is also of
degree-t, implying that the parties hold a valid sharing of a - b, as required. Full details of the
protocol are given in Protocol [2.6.17}

The correctness of the protocol is based on the above discussion. Intuitively, the protocol
is secure since the invocations of Ff}g’gh”e and F{/"gét provide shares to the parties that reveal
nothing. However, recall that the adversary’s output from Fé“sbghme includes the vector of
polynomials Y (z) = (g1(x), ..., gn(z)) - HT, where g1, ..., g, are the polynomials defining the
parties’ input shares, and H is the parity-check matrix of the appropriate Reed-Solomon code;
see Section In the context of Protocol this means that the adversary also obtains
the vectors of polynomials Y4 (z) = (A1(z), ..., An(z)) - HT and Yp(z) = (Bi(z), ..., Ba(z)) -
HT. Thus, we must also show that these vectors can be generated by the simulator for the
adversary. The strategy for doing so is exactly as in the simulation of F,,, in Section [2.6.5

93



PROTOCOL 2.6.17 (Computing F,,,;: in the (F‘S,“SbSSh‘“"e, F{,ns”ét)-hybrid model)

e Input: Each party P; holds a;, b;, where a; = fo(;), b; = fp(a;) for some polynomials
fa(2), fo(x) of degree ¢, which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote @)

e Common input: A field description F and n distinct non-zero elements o, ..., ay, € F.

e Aiding ideal functionality initialization: Upon invocation, the trusted party com-
puting the corruption-aware functionalities F‘S,“SZ’SSh‘"e and F‘}”gg receives the set of cor-

rupted parties I.
e The protocol:

1. The parties invoke the Fgubshare functionality with each party P; using a; as
its private input. Each party P; receives back shares A;(«a;),..., An(®;), and a
polynomial A;(x). (Recall that for every ¢, the polynomial A;(z) is of degree-t and

A:(0) = foloy) = a;,
2. Th(e )partjiccég iln)vokeltlle Fgubshare functionality with each party P; using b; as its

private input. Each party P; receives back shares Bi(cy), ..., By(a;), and a poly-
nomial B;(x).

3. For every i = 1,...,n, the parties invoke the F{"% functionality as follows:

(a) Inputs: In the ith invocation, party P; plays the dealer. All parties P; (1 <
j < n) send FIP4 their shares A;(ay), B;i(ay).
(b) Outputs: The dealer P; receives C;(z) where Cj(x) € P40 B0t and
every party P; (1 < j < n) receives the value C;(c;).
4. At this stage, each party P; holds values C1 (), .., Cn(a;), and locally computes
Qi) = Y71 Ao - Coley), where (A1,..., \,) is the first row of the matrix V.

e Output: Each party P; outputs Q(«;).

We prove the following:

Theorem 2.6.18 Lett < n/3. Then, Protocol is t-secure for the Foue functionality in
the (F‘iig)gh”e,Fygfqt)—hybrid model, in the presence of a static malicious adversary.

Proof: As we have mentioned, in our analysis here we assume that the inputs of the honest
parties all lie on two polynomials of degree ¢; otherwise (vacuous) security is immediate as
described in Footnote [9f We have already discussed the motivation behind the protocol and
therefore proceed directly to the simulator. The simulator externally interacts with the trusted
party computing F,.i¢, internally invokes the adversary A, and simulates the honest parties in
Protocol |2.6.17| and the interaction with the F{%ﬁhwe and F{,”;ét functionalities.

The simulator S:

1. S internally invokes A with the auxiliary input z.

2. S externally receives from the trusted party computing Foue the values (fo(ay), fo(aw)),

for every i € I (Step[d of Functionality )
3. S simulates the first invocation of F§¥share (Step |1 of Protocol :

(a) For every j ¢ I, S chooses a polynomial A;(x) €g PO uniformly at random.

94



(b) S internally hands A the values {Aj(c;)}j¢r.ier as if coming from Fgubshare, (Step@
of Functionality

(c) S internally receives from A a set of polynomials {A;(x)}icr (i.e., the inputs of the
corrupted parties to Ff}lg’gha’"e ). If any polynomial is missing, then S sets it to be the

constant polynomial 0. (Step |4l of Functionality
(d) For every i € I, S performs the following checks (exactly as Step in Functional-
ity .'
i. S checks that A;(0) = fo(y), and
ii. S checks that the degree of A;(x) is t.

If both checks pass, then it sets Al(x) = A;(z). Otherwise, S sets Al(x) to be the
constant polynomial that equals fq (o) everywhere (recall that S received fq(c;) from
Frue in Step |2 and so can carry out this check and set the output to be these values
if necessary).

For every j & I, S sets Aj(z) = Aj(x).

(e) S computes the vector of polynomials Y 4(z) that A expects to receive from Fpubshare
(in a real ezecution, Ya(x) = (A1(2), ..., An(z)) - HT). In order to do this, S first
computes the error vector &4 = (efl,... el) as follows: for every j ¢ I it sets

34 =0, and for every i € I it sets e = A;(0) — f(oy). Then, S chooses a vector
of random polynomials Ya(z) = (Yi(2),...,Yn(z)) under the constraints that (a)
Ya(0) = (ed,...,e2) - HT, and (b) Ya(a;) = (A1(c),..., An(y)) - HT for every
1el.

(f) S internally hands A its output from F‘s;-usbgh“’"e. Namely, it hands A the polynomials
{Al(x)Yier, the shares {A)(ci), ..., AL (i) }ier, and the vector of polynomials Ya(x)

computed above. (Step |0 of Functionality

4. & simulates the second invocation of F{j%bghare: This simulation is carried out in an iden-
tical way using the points {fy(c;)}ier. Let Bi(z), ..., By(x) and Bj(x),..., B (x) be the
polynomials used by S in the simulation of this step (and so A receives from S as out-
put from F&bshore the values { Bi(x)}ier, {B)(ai), ..., Bl(ai)}icr and Yg(x) computed
analogously to above).

e

At this point S holds a set of degree-t polynomials {Aj(x), B)()}scpn), where for every
j ¢ I it holds that A%(0) = Bj(0) = 0, and for every i € I it holds that A;(0) = fu()
and B.(0) = fy().

5. For every j ¢ I, S simulates the F{}g“g invocation where the honest party P; is dealer

(Step [3 in Protocol :
(a) S chooses a uniformly distributed polynomial C'}(x) €g PO,

(b) S internally hands the adversary A the shares {(A(ci), B}(i), Cj(ai))}ier, as if
coming from F{,”gét (Step [3d in Functionality ..

6. For every i € I, S simulates the F{}q’gg invocation where the corrupted party F; is dealer:

(a) S internally hands the adversary A the polynomials (A}(z), Bi(z)) as if coming from

Fygg (Step |4d| of Functionality .

95



(b) S internally receives from A the input polynomial Ci(x) of the corrupted dealer that

A sends to F{}g‘é’f (Step |4b of Functionality .
i. If the input is a polynomial C; such that deg(C;) <t and C;(0) = AL(0)- Bj(0) =
falai) - fo(ay), then S sets Cl(z) = Ci(z).
ii. Otherwise, S sets Cl(x) to be the constant polynomial equalling fo(cu) - fo(cu)
everywhere.

At this point, S holds polynomials C(x),...,C/ (x), where for every j ¢ I it holds that
C%(0) = 0 and for every i € I it holds that C}(0) = fa(cv) - fo(cy).

7. For everyi € I, the simulator S computes Q(cw) = Y ;1 Ae-Cy(a;), where Ci(x),...,C}(x)
are as determined by S above, and sends the set {Q(w;)}icr to the Fpyyy functionality (this
is the set {8;}icr in Step[3 of Functionality .

8. S outputs whatever A outputs.

The differences between the simulation with S and A, and a real execution of Protocol
with A are as follows. First, for every j ¢ I, S chooses the polynomials A;- (x),B} (x), and
C%(z) to have constant terms of 0 instead of constant terms fo(a;), fo(cy), and fa(ay) - fo(ay),
respectively. Second, the vectors ?A(x) and }73(33) are computed by S using the error vector,
and not using the actual polynomials A;(z),...,A,(z) and Bj(x),...,B,(x), as computed
by F&%’?hwe in the protocol execution. Third, in an ideal execution the output shares are
generated by Fj,,;; choosing a random degree-t polynomial f,;(z) under the constraints that
far(0) = f4(0) - f(0), and fup(c;) = 0; for every i € I. In contrast, in a real execution, the
output shares are derived from the polynomial Q(z) = > ; A\¢ - Cj(x). Apart from these
differences, the executions are identical since S is able to run the checks of the Ff}lg’gh‘"e and
F{}g%t functionalities exactly as they are specified.

Our proof proceeds by constructing intermediate fictitious simulators to bridge between the
real and ideal executions.

The fictitious simulator §;. Let §1 be exactly the same as S, except that it receives for
input the values fq(o;), fo(a;), for every j ¢ I. Then, instead of choosing A;(x) er P,
Bi(r) €r P and Ci(z) €r PO the fictitious simulator S; chooses Al(r) €r Pplaleg)t,
Bi(z) €r Plol@it and Ci(z) €r Plalas) fo(@i)t We stress that S; runs in the ideal model with
the same trusted party running Fj,,;; as S, and the honest parties receive output as specified
by Fpe when running with the ideal adversary S or 8.

The ideal executions with & and §;. We begin by showing that the joint output of the
adversary and honest parties is identical in the original simulation by & and the fictitious
simulation by S;. That is,

{IDEALFnLult?S(Z)vI <f)} = {IDEALqult781 (Z/):I(f)}

7e({0,1}*)",2€{0,1}* 2e({0,1}*)",2€{0,1}*

where 2’ contains the same z as A receives, together with the f,(a;), fp(c;) values for every j ¢ I.
In order to see that the above holds, observe that both § and §; can work when given the points
of the inputs shares {(A’(;), B}(ci))}ier jer and the outputs shares {C}(a;)}icr,j¢r and they

96



don’t actually need the polynomials themselves. Furthermore, the only difference between S and
&1 is whether these polynomials are chosen with zero constant terms, or with the “correct” ones.
That is, there exists a machine M that receives points {A’(c;), Bj(ai)icr.jg¢r, {Cj (i) Yierjer
and runs the simulation strategy with A while interacting with F},,,;; in an ideal execution, such

that:

o If A%(0) = Bj(0) = C}(0) = 0 then the joint output of M and the honest parties in the ideal
execution is exactly that of IDEALE, . s(:)7(%); i.e., an ideal execution with the original
simulator.

o If A%(0) = fa(aj), Bj(0) = fi(a;) and C}(0) = fa(aj) - fo(a;) then the joint output of M
and the honest parties in the ideal execution is exactly that of IDEALqult731(Z/)7[(f); i.e., an
ideal execution with the fictitious simulator Sj.

By Claim the points {A% (), Bi(;), Cj(ci) bier,jer when A%(0) = Bj(0) = C}(0) = 0
are identically distributed to the points {A4(c;), Bj(ci), Cj(ci) bier;jgr when A%(0) = fu(ay),
Bj(0) = fy(j) and C(0) = fa(aj) - fo(aj). Thus, the joint outputs of the adversary and honest
parties in both simulations are identical.

The fictitious simulator S;. Let Sy be exactly the same as S1, except that instead of

computing Y, (x) and Yp(x) via the error vectors (ef,...,e2) and (eP,...,eB), it computes
them like in a real execution. Specifically, it uses the actual polynomials A;(z),..., A,(x);

observe that Sy has these polynomials since it chose them '] The fact that

{IDEALqult:SQ (Z/)>I (CL_")} = {IDEALqultv’Sl (Z,),I (f)}

ze({0,1}*)™,z€{0,1}* ze({0,1}*)™,z€{0,1}*

follows from exactly the same argument as in Fi,, regarding the construction of the vector of
polynomials ?(m), using the special property of the Syndrome function.

An ideal execution with S; and a real protocol execution. It remains to show that the
joint outputs of the adversary and honest parties are identical in a real protocol execution and
in an ideal execution with Ss:

subshare it
subs (17‘P7F‘7L’u,

{HYBRIDWXE(SZ)J 55 (Z) = {IDEALqult,SQ(Z/)J(f)}

}fe({o,l}*)n,ze{o,l}* Ze({0,1})" ze{0,1}*

The only difference between these two executions is the way the polynomial defining the output
is chosen. Recall that in an ideal execution the output shares are generated by Fj,,;: choosing
a random degree-t polynomial f,;(x) under the constraints that fu;,(0) = fo(0) - f,(0), and
fap(a;) = &; for every i € I. In contrast, in a real execution, the output shares are derived from
the polynomial Q(z) = >",_; A¢ - C)(x). However, by the way that Sy is defined, we have that
each 0; = Q(ai) = >_y_1 A¢ - C)(a;) where all polynomials C{(z),...,C)(x) are chosen with the
correct constant terms. Thus, it remains to show that the following distributions are identical:

13We remark that the original S could not work in this way since our proof that the simulations by S and
81 are identical uses the fact that the points {A (), Bj(as)ierjer, {C)(cu) bier,j¢r alone suffice for simulation.
This is true when computing Ya(z) and Yz(z) via the error vectors, but not when computing them from the
actual polynomials as Sz does.

97



e [deal with Sy: Choose a degree-t polynomial f;(x) at random under the constraints that

Jar(0) = fa(0) - £3(0), and fap(ci) = Qas) = > y_; Ae - Cy(ay;) for every i € 1.
o Real execution: Compute fop(z) = Q(z) =Dy, Ao - Cj(x).

We stress that in both cases, the polynomials C}(z),...,C) (z) have exactly the same distribu-
tion.

Observe that if |I| = ¢, then the constraints in the ideal execution with S fully define fy5(x)
to be exactly the same polynomial as in the real execution (this is due to the fact that the
constraints define ¢ 4+ 1 points on a degree-t polynomial).

If |[I] < t, then the polynomial f,(z) in the ideal execution with Sz can be chosen by choosing

—|I| random values By € F (for £ ¢ I) and letting f,;(x) be the unique polynomial fulfilling the
given constraints and passing through the points (ay, B¢). Consider now the polynomial fu,(x)
generated in a real execution. Fix any j ¢ I. By the way that Protocol works, C]( (x) is a
random polynomial under the constraint that C}(0) = fa(c;) - fo(a;). By Corollary given
points {(a;, C(i))}ier and a “secret” s = C7(0), it holds that any subset of ¢ — |I| points of
{C%(w)}egr are uniformly distributed (note that none of the points in {C}(ay)}sgs are seen by
the adversary). This implies that for any ¢ — |I| points ay (with ¢ ¢ I) the points fup(cy) in
the polynomial f,;(z) computed in a real execution are uniformly distributed. This is therefore
exactly the same as choosing ¢t — |I| values 5y €g F at random (with ¢ ¢ I), and setting fq to
be the unique polynomial such that f,;(cp) = B¢ in addition to the above constraints. Thus,
the polynomials f,;(z) computed in an ideal execution with Sy and in a real execution are

Fsubshare F'mu

identically distributed. This implies that the HYBRID 7‘/5(5 ¥ VS (Z) and IDEALE, . s, (2,1 (T)

distributions are identical, as required. [ |

Securely computing F),,;; in the plain model. The following corollary is obtained by
combining the following:

e Theorem m (securely compute Fygg in the plain model),

Theorem (securely compute F4 . in the Fy gs-hybrid model),

Theorem (securely compute Fshare in the F/,,-hybrid model),

Theorem [2.6.12] (securely compute Fyq in the F“%’gh”e—hybrid model),

Theorem [2.6.14] (securely compute Fy; m“lt in the Fygg, Feyq-hybrid model), and

e Theorem [2.6.18| (securely compute Fq ¢ in the F“%’ghare gg{lgt hybrid model)

and using the modular sequential composition theorem of [27]. We have:

Corollary 2.6.19 Lett < n/3. Then, there ezists a protocol that is t-secure for Fy,;; function-
ality in the plain model with private channels, in the presence of a static malicious adversary.

98



More efficient constant-round multiplication [8]. The protocol that we have presented
is very close to that described by BGW. However, it is possible to use these techniques to achieve
a more efficient multiplication protocol. For example, observe that if the parties already hold
shares of all other parties’ shares, then these can be used directly in F‘ng without running
F{%’gh”e at all. Now, the verifiable secret sharing protocol of [22] presented in Section is
based on bivariate polynomials, and so all parties do indeed receive shares of all other parties’
shares. This means that it is possible to modify Protocol so that the parties proceed
directly to F(/”gg without using F“%’gh“m at all. Furthermore, the output of each party P; in
F{}?g is the share C(q;) received via the Fygg functionality; see Protocol Once again,
using VSS based on bivariate polynomials, this means that the parties can actually output the
shares of all other parties’ shares as well. Applying the linear computation of Q(z) to these
bivariate shares, we conclude that it is possible to include the shares of all other parties as
additional output from Protocol Thus, the next time that F,,,;; is called, the parties
will again already have the shares of all other parties’ shares and Fé%’gh“’"e need not be called.
This is a significant efficiency improvement. (Note that unless some of the parties behave
maliciously, F{}”Lgét itself requires t+ 1 invocations of Fi gg and nothing else. With this efficiency
improvement, we have that the entire cost of F,; is n- (¢4 1) invocations of Fygg.) See [8] for
more details on this and other ways to further utilize the properties of bivariate secret sharing
in order to obtain simpler and much more efficient multiplication protocols.

We remark that there exist protocols that are not constant round and have far more efficient
communication complexity; see [18] for such a protocol. In addition, in the case of ¢t < n/4,
there is a much more efficient solution for constant-round multiplication presented in BGW
itself; see Section for a brief description.

2.7 Secure Computation in the (Fygsg, Fu:)-Hybrid Model

2.7.1 Securely Computing any Functionality

In this section we show how to t-securely compute any functionality f in the (Fyss, Fmuit)-
hybrid model, in the presence of a malicious adversary controlling any ¢ < n/3 parties. We
also assume that all inputs are in a known field F (with |F| > n), and that the parties all have
an arithmetic circuit C' over F that computes f. As in the semi-honest case, we assume that
f:F" = F” and so the input and output of each party is a single field element.

The protocol here is almost identical to Protocol for the semi-honest case; the only
difference is that the verifiable secret-sharing functionality Fy gg is used in the input stage, and
the Fj,. functionality used for multiplication gates in the computation stage is the corruption-
aware one defined for the case of malicious adversaries (see Section . See Section for
the definition of Fygs (Functionality , and see Functionality for the definition of
F,,u:- Observe that the definition of Fy sg is such that the effect is identical to that of Shamir
secret sharing in the presence of semi-honest adversaries. Furthermore, the correctness of Fi, .
ensures that at every intermediate stage the (honest) parties hold correct shares on the wires
of the circuit. In addition, observe that F),,;; reveals nothing to the adversary except for its
points on the input wires, which it already knows. Thus, the adversary learns nothing in the

99



computation stage, and after this stage the parties all hold correct shares on the circuit-output
wires. The protocol is therefore concluded by having the parties send their shares on the output
wires to the appropriate recipients (i.e., if party P; is supposed to receive the output on a certain
wire, then all parties send their shares on that wire to P;). This step introduces a difficulty
that does not arise in the semi-honest setting; some of the parties may send incorrect values
on these wires. Nevertheless, as we have seen, this can be easily solved since it is guaranteed
that more than two-thirds of the shares are correct and so each party can apply Reed-Solomon
decoding to ensure that the final output obtained is correct. See Protocol for full details.

PROTOCOL 2.7.1 (t-Secure Computation of f in the (F,u, Fvss)-Hybrid Model)

e Inputs: Each party P, has an input z; € F.

e Common input: Each party P; holds an arithmetic circuit C' over a field F of size
greater than n, such that for every & € F” it holds that C(Z) = f(Z), where f : F" — F™.
The parties also hold a description of F and distinct non-zero values aq, ..., a, in F.

e Aiding ideal functionality initialization: Upon invocation, the trusted parties com-
puting the (fictitiously corruption-aware) functionality Fy ss and the corruption-aware
functionality F},,;: receive the set of corrupted parties I.

e The protocol:

1. The input sharing stage:

(a) Each party P; chooses a polynomial ¢;(z) uniformly at random from the set
Prist of degree-t polynomials with constant-term x;. Then, P; invokes the
Fyss functionality as dealer, using g;(x) as its input.

(b) Each party P; records the values gi(a;),...,qn(;) that it received from the
Fy ss functionality invocations. If the output from Fy gg is L for any of these
values, P; replaces the value with 0.

2. The circuit emulation stage: Let Gi,...,Gy be a predetermined topological
ordering of the gates of the circuit. For k = 1,..., ¢ the parties work as follows:

e Case 1 - Gy, is an addition gate: Let 3F and vF be the shares of input wires held
by party P;. Then, P; defines its share of the output wire to be §¥ = gF + ~F.

o Case 2 — Gy, is a multiplication-by-a-constant gate with constant c: Let 3¥ be
the share of the input wire held by party P;. Then, P; defines its share of the
output wire to be ¥ = ¢ 5¥.

e Case 3 — Gy is a multiplication gate: Let BF and v¥ be the shares of input
wires held by party P;. Then, P; sends ( f, ’yf ) to the ideal functionality F,.¢
and receives back a value 0¥. Party P; defines its share of the output wire to
be &.

3. The output reconstruction stage:

(a) Let o1,...,0, be the output wires, where party P;’s output is the value on
wire 0;. For every ¢ = 1,...,n, denote by fi,..., 3, the shares that the
parties hold for wire 0;. Then, each P; sends P; the share 3}.

(b) Upon receiving all shares, P, runs the Reed-Solomon decoding procedure
on the possible corrupted codeword (B%,...,3%) to obtain a codeword
(B%,...,B%). Then, P; computes reconstructg(3%, ..., 3) and obtains a poly-
nomial g;(z). Finally, P; then defines its output to be g;(0).

We now prove that Protocol can be used to securely compute any functionality. We

100



stress that the theorem holds for regular functionalities only, and not for corruption-aware
functionalities (see Section . This is because not every corruption-aware functionality can
be computed by a circuit that receives inputs from the parties only, without having the set
of identities of the corrupted parties as auxiliary input (such a circuit is what is needed for

Protocol [2.7.1]).

Theorem 2.7.2 Let f : F* — F™ be any n-ary functionality, and let t < n/3. Then, Pro-
tocol (with auziliary-input C' to all parties) is t-secure for f in the (Fygss, Fiut)-hybrid
model, in the presence of a static malicious adversary.

Proof: Intuitively, security here follows from the fact that a corrupted party in Protocol
cannot do anything but choose its input as it wishes. In order to see this, observe that the
entire protocol is comprised of Fy gg and Fj,,;; calls, and in the latter the adversary receives no
information in its output and has no influence whatsoever on the outputs of the honest parties.
Finally, the adversary cannot affect the outputs of the honest parties due to the Reed-Solomon
decoding carried out in the output stage. The simulator internally invokes A and simulates the
honest parties in the protocol executions and the invocations of Fygs and Fj,,;; functionalities
and externally interacts with the trusted party computing f. We now formally describe the
simulator.

The Simulator S:

o S internally invokes A with its auxiliary input z.
e The input sharing stage:

1. For every j € I, S chooses a uniformly distributed polynomial q;(z) €r P*' (i.e.,
degree-t polynomial with constant term 0), and for every i € I, it internally sends the
adversary A the shares qj(cy) as it expects from the Fygg invocations.

2. For every i € I, S internally obtains from A the polynomial q;(x) that it instructs P;
to send to the Fygss functionality when P; is the dealer. If deg(qi(x)) <t, S simulates
Fygss sending q;(cy) to Py for every £ € I. Otherwise, S simulates Fyygs sending L to Py
for every € € I, and resets ¢;(x) to be a constant polynomial equalling zero everywhere.

3. For every j € {1,...,n}, denote the circuit-input wire that receives P;’s input by wj.
Then, for every i € I, simulator S stores the value q;(c;) as the share of P; on the wire
wj.

e Interaction with the trusted party:

1. § externally sends the trusted party computing f the values {z; = q;(0) }ier as the inputs
of the corrupted parties.

2. S receives from the trusted party the outputs {y;}icr of the corrupted parties.

e The circuit emulation stage: Let G1,..., Gy be the gates of the circuit according to their
topological ordering. For k=1,... ¢:

1. Case 1 — Gy, is an addition gate: Let ,Bf and 'yf be the shares that S has stored for
the input wires to Gy for the party P;. Then, for every ¢ € I, S computes the value
5f = sz + ’yf as the share of P; for the output wire of G and stores this values.

101



2. Case 2 — (G, is a multiplication-by-a-constant gate with constant c: Let ,Bf be the share
that S has stored for the input wire to Gy for P;. Then, for every i € I, S computes
the value 5f =c- ﬁlk as the share of P; for the output wire of Gy, and stores this value.

3. Case 3 — G}, is a multiplication gate: S internally simulates the trusted party computing
Foue for A, as follows. Let Bf and %k be the shares that S has stored for the input wires
to Gy, for the party P;. Then, S first hands {(B8F,v¥)}ic1 to A as if coming from Fpuy
(see Step of Functz’onality Neat, it obtains from A values {6F}icr as the input
of the corrupted parties for the functionality Fou (See step @ of Functionality .
If any 0F is not sent, then S sets 0% = 0. Finally, S stores ¥ as the share of P; for the
output wire of Gy. (Note that the adversary has no output from Fy.¢ beyond receiving
its own (BF,vF) values.)

e The output reconstruction stage: For everyi € I, simulator S works as follows. Denote
by o; the circuit-output wire that contains the output of party P;, and let {52}@61 be the shares
that S has stored for wire o; for all corrupted parties Py (¢ € I). Then, S chooses a random
polynomial ¢i(x) under the constraint that ¢;(cy) = ﬁé for all ¢ € I, and ¢;(0) = y;, where
y; s the output of P; received by S from the trusted party computing f. Finally, for every
j &I, S simulates the honest party P; sending q}(c;) to P;.

A fictitious simulator &’ We begin by constructing a fictitious simulator S’ that works
exactly like S except that it receives as input all of the input values ¥ = (x1,...,2,), and
chooses the polynomials g;(x) €r P%i * of the honest parties with the correct constant term
instead of with constant term 0. Apart from this, S’ works exactly like S and interacts with a
trusted party computing f in the ideal model.

The original and fictitious simulations. We now show that the joint output of the adver-
sary and honest parties is identical in the original and fictitious simulations. That is,

{IDEALﬁS(z)J(f)} = {IDEALfVS/(iZ)J(f)} (2.7.1)

z€({0,1}*)n,2€{0,1}* Ze({0,1}4)" ze{0,1}*

This follows immediately from the fact that both S and &’ can work identically when receiv-
ing the points {q;(i)}icr,je¢r externally. Furthermore, the only difference between them is
if gj(ci) €r PO or gj(e;) €g P!, for every j ¢ I. Thus, there exists a single machine
M that runs in the ideal model with a trusted party computing f, and that receives points
{aj(ai)}ier,j¢r and runs the simulation using these points. Observe that if ¢;(a;) €gr P%' for
every j ¢ I, then the joint output of M and the honest parties in the ideal execution is exactly
the same as in the ideal execution with S. In contrast, if ¢;(c;) €g P** for every j ¢ I, then
the joint output of M and the honest parties in the ideal execution is exactly the same as in
the ideal execution with the fictitious simulator §’. By Claim these points are identically
distributed in both cases, and thus the joint output of M and the honest parties are identically
distributed in both cases; Eq. follows.

The fictitious simulation and a protocol execution. We now proceed to show that:

HYBRIDFVSS,F"”L“ T

{IDEALf’S'(‘E’Z“(z)}fe({o,1}*)n,ze{o,1}* = { A )}fe({o,l}*)",ze{o,l}* '

102



We first claim that the output of the honest parties are identically distributed in the real
execution and the alternative simulation. This follows immediately from the fact that the
inputs to Fygg fully determine the inputs &, which in turn fully determine the output of the
circuit. In order to see this, observe that F},,;; always sends shares of the product of the input
shares (this holds as long as the honest parties send “correct” inputs which they always do), and
the local computation in the case of multiplication-by-a-constant and addition gates is trivially
correct. Thus, the honest parties all hold correct shares of the outputs on the circuit-output
wires. Finally, by the Reed-Solomon decoding procedure (with code length n and dimension
t+1), it is possible to correct up to ”T_t > % = t errors. Thus, the values sent by the corrupted
parties in the output stage have no influence whatsoever on the honest parties’ outputs.

Next, we show that the view of the adversary A in the fictitious simulation with &’ is identical
to its view in real protocol execution, conditioned on the honest parties’ outputs {y;};¢r. It
is immediate that these views are identical up to the output stage. This is because S’ uses
the same polynomials as the honest parties in the input stage, and in the computation stage A
receives no output at all (except for its values on the input wires for multiplication gates which
are already known). It thus remains to show that the values {g;(;)}ier;j¢r received by A from
S’ in the output stage are identically distributed to the values received by A from the honest
parties P;.

Assume for simplicity that the output wire comes directly from a multiplication gate. Then,
Foue chooses the polynomial that determines the shares on the wire at random, under the
constraint that it has the correct constant term (which in this case we know is y;, since we have
already shown that the honest parties’ outputs are correct). Since this is ezactly how S’ chooses
the value, we have that the distributions are identical. This concludes the proof. [ |

Putting it all together. We conclude with a corollary that considers the plain model with
private channels. The corollary is obtained by combining Theorem m (securely computing
Fygs in the plain model), Corollary (securely computing F)y,,;; in the plain model) and
Theorem (securely computing f in the Fygg, Fipu-hybrid model), and using the modular
sequential composition theorem of [27]:

Corollary 2.7.3 For every functionality f : F* — F™ and t < n/3, there exists a protocol that
1s t-secure for f in the plain model with private channels, in the presence of a static malicious
adversary.

2.7.2 Communication and Round Complexity

We begin by summarizing the communication complezity of the BGW protocol (as presented
here) in the case of malicious adversaries. We consider both the cost in the “optimistic case”
where no party deviates from the protocol specification, and in the “pessimistic case” where
some party does deviate. We remark that since the protocol achieves perfect security, nothing
can be gained by deviating, except possible to make the parties run longer. Thus, in general,
one would expect that the typical cost of running the protocol is the “optimistic cost”. In
addition, we separately count the number of field elements sent over the point-to-point private
channels, and the number of elements sent over a broadcast channel. (The “BGW” row in the
table counts the overall cost of computing a circuit C' with |C'| multiplication gates.)

103



Protocol Optimistic Cost Pessimistic Cost
Fuss: O(n?) over pt-2-pt O(n?) over pt-2-pt
No broadcast O(n?) broadcast
psubshare. O(n3) over pt-2-pt O(n?3) over pt-2-pt
vSss ' No broadcast O(n3) broadcast
o O(n3) over pt-2-pt O(n?3) over pt-2-pt
eval: No broadcast O(n3) broadcast
it O(n3) over pt-2-pt O(n) over pt-2-pt
VSsSs: No broadcast O(n’) broadcast
P ‘ O(n*) over pt-2-pt O(n%) over pt-2-pt
malt: No broadcast O(n®) broadcast
BOW: O(|C] - n*) over pt-2-pt | O(|C| - n®) over pt-2-pt
No broadcast O(|C| - n®%) broadcast

Regarding round complexity, since we use the sequential composition theorem, all calls to
functionalities must be sequential. However, in Section we will see that all subprotocols can
actually be run concurrently, and thus in parallel. In this case, we have that all the protocols
for computing Fygg, F‘i%bgh”e, F.ou, F(ﬂgg and Fj,;; have a constant number of rounds. Thus,
each level of the circuit C' can be computed in O(1) rounds, and the overall round complexity is
linear in the depth of the circuit C. This establishes the complexity bounds stated in Theorem I}

2.8 Adaptive Security, Composition and the Computational Set-
ting

Our proof of the security of the BGW protocol in the semi-honest and malicious cases relates
to the stand-alone model and to the case of static corruptions. In addition, in the information-
theoretic setting, we consider perfectly-secure private channels. In this section, we show that our
proof of security for the limited stand-alone model with static corruptions suffices for obtaining
security in the much more complex settings of composition and adaptive corruptions (where the
latter is for a weaker variant; see below). This is made possible due to the fact that the BGW
protocol is perfectly secure, and not just statistically secure.

Security under composition. In [(5, Theorem 3] it was proven that any protocol that
computes a functionality f with perfect security and has a straight-line black-box simulator
(as is the case with all of our simulators), securely computes f under the definition of (static)
universal composability [28] (or equivalently, concurrent general composition [78]). Using the
terminology UC-secure to mean secure under the definition of universal composability, we have
the following corollary:

Corollary 2.8.1 For every functionality f, there exists a protocol for UC-securely computing
f in the presence of static semi-honest adversaries that corrupt up to t < n/2 parties, in the
private channels model. Furthermore, there exists a protocol for UC-securely computing f in
the presence of static malicious adversaries that corrupt up to t < n/3 parties, in the private

channels model.

104



Composition in the computational setting. There are two differences between the compu-
tational and information-theoretic settings. First, in the information-theoretic setting there are
ideally private channels, whereas in the computational setting it is typically only assumed that
there are authenticated channels. Second, in the information-theoretic setting, the adversary
does not necessarily run in polynomial time. Nevertheless, as advocated by [563, Sec. 7.6.1] and
adopted in Definition [2:2.3] we consider simulators that run in time that is polynomial in the
running-time of the adversary. Thus, if the real adversary runs in polynomial-time, then so does
the simulator, as required for the computational setting. This is also means that it is possible
to replace the ideally private channels with public-key encryption. We state our corollary here
for computational security for the most general setting of UC-security (although an analogous
corollary can of course be obtained for the more restricted stand-alone model as well). The
corollary is obtained by replacing the private channels in Corollary [2.8.1] with UC-secure chan-
nels that can be constructed using semantically-secure public-key encryption [28, 30]. We state
the corollary only for the case of malicious adversaries since the case of semi-honest adversaries
has already been proven in [31] for any ¢ < n.

Corollary 2.8.2 Assuming the existence of semantically-secure public-key encryption, for ev-
ery functionality f, there exists a protocol for UC-securely computing f in the presence of static
malicious adversaries that corrupt up to t < n/3 parties, in the authenticated channels model.

We stress that the above protocol requires no common reference string or other setup (beyond
that required for obtaining authenticated channels). This is the first full proof of the existence
of such a UC-secure protocol.

Adaptive security with inefficient simulation. In general, security in the presence of
a static adversary does not imply security in the presence of an adaptive adversary, even for
perfectly-secure protocols [29]. This is true, for example, for the definition of security of adaptive
adversaries that appears in [27]. However, there is an alternative definition of security (for static
and adaptive adversaries) due to [41] that requires a straight-line black-box simulator, and also
the existence of a committal round at which point the transcript of the protocol fully defines all
of the parties’ inputs. Furthermore, it was shown in [29] that security in the presence of static
adversaries in the strong sense of [41] does imply security in the presence of adaptive adversaries
(also in the strong sense of [41]), as long as the simulator is allowed to be inefficient (i.e., the
simulator is not required to be of comparable complexity to the adversary; see Definition .
It turns out that all of the protocols in this paper meet this definition. Thus, applying the
result of [29] we can conclude that all of the protocols in this paper are secure in the presence of
adaptive adversaries with inefficient simulation, under the definition of [4I]. Finally, we observe
that any protocol that is secure in the presence of adaptive adversaries under the definition
of [41] is also secure in the presence of adaptive adversaries under the definition of [27]. We
therefore obtain security in the presence of adaptive adversaries with inefficient simulation “for
free”. This is summarized as follows.

Corollary 2.8.3 For every functionality f, there exists a protocol for securely computing f in
the presence of adaptive semi-honest adversaries that corrupt up to t < n/2 parties with, in
the private channels model (with inefficient simulation). Furthermore, there exists a protocol
for securely computing f in the presence of adaptive malicious adversaries that corrupt up to
t < n/3 parties, in the private channels model (with inefficient simulation).

105



2.9 Multiplication in the Case of t < n/4

In this section, we describe how to securely compute shares of the product of shared values, in
the presence of a malicious adversary controlling only ¢t < n/4 parties. This is much simpler
than the case of ¢ < n/3, since in this case there is enough redundancy to correct errors in
polynomials with degree-2t. Due to this, it is similar in spirit to the semi-honest multiplication
protocol, using the simplification of [5I]. In this section, we provide a full-description of this
simpler and more efficient protocol, without a proof of security. In our presentation here, we
assume familiarity with the material appearing in Sections [2.6.2] [2.6.3] [2.6.4] and [2.6.7]

High-level description of the protocol. Recall that the multiplication protocol works by
having the parties compute a linear function of the product of their shares. That is, each party
locally multiplies its two shares, and then subshares the result using a degree-t polynomial.
The final result is then a specific linear combination of these subshares. Similarly to the case of
t < n/3 we need a mechanism that verifies that the corrupted parties have shared the correct
products. In this case where ¢ < n/4, this can be achieved by directly using the error correction
property of the Reed-Solomon code, since we can correct degree-2¢t polynomials. The high-level
protocol is as follows:

e Each party holds inputs a; and b;, which are shares of two degree-t polynomials that hide
values a and b, respectively.

e Each party locally computes the product a; - b;. The parties then distribute subshares
of a; - b; to all other parties in a verifiable way using a variant of the F{%bgh”e. Observe
that the products are points on degree-2¢ polynomials. Thus, these shares constitute a
Reed-Solomon code with parameters [4t+ 1,2t 41, 2¢+ 1] for which it is possible to correct
up to t errors. There is therefore enough redundancy to correct errors, unlike the case
where t < n/3 where ¢ errors can not necessarily be corrected on a 2t-degree polynomial.
This enables us to design a variant of the F‘S}fgbgha’“e functionality (Section that works
directly on the products a; - b;.

e At this point, all parties verifiably hold (degree-t) subshares of the product of the input
shares of every party. As shown in [51], shares of the product of the values on the wires
can be obtained by computing a linear function of the subshares obtained in the previous
step.

In the following, we show how to slightly modify the F@?gh”e functionality (Section
to work with the case of t < n/4 (as we will explain, the protocol actually remains the same).
In addition, we provide a full specification for the protocol that implements the multiplication
functionality, Fj,u; i-e., the modifications to Protocol

We stress that in the case that ¢ < n/3 it is not possible to run F{?gbgh”e directly on the
products a; - b; of the input shares since they define a degree-2t polynomial and so at most
% = t/2 errors can be corrected. Thus, it is necessary to run F‘S}g?gh‘”“e separately on a;
and b;, and then use the Fj,,;; functionality to achieve a sharing of a; - b;. It follows that in

qult

this case of t < n/4, there is no need for the involved F{/¢¢ functionality, making the protocol

simpler and more efficient.

106



The F‘S}gbgha’"e functionality and protocol. We reconsider the definition of the F‘%bgh“”e
functionality, and present the necessary modifications for the functionality. Here, we assume
that the inputs of the 3t + 1 honest parties {(c;, 5;)};¢r define a degree-2t polynomial instead
of a degree-t polynomial. The definition of the functionality remains unchanged except for this
modification.

We now proceed to show that Protocol that implements the F{%’gh”e functionality
works as is also for this case, where the inputs are shares of a degree-2t polynomial. In order to
see this, recall that there are two steps in the protocol that may be affected by the change of the
inputs and should be reconsidered: (1) the parity check matrix H, which is the parameter for
the FII -functionality, and (2) Step |3} where each party locally computed the error vector using
the syndrome vector (the output of the FIZ ) and the error correction procedure of the Reed-
Solomon code. These steps could conceivably be different since in this case the parameters of the
Reed-Solomon codes are different. Regarding the parity-check matrix, the same matrix is used
for both cases. Recall that the case of ¢ < n/3 defines a Reed-Solomon code with parameters
[3t+1,t41,2t+1], and the case of ¢t < n/4 defines a code with parameters [4t+1,2t+1, 2t +1].
Moreover, recall that a Reed-Solomon code with parameters [n, k,n — k + 1] has a parity-check
matrix H € F(=k)*xn_ In the case of n = 3t + 1 we have that k = t + 1 and so n — k = 2t.
Likewise, in the case of n = 4t + 1, we have that k = 2t + 1 and so n — k = 2t. It follows
that in both case, the parity-check matrix H is of dimension 2t x n, and so is the same (of
course, for different values of ¢ a different matrix is used, but what we mean is that the protocol
description is exactly the same). Next, in Step [3| of the protocol, each party locally executes
the Reed-Solomon error correction procedure given the syndrome vector that is obtained using
FH .. This procedure depends on the distance of the code. However, this is 2¢+ 1 in both cases
and so the protocol description remains exactly the same.

The protocol for F,,,;:. We now proceed to the specification of the functionality F;. As
we have mentioned, this protocol is much simpler than Protocol since the parties can run
the F‘S/gf’gh“m functionality directly on the product of their inputs, instead of first running it on
a;, then on b;, and then using Fj,,;: to obtain a sharing of a; - b;. The protocol is as follows:

PROTOCOL 2.9.1 (Computing Fy,.: in the Fgibshare-hybrid model (with t < n/4))

e Input: Each party P; holds a;, b;, where a; = fo(;), b; = fi(a;) for some polynomials
fa(z), fo(x) of degree t, which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote @)

e Common input: A field description F and n distinct non-zero elements oy, ..., a, € F.

e The protocol:
1. Each party locally computes ¢; = a; - b;.

2. The parties invoke the F‘S/%bgh”e functionality with each party P; using c; as its
private input. Each party P; receives back shares Ci(«;), ..., Cp(a;), and a poly-
nomial C;(z). (Recall that for every 4, the polynomial C;(x) is of degree-t and
Ci(0) = ¢i = a; - b; = fa(vi) - fo(au))

3. Each party locally computes Q(o;) = Y.7_; Aj - Cj(a;), where (A1,...,\,) is the
first row of the matrix V; ' (see Section.

e Output: Each party P; outputs Q(«;).

107



108



Chapter 3

Efficient Perfectly-Secure Multiplication
Protocol

In the previous chapter, we provided a full description and proof of the BGW protocol. In this
chapter we focus on the multiplication protocol of BGW. We observe that with some natural
adaptations, one of subprotocols of BGW is redundant and can be saved. As a result, we come
up with a new multiplication protocol that is more efficient and simpler. We present a full
specification of our multiplication protocol together with a full proof of its security.

3.1 Introduction

3.1.1 An Overview of the Multiplication Protocol

We give a brief overview of the BGW multiplication protocol. More details can be found in
Section Recall that the original BGW multiplication protocol follows the invariant that
each wire in the circuit is hidden by a random univariate polynomial f(x) of degree-t, and the
share of each party is a point («, f(c;)). The protocol for emulating a multiplication gate works

as follows:
1. Subsharing: Given shares aq,...,a, and by,...,b, of values a and b, each party shares
its share with all other parties. Using the fact that each set of shares (a,...,a;) and
(b1,...,by) lies on a degree-t polynomial, the honest parties can verify (and correct) the

subshares distributed by the corrupted parties. This step is carried out using the func-
tionality F(jlg’gh“m (Section , which guarantees that all parties distribute subshares
of the correct shares.

2. Multiplication of subshares — F{}"bgg : Each party P; plays the role of dealer in a protocol
for which the result is that all parties hold shares (with threshold ¢) of the product a; b;
of its initial shares a; and b;. This step uses the fact that all parties hold subshares of
a;, b; as carried out in the previous item. The subsharing is necessary in order to enable
verification that the product a; b; has been shared (see Section .

3. Linear combination: As described in [51], once the parties all hold shares of atby, . . ., @by,

109



they can each carry out a local linear combination of their shares, with the result being
that they hold shares ci, ..., ¢, of a-b (see Section [2.6.7)).

We present a new BGW-based protocol that is more efficient than the original BGW proto-
col. In a nutshell, this protocol uses the bivariate structure introduced by BGW for the purpose
of VSS throughout the entire multiplication protocol. Hirt et al. [65] also observed that the use
of the bivariate polynomial can offer efficiency improvements; however they do not utilize this
to the fullest extent possible. We will show how this approach enables us to completely avoid
the use of Fé%%hare and compute the other subprotocols for the multiplication procedure more
efficiently.

In more detail, recall that in the BGW protocol, each wire in the circuit is hidden by a
random univariate polynomial of degree-t. In our proposed protocol, each wire in the circuit is
hidden by a (random) bivariate polynomial F(z,y) of degree-t in both variables (see Section[2.5.3]
for a definition of bivariate polynomial). As a result, the share of each party is the pair of degree-
t polynomials (F(z, «;), F'(a;,y)). We note that in the BGW protocol the VSS sharing is carried
out using a bivariate polynomial; however after the initial sharing the parties resort back to the
shares of a univariate polynomial, by setting their shares for further computations to F'(0, c;)
(see Section . In contrast, we will preserve the shares of the bivariate but at times will
also use univariate polynomials.

3.1.2  Fgubshare for Free

As described above, in order to carry out the “multiplication of subshares” step, the parties need
to each have shares of all the other parties’ univariate shares. In the original BGW construction,
this is done by the F“%’gh”e functionality. Informally speaking, the Fé%%ham functionality is
a way for a set of parties to verifiably give out shares of values that are themselves shares.
Specifically, assume that the parties P, ..., P, hold values f(ay), ..., f(ay), respectively, where
f is a degree-t polynomial. The goal is for each party to share its share f(c;) with all other
parties while ensuring that a malicious P; shares its correct f(a;) and not something else. The
protocol for achieving this sub-sharing is highly non trivial, relies heavily on properties of the
error correction and the Reed-Solomon decoding algorithm. Moreover, it involves n invocations
of VSS plus the transmission of O(n?) field elements over private channels (see Section .

Our first important observation is that in the bivariate case the subshares of each share are
already distributed among the parties. In order to see this, assume that the value on the wire
is some element a, and the is hidden using some bivariate polynomial F'(z,y). Recall that each
party P; holds shares (F'(x, o), F(ci,y)). Based on this, we can define the univariate “Shamir”
sharing of a via the polynomial go(y) = F(0,y); due to the properties of the bivariate sharing,
go(y) is a univariate polynomial of degree-t that hides a. Furthermore, since each party P; holds
the polynomial f;(x) = F(x, ;), it can locally compute its share a; = f;(0) = F(0, ;) = go(cv)
on the univariate polynomial gy(y).

We now claim that for every i, it holds that all the other parties P; actually already have
univariate shares of a;. These shares of a; are defined via the polynomial f;(z) = F(x, ;).
This is due to the fact that each P; holds the polynomial ¢;(y) = F(«a;,y) and so can compute
gj(a;) = F(aj,y) = fi(a;). In conclusion, fij(z) is a degree-t polynomial, where its constant
term is the actual “Shamir” share of P;, and each party can locally compute its share on this
polynomial. Thus, all of the subshares that are computed via the Fé?ghme functionality in

110



the original BGW protocol can actually be locally computed by each party using the bivariate
shares.

An additional important point is that the parties already hold bivariate shares after the
input sharing phase (after each party distributes its share using VSS). However, these bivariate
shares need to be maintained throughout the circuit emulation phase. This is in fact the
technically more involved part of our construction, and requires some modifications from the
original protocol.

3.1.3 Our Results

We present a full specification and a full proof of security for the proposed protocol. Our protocol
preserves a constant round complexity for a single multiplication, as the original multiplication
protocol of BGW. The communication complexity of our protocol in the worst case (i.e., when
some parties behave maliciously) is O(n®) field elements over point-to-point channels and O(n*)
field elements over a broadcast channel. This is in contrast to the original BGW protocol
which has worst-case communication complexity of O(n%) field elements over point-to-point
channels and O(n") field elements over a broadcast channel. We remark that in the case that
no parties actually cheat, both of the protocols have communication complexity of only O(n?*)
field elements over point-to-point channels, and require no message broadcasts at all.

We also consider our work as addressing the question whether or not it is possible to construct
protocols with round and communication complexity that are both low. Our protocol takes
the first step by reducing the communication complexity of BGW and [37] while maintaining
constant round complexity per multiplication.

Concurrent composition and adaptive security. Our protocol achieves perfect security,
as in the original work of BGW. We stress that perfect security is not just a question of aesthet-
ics, but rather provides a substantive advantage over protocols that are only proven statistically
secure. First, in [75] it is shown that if a protocol is perfectly secure in the stand-alone setting
and has a black-box straight-line simulator, then it is also secure under concurrent general com-
position, or equivalently, universal composition [28]. Since all our simulations are straight-line,
we derive security for universal security for free. Second, in [29] it was shown that any protocol
that is proven perfectly secure under the security definition of [41] is also secure in the presence
of adaptive adversaries with inefficient simulation. The additional requirements of the definition
of [41] clearly hold for all BGW protocols and subprotocols. Thus, we obtain adaptive security,
albeit with the weaker guarantee provided by inefficient simulation (in particular, this does not
imply adaptive security in the computational setting).

Related work. We compare our protocol to those in the existing literature. The only other
protocol for perfectly-secure multiplication for any ¢ < n/3 that is constant round (and in
particular does not depend on the number of participating parties) is that of Cramer et al. [37].
This protocol works in a different way to the BGW protocol, and has worst-case communication
complexity of O(n%) field elements over point-to-point channels and O(n®) field elements over
a broadcast channel, in contrast to O(n*) broadcasts in our protocol. Furthermore, in the
case that no parties actually cheat, the cost of [37] is O(n?) field elements over point-to-point
channels and O(n?) field elements over a broadcast channel, in contrast to O(n*) field elements

111



over point-to-point channels (and no broadcast at all) in our protocol.

There has been a considerable amount of work focused on improving the communication
complexity of information-theoretic protocols using the player elimination technique [65, [64]
17, 166), 139, 1§]. This work culminated in (amortized) linear communication complexity in [I§],
providing highly efficient protocols for achieving perfect secure computation. However, all of
these works have round complexity that depends on the number of participating parties, and
not just on the depth of the circuit being computed. This is inherent in the player elimination
technique since every time cheating is detected, two players are eliminated and some compu-
tations are repeated by the remaining parties. Thus, this technique yields protocols that have
round complexity of at least (t). We remark that the round complexity of these protocols
are actually higher; e.g., the round complexity of [65] is O(d + n?) where d is the depth of
the circuit. Although in many cases player elimination would give a more efficient protocol,
there are some cases where it would not; for example, when a low-depth circuit is computed
by many parties. In addition, from a theoretical perspective the question of low round and
communication complexity is an important one. These protocols are therefore incomparable.

Appendix The specification of the protocol is full of detailed and contain full proofs. As
a result, the specification of the protocol is not consecutive. A reader who may find it beneficial
and more convenient to read the full specification continuously may refer to Appendix

3.2 Preliminaries and Definitions

We follow the definitions of perfect secure computation, as presented in Section[2.2] In addition,
we work in the corruption-aware model (Section , and our functionalities receive as input
the set of corrupted parties I C [n].

In the following, we briefly recall the definitions and claims regarding bivariate polynomials
(Section , and present some additional claims that are needed for the proofs of our con-
struction. Afterward, we recall the definition of the bivariate secret-sharing functionality, the
ﬁvgs functionality (Section , which plays an essential role in our construction.

3.2.1 Properties of Bivariate Polynomials

We state some claims regarding distributions of univariate and bivariate polynomials. Some of
the claims are the bivariate analogues to the univariate claims given in Section [2.3] This section
is based on Section 2.5.3

Recall that a bivariate polynomial of degree-t in both variables is defined as:

t ot
S(z,y) = Z Zai,jazlyj .
i—0 j=0

We denote by B! the set of all bivariate polynomials of degree-t in both variables with constant
term s (and recall that P! denotes the set of all univariate polynomials of degree-t with constant
term s). We stated several claims in the context of bivariate polynomials in Section m The
first was simply the “interpolation claim” of bivariate polynomials (Claim . This Claim is

112



the analogue to the interpolation of univariate polynomial, where here instead of “t + 1 points
{(a, B;)} uniquely define a univariate polynomial”, we have that “t 4+ 1 univariate polynomials
{(ay, fi(z))} uniquely define a bivariate polynomial”.

An alternative claim for interpolation of bivariate polynomial is the following. Instead
of having ¢ + 1 univariate polynomials (“shares”) {(«;, fi(x))} in order to define the bivariate
polynomial S(x,y), it is enough to have a set of cardinality ¢ of pairs of polynomials (f;(x), gi(y))
that are consistent (i.e., for every pair (i,j) we have that fj(o;) = g;(a;)), and the secret
(constant-term) s. There exists a unique bivariate polynomial that satisfies all the constraints
above. Formally:

Claim 3.2.1 Lett be a nonnegative integer, let o, ...,az be t distinct elements in IF, let s € F
be some constant, and let { fi(z),..., fi(x),91(y),...,9:(y)} be a set of 2t polynomials of degree
t, such that for every pair (i,7) € {1,...,t}* it holds that: f;(c;) = gj(c;). Then, there exists a
unique bivariate polynomial S(x,y) of degree t such that S(0,0) = s and for every i = 1,...,t
it holds that S(z, ;) = fi(z), S(a,y) = gi(y).

Proof: We define the bivariate polynomial that satisfies all the conditions. We already have a
set of ¢ univariate polynomials, and therefore we need only one additional polynomial in order
to apply Claim the “interpolation claim” for bivariate polynomials. After applying this
Claim, we will show that this resulting polynomial is unique and satisfies all the necessary
conditions.

Define the unique degree-t polynomial f’(z) that passes through the following ¢ + 1 points:
The point (0, s) and the points {(«a4, gi(0))} for every ¢ = 1,...,¢. Thus, it holds that f/(0) = s
and for every i =1,...,t: f'(cv) = gi(0).

Now, giving the polynomial (0, f'(z)), and the set of polynomials ((a1, fi(z)), ..., (a4, fi(x))),
we have ¢+ 1 polynomials of degree-t. Thus, using Claim [2.5.2] there exists a unique polynomial
S(z,y) such that S(z, ;) = fi(z) for every i = 1,...,t and S(z,0) = f'(x). We claim that S is
the unique polynomial that satisfies all the conditions in the statement of the claim.

For every ¢ = 1,...,t, we have that S(«;,y) is a univariate polynomial with degree-t. It
holds that for every j = 1,...,t, S(as, ;) = fj(as) = gi(ay), and S(a;,0) = (o) = ¢i(0).
We therefore have that the polynomials S(«;,y) and g;(y) are both degree-t polynomials that
agree on t + 1 points, and therefore they are identical, and S(ay,y) = ¢i(y). Finally, S(0,0) =
1/(0) = s, and so S satisfies all the requirements above. The uniqueness of S follows from the

uniqueness of S from Claim [2.5.2) which concludes the proof. [ ]

We recall that in Section[2.5.3] we proved Claim This Claim shows that for any two
degree-t univariate polynomials ¢ (x), g2(z) such that ¢;(c;) = g2(«;) for every i € I, the shares

of the corrupted parties on two random bivariate polynomials Si(z,y), Sa(z,y) that satisfy
S1(z,0) = q1(x) and Sa(z,0) = ¢o(z) are distributed identically. The following is a simple
Corollary of this Claim:

Corollary 3.2.2 For any set of distinct non-zero elements oy, ...,a, € F, any pair of values
s,8 € F, any subset I C [n] where |I| =€ < t, it holds that: Then,

{6810 10 m) )i, | = { {6 Salw,00), Salen )} e }

where Sy (x,y) and Sy(z,y) are degree-t bivariate polynomial chosen at random from B>t, B¥*,
respectively.

113



Proof: The choice of Si(x,y) from B> and S from B*"! is equivalent to the following.
We simply choose two polynomials g1 (z), g2(2) uniformly at random from P**, Pt respec-
tively. Then, we choose S7,S2 uniformly at random under the constraints that Si(z,0) =
q1(z) and Sa(z,0) = g2(z). Using this representation, we can apply Claim to get that
{a1(ai)}icr = {a2(i)}icp- Thus, for every set of elements {3;}icr in F, we have that:

{{(i,S1($,ai),51(ai,y))}iel ‘ /\‘h(ai):ﬁi}

icl

= { {(i, Sa(w, i), Salai, ) by | )\ galcw) = /Bi}
i€l
where the latter follows from Claim Since the conditionals ensembles are identical, the
corollary follows. [ |

3.2.2 Verifiable Secret Sharing of a Bivariate Polynomial

In Section we introduced the ﬁvs’s functionality — a functionality for sharing a degree-t
bivariate polynomial. This functionality plays an important role in our construction, and we
redefine it here for completeness. The functionality is defined as follows:

Foss(S@u) s ) = { (A 1)), - (@), o)) if deg(5) <1
(L,...,1) otherwise

where fi(z) = S(z,a5), gi(y) = S(au,y). For further information, and for the implementation
of this functionality, see Section Moreover, we recall that the protocols for implementing
Fyss and Fygg have the same communication complexity (O(n?) field elements in point-to-
point channel and no broadcast in the optimistic case, and additional O(n?) field elements in
the pessimistic case). In fact, the implementation of Fygg is just a single invocation of ﬁvss,
with some additional local computation before and after the invocation.

3.3 The Multiplication Protocol

3.3.1 A High-Level Overview

We start with a high-level overview of the (modified) BGW protocol. Recall that the BGW
protocol works by having the parties compute the desired function f by securely emulating the
computation of an arithmetic circuit computing f. In this computation, the parties compute
shares of the output of a circuit gate given shares of the input wires of that gate. By our
invariant, the secret sharing scheme is based on bivariate polynomial; that is, we assume that
the secret s € F is hidden by some bivariate polynomial S(x,y) of degree-t in both variables,
where the share of each party P; is the two univariate degree-t polynomials (S(z, a;), S(c,y)).

The computation of addition gates and multiplication-with-a-constant gates can be emulated
locally. That is, assume that the values on the inputs wires are a and b, and assume that these are

114



hidden by A(z,y) and B(x,y), respectively. Then, each party computes shares of the output wire
using its shares on the inputs wires locally. Specifically, P; holds the shares (A(x, o), Ao, y))
and (B(z,q;), B(ai,y)). Consider the polynomial C(z,y) = A(x,y) + B(x,y). This is a poly-
nomial of degree-t in both variables and its constant term is C(0,0) = A(0,0) + B(0,0) = a+b.
Moreover, each party P; can locally compute its share (C(z,q;),C(a;,y)) by simply adding
its two shares: (A(z, ;) + B(z,a4), Ao, y) + B(ag,y)). Multiplication by a constant gate is
computed similarly.

In this section, we show how to securely compute bivariate shares of the product of shared
values, in the presence of a malicious adversary controlling any ¢ < n/3 parties. The protocol
for emulating the computation of a multiplication gate is very similar to the original con-
struction of BGW (see Section [2.6.1)). In particular, giving the shares (A(z, o), A(cs,y)) and
(B(x,a;), B(ai,y)), we refer to the values A(0, o;), B(0, ;) as the univariate shares of party P;.
These two values correspond to the univariate polynomials A(0,y) and B(0,y), that hide the
values a and b, respectively. Like the univariate case, we have two univariate polynomials that
hide the values on the wires, and each party holds a share on each polynomial. Thus, the uni-
variate polynomial A(0,y)- B(0,y) is a degree-2t polynomial with the desired constant term ab,
and each party can compute its share on this polynomial by multiplying A(0, ;) - B(0, o;) (sim-
ply by multiplying its two “univariate shares”). As was shown in [51] (see also Section [2.6.7)),
there exists constants 71, ...,7, such that:

ab =y -A(0,0;) - B(0, ;) + ...+ v - A0, ) - B(0, vy, (3.3.1)

Our goal is to provide the parties bivariate sharing (of degree-t) of the product ab. The protocol
is similar to the original construction of BGW, where we save the invocation of F“}‘ggh“’"e, and

have some modification of F{}?g In particular, the multiplication protocol proceeds as follows:

1. Each party distributes bivariate sharing (of degree-t) of the product A(0, ;) - B(0, ;) in
a verifiable way. The protocol for sharing the product uses the (univariate) subshares of
A(0, ;) and B(0, ;) where the parties already hold by their bivariate shares of A(x,y)
and B(z,y). This step is carried out using the ﬁ&”;g functionalit in Section
which is the bivariate analogue to the F‘ng functionality (Section . In order to
implement this step, we introduce the functionality called ﬁewl, which is the univariate
analogue to Fg,q. In addition, we present yet another functionality ﬁmtend, that enables

a dealer to extends univariate shares to bivariate shares. This functionality is formalized

in Section [3.3.2

2. Let Cj(x,y) be the bivariate polynomial that hides A(0, o;) - B(0, a;). After the previous
step, each party P; hold bivariate shares (Cj(z, o), Ci(cy,y)) for every i. Using the linear
combination as in Eq. , each party obtains shares of C(z,y) = > 1 v - Ci(z,v),
and it holds that:

C(0,0)=> 7+ Ci(0,0) =) - A(0,s) - B(0,cr;) = ab .
i=1 i=1

Thus, after each party distributes bivariate sharing of the product of its univariate shares
(A(0, o) - B(0, c;)), the parties just perform a local linear combination in order to obtain

!By convention, we denote bivariate-sharing based functionalities with a tilde.

115



shares on the output polynomial.

The multiplication functionality is denoted by ﬁmult, which is the bivariate analogue to Fj,u;
functionality. See Section [3.3.5

Organization. We now proceed to formally describe and prove each one of the functionali-
ties. In Section we define the ﬁemtend functionality that enables a dealer to transform a
univariate sharing to bivariate sharing. In Section we present the ﬁeml functionality which
is the bivariate analogue of F,,q. In Section we present the ~{}””§Jg functionality, and in
Section we present the ﬁmult functionality.

3.3.2 The ﬁextend Functionality for Transforming Univariate to Bivariate

As we will show below (in Section and as we have seen regarding F{}zg’ghm"e, it is possible
to utilize the additional information provided by a bivariate secret sharing in order to obtain
higher efficiency. However, some of the intermediate sharings used in the multiplication protocol
are inherently univariate. Thus, we introduce a new functionality called F’emnd that enables
a dealer to efficiently extend shares of a univariate polynomial ¢(z) of degree-t to a sharing
based on a bivariate polynomial S(z,y) of degree-t in both variables, with the guarantee that
q(x) = S(x,0). In the functionality definition, the dealer receives the polynomial ¢(x) that is
distributed via the inputs of the honest parties. Although in any use of the functionality this is
already known to the dealer, we need it for technical reasons in the simulation when the dealer
is corrupted. See Functionality for a full definition (observe that the dealer has as input
the univariate polynomial ¢(z) and a bivariate polynomial S(z,y) such that S(z,0) = ¢(z)).

FUNCTIONALITY 3.3.1 (The f’ewtend Functionality for Extending Shares)

Fertend receives a set of indices I C [n] and works as follows:

1. The ﬁemtmd functionality receives the shares of the honest parties {Bj}j¢ 1. Let ¢g(z)
be the unique degree-t polynomial determined by the points {(a;, 5;)},¢r. (If no such
polynomial exists then no security is guarantee(fl)

2. In case that the dealer is corrupted, Fovtona sends q(z) to the (ideal) adversary.

3. Fegtend receives S(z,y) from the dealer. Then, it checks that S(z,y) is of degree-t in
both variables and S(z,0) = q(z).

4. If both condition holds, define the output of P; to be the pair of univariate polynomials
(S(z,a;), S(c,y)). Otherwise, define the output of P; to be L.

(a) Fegtena sends the outputs to each honest party P; (j & I).

o

(b) Fextend sends the output of each corrupted party P; (i € I) to the (ideal) adversary.

The protocol that implements this functionality is simple and efficient, but the argument for
its security is delicate. The dealer distributes shares of S(z,y), using the bivariate VSS protocol
(Fvss). Each party receives shares S(z, a;), S(as,y), and checks that S(w;,0) = ¢(c;). If not,

2If all of the points sent by the honest parties lie on a single degree-t polynomial, then this guarantees that f(z)
is the unique degree-t polynomial for which f(a;) = §; for all j ¢ I. If not all the points lie on a single degree-t
polynomial, then no security guarantees are obtained. However, since the honest parties all send their prescribed
input, f(z) will always be as desired. This can be formalized using the notion of a partial functionality [53]
Sec. 7.2].

116



it broadcasts a complaint. The parties accept the shares of S(x,y) if and only if there are at
most ¢ complaints. See Protocol [3.3.2]

PROTOCOL 3.3.2 (Securely Computing Fegieng in the Fy gg-Hybrid Model)

e Input: The dealer P; holds a univariate polynomial of degree-t, ¢q(x), and a degree-t
bivariate polynomial S(x,y) that satisfies S(z,0) = g(z). Each party P; holds ¢q(«;).
e Common input: A field description F and n distinct non-zero elements aq, ..., a;, € F.

¢ Aiding ideal functionality initialization: Upon invocation, the trusted party com-
puting the (fictitiously corruption-aware) functionality Fygs receives the set of cor-
rupted parties I.

e The protocol:

1. The parties invoke the ﬁvss functionality, where P; (the dealer) uses the bivariate
polynomial S(z,y), and any other party inputs A (the empty string).

2. If ﬁvss returns L, each outputs L and halts.

3. Otherwise, let (S(z, a;), S(as,y)) be the output shares of Fygg. If S(ay,0) #
q(a;), then broadcast complaint(i).

e Output: If more than t parties broadcast complaint, output L. Otherwise, output
(fi(x),9i(y)) = (S(x, ), S0, y)).

We now give an intuitive argument as to why the protocol securely computes the function-
ality. First, assume that the dealer is honest. In this case, the dealer inputs a degree-t bivariate
polynomial that satisfies S(x,0) = ¢(z), as required. The bivariate VSS functionality Fyss
ensures that the honest parties receive the correct shares. Now, since the polynomial satisfies
the requirement, none of the honest parties complain. As a result, at most ¢ parties complain,
and all the honest parties accept the new bivariate shares.

The case where the dealer is corrupted is more subtle. At first, it may seem possible that
t honest parties receive inconsistent shares and broadcast a complaint, while the remaining
t + 1 honest parties receive consistent shares and remain silent (together with all the corrupted
parties). In such a case, only ¢t complaints would be broadcast and so the parties would accept
the bivariate polynomial even though it is not consistent with the inputs of all honest parties.
Fortunately, as we show, such a situation can actually never occur. This is due to the fact that
the ﬁvss functionality ensures that the bivariate polynomial that is distributed is of degree-t in
both variables, and due to the fact that the inputs of the honest parties lie on a polynomial with
degree-t. As we show in the proof, this implies that if there exists a set of ¢ + 1 honest parties
for which the bivariate polynomial agrees with their inputs, then this bivariate polynomial must
satisfy S(x,0) = ¢(z). In other words, we prove that once ¢t + 1 of the bivariate shares are
consistent with the points of ¢t + 1 of the honest parties, then all of the bivariate shares must
be consistent with all of the honest parties’ points.

Theorem 3.3.3 Let t < n/3. Then, Protocol is t-secure for the ﬁemend functionality in
the Fygs-hybrid model, in the presence of a static malicious adversary.

Proof: We separate to two case, depending whether the dealer is honest or not.

Case 1 - an Honest Dealer. An honest dealer always distributes a bivariate polynomial
that satisfies the condition, and so no honest party broadcasts a complaint. The view of the

117



adversary is the output of the fvgs functionality, which is exactly the output of the trusted
party computing Fe tenq in the ideal execution. Therefore, the simulation is straightforward.

The simulator S.
1. § invokes the adversary A with the auziliary information z.

2. The honest parties send their shares to the trusted party computing Fthend, and the dealer
sends a bivariate polynomial S(x,y) that satisfies the condition. Then, S receives from
Feptend the univariate values {q(a;)}ier and the bivariate shares {S(x, o), S(ci,y)bier-

3. S sends the set of polynomials {{S(x,a;),S(as,y))}icr to the adversary A as the output
of Fyss (Step mn Pmtocol.

4. S outputs whatever A outputs and halts.

Since the adversary has no input to the ﬁextend functionality, the output of the honest parties
in the ideal execution are always the bivariate shares on S(x,y). Since in the real execution
no honest party complains, there are at most ¢ complaints and therefore the honest parties
always outputs their output from ﬁextend; that is, their bivariate shares on S(x,y). The view of
the adversary in the ideal and real executions consists of the output of the 15‘/55 functionality.
Therefore, overall, for every real adversary A controlling parties I where |I| <t and I does not
include the dealer P;, every univariate polynomial ¢(z), every bivariate polynomial S(z,y) with
degree-t that satisfies S(x,0) = ¢(z), and all auxiliary inputs z € {0,1}*, it holds that:

2 i} )
{HYBRIDW,‘/X@)J (f”)} = {IDEALEmdw)J ("3)}

where & = ((¢(z), S(z,y), ¢(1)), ¢(a2), - .., q(am)).

We proceed to the second case - where the dealer is corrupted.

Case 2 - a Corrupted Dealer. The simulator interacts externally with a trusted party
computing ﬁeactenda while internally simulating the interaction of A with the trusted party
computing ﬁvss and the honest parties. Here, in order to simulate the complaints of the
honest parties, the simulator has to know the polynomial g(x) that is defined implicitly by the
inputs of the honest parties. Therefore, it received this polynomial from the ﬁenend functionality

(see Step [2| in Functionality [3.3.1]).

The simulator S.
1. § internally invokes A with the auziliary input z.

2. Recall that the honest parties send their univariate shares to the trusted party computing

Fertend- Then, the functionality reconstructs the underlying polynomial q(x), and sends it

to the simulator S (Step [4 in Functionality .

3. S internally receives from A the bivariate polynomial S'(x,y) that the dealer sends to the
(simulated) trusted party computing Fyss (Step |1l in Protocol .

118



S checks the polynomial S'(x,y). If this polynomial is of degree-t in both variables, then it
accepts this polynomial and internally sends A as the output of ﬁVSS the set of bivariate
shares {(S"(x, ), S" (e, y)) Yier. Otherwise it internally sends A the value L for every
i € I, and externally sends z*t to ﬁewtend (i.e., an invalid polynomial), outputs whatever
A outputs, and halts.

4. S externally sends to the ﬁextend functionality the bivariate polynomial S'(x,y) as the
input of the dealer.

5. For every j ¢ I, S checks that q(a;) = S'(a;,0). If this check fails, it internally sends the
adversary A the message complaint(j) as a broadcast message of honest P;.

6. S outputs whatever A outputs and halts.

We now prove that for every I C [n] such that 1 € I, [I| <t, every z € {0,1}* it holds that:

ﬁvss 3 } - { F, J }
HYBRID x = 4 IDEAL x
{ mA(2),1 ( ) 2e{0,1}* Featend:S(2),1 ( ) 2e{0,1}*

where & = ((¢(x), S(w,y), a(1)), (@), ., ().

It is clear from the description of the simulator that the view of the corrupted party is the
same in both executions, since the simulator plays the role of the honest parties in the ideal
execution. It is left to show that the output of the honest parties is distributed identically in
both worlds, conditioning on the view of the corrupted parties.

If the dealer sends an invalid bivariate polynomial to ﬁvss, then it is easy to see that in
both executions the output of all honest parties is 1. Thus, we left with the case where the
polynomial S’(z,y) is of degree-t in both variables. If the polynomial satisfies the condition
S’(x,0) = q(z), then in the ideal execution all the honest parties output their shares on this
bivariate polynomial, since the simulator sends S’ to ﬁextend functionality. Likewise, in the
real execution no honest party broadcasts complaint, and the parties will accept this bivariate
polynomial (exactly like the case of an honest dealer).

The only case that is left is where the dealer sends a polynomial of degree-t such that
S’(x,0) # q(x). In the ideal world, the functionality ﬁextend rejects this polynomial and all
honest parties output L. We therefore need to show that the same happens in the real execution,
or, equivalently, that strictly more than ¢ parties broadcast complaint.

Assume by contradiction that S’(x,0) # ¢(x) and that less than ¢ 4+ 1 parties broadcast
complaint. Therefore, there must be at least ¢t + 1 honest parties that are satisfied with their
shares. The FVVSS functionality ensures that S’(z,y) is of degree-t in both variables, and thus
S’(x,0) is a univariate polynomial of degree t. For every honest party that does not broadcast
complaint it holds that S’(a;,0) = ¢(«;). Since both polynomials S’(z,0), ¢(x) are polynomials
with degree-t, and since they agree in at least ¢ 4+ 1 points, these two polynomials are identical.
We conclude that S’(x,0) = ¢(z) in contradiction. Therefore, it must be that at least ¢t + 1
parties broadcast complaint, and so all the parties in the real execution output L, like in the
ideal execution. This completes the proof. [ |

3.3.3 The F*

oo Functionality for Evaluating a Shared Bivariate Polynomial

Another tool that we need is the ﬁfval functionality. Given a sharing of a bivariate poly-
nomial S(z,y) of degree-t in both variables, the functionality enables the parties to evalu-

119



ate the bivariate polynomial on some point ay, or equivalently to learn the bivariate sharing
<S($v Oék), S(Oék, y)) The F,

eval

functionality is formally defined in Functionality |3.3.4

FUNCTIONALITY 3.3.4 (The Functionality F* )

F k . receives a set of indices I C [n] and works as follows:

1. The F ekwl functionality receives from each honest party P; the pair of degree-t poly-
nomials (f;(z),g;(y)), for every j ¢ I. Let S(z,y) be the single bivariate polynomial
with degree-t in both variables that satisfies S(z, a;) = f;(z), S(a;,y) = g,(y) for every
j & I. (If no such S(z,y) exists, then no security is guaranteed; see Footnote [2)).

2. (a) Forevery j € I, F¥ , sends the output pair (S(z, ax), S(ak, y))-

(b) In addition, for every i € I, F . sends the output pair (S(x, ax), S(ak,y)) to the
(ideal) adversary.

The protocol computing F ekv o1 1s straightforward and very efficient. Given input (f;(x), gi(y))
(which under a similar assumption on the inputs as in Footnote [2| equals S(x, «;), S(a;,y)),
each party P; evaluates its polynomials on the point aj and sends f;(ay), gi(ax) (equivalently,
S(ag, i), S(ay, ar))) to every other party; broadcast is not needed for this. Assume for now that
all parties send the correct values. Thus, at the end of this step, each party holds the values
(filag),..., fu(ag)) and (g1(ak),...,gn(ck)). Now, recall that for every 4,5 € [n], fi(aj) =
gj(a;) = S(aj, o). Therefore, each party actually holds the sequences (gx(cv1),. .., gr(ay)) and
(fr(aa), ..., fu(an)), respectively, and can reconstruct the polynomials gx(y) and fi(z). See
Protocol B.3.51

In case the corrupted parties send incorrect values (or do not send any values), since fi(z)
and gi(y) are both degree-t polynomials, each party can reconstruct the polynomials by using
Reed-Solomon decoding.

The simplicity and efficiency of this protocol demonstrates the benefits of the approach of
utilizing the bivariate shares throughout the entire multiplication protocol.

Theorem 3.3.6 Lett < n/3. Then, Pmtocol is t-secure for the ﬁek’ml functionality in the
presence of a static malicious adversary.

Proof: The functionality ﬁfv o1 does not receive any values from the ideal adversary, and so the
simulator does not send any value to the trusted party. The simulator only needs to generate
the view of the corrupted parties. That is, it needs to generate the points:

{S(ak, o)), (S(ey, ak))}jgéf

This set of points can be computed easily from the polynomials S(x,ag),S(ag,y) that the
simulator receives from the Fg,q,—functionality.

The simulator S.
1. S invokes the adversary A on the auziliary input z.

2. S receives from the Fopal functionality the polynomials (S(z, o), S(ak,y)) as the output
of all parties. Let fi(x) e S(z,a), and gi(y) e S(ag,y).

120



PROTOCOL 3.3.5 (Securely Computing ffwl)

e Input: Each party holds two degree-t polynomials f;(z), g;(y).
(It is assumed that there there exists a single bivariate polynomial S(x,y) such that
for every i € [n]: S(z,a;) = fi(z) and S(ay,y) = ¢i(y). If such a polynomial does not
exists, then no security is guaranteed; see the definition of the functionality).

e Common input: A field description F and n distinct non-zero elements aq, ..., a, € F.

e The protocol:

1. Each party P; sends to each party the values (f;(ag), gi(ax)) (which are the values
(gr(as), fe(ew)) = (S(ak, i), S(ev, o)), respectively).

2. At the end of this stage each party holds the sequences (S(a1, ak), ..., S(an, a))
and (S(ag,a1),...,5(ak, an)), where each is a possibly corrupted codeword of
distance at most-¢ from each one of the following codewords, respectively:

Slar,ag), ..., S(an,ar)) = (grlar),...,grx(an)),

Slag,a1), ..., S(ag,an)) = (fular),..., felan)) .

3. Using the Reed-Solomon decoding procedure, each party decodes the above code-
words and reconstructs the polynomials S(z, ) = fr(z) and S(ag,y) = gk (y).

e Output: Each party outputs (S(z,ax), S(ak,v)) = (fr(z), gx(y)).

3. For every j ¢ I, and for every i € I, S simulates party P; sending to P; the values

(fi(ar), gj(aw)) = (gr(ey), fr(ey)) = (S(aw, a;), S(ay, ax)) as in the first step of the pro-
tocol.

4. S outputs whatever A outputs and halts.

We now show that for every real adversary A controlling parties I where |I| < ¢, for every
bivariate polynomial S(x,y) with degree-t in both variables x,y and all auxiliary input z €
{0,1}* it holds that:

{IDEALﬁemhs(z)J(f)} = {REALmA(z),I(;Z")}

where Z = ((fi(z),1(y)),- .., (fu(x),9n(y)), and for every j € [n], fj(z) = S(z,a;), g9;(y) =
S(O‘ﬁy)‘

The view of the adversary is exactly the same in both executions, since it holds that:
filag) = S(ag, o) = gr(ey)  and  gj(ow) = S(ay, o) = fr(aj).

Since the corrupted parties have no inputs to the functionality, it is enough to show that
the output of the honest parties is the same in both executions. In the ideal, the parties
output (S(z, ), S(ag,y)). In the real, since S(z,y) is a bivariate polynomial with degree-t in
both variables, the polynomials S(z, ax), S(ag,y) are both of degree-t. As a result, the values

(S(an,a), ..., S(an, ar)) are a Reed-Solomon codeword of length n and dimension ¢ 4 1, and
therefore it is possible to correct up to "T_t > % = t errors. Thus, the values sent by

the corrupted parties in the output stage have no influence whatsoever on the honest parties’
outputs, and thus the honest parties reconstruct the correct polynomials (S(z, ay), S(ak,y)).

121



3.3.4 The ﬁ‘&"g‘gf Functionality for Sharing a Product of Shares

The main step for achieving secure multiplication is a method for a party P; to share the
product of its Sharesﬂ a-b, while preventing a corrupted P; from sharing an incorrect value. In
the univariate case, the parties use F‘S}%’gh”e to first share their shares, and then use F{}@fé‘t to
distribute shares of the product of their shares. In this section, we revisit the multiplication for
the bivariate case. In this case, the parties hold shares of univariate polynomials that hide a
party P;’s shares a, b, exactly as in the univariate solution with functionality F{,”gét We stress
that in our case these shares are univariate (i.e. points on a polynomial) and not bivariate
shares (i.e. univariate polynomials) since we are referring to the subshares. Nevertheless, as we
have shown, these can be separately extended to bivariate sharings of a and b using ﬁemtend
Our goal with ﬁ&”ﬁg is for the parties to obtain a sharing of a-b, by holding shares of a bivariate
polynomial C'(x,y) whose constant term is the desired product. See Functionality for a

specification.

FUNCTIONALITY 3.3.7 (The ﬁ'{;‘é‘ét functionality for sharing a product of shares)

ﬁ&"gg receives a set of indices I C [n] and works as follows:
1. The ﬁ&"gg functionality receives an input pair (aj,b;) from every honest party P; (j ¢
I). The dealer P; has polynomials A(z), B(x) such that A(a;) = a; and B(a;) = bj,
for every j.
2. f}}”gg computes the unique degree-t univariate polynomials A and B such that A(q;) =
aj and B(a;) = b; for every j ¢ I (if no such A or B exist of degree-t, then Fyrd
behaves differently as in Footnote .

3. If the dealer P; is honest (1 ¢ I), then:

(a) Fyrelt chooses a random degree-t bivariate polynomial C(z, y) under the constraint
that C'(0,0) = A(0) - B(0).

(b) Outputs for honest: ﬁ(/”sug sends the dealer P; the polynomial C(x,y), and for
every j & I it sends the bivariate shares (C'(z, o), C(ej,y)).
(¢) Output for adversary: For every i € I, the functionality ﬁ{}“gg sends the univariate

shares A(w;), B(w;), and the bivariate shares (C(x, a;), C(ay, y)).
4. Tf the dealer P is corrupted (1 € I), then:
(a) Fyradt sends (A(z), B(x)) to the (ideal) adversary.
(b) F mult receives a polynomial C' as input from the (ideal) adversary.

(c) If either deg(C) >t or C(0,0) # A(0) - B(0), then ﬁ"}g‘g resets C(z,y) = A(0) -
B(0). That is, the constant polynomial equalling A(0) - B(0) everywhere.

(d) Output for honest: ﬁ‘?gﬂét sends the bivariate shares (C(z, o), C(a;,y)) to P; for
every j & I.
(There is no more output for the adversary in this case.)

The protocol. Recall the idea behind the univariate protocol as appear in BGW. The dealer
chooses the univariate polynomials D1 (), . .., Dy(z) so that C(z) = A(z)-B(x)—>_j_, 2*-Dy(x)
is a degree-t polynomial with constant term a-b. Note that since each polynomial D, is multiplied

3For the sake of clarity and to reduce the number of indices, in this section we refer to a and b as the shares
of P; (and not the secret), and to a; and b; the univariate subshares that P; holds of P;’s shares a and b.

122



by ¢, we have that the constant-term of C(x) is always a - b (i.e., A(0) - B(0)). The protocol
shows how P; can choose the polynomials such that all the coefficient of degree higher than ¢ are
canceled, which ensure that C(z) is of degree-t exactly. In case P; uses “incorrect” polynomials,
then C'(x) may be of degree hight than ¢. The parties then verify that C(z) is of degree-t (using
a special verification process), and in case the verification succeeds, they output their shares on
C(x). See Section [2.6.6]

In the bivariate case, we wish to get shares of a bivariate polynomial C(z,y). The parties
hold as input shares of the univariate polynomial A(z), B(z) as in the BGW protocol. Then,
the dealer chooses D1, ..., D, is a similar way as the original protocol (i.e., see Eq. in
Section [2.6.6)). However, here the dealer distributes bivariate sharing instead of a univariate,
and therefore for every polynomial Dy(z) it chooses a bivariate polynomial Dy(z,y) uniformly
at random under the constraint that Dy(x,0) = Dy(z). Then, it distributes each one of these
bivariate polynomial using the bivariate sharing functionality FVVSS. This ensures that all the
polynomials D(z,0), ..., Di(x,0) are of degree-t. In addition, this comes at no additional cost
over the univariate protocol since the BGW VS8 protocol anyway uses bivariate polynomials. At
this point, each party holds shares of the univariate polynomials A(zx), B(z), and shares of the ¢
bivariate polynomials Di(x,y),..., D¢(z,y). From the construction, the univariate polynomial
defined by:

¢

C'(z) = A(z) - B(z) = Y _a* - Dy(x,0)

is a random polynomial with constant-term a-b, anckT:elach party P; can locally compute its share
C’'(c;) on this polynomial. However, as in the univariate case, if the dealer did not choose the
polynomials Dy(z,y) as instructed, the polynomial C’(x) may not be of degree-t, and in fact
can be any polynomial of degree 2¢ (but no more since all the polynomials were shared using
VSS and so are of degree at most ¢). We must therefore check the degree of C'(x).

The verification of the polynomial C’(x). At this point, the dealer chooses a random
bivariate polynomial C(z,y) of degree-t in both variables under the constraint that C(z,0) =
C’'(z), and shares it using the bivariate VSS functionality Fysg. This guarantees that the
parties hold shares of a degree-t bivariate polynomial C(x,y). If this polynomial satisfies

C(z,0) = C'(x) = A(z) - B(x) = Y _ 2" Dy(,0)
=1

then C'(0,0) = A(0) - B(0) = a - b, and we are done.

We therefore want to check that indeed C'(z,0) = C'(x). Each party P; holds shares of the
polynomial C(z,y), and so it holds the univariate polynomials C(z, «;), C(cy,y). Moreover, it
has already computed its share C’(«;). Thus, it can check that C(«a;,0) = C'(a;). Since C'(x)
is of degree at most 2¢, and since C(xz,y) is of degree-t, then if this check passes for all of the
2t + 1 honest parties, we are guaranteed that C(z,0) = C’(z), and so C(0,0) = a-b. Thus, each
party checks that C'(«;,0) = C’'(«;), and if not it broadcasts a complaint. If there are more than
t complaints, then it is clear that the dealer is corrupted. However, even when there are less
than ¢ complaints the dealer can be corrupted, and so the parties need to unequivocally verify
each complaint.

The way the parties verify whether or not a complaint is false is as follows. The parties
evaluate each one of the polynomials D1,..., D;, A, B, and C on the point of the complaining
party Pg. This is done by using the functionality F fv 1 (see Section . Observe that all of the
polynomials Dy, ..., D;, C are bivariate and of degree-t, and so the bivariate F ekv .1 can be used.

123



In contrast, A(z) and B(zx) are only univariate polynomials and so ﬁemtend (see Section is
first used in order to distribute bivariate polynomial A(z,y) and B(z,y) that fit A(z) and B(x),
respectively. Following this, ﬁfml can also be used for A(x,y) and B(z,y). Finally, after the
parties receive all of the shares of the complaining party, they can check whether the complaint
is true or false. In case of a true complaint, the parties reconstruct the original shares and
set their output to be a-b. See Protocol for a full specification. The protocol is in the

(FVVSS,Felml, ooy F2 s Fegtend)-hybrid model. From here on, we write Fp,q-hybrid model to
refer to all n functionalities Felwl, LB

T~he0re~rn 3.51.9 Let t < n/3. Then, Pmtocol is t-secure the ﬁ(}‘é‘g functionality in the
(Fvsss Fevaly Fextend)-hybrid model, in the presence of a static malicious adversary.

Proof: The proof is based on the proof of Theorem We again separate between an
honest dealer and a corrupted dealer.

Case 1 — the Dealer P; is Honest

Since the dealer is honest, the simulator does not send any input to the trusted party comput-
mult

ing F{/'¢s, and so it receives directly from the trusted party the shares A(w;), B(o;) and the
polynomials (C(z, a;), C(ay,y)), for every i € I.

The simulator chooses ¢ degree-t polynomials Dj(x),..., Di(x) as the simulator in Theo-
rem|2.6.14L Then, the simulator chooses the degree-t bivariate polynomials DY (2,%), . . ., DY (z,v)
uniformly at random under the constraint that D (z,0) = D;(z) for every i = 1,...,t. We

will show that these polynomials has the same distribution has in the real execution. In order
to simulate complaints, observe that no honest party broadcasts a complaint. In addition, for
every complaint of a dishonest party, the complaint resolution phase can be carried out since
the simulator has all the points of the complaining party. We now describe the simulator.

The simulator S.
1. S invokes the adversary A with the auziliary input z.

2. Recall that all honest parties send their inputs A(ca), B(a ) to the trusted party computing
mult - Then, FIM4Y reconstructs the polynomials A(z), B(z) and chooses a random poly-
nomial C(x,y). It then sends the simulator the values {A(a;), B(ay)}ier and the shares

{C(z, i), Oy y) bier-

3. S chooses t — 1 random degree-t polynomials Dy (x),..., D¢ (x). In addition, it chooses
random degree-t polynomial Df(az) under the constraint that:

Df (ai) = ()" (A'(Oéz‘) - B'(eq) = Clai, 0) = > (i) - Df(m))

(=2

for every v € 1.

4. S chooses the bivariate polynomials DY (x,v), . .., D{ (z,y) under the constraint that D;S (2,0) =

Df(x) for every 5 =1,...,t.

124



PROTOCOL 3.3.8 (Computing F77%* in the (Fyss, Feval, Festena)-hybrid model)

Input:
1. The dealer P; holds two degree-t polynomials A and B.

2. Each party P; holds a pair of shares a; and b; such that a; = A(a;) and b; = B(a;).

Common input: A field description F and n distinct non-zero elements aa,...,a, € F. Aiding
ideal functionality initializati~0n: Upon invocation, the trusted party comptlting the (fictitiously
corruption-aware) functionality Fvss, and the corruption-aware functionality Feztend and Feyar re-
ceives the set of corrupted parties I.
The protocol:
1. Dealing phase:
(a) The dealer P; defines the degree-2¢ polynomial D(z) = A(z) - B(x);
Denote D(z) =a-b+ > i, dy - z*.
(b) Pi chooses t* values {r¢;} uniformly and independently at random from F, where £ =
1,...,t,and j =0,...,t — 1. For every £ = 1,...,t, the dealer defines the polynomial
Dy(x): Dy(z) = an;lo Tom - + (dl+t — Z;:ZH rm7t+g,m) -zt
(c) P1 computes the polynomial: C’(z) = D(z) — >_,_, 2* - Dy(x).
(d) P1 chooses t random degree-t bivariate polynomials Di(z,y), ..., D¢(x,y) under the

constraint that De(x,0) = Dy(z) for every £ =1,...,t. In addition, it chooses a random
bivariate polynomial C(z,y) of degree-t under the constraint that C(z,0) = C’(z).

(e) Pp invokes the Fvss functionality as dealer with the following inputs: C(z,y), and
Dy(z,y) for every £ =1,...,t.
2. Each party P; works as follows:

(a) If any of the shares it receives from Fyss equal L then P; proceeds to the reject phase.

(b) P; computes ¢; % a; - b; — iy (@)F - Di(ai,0). If C(as,0) # ¢}, then P; broadcasts

(complaint, i); note that C(au,y) is part of P;’s output from Fygs with C(z,v).
(¢) If any party Py broadcast (complaint, k) then go to the complaint resolution phase.

3. Complaint resolution phase:
(a) P1 chooses two random bivariate polynomials A(z,y), B(z,y) of degree t under the
constraint that A(x,0) = A(z) and B(z,0) = B(z).

(b) The parties invoke the Fyptena functionality twice, where P; inserts A(z,y), B(z,y) and
each party inserts a;, b;. If any one of the outputs is L (in which case all parties receive
1), P; proceeds to reject phase.

(¢) The parties run the following for every (complaint, k) message:

i. Run ¢+ 3 invocations of F¥ ,, with each party P; inputting its shares of A(z,y),
B(z,y), Di(z,y),...,Di(z,y), C(z,y), respectively.
Let A(ak,y), B(ak,y), Di(ak,y), ..., Di(ak,y), C(ak,y) be the resulting shares (we
ignore the dual shares S(z, o) for each polynomial).

ii. If: C(ak,0) # A(ak,0) - Bak,0) — 3i_; agDe(ax,0), proceed to the reject phase.

4. Reject phase:

(a) Every party P; sends a;, b; to all P;. Party P; defines the vector of values @ = (a1, ..., an)
that it received, where a; = 0 if it was not received at all. P; sets A’(z) to be the output
of Reed-Solomon decoding on @. Do the same for B'(z).

(b) Every party P; sets C(z, ;) = C(au,y) = A’(0) - B’(0); a constant polynomial.
5. Outputs: Every party P; outputs C(z, a;), C(as,y). Party Py outputs (A(z), B(z),C(x,y)).

125




5. § simulates the ﬁvss invocations (Step of Protocol , and gives the adversary
for every i € I the bivariate shares (D (x,a;), DY (i, y)), ..., (DF (z, ), DY (i, ). In
addition, it gives the bivariate shares (C(x,;),C(ci,y)) that it has received from FiFui.

6. If the adversary A broadcast a complaint message, for some i € I, then the protocol proceed
to the complaint resolution phase (Step @ n Protocol.

S selects two (arbitrary) degree-t univariate polynomials A(z), B(z) under the constraint
that A(a;) = A(ay) and B(oy) = B(ay) for every i € 1. Then, it chooses two degree-t

bivariate polynomials A(x,y), B(x,y) uniformly at random, under the constraints that
A(z,0) = A(z) and B(z,0) = B(z).

It then sends the bivariate shares (A(z, i), A(ci,y)), (B(z, i), Blag, y)) for everyi € I,
as the outputs of the Fopiena functionality.

7. For every k € I for which A instructs a corrupted party Py to broadcast a (complaint, k)
message, S simulates the complaint resolution phase by simulating P; receiving outputs
(A, ), Ao, ), (Bl an), Blok,y)), (Cla, ax), Clag ), (DF (@, ax), D (axs ), -
(D§ (z, o), DF (g, y)) from EE . for every i € I (Step in Protocol.

8. S outputs whatever A outputs and halts.

We prove that for every I C [n] where 1 ¢ I, for every z € {0,1}* and all vectors of inputs :

{IDEAL f) } = {HYBRID?VSSvFextendvFeval (f) }

Frmate (20,1 ( AT

We begin by showing that the output of the honest parties is distributed identically in the
ideal world and the hybrid world. Then, we show that the view of the corrupted parties is
distributed identically, when the output of the honest parties is given.

The honest parties’ outputs. We analyze the distribution of the output of the honest
parties. Let A(z), B(z) be the two polynomials that are defined implicitly from the points of
the honest parties inputs. Then, in the ideal world the trusted party chooses C(z,y) uniformly
at random from BA©) B0t The output of the honest parties fully defines these polynomials.

In the protocol execution, we have that the honest dealer chooses DY (x),..., D¢ (z) as
instructed. Thus, it is clear that the constant term of C(x,y) is A(0)-B(0) and the honest parties
never complaint. In addition, relying on the ﬁewl, ﬁwt&nd functionalities, in the complaint
resolution phase the honest parties never accept a (false) complaint. Therefore, each honest
party outputs the bivariate share (C(z, o), C(a4,y)).

We now show that the polynomial C(z,%) is uniformly distributed in BA®B0)* The dealer
has chosen C(x,y) uniformly at random under the constraint that C'(z,0) = C’(x), and thus it
is enough to show that C’(x) is distributed uniformly at random in PAOBO) However, this
follows immediately from Theorem We conclude that the output of the honest parties
is distributed identically in the real and ideal executions.

The adversary’s view. We now show that the view of the adversary is distributed identically
in the real protocol and ideal executions, given the honest parties’ outputs. Fixing the honest
parties outputs, determine the polynomials A'(x), B'(z), C(z,y).

126



The view of the adversary in the first round of an execution of the real protocol consists of
the polynomials:

{<D‘19($7 ai)v Df(a%y» R <D;§S(x> ai)? Df(a%y» ) <C(3§‘, ai)> C(aivy»}ie]

that are received from the invocations of Fy gg (Step [le| in Protocol . Furthermore, in
case any corrupted party broadcast a complaint, in addition to the above, the adversary’s view
consists of the polynomials:

{<g(a:, ai), A(ai, 3/)> , <§(m, ), Bla, y)> }iEI

which are the output of the ﬁemtend functionality. Without loss of generality, we assume that the
adversary always outputs a complaint message, for some i and thus we consider the distribution
after the executions of Fiyiend-

From Theorem and since the univariate polynomials Dj(x),...,D(z) are chosen
similarly in both theorems (i.e., in Protocol and Protocol and in the respective sim-
ulators of Theorems [2.6.14] and [3.3.9)), we conclude that all the shares on the univariate polyno-
mials {D1(a), ..., Di(ei)}ier (and {DS (), ..., Dy (a;) }ier) are distributed identically in the
real and ideal executions, even when conditioning on the fixed polynomials A(z), B(z), C(z,0),

and also when conditioning on the whole bivariate polynomial C(z,y) (since C(z,y) is cho-
sen uniformly at random under the constraint that C'(z,0) = C(x), and therefore the view is
independent of it).

Now, in the ideal execution, for every £ the simulator chooses bivariate polynomials Df (z,y)
uniformly and independently at random under the constraint that D (x,0) = Dy(z), and in
addition, it chooses A(z,y), B(x,y) under the constraint that A(x,0) = A(x) and B(z,0) =
B (). In the real execution, the dealer chooses the bivariate polynomials in a similar way: For
every £ it chooses Dy(z,y) uniformly at random under the constraint that Dy(z,0) = D,(x)
and in addition, it chooses A(z,y), B(z,y) uniformly at random under the constraint that
A(z,0) = A(z) and B(x,0) = B(x). As we have seen above, all the polynomials in the simulation
and in the real executions agree on the points {a;}ics (i.e., D$(a;,0) = Dy(a;,0) for every
¢ =1,...,t, A(a;,0) = A(y,0) and B(as,0) = B(az,0)). Moreover, Claim tells as that
the shares of corrupted partes of two bivariate polynomials, where each polynomial is based
on some univariate polynomial that agree on the points of corrupted parties, are distributed
identically. That is, for instance, the bivariate shares of the two polynomials D;(z,y) and
DY (x,y), the bivariate polynomial are chosen based on univariate polynomials D;(z,0) and
D5 (x,0) that agree on all point {a; };cs. This is true also for Ds, ..., D; (and DS, ..., Dy), and
also the outputs of Femtmd Therefore, using Claim [2 m we conclude that:

{(DF(@.00), DY (0u9)) .. (DF (@,00). DF (00,9), (A, ), Ao, y), (B, ), Blawy) | =

{(Dl(l', Olz‘), D1 (az‘, y)) ceey (Dt($a ai); Dt(ai7 y)), (A(.Z', ai)? A(ai7 y))? (B(x7 ai)? B(O‘iﬂ y))}iel

where both distributions are conditioned on the output of the honest parties. This concludes
that the view of the adversary is the same conditioned on the output of the honest parties.

127



Case 2 - the Dealer P; is Corrupted

This

case is simpler. Loosely speaking, security holds because (a) the dealer receives no mes-

sages from the honest parties (unless there are complaints in which case it learn nothing it

did not know), and (b) any deviation by a corrupted dealer from the prescribed instructions

is unequivocally detected in the verify phase via the ﬁewl invocations. We now describe the

simulator.
The simulator S.

1. S invokes A with the auxiliary input z.

2. Recall that the honest parties send their inputs to the trusted party computing :ng, and
the later reconstruct the polynomials A(x) and B(z). S receives A(x), B(x) from FI4Y
(Step |4d in Functionality .

3. S receives the polynomials C(x,y), D1(z,y),. .., Di(x,y) that A instructs the corrupted
dealer to use in the Fygg invocations (Step|1d in Protocol .

4. If deg(C) >t or if deg(Dy) >t for some £ =1,...,t, then S proceeds to step @

5. For every j ¢ I, such that C(ay,0) # A(ay) - B(ag) — 34 _, o - Din(ag, 0), simulator S
simulates Py, broadcasting (complaint, k).

6. In case any party (either the simulator or the adversary A itself ) has broadcast a complaint,
S receives from the adversary the bivariate polynomials A(x,y), B(x,y). It then checks
that A(x,0) = A(z) and B(z,0) = B(zx). If the above does not hold, it sends L as the
output from the Foyieng functionality, and proceeds to Step @

7. For every (complaint, k) message that was broadcast by a corrupted party Py, the simula-
tor S generates the results of the F,q erecutions: It simply sends the necessary bivari-
ate shares on A,B,C,D$,...,D$. If there exists a k such that C(ay,0) # A'(ay,0) -
B'(ar,0) — S 0_, (ar)’ - D3 (a,0), then S proceeds to Step @

8. If S reaches this points, then it sends C(z,y), as obtained from A above, to N‘Z”S“g

9. Simulating reject:

mult

(a) S sends C’(:E,y) = 2!t to the trusted party computing ﬁvss (i.e., S sends a polyno-
mial C such that deg(C) > t).

(b) S simulates every honest party P; broadcasting aj = A(a;) and bj = B(coy) as in the
reject phase (Step |4] in Pmtocol.

(¢) S outputs whatever A outputs and halts.

mult

Since the simulator receives from F{/'¢'d the polynomials A(x), B(x) it therefore can compute

all actual inputs of the honest parties. Therefore, the view generated by the simulator is

identical to the view in the actual execution. We now show that the output of the honest

parties is distributed identically in the real and ideal, given the view of the corrupted parties.
This follows from the same arguments as the proof of Theorem If there is no reject, then

128



from the exact same arguments it must hold that C’(z) is a degree-t polynomial with constant
term ab. Thus, using Fygg, the polynomial C(z,y) is a degree-t bivariate polynomial that hides
ab . On the other hand, if there is reject, then clearly in both executions the parties output the
constant polynomial A(0) - B(0).

3.3.5 The ﬁmult Functionality and its Implementation

We are finally ready to show how to securely compute the product of shared values, in the
presence of malicious adversaries.

The functionality. The functionality is similar to that of the Fj,,;; functionality, with the
only difference that the invariant of the protocol is that now the value on each wire is hidden by
bivariate polynomial instead of a univariate polynomial. Therefore, the inputs of the parties are
now shares on two degree-t bivariate polynomials A(z,y), B(z,y), and the goal is to compute
shares on some random degree-t bivariate polynomial C(z, y) such that C(0,0) = A(0,0)-B(0,0).
We note that the corrupted parties are able to influence the output and determine the shares
of the corrupted parties in the output bivariate polynomial C(z,y). Therefore, we let the
adversary to choose its output (i.e., its output shares), and the functionality chooses the output
polynomial C(x,y) to agree with the shares of the adversary.

In order to simplify the proof of security, and in order to avoid proving some non-trivial
statements regarding distributions of bivariate polynomials, we define an ideal functionality that
is “less secure” than the real protocol. In particular, the real protocol enable the adversary to
influence |I| bivariate shares on the output polynomial C(x,y). However, we allow the ideal
adversary to influence exactly t shares on the output polynomial C(x,y). Of course, in case
|I| =t this makes no difference, but it does give the ideal adversary more ability in case where
|I| < t. However, this formulation of functionality suffices for our needs in the overall BGW
protocol, and simplifies immensely the proof of security.

129



FUNCTIONALITY 3.3.10 (Functionality Fpuit for emulating a multiplication gate)

Frui Teceives a set of indices I C [n] and works as follows:

1. The ﬁmult functionality = receives the inputs of the honest parties
{(fja(ac),g;(y»,(f;’(x),gé’(y»}]gg Let A(z,y),B(x,y) be the unique degree-t bi-
variate polynomials determined by these, respectively. (If such polynomials do not
exist then no security is guaranteed; see Footnote )

2. Fppu sends {(A(z, a;), A(as, y)), (B(z, i), B(as,y)) bier to the (ideal) adversary.

3. Fiui receives a degree-t bivariate polynomial H(z,y) from the (ideal) adversary. If the
adversary sends a polynomial of higher degree, truncate it to polynomial of degree-t in
both variables.

4. Fpu defines a degree-t bivariate polynomial C'(x,y) such that:

(a) C(0,0) = A(0,0) - B(0,0),
(b) Let T be a set of size exactly ¢ indices such that I C T, where T is fully determined
from I; Then, for every i € T, set C(z,«;) = H(z,«;) and C(«;,y) = H(oy, y).
(such a degree-t polynomial always exists from Claim )

5. Qutput: The functionality Fput sends the polynomial (C(z, a;), C(a;,y)) to every
honest party P; (j & I).

(There is no more output for the adversary.)

The protocol idea. The protocol idea is similar to the implementation in the original BGW,
with the following major difference: The parties do not need to subshare their shares, since
these are already shared. As input, each party P; holds the bivariate shares (A(z, o), A(u, y)),
(B(z, ), B(aj,y)), where A(z,y), B(z,y) are degree-t bivariate polynomials with constant
terms a, b, respectively. Thus, the polynomial A(0,y) is a degree-t univariate polynomial with
constant term A(0,0) = a. In addition, B(0,y) is a degree-t bivariate polynomial B(0, a;), and
so A(0,y) - B(0,y) is a degree-2t polynomial with the desired constant term ab. As was shown
in [51], there exist constants ~1,...,, such that:

ab = -A(0,a1) - B(0,a1) + ...+ v - A(0, o) - B(0, vy (3.3.2)

We refer to the values A(0, «;), B(0, «;) as the actual shares of party P;, and those values
are the constant terms of the polynomials A(x, o), B(x, «;), respectively, which are part of the
shares of P;. Observe that each party P; holds the values A(o;, ;) and B(aj, ;). Therefore, P;
can use the ﬁﬁg‘fqt—functionality, and to distribute some random degree-t bivariate polynomial
Ci(z,y) with constant term A(0, ;) - B(0, cv;). Since P; distributes it using N‘ng, all parties are
able to verify that the constant term of C; is correct. After each party distributes the product
of its shares, we have n bivariate polynomials C;(z,y) that are shared among the parties, where

the constant term of each polynomial is A(0, a;) - B(0, «i;), respectively. Now, let:

def
Clz,y) = n1-Cilx,y) + ...+ Cu(z,y)

observe that this is a bivariate polynomial of degree-t in both variables, its constant term is ab,
and each party can compute its share on this polynomial using the same linear combination on

130



its shares of C, ..., C,. We now formally describe the protocol.

PROTOCOL 3.3.11 (Computing Fy,: in the F4t hybrid model)

e Input: Each party P; holds ({f&(x),g2(v)), (f’(z),g%(y))) for some bivariate polyno-
mials A(z,y), B(x,y) of degree ¢, which hide a, b, respectively. (If not all the points lie
on a single degree-t bivariate polynomial, then no security guarantees are obtained. See
Footnote 2])

e Common input: The description of a field F and n distinct non-zero elements
ai,...,a, € F. In addition, the parties have constants 71, ...,7, which are the first
row of the inverse of the Vandemonde matrix (see [51]).

e Aiding ideal functionality initialization: Upon invocation, the trusted party com-
puting the corruption-aware functionality F‘Tgfgt receives the set of corrupted parties
1.

e The protocol:

1. For every i = 1,...,n, the parties invoke the ﬁ(,”géf functionality as follows:

(a) Imputs: In the ith invocation, party P; plays the dealer. We recall that
all parties hold shares on the univariate polynomials A(x, ;) = f#(z) and
B(z,0;) = fl(z). Specifically, each party P; sends FP4 their shares
95 (i) = Alaj, oq) = f(a;) and g8 () = B(ay, oq) = f2(ay).

(b) Outputs: The functionality F, (/”S%t chooses a random degree-t bivariate polyno-
mial C;(x, y) with constant term f2(0)- f2(0) = A(0, «;)-B(0, «;). Every party
P; receives the bivariate shares (C;(z, o), Ci(cj,y)), for every 1 < j < n.

2. At this stage, each party P, holds polynomials Ci(z,«;),...,Cph(z,a;) and

Ci(,y), .-, Cplay,y). Then, it locally computes C(z, «;) = Z?Zl v; - Cj(, o),

and C(O{i, y) = Z?:] Y- Cj(aia y)

e Output: Each party P; outputs (C(x,a;), C(a;,y)).

Theorem 3.3.12 Lett < n/3. Then, Protocol|3.3.11| is t-secure for the ﬁmult functionality in

the F’&”gg—hybrid model, in the presence of a static malicious adversary.

Proof: We start with the specification of the simulator S.

The simulator S.
1. S invokes the adversary A with the auziliary input z.

2. Recall that the honest parties send ﬁmult their input bivariate shares, and that the latter
reconstructs the bivariate polynomials A(x,y) and B(x,y). Then, it sends S the bivariate

shares {{A(z, a;), A, y)), (B(x, a;), B(ai,y)) bier-

3. For every j ¢ I, S simulates the ﬁ{/”é‘ét invocation where the honest party P; is dealer

(Step |1] in Protocol|3.5.11)):

(a) S chooses a random polynomial C;(x,y) €r B, and hands A the univariate shares
{A(as, o), B(ay, aj) Yier (as the correct inputs of the corrupted parties), and the out-
put polynomials {(C;(z, o;),Cj(cu,y) tier (as the output shares of the chosen polyno-
mial Cj(z,y)).

131



4. For every i € I, § simulates the ﬁ’%gg invocation where the corrupted party P; is the

dealer (Step |1] in Protocol|3.5.11)):

(a) S hands the adversary A the bivariate shares (A(z, a;), Ao, y)), (B(x, o), B(a, y))
as if incoming from F‘T/’g‘g (Step of Functionality .

(b) S receives from A the bivariate polynomial C;(x,y) that A sends to ﬁ"}?g (Step
of Functionality .

(c) S checks that C;i(x,y) is of degree-t in both variables, and that C;(0,0) = A(0, ;) -
B(0, ;). If one of this checks fails, then S resets C;(z,y) = A0, a;) - B(0, ;).

(d) S hands A the polynomial Ci(x,y) and the bivariate shares {(Ci(z, ax), Ci(ak, y)) trer
(Step ?? of Functionality[3.3.7).

5. For everyi € I, the simulator S computes H(x,y) = 2?21 v;-Cj(x,y) and sends H to the
ﬁmult functionality. Recall that at this stage, ﬁ(/”gét chooses a polynomial C(x,y) that agree
with the univariate shares of the corrupted parties in H and with H(0,0) = A(0,0)-B(0,0),

and sends the outputs to the honest parties.
6. S outputs whatever A outputs and halts.

The proof is similar to the proof of Theorem The only difference between the simu-
lation with S and A, and the real execution of Protocol with A is due to the fact that
for every honest party j € I, S chooses the polynomial C;(z,y) to have constant term 0 instead
of A(0,c;) - B(0,a;) (which it does not know). We therefore present a fictitious simulation,
where the simulator gets as auxiliary information the values A(0, ;) - B(0, o;) for every j & I.
Then, we show that an execution of the fictitious simulation and the real execution are identi-
cally distributed, and we also show that execution of the fictitious simulation and the original
simulation are identically distributed. This implies what we have to prove.

A fictitious simulator. Let S8’ be exactly the same as S, except that it receives for input the
values A(0, ;) - B(0, ;) for every j ¢ I. Then, instead of choosing Cj(z) €r B%!, it chooses
Ci(z) €r BAO) BO:a;)t - We stress that S’ runs in the ideal model with the same trusted
party running ﬁmult as S, and the honest parties receive output as specified by vault when
running with the ideal adversary S or S'.

The original and fictitious simulations. We begin by showing that the joint output of the
adversary and honest parties is identical in the original and alternative simulations. That is,

IDEAL

{IDEAL - qultzsl(z/)71(x) }a’c’e({o,l}*)”,ZE{O’l}*

qult’s(z)’l(x)}3’3’6({0,1}*)”,26{0,1}* - {
where 2z’ contains the same z as A receives, together with the A(0, ;) - B(0, cvj) values. The
proof for this is identical to the analogue claim in the proof of Theorem where here we use
Corollary to show that the bivariate shares {C}(x, a;), C(ai,y) }ier,j¢r when C;(0,0) = 0
are identically distributed to the bivariate shares {Cj(x, a;), C(i,y)}ier;j¢r when C;(0,0) =
A(0, o5) - B(0, ) (both are univariate polynomial that are chosen uniformly at random except
for the constant term).

132



The fictitious simulation and a protocol execution. We now proceed to show that the
joint output of the adversary and honest parties are identical in a protocol execution and in the
alternative simulation.:

Fmult

IDEAL = oo (T = {HYBRID "% (T .
{ Fmuit,S (Z)’I( )}fe({O,l}*)",ze{Ovl}* { W’A(z)’l( )}fe({O,l}*)”,ze{O,l}*

Similarly to the proof of Theorem [2.6.18, we compare the ideal execution of &’ with ﬁmult to an
ideal execution of yet another simulator S with a new functionality qulh defined as follows:

° qult is the same as ﬁmult except that instead of receiving the bivariate polynomial H(x,y)
from the ideal adversary S , and choosing the resulting polynomial C'(x,y) as in Step it
receives all the polynomials C1(z,y),...,Cp(x,y) and defines H(z,y) = > p_; %Cr(z,y).

e S is the same as S’ except that instead of sending the bivariate polynomial H(z,y) to the
trusted party, it sends all polynomials Cy(z,y), ..., Cy(z,y) that it defined in the (fictitious)
simulation.

It is easy to see that the joint output of S and the honest parties in an ideal execution with
qult is identically to the joint distribution of A and the honest parties in the real execution.
This is due to the fact that the simulator has all the correct inputs of the honest parties, plays
exactly as the honest parties in the real executions, and acts exactly as described in all the
~{}7’§Jét executions.

It remains to show that the joint output of S and the honest parties in an ideal execution
with Flu is identically to the joint distribution of S and the honest parties in an ideal execution

with ﬁmult. Since the fictitious simulator S’ knows all the correct shares of the honest parties,

from Eq. (3.3.2)) it holds that:
ab="y-A0,0;) - B(0,;) + ... + v - A0, ) - B(0, tpy)

Thus, H(0,0) = >_;_; %Cx(0,0) = ab. Therefore, the polynomial H(xz,y) that is sent by S’ to
Fp uniquely defines the polynomial C'(z,y), which is the exactly the same polynomial as in

~

S with qult. This completes the proof. B

3.3.6 Wrapping Things Up — Perfectly-Secure Protocol

We now briefly describe the overall protocol for any function f(x1,...,2zn) = (Y1,...,Yn). As
the original BGW protocol, the protocol consists of three phases, the input sharing phase, the
circuit emulation phase and the output reconstruction phase.

In the input sharing phase, each party P; distributes its input x; using the ﬁvss functional-
ity. At the end of the input sharing phase, the value of each input wire is hidden using bivariate
sharing. The parties then proceed to the circuit emulation phase, where the parties emulate
the computation of the circuit C' gate-by-gate, by maintaining the invariant that the interme-
diate value on each wire is hidden using bivariate sharing. As in BGW, we assume that the
circuit consists of three types of gates: addition gates, multiplication-by-a-constant gates and
multiplication gates.

It is easy to see that addition gates, and multiplication-by-a-constant gates can be computed
without any interaction. When the parties reach a multiplication gate, the parties invoke the

133



Foue functionality, to receive shares of a bivariate polynomials that hides the multiplication
A(0,0) - B(0,0).

In the output stage of the original protocol of BGW, each party receive n points of a
polynomial of degree-t, with at most t errors. Since n > 3t 4+ 1, using the Reed-Solomon
error correction decoding, each party can correct ¢ errors and reconstruct the polynomial of the
output. In the bivariate case there are two possibilities for reconstructing the output. The first,
is reducing it to the univariate case, by having each party use the value F(0,«;), and refer to
this value as the univariate share of the polynomial F'(0,y). The second option is to use the
redundant information and to eliminate the need for error correcting. Each party simply sends
its bivariate shares (F'(x,q;), F(aj,y)). Then, the parties computing the output can simply
take a subset of 2t 4+ 1 polynomials that agree with 2¢ 4 1 polynomials, reconstruct F'(x,y) and
output F(0,0).

Efficiency analysis. In short, our protocol utilizing the bivariate properties costs up to
O(nd) field elements in private channels, together with O(n?*) field elements in broadcast per
multiplication gate in the case of malicious behavior. We remark that when no parties actively
cheat, the protocol requires O(n?) field elements in private channels and no broadcast at all.

Protocol Optimistic Cost Dishonest Cost
Fugs: O(n?) over pt-2-pt O(n?) over pt-2-pt
No broadcast O(n?) broadcast
7 . O(n?) over pt-2-pt O(n?) over pt-2-pt
ewtend: No broadcast O(n?) broadcast
o O(n?) over pt-2-pt O(n?) over pt-2-pt
eval: No broadcast No broadcast
Fmalt, O(n3) over pt-2-pt O(n*) over pt-2-pt
vSss: No broadcast O(n?3) broadcast
P ' O(n*) over pt-2-pt O(n®) over pt-2-pt
et No broadcast O(n*) broadcast
BCW: O(|C] - n*) over pt-2-pt | O(|C| - n®) over pt-2-pt
No broadcast O(|C| - n*) broadcast

134




Part 11

Complete Fairness in Secure
Two-Party Computation

135






Chapter 4

A Full Characterization of Functions that
Imply Fair Coin-Tossing

4.1 Introduction

The well-known impossibility result of Cleve [34] showed that the coin-tossing functionality,
where two parties receive the same random bit, cannot be computed with complete fairness.
This result implies that it is impossible to securely compute with fairness any function that can
be used to toss a coin fairly. In this chapter, we focus on the class of deterministic Boolean
functions with finite domain, and we ask for which functions in this class is it possible to
information-theoretically toss an unbiased coin, given a protocol for securely computing the
function with fairness. We provide a complete characterization of the functions in this class
that imply and do not imply fair coin tossing. This characterization extends our knowledge of
which functions cannot be securely computed with fairness.

The criterion. Intuitively, the property that we define over the function’s truth table relates
to the question of whether or not it is possible for one party to singlehandedly change the
probability that the output of the function is 1 (or 0) based on how it chooses its input. In order
to explain the criterion, we give two examples of functions that imply coin-tossing, meaning
that a fair secure protocol for computing the function implies a fair secure protocol for coin
tossing. We discuss how each of the examples can be used to toss a coin fairly, and this in turn
will help us to explain the criterion. The functions are given below:

yi Y2 Y3 yi Y2 U3
z1 | 0 1 1 z1| 1 0 O
(a) |1 0 0 (b) |0 1 0
3]0 0 1 3]0 0 1

Consider function (a), and assume that there exists a fair protocol for this function. We
show how to toss a fair coin using a single invocation of the protocol for f. Before doing so, we
observe that the output of a single invocation of the function can be expressed by multiplying
the truth-table matrix of the function by probability vectors. Specifically, assume that party
Py chooses input z; with probability p;, for i« = 1,2,3 (thus p; + p2 + p3 = 1 since it must

137



choose some input); likewise, assume that P» chooses input y; with probability ¢;. Now, let
M be the “truth table” of the function, meaning that M¢[i,j] = f(x;,y;). Then, the output
of the invocation of f upon the inputs chosen by the parties equals 1 with probability exactly
(p1,p2,p3) - My - (q1,02,43)"

We are now ready to show how to toss a coin using f. First, note that there are two
complementary rows; these are the rows specified by inputs x1 and xs. This means that if Py
chooses one of the inputs in {z1,x2} uniformly at random, then no matter what distribution
over the inputs (corrupted) P uses, the result is a uniformly chosen coin. In order to see this,
observe that when we multiply the vector (3, 5,0) (the distribution over the input of P;) with
2303
choose, or what distribution over the inputs it may use, the output is 1 with probability 1/2

the matrix My, the result is the vector ( ). This means that no matter what input P, will
(formally, the output is 1 with probability % <q1 + % ~qo + % cq3 = % because q1 + g2 + g3 = 1).
This means that if P; is honest, then a corrupted P, cannot bias the output. Likewise, there
are also two complementary columns (y; and y3), and thus, if P» chooses one of the inputs
in {y1,ys} uniformly at random, then no matter what distribution over the inputs (a possibly
corrupted) P; uses, the result is a uniform coin.

In contrast, there are no two complementary rows or columns in the function (b). However,
if P; chooses one of the inputs {x1, z2, 3} uniformly at random (i.e., each input with probability
one third), then no matter what distribution P, will use, the output is 1 with probability 1/3.
Similarly, if P, chooses a uniformly random input, then no matter what P; does, the output
is 1 with the same probability. Therefore, a single invocation of the function f in which the
honest party chooses the uniform distribution over its inputs results in a coin that equals 1

with probability exactly %, irrespective of what the other party inputs. In order to obtain an
1
2
This method works by having the parties use the function f to toss two coins. If the resulting

unbiased coin that equals 1 with probability 5 the method of von-Neumann [97] can be used.
coins are different (i.e, 01 or 10), then they output the result of the first invocation. Otherwise,
they run the protocol again. This yields a coin that equals 1 with probability % since the
probability of obtaining 01 equals the probability of obtaining 10. Thus, conditioned on the
results being different, the probability of outputting 0 equals the probability of outputting 1.

The criterion is a simple generalization of the examples shown above. Let f: {z1,...,2p} X
{y1,--.,ym} — {0,1} be a function, and let My be the truth table representation as described
above. If there exist two probability vectorsﬂ P=(1,---,00),d=(q1---,qn) such that p- My
and My -q!" are both vectors that equal § everywhere, for some 0 < § < 1. Observe that if such
probability vectors exist, then the function implies the coin-tossing functionality as we described
above. Specifically, P; chooses its input according to distribution p, and P» chooses its inputs
according to the distribution q. The result is then a coin that equals 1 with probability d.
Using the method of von-Neumann, this can be used to obtain a uniformly distributed coin.
We conclude:

Theorem 4.1.1 (informal) Let f : {z1,...,2¢} X {y1,...,ym} — {0,1} be a function that
satisfies the aforementioned criterion. Then, the existence of a protocol for securely computing
f with complete fairness implies the existence of a fair coin tossing protocol.

An immediate corollary of this theorem is that any such function cannot be securely com-
puted with complete fairness, or this contradicts the impossibility result of Cleve [34].

'p = (p1,...,px) is a probability vector if p; > 0 for every 1 <i < k, and Zle pi = 1.

138



The more interesting and technically challenging part of our work is a proof that the criterion
is tight. That is, we prove the following theorem:

Theorem 4.1.2 (informal) Let f : {z1,...,z¢} X {y1,...,ym} — {0,1} be a function that
does not satisfy the aforementioned criterion. Then, there exists an exponential-time adversary
that can bias the outcome of every coin-tossing protocol that uses ideal and fair invocations of f.

This result has a number of ramifications. Most notably, it provides a focus of our attention
for the question of fairness in two-party secure computation. Specifically, the only functions
that can potentially be securely computed with fairness are those for which the property does
not hold. These functions have the property that one of the parties can partially influence the
outcome of the result singlehandedly, a fact that is used inherently in the protocol of [58] for the
function with an embedded XOR. This does not mean that all functions of this type can be fairly
computed. However, it provides a good starting point (and indeed, as we will see in Chapter
a large subset of these functions can be computed fairly). In addition, our results define the
set of functions for which Cleve’s impossibility result suffices for proving that they cannot be
securely computed with fairness. Given that no function other than those implying coin tossing
has been ruled out since Cleve’s initial result, understanding exactly what is included in this
impossibility is of importance.

On fail-stop adversaries. Our main results above consider the case of malicious adversaries.
In addition, we explore the fail-stop adversary model where the adversary follows the proto-
col like an honest party, but can halt early. This model is of interest since the impossibility
result of Cleve [34] for achieving fair coin tossing holds also for fail-stop adversaries. In or-
der to prove theorems regarding the fail-stop model, we first provide a definition of security
with complete fairness for fail-stop adversaries that follows the real/ideal simulation paradigm.
Surprisingly, this turns out not to be straightforward and we provide two natural formulations
that are very different regarding feasibility. The formulations differ regarding the ideal-world
adversary /simulator. The question that arises is whether or not the simulator is allowed to use
a different input to the prescribed one. In the semi-honest model (which differs only in the fact
that the adversary cannot halt early), the standard formulation is to not allow the simulator
to change the prescribed input, whereas in the malicious model the simulator is always allowed
to change the prescribed input. We therefore define two fail-stop models. In the first, called
“fail-stopl”, the simulator is allowed to either send the trusted party computing the function
the prescribed input of the party or an abort symbol 1, but nothing else. In the second, called
“fail-stop2”, the simulator may send any input that it wishes to the trusted party computing
the function. (Note, however, that if there was no early abort then the prescribed input must
be used because such an execution is identical to an execution between two honest parties.)
Observe that in the first model, the honest party is guaranteed to receive the output on the
prescribed inputs, unless it receives abort. In addition, observe that any protocol that is secure
in the presence of malicious adversaries is secure also in the fail-stop2 model. However, this is
not true of the fail-stopl model (this is due to the fact that the simulator in the ideal model for
the case of malicious adversaries is more powerful than in the fail-stop2 ideal model since the
former can send any input whereas the latter can only send the prescribed input or ).

139



We remark that Cleve’s impossibility result holds in both models, since the parties do not
have inputs in the coin-tossing functionality, and therefore there is no difference in the ideal-
worlds of the models in this case. In addition, the protocols of [58] that are secure for malicious
adversaries are secure for fail-stop2 (as mentioned above, this is immediate), but are not secure
for fail-stopl.

We show that in the fail-stopl model, it is impossible to securely compute with complete
fairness any function containing an embedded XOR. We show this by constructing a coin-tossing
protocol from any such function, that is secure in the fail-stop model. Thus, the only functions
that can potentially be securely computed with fairness are those with no embedded XOR
but with an embedded OR (if a function has neither, then it is trivial and can be computed
unconditionally and fairly); we note that there are very few functions with this property. We
conclude that in the fail-stopl model, fairness cannot be achieved for almost all non-trivial
functions. We remark that [58] presents secure protocols that achieve complete fairness for
functions that have no embedded XOR; however, they are not secure in the fail-stopl model,
as mentioned.

Regarding the fail-stop2 model, we prove an analogous result to Theorem In the proof
of Theorem the adversary that we construct changes its input in one of the invocations of
f and then continues honestly. Thus it is malicious and not fail-stop2. Nevertheless, we show
how the proof can be modified in order to hold for the fail-stop2 model as well. We then show
how we can modify the proof to hold in the fail-stop2 model as well.

These extensions for fail-stop adversaries deepen our understanding regarding the feasibility
of obtaining fairness. Specifically, any protocol that achieves fairness for any non-trivial function
(or at least any function that has an embedded XOR) must have the property that the simulator
can send any input in the ideal model. Stated differently, the input that is effectively used by
a corrupted party cannot be somehow committed, thereby preventing this behaviour. This also
explains why the protocols of [58] have this property, and is a key ingredient for our results in
Chapter

Open questions. In this work we provide an almost complete characterization regarding what
functions imply and do not imply coin tossing. Our characterisation is not completely tight since
the impossibility result of Theorem only holds in the information-theoretic setting; this
is due to the fact that the adversary needs to carry out inefficient computations. Thus, it
is conceivable that coin tossing can be achieved computationally from some such functions.
It is important to note, however, that any function that does not fulfil our criterion implies
oblivious transfer (OT). Thus, any protocol that uses such a function has access to OT and
all that is implied by OT (e.g., commitments, zero knowledge, and so on). Thus, any such
computational construction would have to be inherently nonblack-box in some sense. Our work
also only considers finite functions (where the size of the domain is not dependent on the
security parameter); extensions to other function classes, including non-Boolean functions, is
also of interest.

The main open question left by our work in this chapter is to characterize which functions
for which the criterion does not hold can be securely computed with complete fairness. In the
next chapter, we focus on this question and show that for a large subset of these functions —
complete fairness is possible. As we will see, our overall characterization is not complete, and
there exist functions that do not imply fair coin-tossing, and we do not know whether they are

140



possible to compute fairly. Observe that in order to show that these functions (or some subset of
these functions) cannot be securely computed with complete fairness, a new impossibility result
must be proven. In particular, it will not be possible to reduce the impossibility to Cleve [34]
since these functions do not imply coin tossing.

4.2 Definitions and Preliminaries

In the following, we present security definitions for protocols. This is similar to security defini-
tions appear in Section[2.2] However, here we adapt the definitions to hold in the computational
settings, i.e., when the parties and the adversary are computationally bounded and assumed to
be probabilistic polynomial time.

We let x denote the security parameter. A function pu(-) is negligible if for every positive
polynomial p(-) and all sufficiently large &, it holds that u(x) < 1/p(k). A distribution ensemble
X = {X(a,K)}eepren is an infinite sequence of random variables indexes by a € D and
x € N. In the context of secure computation, « is the security parameter and D denotes
the domain of the parties’ input. Two distribution ensembles X = {X(a,k)}qepren and
Y = {Y(a, k) }aep ren are computationally indistinguishable, denoted X = Y, if for every non-
uniform polynomial-time-algorithm D there exists a negligible function p(-) such that for every
k and every a € D:

[Pr [D(X(a,r)) = 1] — Pr[D(Y (a, %)) = 1]] < a(x)

We consider binary deterministic functions over a finite domain; i.e., functions f : X xY —
{0,1} where X,Y C {0,1}* are finite sets. Throughout, we will denote X = {z1,...,z,} and
Y ={y1,...,Ym}, for constants m, ¢ € N.

4.2.1 Secure Two-Party Computation with Fairness — Malicious Adversaries

We now define what it means for a protocol to be secure with complete fairness. Our definition
follows the standard definition of [27, 53], except for the fact that we require complete fairness
even though we are in the two-party setting. We consider active adversaries (malicious), who
may deviate from the protocol in an arbitrary manner, and static corruptions. Let 7 be a two
party protocol for computing a function f : X x Y — {0, 1} over a finite domain. In this thesis,
we restrict our attention to functions that return the same output to both parties. We briefly
describe the real execution and the ideal execution.

Execution in the ideal model. An ideal execution involves parties P; and P, an adversary
S who has corrupted one of the parties, and the trusted party. An ideal execution for the
computation of f proceeds as follows:

Inputs: P; and P, hold inputs x € X, and y € Y, respectively; the adversary S receives the
security parameter 1 and an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by & may send any value of its choice. Denote the pair of

141



inputs sent to the trusted party by (z/,7/).

Trusted party sends outputs: If 2/ ¢ X, the trusted party sets 2’ to be the default value
x1; likewise if ¢/ € Y the trusted party sets ¢y’ = y;. Next, the trusted party computes
f(2',y) and sends the result to P; and Ps.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted
party outputs nothing and S outputs an arbitrary function of its view.

We denote by IDEAL s(;) (x,y, k) the random variable consisting of the output of the adversary
and the output of the honest party following an execution in the ideal model as described above.

Execution in the real model. In the real execution, the parties P, and P, interact, where
one is corrupted and therefore controlled by the real-world adversary A. In this case, the adver-
sary A gets the inputs of the corrupted party and sends all messages on behalf of this party, using
an arbitrary strategy. The honest party follows the instructions of 7. Let REAL; (.)(z,y, k)
be the random variable consisting of the view of the adversary and the output of the honest
party, following an execution of m where P; begins with input x, P» with input y, the adversary
has auxiliary input z, and all parties have security parameter 17.

Security by emulation. Informally, a real protocol 7 is secure if any “attack” carried out by
a real adversary A on m can be carried out by the ideal adversary S in the ideal model. This is
formalized by requiring that S can simulate the real-model outputs while running in the ideal
model.

Definition 4.2.1 Protocol w securely computes f with complete fairness in the presence of mali-
cious adversaries if for every non-uniform probabilistic polynomial-time adversary A in the real
model, there exists a non-uniform probabilistic polynomial-time adversary S in the ideal model
such that:

C
{IDEALf,S(z) ($, Y, H)}xGX,yGY,ZE{O,l}*,HEN = {REALW,A(Z) (JJ, Y, "f) }mEX,yEY,ZG{O,l}*,HGN .
Protocol m computes f with statistical security if for every A there exists an adversary S such
that the IDEAL and REAL distributions are statistically close.

4.2.2 Secure Two-Party Computation without Fairness (Security with Abort)

The following is the standard definition of secure computation without fairness. This definition
is needed for Chapter [5| and is unnecessary for this chapter; however, it is given here for the
sake of clarity and context.

Security without fairness is formalized by changing the ideal world and allowing the adver-
sary to learn the output alone. This implies that the case where the adversary learns the output
without the honest party is not considered as a breach of security since this is allowed in the
ideal world. We modify the ideal world as follows:

Inputs: As previously.

Send inputs to trusted party: As previously.

142



Trusted party sends output to corrupted party: If 2/ ¢ X, the trusted party sets z’ to
be the default value x1; likewise if ' ¢ Y the trusted party sets y' = y;. Next, the
trusted party computes f(z',y") = (f1(2/, ), fo(2',y)) = (w1, w2) and sends w; to the
the corrupted party P; (i.e., to the adversary A).

Adversary decides whether to abort: After receiving its output, the adversary sends ei-
ther proceed or abort message to the trusted party. If its sends proceed to the trusted
party, the trusted party sends w; to the honest party P;. If it sends abort, then it sends
the honest party P; the special symbol L.

Outputs: As previously.

We denote by IDEAL?%’?Z) (x,y, k) the random variable consisting of the output of the adversary
and the output of the honest party following an execution in the ideal model with abort as
described above. The following definition is the analogue to Definition and formalizes
security with abort:

Definition 4.2.2 Protocol m securely computes f with abort in the presence of malicious adver-
saries if for every non-uniform probabilistic polynomial-time adversary A in the real model, there
exists a non-uniform probabilistic polynomial-time adversary S in the ideal model such that:

b <
{IDEAL?EEE) (2,9, n)} = {REAL, a(»)(,y, k) }xeX,er,ze{O,l}*,neN )

ze€X,yeY,z€{0,1}*,keEN

We remark that in the case of two-party computation, for any functionality f there exists
a protocol 7 that securely computes it with security-with-abort [54] [53]. This is true also for
reactive functionalities, that is, functionalities that consist of several stages, where in each stage
the parties can give inputs and get outputs from the current stage of f, and the function f stores
some state between its stages.

4.2.3 Hybrid Model and Composition

The hybrid model combines both the real and ideal models. Specifically, an execution of a
protocol 7 in the g-hybrid model, for some functionality g, involves the parties sending normal
messages to each other (as in the real model) and, in addition, having access to a trusted party
computing g. We assume that the invocations of g occur sequentially, that is, there are no
concurrent execution of g. The composition theorems of [27] imply that if 7 securely computes
some functionality f in the g-hybrid model, and a protocol p securely computes g, then the
protocol 7 (where every ideal call of g is replaced with an execution of p) securely-computes f
in the real world.

Function implication. In this chapter, we study whether or not a function g “implies” the
coin-tossing functionality. We now formally define what we mean by “function implication”.
Our formulation uses the notion of g-hybrid model defined above, where here we assume that the
trusted party that computing ¢ in the hybrid model computes it with complete fairness. That
is, in each invocation of the function g, both parties receive the outputs from g simultaneously.
We are now ready for the definition of function implication.

143



Definition 4.2.3 Let f: X XY — Z and g : X' xY' — Z' be functions. We say that function
g implies function f in the presence of malicious adversaries if there exists a protocol that securely
computes f with complete fairness in the g-hybrid model, in the presence of static malicious
adversaries (where g is computed according to the ideal world with fairness). We say that g
information-theoretically implies f if the above holds with statistical security.

Note that if f can be securely computed with fairness (under some assumption), then every
function g computationally implies f. Thus, this is only of interest for functions f that either
cannot be securely computed with fairness, or for which this fact is not known.

4.2.4 Coin-Tossing Definitions

The coin-tossing functionality. We define the coin-tossing functionality simply by for(A, A) =
(U1,U1), where A denotes the empty input and Uy denotes the uniform distribution over {0, 1}.
That is, the functionality receives no input, chooses a uniformly chosen bit and gives the both
parties the same bit. This yields the following definition:

Definition 4.2.4 (Coin-Tossing by Simulation) A protocol 7 is a secure coin-tossing proto-
col via simulation if it securely computes fer with complete fairness in the presence of malicious
adversaries.

The above definition provides very strong simulation-based guarantees, which is excellent
for our positive results. However, when proving impossibility, it is preferable to rule out even
weaker, non-simulation based definitions. We now present a weaker definition where the guar-
antee is that the honest party outputs an unbiased coin, irrespective of the cheating party’s
behaviour. However, we stress that since our impossibility result only holds with respect to
an all-powerful adversary (as discussed in the introduction), our definition is stronger than
above since it requires security in the presence of any adversary, and not just polynomial-time
adversaries.

Notations. Denote by (P, P») a two party protocol where both parties act honestly. Let
OUTPUT(Py, P») denote the output of parties in an honest execution (if the outputs of the
parties is not consistent, this predicate returns ). For ¢ € {1,2}, let ouTpPUT (P, Py) denote
the output of party P, in an execution of P;" with P;. In some cases, we also specify the random
coins that the parties use in the execution; (P;(r1), P2(r2)) denotes an execution where P; acts
honestly and uses random tape 1 and P, acts honestly and uses random tape ry. Let r(n) be
a polynomial that bounds the number of rounds of the protocol 7, and let ¢(n) be an upper
bound on the length of the random tape of the parties. Let Uni denote the uniform distribution
over {0,1}¢(™ x {0,1}¢™), We are now ready to define a coin-tossing protocol:

Definition 4.2.5 (information-theoretic coin-tossing protocol) A polynomial-time pro-
tocol m = (Py, P») is an unbiased coin-tossing protocol, if the following hold:

1. Agreement: There exists a negligible function pu(-) such that for every k it holds that:

Pr [OUTPUTl (P1(11), Pa(12)) # oUTPUT2(P1(11), Pa(12)) | < (k) .

r1,rg<Uni

144



2. No bias: For every adversary A there exists a negligible function u(-) such that for every
be {0,1} and every xk € N:
Pr [OUTPUT1<P1,A> = b} <

+ p(k) and Pr [OUTPUT2<.A, Py) =b| < -+ p(k) .

N =

Observe that both requirements together guarantee that two honest parties will output the
same uniformly distributed bit, except with negligible probability. That is, for every b € {0,1}:

Pr  [ouTPUT(Pi(r1), Pa(r2)) = b] — ‘ < u(k) (4.2.1)

r1,ro<Uni 2

4.3 The Criterion

In this section we define the criterion, and explore its properties. We start with the definition

of d-balanced functions.

4.3.1 ¢6-Balanced Functions

A vector p = (p1,...,pr) is a probability vector if Zle p; = 1, and for every 1 < ¢ < k it
holds that p; > 0. Let 1, be the all one vector of size k. In addition, for a given function
fodz, o2y < {yr, - ym} — {0,1}, let My denote the matrix defined by the truth table of
f. That is, for every 1 <i < ¢, 1 < j < m, it holds that M¢[i, j] = f(x;,y;)-

Informally, a function is balanced if there exist probabilities over the inputs for each party
that determine the probability that the output equals 1, irrespective of what input the other
party uses. Assume that P; chooses its input according to the probability vector (pi,...,ps),
meaning that it uses input z; with probability p;, for every ¢ = 1,...,¢, and assume that
party P uses the jth input y;. Then, the probability that the output equals 1 is obtained by
multiplying (p1, ..., pe) with the jth column of M. Thus, a function is balanced on the left, or
with respect to P, if when multiplying (p1,...,p¢) with M the result is a vector with values
that are all equal. Formally:

Definition 4.3.1 Let f : {x1,...,2¢} X {y1,...,ym} — {0,1} be a function, and let 0 <
01,02 < 1 be constants. We say that f is d1-left-balanced if there exists a probability vector

p = (p1,-..,pe) such that:
(plﬂ"'upf)'Mf:(Sl'lm:(61,...,51) .

Likewise, we say that the function f is do-right-balanced if there exists a probability vector
q. = (QL e 7q'rn) SuCh that.'
Mfo(ql,...,qm)T:(SQ.l[T )

If f is 01-left-balanced and do-right-balanced, we say that f is (91, 02)-balanced. If §; = 62, then
we say that f is 6-balanced, where § = 61 = do. We say that f is strictly §-balanced if 41 = do
and 0 < < 1.

145



Note that a function may be ds-right-balanced for some 0 < d2 < 1 but not left balanced.

1 01
For example, consider the function defined by the truth table My def [ 001 1

0). However, it is not left-balanced for any d;

. This function

11
272
because for every probability vector (p1,p2) = (p, 1 —p) it holds that (p1,p2) 'M]f; =(p,1—p,1),

is right balanced for do = % by taking q = (

which is not balanced for any p. Likewise, a function may be ds-right-balanced, but not left
balanced.

We now prove a simple but somewhat surprising proposition, stating that if a function is
(61, 02)-balanced, then d; and d2 must actually equal each other. Thus, any (d1,d2)-balanced
function is actually J-balanced.

Proposition 4.3.2 Let f : {z1,...,z¢} X {y1,...,ym} — {0,1} be a (01, 02)-balanced function
for some constants 0 < 81,80 < 1. Then, 01 = b2, and so [ is §-balanced.

Proof: Under the assumption that f is (1, d2)-balanced, we have that there exist probability
vectors p = (p1,...,pe) and q = (qi,. .., qm) such that p- My = &; - 1,, and My -ql =y - 17
Observe that since p and q are probability vectors, it follows that for every constant ¢ we have
p-(c-17)=c-(p-1]) = ¢; likewise (c- 1,,) - g = c. Thus,

p- My =p-(My-a") =p-(5-17) =6

and

implying that §; = ds. [ |
Note that a function can be both ds-right-balanced and d5-right-balanced for some da # d5.

For example, consider the function My, which was defined above. This function is d2-right-

balanced for every 1/2 < §, < 1 (by multiplying with the probability vector (1 —d2, 1 —d2, 202 —

)T from the right). Nevertheless, in cases where a function is do-right-balanced for multiple

values, Proposition implies that the function cannot be left-balanced for any §;. Likewise,
if a function is d1-left balanced for more than one value of 1, it cannot be right-balanced.

4.3.2 The Criterion

The criterion for determining whether or not a function implies coin-tossing is simply the ques-
tion of whether the function is strictly d-balanced for some §. Formally:

Property 4.3.3 A function f:{x1,...,x¢} X {y1,...,ym} — {0,1} is strictly balanced if it is
0-balanced for some 0 < 6 < 1.

Observe that if My has a monochromatic row (i.e., there exists an input = such that for
all y;,y; it holds that f(z,vy;) = f(x,y;)), then there exists a probability vector p such that
p-My=0-1,o0r p-M;=1-1,; likewise for a monochromatic column. Nevertheless, we
stress that the existence of such a row and column does not imply f is strictly balanced since
it is required that § be strictly between 0 and 1, and not equal to either.

146



4.3.3 Exploring the §-Balanced Property

In this section we prove some technical lemmas regarding the property that we will need later
in the proof. First, we show that if a function f is not left-balanced for any 0 < § < 1 (resp. not
right balanced), then it is not close to being balanced. More precisely, it seems possible that
a function f can be not §-balanced, but is only negligibly far from being balanced (i.e., there
may exist some probability vector p = p(k) (that depends on the security parameter k) such
that all the values in the vector p - My are at most negligibly far from 4§, for some 0 < § < 1).
In the following claim, we show that this situation is impossible. Specifically, we show that if a
function is not § balanced, then there exists some constant ¢ > 0, such that for any probability
vector p, there is a distance of at least ¢ between two values in the vector p - M. This holds
also for probability vectors that are functions of the security parameter k (as can be the case
in our setting of secure protocols).

Lemma 4.3.4 Let f: {x1,...,z¢} x{y1,---,ym} — {0,1} be a function that is not left balanced
for any 0 < 61 <1 (including 6y = 0,1). Then, there exists a constant ¢ > 0, such that for any
probability vector p, it holds that:

max (0, ...,0m,) —min(d,...,0y) >c

where (81,...,0m) =p - My, and My is the matriz representation of the function f.

Proof: Let P’ be the set of all probability vectors of size £. That is, P* C [0,1]* (which itself is
a subset of Re), and each vector sums up to one. P! is a closed and bounded space. Therefore
using the Heine-Borel theorem, P* is a compact space.

We start by defining a function ¢ : P* — [0, 1] as follows:

¢(p) = max(p - My) — min-(p - My)

Clearly, the function p - My (where My is fixed and p is the variable) is a continuous function.
Moreover, the maximum (resp. minimum) of a continuous function is itself a continuous function.
Therefore, from composition of continuous functions we have that the function ¢ is continuous.
Using the extreme value theorem (a continuous function from a compact space to a subset of
the real numbers attains its maximum and minimum), there exists some probability vector pmin
for which for all p € P!, ¢(pmin) < ¢(p). Since f is not d-balanced, pumiy - My #6 - 1,, for any

0 <6 <1, and 80 ¢(Pmin) > 0. Let ¢ def ¢(Pmin)- This implies that for any probability vector
p, we have that ¢(p) > ¢(Pmin) = ¢. That is:

max(d1,...,0m) — min(dy,...,0,) > ¢ (4.3.1)

where (01,...,0m) = p - My. We have proven this for all probability vectors of size ¢. Thus, it
holds also for every probability vector p(k) that is a function of x, and for all x’s (this is true

since for every k, p(k) defines a concrete probability vector for which Eq. (4.3.1) holds). [ |

A similar claim can be stated and proven for the case where f is not right balanced.

0-balance and 1-balanced functions. In our proof that a function that is not strictly-
balanced does not imply the coin-tossing functionality, we deal separately with functions that

147



are O-balanced or 1-balanced (since they are balanced, but not strictly balanced). We now
prove a property that will be needed for this case. Specifically, we show that a function f is
1-left-balanced (resp. 0-left-balanced) if and only if the matrix My contains the all 1 row (resp.,
the all 0 row). A similar argument holds for the case where the function is 1-right-balanced (or
O-right-balanced) and the all 1 column (or all 0 column).

Lemma 4.3.5 Let f : {z1,...,2¢} X {y1,-..,ym} — {0,1} be a function. The function f is
left-1-balanced if and only if the matriz My contains the all one row.

Proof: We first show that if there exists a probability vector p = (pi,...,ps) for which
p-M; = 1,,, then My contains the all-one row. Let p be a probability vector for which
p- M; = 1,,. Since p is a probability vector (meaning that its sum is 1), we have that:
(p,1¢) = 1. Denote by C; the ith column of the matrix My. Since p - My = 1,,, it follows that
for every i it holds that (p,C;) = 1. Combining this with the fact that (p,1,) = 1, we have
that (p, 1, — Cz> =0.

Let p = (p1,...,p¢), and C; = (a1,...,ay). We have that: Zf;zlpk (1 —=ag) =0. As all
values are non-negative it must be that if px # 0 then ap = 1 (otherwise the result cannot be
0). Since this is true for any column Cj, we conclude that for every k such that py # 0, the kth
row is the all one vector. Since p is a probability vector, there exists at least one k such that
pr # 0, implying that there exists an all-one row.

For the other direction, let k be the index of the all one row in the matrix M. Then, clearly
for the probability vector ey (the kth elementary vector, namely, all the indices are zero except
for the kth index which equals 1), the product e; - My = (1,...,1) = 1,,, and so the matrix is
left-1-balanced. B

Using Proposition we conclude that if a function f is 1-left-balanced but not left-
balanced for any other 1, then it is either 1-right-balanced as well, or not right-balanced for
any 0 < 99 < 1. This observation will be used in the proof.

4.4 Strictly-Balanced Functions Imply Coin Tossing

In this section, we show that any function f that is strictly J-balanced can be used to fairly
toss a coin. Intuitively, this follows from the well known method of Von Neumann [97] for
obtaining an unbiased coin toss from a biased one. Specifically, given a coin that is heads with
probability e and tails with probability 1 — ¢, Von Neumann showed that you can toss a coin
that is heads with probability exactly 1/2 by tossing the coin twice in each phase, and stopping
the first time that the pair is either heads-tails or tails-heads. Then, the parties output heads if
the pair is heads-tails, and otherwise they output tails. This gives an unbiased coin because the
probability of heads-tails equals the probability of tails-heads (namely, both probabilities equal
€- (1 —¢€)). Now, since the function f is strictly d-balanced it holds that if party P; chooses
its input via the probability vector (p1,...,p¢) then the output will equal 1 with probability J,
irrespective of what input is used by Ps; likewise if P5 chooses its input via (q1, . .., ¢y ) then the
output will be 1 with probability d irrespective of what P; does. This yields a coin that equals 1
with probability é and thus Von Neumann’s method can be applied to securely implement the

148



coin-tossing functionality for defined in Section [£.2.4] We stress that if one of the parties aborts
early and refuses to participate, then the other party proceeds by itself (essentially, tossing a
coin with probability § until it concludes). We have the following theorem:

Theorem 4.4.1 Let f : {z1,...,x¢} X {y1,...,ym} — {0,1} be a strictly-balanced function
for some constant 0 < & < 1, as in Property [{.3.3. Then, f information-theoretically and
computationally implies the coin-tossing functionality for with malicious adversaries.

Proof Sketch: The proof of this theorem follows from the aforementioned intuition, and is
quite straightforward. We therefore just sketch the details here. First, we define a J-biased
coin tossing functionality that outputs a coin to both parties that equals 1 with probability &
and equals 0 with probability 1 — J. As we have described, this functionality can be securely
computed using a single invocation of f, where the parties P; and P, choose their inputs via the
probability vectors p and q, respectively, that are guaranteed to exist by Property The
simulation of this protocol is trivial since neither party can do anything to change the probability
of the output of the call to f being 1, and this probability is exactly the probability that the
coin tossing functionality outputs 1. Note that if one of the parties does not participate at all
(i.e., sends no input), then by the security definition of fairness the honest party still receives
output and so this is the same as above. That is, if one of the parties does not participate, then
the other essentially continues with the protocol by itself until either 01 or 10 is obtained.

Next, we obtain a fair unbiased coin toss by having the parties invoke the J-biased coin toss-
ing functionality twice and repeating until two different coins are obtained. When this happens
they output the result of the first coin in the two coin tosses. If they do not terminate within
W’té) repetitions, then they output L and halt. Since the probability that they terminate in
any given attempt is 6(1 — )+ (1 —§)6 = 25(1 — 6) (because they halt after receiving either 10
or 01), it follows that they output L with probability only

(1 —25(1 - 5))m <e "

which is negligible. The simulator works as follows. It receives the bit b € {0,1} from the
trusted party computing the unbiased coin tossing functionality, and then runs the J-biased
coin tossing functionality like in the protocol playing the trusted party computing f and giving
the corrupted party the expected outputs, until the first pair with different coins is received (or
until m attempts were made). When this happens, the simulator hands the adversary the
outputs of the §-biased coin tossing that the corrupted party receives to be b and then 1 — b
(and thus the output is supposed to be b). Since the probability of receiving b and then 1 —b is
the same as the probability of receiving 1 —b and then b, this view generated by the simulator is
identical to that seen by the adversary in a real execution. The only difference between the real
and ideal distributions is if too many attempts are made, since in the former case the honest

party outputs 1 whereas in the latter case it always outputs a bit. This completes the proof.

Application to fairness. Cleve [34] showed that there does not exist a protocol that securely
computes the fair coin-tossing functionality in the plain model. Since any strictly-balanced
function f implies the coin-tossing functionality, a protocol for f implies the existence of a
protocol for coin-tossing. We therefore conclude:

149



Corollary 4.4.2 Let f : {z1,...,2¢} X {y1,...,ym} — {0,1} be a strictly-balanced function.
Then, there does not exist a protocol that securely computes f with fairness.

4.5 Unbalanced Functions Do Not Information-Theoretically Im-
ply Coin Tossing

We now show that any function f that is not strictly-balanced (for all §) does not information-
theoretically imply the coin-tossing functionality. Stated differently, there does not exist a
protocol for fairly tossing an unbiased coin in the f-hybrid model, with statistical security.
Observe that in the f-hybrid model, it is possible for the parties to simultaneously exchange
information, in some sense, since both parties receive output from calls to f at the same time.
Thus, Cleve-type arguments [34] that are based on the fact that one party must know more
than the other party at some point do not hold. We prove our result by showing that for every
protocol there exists an unbounded malicious adversary that can bias the result. Our unbounded
adversary needs to compute probabilities, which can actually be approximated given an NP-
oracle. Thus, it is possible to interpret our technical result also as a black-box separation, if
desired.

As we have mentioned in the introduction, although we prove an “impossibility result” here,
the implication is the opposite. Specifically, our proof that an unbalancedE] f cannot be used to
toss an unbiased coin implies that it may be possible to securely compute such functions with
fairness.

Recall that a function is not strictly balanced if it is not J-balanced for any 0 < § < 1.
We treat the case that the function is not d-balanced at all separately from the case that it is
0-balanced but for 6 = 0 or 6 = 1. In the proof we show that in both of these cases, such a
function cannot be used to construct a fair coin tossing protocol.

In the f-hybrid model, the parties may invoke the function f in two different “directions”.
Specifically, in some of the invocations P; selects the first input of f (i.e., ) and P, selects
the second input of f (i.e., y), while in other invocation the roles may be reversed (with P;
selecting the y input and P» selecting the z input). The question of which party plays which
role is determined by the protocol. For convenience, we assume that P; always selects the first
input, and P» always selects the second input, but the parties have access to two ideal functions
f and fT. Thus, calls to f in the protocol where P, selects the first input and P; selects the
second input are modeled by a call to f7 where P; selects the first input (which is the second
input of f) and P, selects the second input (which is the first input of f).

Theorem 4.5.1 Let f: {x1,...,z¢} x{y1,...,ym} — {0,1} be a function that is not left-
balanced, for any 0 < 61 < 1. Then, f does not information-theoretically imply the coin-tossing
functionality with security in the presence of malicious adversaries.

Before proceeding to the proof, we provide high level intuition. We begin by observing
that if f does not contain an embedded OR (i.e., inputs zg, z1,yo,y1 such that f(zo,yo) =

2Note, that the name unbalanced is a bit misleading as the complement of not being strictly balanced also
includes being 1 or 0-balanced.

150



f(xz1,90) = f(zo,y1) # f(z1,71)) and an embedded XOR (i.e., inputs xg,x1,yo,y1 such that
f(xo,y0) = f(z1,11) # f(xo,11) = f(z1,%0)), then it is trivial and can be computed by simply
having one party send the output to the other. This is because such a function depends only
on the input of one party. Thus, by [34], it is impossible to fairly toss an unbiased coin in the
f-hybrid model, since this is the same as fairly tossing an unbiased coin in the plain model.
Thus, we consider only functions f that have an embedded OR or an embedded XOR.

In addition, we can consider coin-tossing protocols that consist of calls to f and f” only,
and no other messages. This is due to the fact that we can assume that any protocol consists of
rounds, where each round is either an invocation of f (or f7) or a message consisting of a single
bit being sent from one party to the other. Since f has an embedded OR or an embedded XOR,
messages of a single bit can be sent by invoking f. This is because in both cases there exist
inputs xg, z1, Yo, y1 such that f(x1,y0) # f(x1,y1) and f(xo,y1) # f(x1,y1). Thus, in order for
P, to send P; a bit, the protocol can instruct the parties to invoke f where P; always inputs z1,
and P inputs yg or y; depending on the bit that it wishes to send; likewise for P;. Thus, any
non-trivial function f enables “bit transmission” in the above sense. Observe that if the sender
is malicious and uses an incorrect input, then this simply corresponds to sending an incorrect
bit in the original protocol. In addition, since both parties receive the same output from f,
in case where the receiver is malicious and uses incorrect input (i.e., in the above example P;
does not use 1), the sender can detect it and can be interpreted as an abort. Therefore, we
can assume that a protocol consists of rounds, where in each round there is an invocation of f
(where P selects the z input and P selects the y input) followed by an invocation of f7 (where
here P selects the y input and Py selects the x input).

Intuition. The fact that f is not balanced implies that in any single invocation of f, one
party is able to have some effect on the output by choosing its input appropriately. That is,
if the function is non-balanced on the left then the party on the right can use an input not
according to the prescribed distribution in the protocol, and this will change the probability of
the output of the invocation being 1 (for example). However, it may be possible that the ability
to somewhat influence the output in individual invocations is not sufficient to bias the overall
computation, due to the way that the function calls are composed. Thus, in the proof we need
to show that an adversary is in fact capable of biasing the overall protocol. We demonstrate
this by showing that there exist crucial invocations where the ability to bias the outcome in
these invocation suffice for biasing the overall outcome. Then, we show that such invocations
are always reached in any execution of the protocol, and that the adversary can (inefficiently)
detect when such an invocation has been reached and can (inefficiently) compute which input
it needs to use in that invocation in order to bias the output.

We prove the above by considering the execution tree of the protocol, which is comprised of
calls to f and the flow of the computation based on the output of f in each invocation (i.e., the
parties proceed left in the tree if the output of f in this invocation is 0; and right otherwise).
Observe that a path from the root of the tree to a leaf-node represents a protocol execution.
We show that in every path from the root to a leaf, there exists at least one node with the
property that influencing the output of the single invocation of that node yields a bias in the
final outcome. In addition, we describe the strategy of the adversary to detect such a node and
choose its input for that node in order to obtain a bias.

In more detail, for every node v in the execution tree of the protocol, the adversary calculates

151



(in an inefficient manner) the probability that the output of the computation equals 1, assuming
that v is reached in the execution. Observe that the probability of obtaining 1 at the root node
is at most negligibly far from 1/2 (since it is a secure coin-tossing protocol), and that the
probability of obtaining 1 at a leaf node is either 1 or 0, depending on whether the output
at the given leaf is 1 or 0 (the way that we define the tree is such that the output is fully
determined by the leaf). Using a pigeon-hole like argument, we show that on every path from
the root to a leaf there must be at least one node where the probability of outputting a 1
given that this node is reached is significantly different than the probability of outputting 1
given that the node’s child on the path is reached. We further show that this difference implies
that the two children of the given node yield significantly different probabilities of outputting
1 (since the probability of outputting 1 at a node v is the weighted-average of outputting 1 at
the children, based on the probability of reaching each child according to the protocol). This
implies that in every protocol execution, there exists an invocation of f where the probability
of outputting 1 in the entire protocol is significantly different if the output of this invocation
of fis 0 or 1. Since f is not balanced, it follows that for any distribution used by the honest
party to choose its input for this invocation, there exist two inputs that the corrupted party
can use that result in significantly different probabilities of obtaining 1. In particular, at least
one of these probabilities is significantly different from the probability of obtaining 1 in this call
when both parties are honest and follow the protocolﬁ Thus, the adversary can cause the output
of the entire execution to equal 1 with probability significantly different to 1/2, which is the
probability when both parties play honestly.

The above description does not deal with question of whether the output will be biased
towards 0 or 1. In fact we design two adversaries, one that tries to bias the output towards 0
and the other towards 1. Then we show that at least one of these adversaries will be successful
(see Footnote 3| for an explanation as to why only one of the adversaries may be successful).
The two adversaries are similar and very simple. They search for the node on the path of the
execution where the bias can be created and there make their move. In all nodes until and
after that node they behave honestly (i.e., choose inputs for the invocations of f according to
the input distribution specified by the protocol). We analyze the success of the adversaries and
show that at least one of them biases the output with noticeable probability.

Proof of Theorem Assume that 7 is a coin tossing protocol that implements the
coin-tossing functionality in the f-hybrid model. That is, when both parties are honest, they
output the same uniformly distributed bit, except with negligible probability. We construct an
exponential-time malicious adversary who biases the outcome, in contradiction to the assump-
tion that 7 is a fair coin-tossing protocol.

As described above we assume that 7 consists only of invocations of f and f. Let r(x) be
the number of rounds in 7 and let ¢(x) be an upper bound on the number of random coins used
by each party in the protocol. We assume that the function is not left-balanced and therefore
construct the adversary A that controls P;.

30Observe that one of these probabilities may be the same as the probability of obtaining 1 in an honest
execution, in which case choosing that input will not result in any bias. Thus, the adversary may be able to bias
the output of the entire protocol towards 1 or may be able to bias the output of the entire protocol towards 0,
but not necessarily both.

152



Simplifying assumptions. We first prove the theorem under three simplifying assumptions
regarding the protocol 7; we show how to remove these assumptions later. The first assumption
is that the protocol 7 only makes calls to f and not to f7 (i.e., in all calls to f, party P; sends
and party P sends y and the output is f(x,y)). The second assumption is that honest parties
always agree on the same output bit (i.e., the probability of them outputting different coins
or aborting is zero). The third assumption is that the output of the parties is a deterministic
function of the public transcript of the protocol alone.

The transcript tree and execution probabilities. We define a binary tree 7 of depth r (k)
that represents the transcript of the execution. Each node in the tree indicates an invocation
of f, and the left and right edges from a node indicate invocations of f where the output was
0 and 1, respectively.

We define the information that is saved in the internal nodes and leaves. Given a pair of
random tapes (r1,72) used by Py and Ps, respectively, it is possible to generate a full transcript
of an honest execution of the protocol that contains the inputs that are sent to f in each round
by both parties, the output of f in that round and the output of the parties at the end of the
execution. Thus, we write on each (internal) node v € T all the pairs of random tapes that
reach this node, and the inputs that are sent to the trusted party for the associated call to f
for those given tapes.

The leaves of the tree contain the output of the execution. Note that by the second and third
simplifying assumption on protocol 7 described above, each leaf determines a single output (for
both parties and for all random tapes reaching the leaf).

Given the distribution of the transcripts on the nodes of the tree we define two values for
each node v € T. The first value which we denote by p, is the probability that the parties
output 1 at the end of the computation conditioned on the execution reaching the node wv.
This is simply computed as the ratio between the number of random tapes that reach the node
v and result in an output 1 and all random tapes that reach v. The second value, denoted
by ~", is the probability that the output of the invocation of f in this node is 1 (when both
parties play honestly). This is calculated by computing the probabilities over the inputs of the
parties in the invocation, as specified by the protocol and based on the random tapes in the
node v. Denote the distributions over the inputs of P; and P, in the leaf by (af,...,ap,) and

m
(BY,--.,B¢), respectively (i.e., in leaf v, P; chooses x; with probability a7, and P» chooses y;

7

with probability B}j) It holds that the probability that the parties receive 1 as output in the
invocation of f at node visv¥ = (a¥,...,a%,) My (6¢,...,80)7T.

The adversaries. Lete=¢(k) = %, where p(+) is from Eq. (4.2.1); i.e., the probability
that P, and P, output 1 (or 0) is 1/2 + u(x) (this means that p, where v is the root node of
the tree T equals 1/2 + u(k)). Denote the two children of v € T by left(v) and right(v) and

they are reached by output 0 and 1 in the call to f respectively. We construct two adversaries

controlling P»: one which attempts to bias the outcome towards 1 and the other which attempts
to bias the outcome towards 0. The adversaries search for a node v € T for which the difference
in the probability of outputting 1 at v and the probability of outputting 1 at one of its children
is at least €. The adversaries behave honestly until they reach such a node, at which point they
have the opportunity to bias the outcome by deviating from the protocol in the invocation at
this node. In the remaining nodes they again act honestly.

153



Adversary A' controlling P, (biasing towards 1):

Let v be the current node in the tree 7 (starting at the root) and a” = (of,...,a})
be the input distribution for P; (as explained above, this can be computed). Com-
pute (7,...,0;) = a”-My. Let i and k be indices such that 6; = maxi<j<,{07} and
6, = mini<j<¢{d7}. In the first node v in the execution for which |p,igns(v) —po| > €
Or |Piefi(v) — Pl = €, act according to the following:

L I pright(v) = Pv+€ OF Piefi(v) < py — € then send input y; in this invocation of f
(this increases the probability of reaching node right(v) because the probability
of obtaining 1 in this invocation is 67 which is mazimal).

2. I prefi(v) = Po+E€OT Prighi(v) < Pv— € then send input yg in this invocation of f
(this increases the probability of reaching node left(v) because the probability
of obtaining 1 in this invocation is §; which is minimal).

In all other nodes act honestly.

The adversary A° controlling P, (biasing towards 0): The adversary is the
same as A! with the following differences:

e Step If Pright(v) = Pv + € OF Prefy(v) < Py — € : then send input yj in this
invocation of f (where 0} is minimal).

e Step EF If prefiv)y = Pv + € OF Prighi(v) < Pv — € ¢ then send input y; in this
invocation of f (where 4} is maximal).

First, we show that in any honest execution there exists a node v for which |p, — pright(v)| > €
or |[py — Prefi(v)l > € Then, we show that once the execution reaches such a node v, one of the
adversaries succeeds in biasing the outcome.

The set V. Let V be the set of all nodes v in 7 that have two children, for which [p, —
Pright(v)| = € or |py — Plefi(v)| = € and v is the first node in the path between the root and v
that satisfies the condition. In order to see that in any execution, the adversaries reachs such a
node, we show that for every pair of random coins (r1,7r2) € Uni there exists a node v € V such
that an honest execution with (r1,r2) reaches v. Fix (r1,72). Note that any pair of random
coins define a unique path us, ..., u, () from the root u; to a leaf u, ().

We start with the case where u,.(,) defines output 1. From Eq. , we have that p,, <
1/2 4+ p(k). In addition, Pu, (., = 1 since the output is 1. Therefore, we have that:

S Puis —Pu) _ Py — P 1= = p(r) _ 3= p(x)
r(x) r(k) = rlw) r(x)

Thus, the average of differences is greater than or equal to €, which means that there exists an i

such that py,,, —pu, > €. Moreover, this u; must have two children since otherwise p,;, = pu,, ;-
Since u;t1 € {right(u;),left(u;)}, we conclude that there exists a node w; such that either
Pright(u;) > Py, +€or Pleft(us) > pu; T €

The second case is where u,(,) defines output 0, and p,, > 1/2 — u(x). Similarly to the

154



above, we have that:

Z;‘"Sl)il (puz‘+1 - pui) _ Puri) 7 Pur < 0— 3+ ux)
r(r) r(k) T 1K)

which implies that there exists an i such that p,,,, — p,, < —e. Moreover, this u; must have

two children, otherwise we must have that p,, = py,,,. Since u;y1 € {right(u;),left(u;)}, we
conclude that there exists a node u; such that either p.;gns(u;) < Pu; — € O Pregi(u;) < Pu; — €

We conclude that in every execution of the protocol, the parties reach a node v € V.

We know that in every node v € V, the difference between pief4(v) OF Pright(v) and py is large.
We now show that this implies that the difference between p,;gn¢(v) and piess(,) themselves is
large. This is the basis for the ability of the adversary to bias the output. Let v € V be a fixed
node, let ¥ be the distribution over the input of the honest P; to f at node v, and let 3
be the distribution over the input of the honest P» to f at node v (as described above, these
distributions over the inputs are fully defined and inefficiently computable). Let v¥ = o”-M;-3"
be the probability that the honest parties obtain output 1 in this node (when sending inputs
according to the distributions). By the definition of p, and ", we have that:

Py = '7?} * Pright(v) + (1 - 71}) * Dleft(v)-

This is because with probability ¥ the honest parties proceed to right(v) and with probability
1 —~" they proceed to left(v). Thus, the probability of outputting 1 at v is as above. We now
prove:

Claim 4.5.2 For ecvery node v € V:

0<y¥ < 1.

Only one of the following holds: |py — Pright(v)l = € 0T [Py — Piefi(v)| > € but not both.
If Pright(v) = Pv + € then Drighi(v) = Plefi(v) + €

If Prefi(v) = Po + €, then piepiv) = Pright(v) T+ €-

If Pright(v) < Pv — € then Prighi(v) < Plefi(v) — €

If Prefe(v) < v — € then piepiv) < Pright(v) — €-

PSR- o

Proof: For Item [I] recall that the probability +¥ can be computed as the number of random
tapes that reach the right child of v over the number of random tapes that are consistent with v.
Therefore, if ¥ = 0, it means that no execution reaches the right child of v. Similarly, in case
~v¥ =1, we have that there is no left child of v. In any case, both cases are in contradiction the
the fact that v € V, which means above the other properties, that the node v has two children.

For Item [2, assume that both [p, — pright(v)| = € and [py — prefi(v)| > € hold simultaneously.
This means that:

IA
o)}
IA
s
<

!
=

3

3
Ey

O

- (pv - pright(v))
- (pv - pleft(v)) < €< Dy — Pleft(v)

When we multiply the first equation by v¥ and the second by 1—+" (both are not zero, according

155



to the first item), we obtain that:

v

="+ (po _pright(v)) < v € <~
—(1=9") - (Po = Drepr)) < 1 =7") € <(

v

’ (pv - pright(v))
- ’Yv) ’ (pv _pleft(v))

Summing the above two equations together, and recalling that p, = 7" -Pright(v) +(1=7") Dieft(v)s
we have that:
O=-—pv+py<e<p,—py=0

and so € = 0, in contradiction to the fact that: € = % > 0.

For Item |§|, assume that p,gne(v) > pv + €. We have:

Pright(v) = DPvtE€

Pright(v) = 7' Pright(v) T (1 =) * Dlegr(v) + €
(1= Prightwy = (1 =7")  Prepe(w) + €

Pright(v) = Pleft(v) t 1= 2 Dleft(v) T €

where the last inequality holds since 0 < 1 —~% < 1.
The other items are derived through similar computations. [ |

Analyzing the adversary’s success. We are now ready to show that at least one of the
adversaries A'! or A° succeeds in biasing the output.

We start with some notation. For a given node v and a bit b € {0, 1}, denote by outf’v (P, PY)
the probability that an honest party P; outputs the bit b in an execution with Py, conditioned
on the event that the execution reached node v. Note that in an execution between two honest
parties it holds that :

OUt‘Iy(Pla PQ) = Pr OUTPUT<P1 (7‘1), PQ(T2)> = 1| v is reached
(r1,r2)«Uni

= Pv=7""Dright(v) + (1 =7") - Diefi(v)-

Similarly, out|0v (Py, Py) = 1—p,. Note also that when v is the root node, out|1v(P1, Py) = Lxp(k).

Let v € V. We consider two executions: in both executions Pj; is honest, while in the
first execution P, is controlled by A', and in the second execution P, is controlled by .A°.
We compute the probabilities out‘lv (P, A') and out?v (P1, A% and compare these to the output
when both parties are honest. Specifically, we show that for every v € V there is a difference
between the output probability at v when honest parties run, and when an honest P; runs with
a dishonest P, (we actually consider the sum of the differences, and will later use this to show
that at least one of A” and A! must succeed in biasing).

Claim 4.5.3 There exists a constant ¢ > 0 such that for every node v € V it holds that:

(outo (P1, A°) — out), (P, PQ)) n (out|1U(P1, AY) — out], (P, PQ)) Scoe

|v

Proof: Let v € V and denote dy,,, = maxi<i<¢{d;} and dp;, = mini<;j<¢{67}, where 67, ..., 5}

are as computed by the adversaries. Since v € V, either p,igni(v) = Pv + €, Diefi(v) = Pv + 6,

156



Pright(V) < py — € or Dieft(v) < Pv — €. We consider two cases:

Case 1: pright(v) = Pv + € OF Plefi(v) < Pv — €. In these cases, the adversary A' sends
y; for which §; = 62

We now compute the difference between the probabilities that P; outputs 1 when it interacts

while the adversary A% sends yj, for which & = 69, .

max?

with and honest P, and with the adversary A!, where in both executions we assume that v is
reached ]

outy, (P1, A') — out},(P1, P»)
= Pr [OUTPUT(Pl (7"1),./41(7'2)> =1 ’ ’U:| — Pr OUTPUT<P1 (7“1), PQ(T2)> =1 ’ ’U:|

(r1,r2)¢Uni (r1,r2)¢Uni

s - Pright(w) + (1= 0mmax) * Diesiw) — (V7 Pright(v) + (1 —=7") - Piefe(v))
max — V") Pright(v) T (V" — Omax) * Plefi(v)

max — ") (Pright(v) — Pleft(w))

vY) €.

5
(O
(0n

> (0

where the last inequality follows from Claim which states that ppigne(v) — Plepe(v) > € in

this case. Observe that when .. = 7", then there is no bias (i.e., the probability of obtaining

max

output 1 may be the same as when P; is honest).

In a similar way, we compute the difference between the probabilities that P; outputs 0
when it interacts with an honest P, and with the adversary A", conditioned on the event that
the node v € V is reached. We have

OUt?U(Pl, AO) — OUt?U(Pl, P2)

= Pr [OUTPUT(Pl (r1), A%(r9)) = 0 ’ v} - Pr [OUTPUT(Pl (r1), Pa(r2)) =0 ’ v}
(r1,r2)<Uni (r1,r2)«Uni
= (1 - Pr [OUTPUT<P1(7”1),AO(7“2)> =1 ‘ v])
(r1,r2)«Uni
— <1 - Pr [OUTPUT<P1(7“1),P2(7’2)> =1 } UD
(r1,r2)«Uni
= Pr [OUTPUT(Pl (r1), Pa(r2)) = 1 ’ v] -  Pr [OUTPUT(Pl (r1), A%(r9)) = 1 ’ v}
(r1,r2)«Uni (r1,r2)«Uni

= (7 " Pright(v) ( 71}) : pleft(v)) - (5§1in * Pright(v) + (1 5m1n) pleft(v))

(’7 - mln) (przght( ) — pleft(v))
> (71) mm) €,

where the last equality it true from Claim Once again, when 47, = v", then there is no
bias.

The crucial observation is that since f is not § balanced, it holds that §°. # dy .. and thus

min

“Note that when we write OUTPUT({P;(r1), A (r2)) we mean the output of P; when interacting with A" with
respective random tapes 71 and 2. Since A' behaves according to the honest strategy except in the node v € V,
we have that A' uses the coins rp just like an honest P, except in node v. Moreover, when conditioning on the
event that the node v is reached, we just write “v” for short, instead of “v is reached”.

157



either d% ., # ¥ or 6%. # ~¥ or both. We can compute the overall bias of the adversaries as:

max min

(out?v(Pl, A%) — out!, (P, P2)> + (outllv(Pl, AY) —outl, (P, P2)>
> ((ﬁjnax - v) ( 511;1111) (5;”11&)( 6fn1n) :

Now, by the fact that f is mot left-balanced, Claim states that there exists a constant
¢ > 0 such that for all probability vectors p: max;(p - M) — min;(p - My) > c. In particular,

this means that 0, — d;. > c. Therefore, we can conclude that:

<out‘U(P1,.AO) — out), (P, PQ)) n <out‘1U(P1,A1) — outl, (P, PQ)) OV, — 0% ) e>coe.

Case 2: Pieft(v) = Pv + € OF Pright(v) < Pv — €. In this case, Al sends y;, for which
O = 07
and using Claim [£.5.2] which states that pjefs(v) — Pright(v) = € in this case, we have:

v, and A sends y; for which §; = §2,,.. Using a similar calculation to the previous case,

OUt|1v(P1, .Al) — out‘lv(Pl, Pg)

e [OUTPUT(P;[(T‘l),.Al(Tg)) =1 ‘ v} —  Pr |ouTPuT(Pi(r1), Pa(r2)) = 1 ‘ v}
(r1,r2)«Uni (r1,r2)«Uni
= Omin * pmght( )+ (1= Opmin) * Presiw) = 7" Pright) — (1 =7°) * Drefi(w)
= (7" = Omin) - (Preft(v) = Pright(v))
> (7" = Omin) €
and

out?v(Pl, A% — out?v(Pl, Py)
= Pr [OUTPUT(Pl(Tl),A()) =1 ‘ v} -  Pr OUTPUT(P;(r1), Pa(r2)) =1 ’ v}

(r1,r2)«Uni (r1,r2)«Uni

- 71) * Pright(v) + (1 - ’Yv) *Pleft(v) — 6fnax * Pright(v) — (1 - (5max) Pieft(v)
= (512121)( - ’71)) ’ (pleft(v) - pright(v))
> (Opax — 7)€ .

max

Therefore, the overall bias is:

(out?v(Pl, A%) — outl, (P, PQ)) n (out|1v(P1, AY) — out], (P, PQ))
> ((511;18,)( - ) : ( 611;1111) ' (511’}[1ax 611;11n) '

Again, by the fact that f is not left-balanced, Claim [4.3.4] implies that for the same constant
¢ > 0 as above it holds:

(outfv(Pl,AO) — out!, (P, Pg)) + (outllv(Pl,.Al) — out], (P, P2)> (00 — 0% )-e>c-e

This completes the proof of Claim [4.5.3] [ |

Computing the overall bias. Since in any execution exactly one node v € V is reached,
and since in any execution a node in V is reached, we have that for any party P; (in particular,

158



an honest P», the adversary A? or the adversary A!), and for every bit b € {0,1}:

Pr  [ouTPuT(Pi(r1), P5(r2)) = b

(r1,r2)«Uni

= ZPr [v is reached in (P;(r1), P5(12))] ~outfv(P1 (r1), Py (r2))
veY

We denote the probability above by out®(Py, Py).

Note that since both adversaries act honestly until they reach a node v € V, the executions
(Py, Py) (where Py € {Pp, A', A%}) are the same up to the point when they reach the node v,
and thus:

Pr  [visreached in (Pi(r1), P2(12))] = Pr  [v is reached in <P1(7“1)7-f41(7“2)>]
(r1,r2)+=Uni (r1,r2)+Uni
= Pr  [vis reached in (Pi(r1), A%(r2))]
(7"1,7"2)<—Uni

we therefore denote this equal value as reach,. Moreover, since any execution reaches exactly
one node v € V, we have: ) ., reach, = 1.
Combining the above, we conclude that:

(out' (Pr, A') — out' (P, P»)) + (out®(Pr, A') — out’(Py, P))
= Z reach,, - [(outllv(Pl,Al) — out|1v(P1, P2)> + (out?v(Pl, AO) - out|0v(P1, Pg))}

veY

> Zreachv‘(c-e):ae

vey

where the last inequality is true by Claim Since 7 is a coin-tossing protocol, by Eq. (4.2.1))
we have that:

1

1
outl(Pl,Pg) — ‘ < ,u(/i) .

out’(Py, Py) — ' < u(k) and

2 2

Thus, we have that:

<out1(P1,A1) _ ;) + (outO(Pl,AO) - ;) > e — 2u(k).

Since ¢ is a constant, and € = €(k) = 1/21”?:)(”), we have that the sum of the biases is non-
negligible, and therefore at least one of A° and A! succeeds in biasing the output of the coin-

tossing protocol when running with an honest P;.

The general case — removing the simplifying assumptions. In our proof above, we
relied on three simplifying assumptions regarding the coin-tossing protocol:

1. The hybrid model allows invocations of the function f only, and not invocations of fT.
2. Honest parties agree on the same output with probability 1.

3. The leaves of the tree fully define the output. Namely, the output of the parties are a
deterministic function of the transcript of the protocol.

159



Item [T)is solved as follows. Instead of considering protocols where the only invocations are to
the function f, we consider protocols where each round consists of an invocation of f, followed
by an invocation of f7. In the execution tree, each node at an even level indicates an invocation
of f, whereas nodes at an odd level indicate executions of f7. The variables 7%, left(v), right(v)
are defined similarly as before.

As the analysis shows, at any execution there is a “jump” and there exists a node v for
which |pm-ght(v) — po| or ’pleft(v) — pyl| is greater than e. This holds also for our case as well,
where the tree consists nodes of f7 and f. It is easy to see that in the case that all the nodes
v are in fact invocations of f, the same adversaries as before and the same analysis hold, and
the adversaries can bias the result. However, in general, the “jump” may occur on executions
of fT'. However, in such a case, the adversaries that we have presented control the “z-inputs”
and therefore cannot cheat (since it may be that the function is not left-balanced but is right-
balanced). Indeed, if all the “jumps” in the protocol are in nodes which are executions of f7
the adversaries that we have proposed may not be able to bias the result at all.

We solve this problem by “splitting” the adversary A! into two adversaries: A] which
controls P, and adversary A} which controls P, (similarly, we “split” A° into A9,.A3 who
control Py and P, respectively.). The adversary A} “attacks” the protocol exactly as A!, with
the only restriction that it checks that the node v (for which there is a “jump”) is an invocation
of f. In case where v is an invocation of fT, the adversary A} controls the inputs of z and
therefore cannot attack at this point. However, the adversary A} controls the inputs of y at
that node, and can perform the same attack as A!. Overall, the adversary A} only attacks
the protocol on nodes v which are invocations of f, whereas A% attacks the protocol on nodes
v which are invocations of f7. The overall bias of the two adversaries (A},A}) in a protocol
where the invocations are of f, f is exactly the same as the overall bias of the adversary A! in
a protocol where all the invocations are of the function f. Similarly, we split .AY into (A(l], .Ag),
and the overall bias of A" is essentially the same as the overall bias of (A?,.49). Since the
sum of the biases of (A", A!) is non-negligible, the sum of the biases of (A9, Al, A9 Ad) is
non-negligible as well.

Item [2| can be dealt with in a straightforward manner. By the requirement on a secure
coin-tossing function, the probability that two honest parties output different bits is at most
negligible. In executions that reach leaves for which this event occurs, we can just assume that
the adversary fails. Since such executions happen with negligible probability, this reduces the
success probability of the adversary by at most a negligible amount.

We now turn to the Item First we explain in what situations the general case might
occur. Consider the case where there are two sets of random tapes that reach the same final
node, where on one set the parties output 0 and on the other they output 1. This can happen
if the final output is based on parties’ full views, including their random tapes, rather than on
the public transcript of the computation alone.

We now show that any protocol can be converted into a protocol where the transcript fully
determines the output of both parties. Given a coin-tossing protocol m we build a protocol 7’ as
follows: The parties invoke the protocol 7 and at the end of the computation, each party sends
its random tape to the other party. In the protocol 7/, clearly each leaf fully determines the
outputs of the parties, since each parties’ entire view is in the public transcript. Furthermore,
the requirement that two honest parties output the same bit except with negligible probability
clearly holds also for 7/. Finally, we claim that if there exists an adversary A’ who succeeds

160



in biasing the output of an honest party with non-negligible probability in 7/, then we can
construct an adversary A who succeeds in biasing the output of an honest party with non-
negligible probability in 7. The adversary A simply invokes A’, and aborts at the point where
it is supposed to send its random tape. Since the output of the honest party is determined after
the invocation of the protocol m and before the random tapes are sent as part of 7/, the output
of the honest party when interacting with A is identical to its output when interacting with A’.
Thus, A also succeeds to bias the output of the honest party in .

Given the above, we can transform a general 7 into 7’ for which the third simplifying
assumption holds. Then, we can build the adversaries as proven for 7/, under this assumption.
By what we have just shown, this implies the existence of an adversary who can bias the output
of the honest party in 7, as required. This concludes the proof. [ |

Impossibility for 0 or 1-balanced functions. The above theorem proves impossibility for
the case that the function is not balanced. As we have mentioned, we must separately deal
with the case that the function 4s balanced, but not strictly balanced; i.e., the function is either
0-balanced or 1-balanced. The main difference in this case is that not all nodes which have
significantly different probabilities in their two children can be used by the adversary to bias
the outcome. This is due to the fact that the protocol may specify an input distribution for the
honest party at such a node that forces the output to be either 0 or 1 (except with negligible
probability), and so the “different child” is only reached with negligible probability. This can
happen since the function is balanced with 6 = 0 or § = 1. Thus, there may be probability
vectors for which dmax — dmin is 0 or some negligible function. The proof therefore shows that
this cannot happen too often, and the adversary can succeed enough to bias the output.

Theorem 4.5.4 Let f:{x1,...,x¢}x{y1,...,ym} — {0,1} be a 0 or 1-balanced function. Then,
f does not information-theoretically imply the coin-tossing protocol.

Proof: By Claim [4.3.5] since f is 0 or 1-balanced, it contains the all-zero row and all-zero
column, or the all-one row and the all-one column. Thus, if f is 0-balanced, an adversary can
“force” the output of any given invocation of f to be 0, and so ¢7, (as defined in the proof
of Claim equals 0. Likewise, if f is 1-balanced, an adversary can force the output to be
1 and thus 6y, = 1. We use the same ideas as the proof of Theorem [£.5.1f We consider the
transcript tree with the same simplifications as above (in particular, we consider protocols with

invocations of f only, and no invocations of f7). The transformation to the general case is the

same, and we omit this part. In this proof, we set € = ¢(k) = %. We start by rewriting
the adversaries, and we write the differences in bold.

Adversary Al controlling P, (biasing towards 1):

Let v be the current node in the tree 7 (starting at the root) and a¥ = (of,...,a})

be the input distribution for P; (as explained above, this can be computed). Com-
pute (67,...,d;) = a’- My. Let i and k be indices such that &} = max;<;j<,{0}}
= 07 and 6.;, = d;). In the first node v in

and 0y = mini<;j<¢{d} (denote dy,,, Y in
the execution with two children such that [prigni(v) — Pol > € O [Pefi(v) — Dol > €
and € < ¥ < 1 — € (checking also that € <" < 1 — € is the only difference from

previously), act according to the following:

161



If Pright(v) = Do+ € OT Plefi(v) < Py — € then send input y; in this invocation of f
(this increases the probability of reaching node right(v) because the probability
of obtaining 1 in this invocation is §; which is mazimal). If pjepi(v) > Py + € or
Pright(v) < Pv — € then send input yj, in this invocation of f (this increases the
probability of reaching node left(v) because the probability of obtaining 0 in
this invocation is 0 which is minimal).

In all other nodes act honestly.

The adversary A° controlling P, (biasing towards 0): The adversary is the
same as A' as defined above with the same differences as in the previous proof.

We now turn to the analysis. Let V denote the set of all nodes for which the adversaries do
not act honestly and attempt to bias the result (i.e., the nodes that fulfill the conditions above).
Observe that V is a subset of the set V defined in the proof of Theorem We compute the
sum of differences between the output probability at v € ¥V when honest parties run, and when
an honest party P; runs with dishonest P,. Like the proof of Theorem we show that
whenever the adversaries reach a node v € V, they succeed in biasing the result (the proof of
this is almost the same as above). Then, we compute the probability that the execution reaches
a node in V. However, here, unlike the proof of Theorem the probability of reaching a
node v € V is not 1.

The adversary’s effect conditioned on reaching V. We first obtain a bound on the sum of
difference between the output probability at v € V when honest parties run, and when an honest
party P; runs with adversaries, A", A° respectively, where in both cases we are conditioning on
the event that the execution reaches a node v € V. Since the attack is exactly the same as in
the previous proof (Claim , we conclude that for any node v € V:

<out?v(P1, A%) — out), (P, pg)) + <out|1U(P1, AY) — outl, (P, pg)) > (60— 60 )€

We now compute a lower bound on the term 4y, — 47, . In the above proof for an unbalanced

function this was bounded by a constant c. In this case, where f is 0 or 1-balanced, Lemma[4.3.4]
does not hold, and thus the proof is more involved.

First, consider the case that f is 1-balanced. As we have stated above, this implies that
v

0 . = 1 for every node v. We now show that 6”. < 1 —e. In order to see this, we note that

max min
ov . < 7Y, for every node v (since 7" is the “correct probability” of getting 1 and this is at least

the minimum probability). Now, for every v € V, by the definition of V for this adversary we

have that 7v¥ <1 — ¢, and therefore we can conclude that 47, <1 —¢, and so 03, — 05, = €.

Next, consider the case that f is 0-balanced. In this case, 67, = 0, but since 67, > " (for
the same reason that 07. < ~") and since ¥ > € by the definition of the adversary, we have

that Y

3 v v
b ax = € and so once again 0, — V. > €.

max min

Combining the above, we have that for every v € V the overall sum of the probability
changes of the adversaries is:
(out?v(Pl,AO) - out?v(Pl, PQ)) + (outllv(Pl,Al) - out|1v(P17 PQ))
> (00, —0%.) €e>(1—(1—¢)-e=¢

max min

162



We remark that for the case where My is 0-balanced and not 1-balanced, d7;, = 0, but it
follows that §Y

max

> " > €, and so 63, — 00, > €, as well.
Computing the probability to reach V. We have shown that when the parties reach nodes
from V, the adversaries succeed in biasing the result. Now, whenever the adversaries do not
reach nodes from V), they play honestly and therefore both parties are expected to output a
fair coin. Therefore, if the execution reaches a node in ¥V with non-negligible probability, this
will imply non-negligible bias, as required. We now show that the probability that an execution
reaches a node in V is at least 1/2 (this is the key difference to the unbalanced case where every
execution reached a node in V).

Every pair of random coins (r1,r2) for the parties fully determine a path from the root to
one of the leaves, and each leaf defines the output for both parties. For each node v in the tree
T, we consider its type according to the following:

(@) [Pright(v) — vl < € and [pjefiv) — Pu| < €, or v has only one child
(b) [Pright(w) — o] > €and e <4¥ <1 —¢

(©) |Pright(v) — Po| > € and 7Y < €

(d) pref() —Pol 2 €eand e <" < 1—¢

(@) |Pieft(v) — Dol > €and 7" > 1 —¢

We first prove that these cases cover all possibilities. Specifically, we claim that it cannot hold
that |pright(v) — Po| = € and 4V > 1 — €. Moreover, it cannot hold that [pj.f,) — pu| > € and
7" < e. In order to see this, first note that since p, = 7" - prighe(v) + (1 = ") - Prepi(v), We can
write:

‘pright(v) - pv‘ - ‘pright(v) - 7v * Pright(v) — (1 - ’Yv) ’ pleft(v)‘ = (1 - PYU) ) ‘pright(v) - pleft(v)‘ )
(4.5.1)
and,

‘pleft(v) _pvl = ‘pleft(v) - ,yv " Pright(v) — (1 - ’YU) 'pleft(’u)‘ = ’71} ’ }pleft(v) - pright(v)‘ : (452)

Now, |Pright(v) = Pieft(v)| < 1 because they are both probabilities, and thus [pyigni(v) — Pl <
1 — 4% If [pright(v) — Pv| = € then this implies that 1 — " > € and thus 4¥ < 1 —e. Thus, it
cannot be that [p,igniv) — Po| > € and v > 1 — ¢, as required. Similarly, if |pjepi) — po| > €
then 7 > € and thus it cannot be that |y — po| > € and 4" < e.

Next, recall that the nodes in V are all of type @ or (]ED We now show that for any node of
type , it must hold that [p, — prighi(v)| < €. Similarly, for any node of type , it must hold
that [p, — prese(v)| < €. We explain how we use this, immediately after the proof of the claim.

Claim 4.5.5 Let v be a node in the tree T with two children. Then:
L If 4" > 1 —¢, then [pright(v) — Pu| < €.
2. If " <, then ‘pleft(v) *pv‘ <E€.

163



Proof: For the first item, by Eq. (4.5.1) we have that |p,igni(v) — po| <1 —7". In addition, if
Y > 1 — € then 1 — ¥ < e. We conclude that ’pmght(v) —pv| < 1—17" < ¢, as required. The

second item is proven analogously using Eq. (4.5.2). [ ]

The claim above shows that for any node v of type @ the right child has output probability
that is close to the probability of the parent, and for any node of type the left child has
output probability that is close to the probability of the parent. This means that little progress
towards the output is made in this invocation. Intuitively, it cannot be the case that little
progress is made in all invocations. We will now show this formally.

Let uy,...,u. () be a path in the tree T from the root u; to some leaf u,(,). Recall that
any execution defines a unique path from the root and one of the leaves. The next claim shows
that there does not exist a path in the tree (associated with a pair of random tapes (r1,72))
such that all the nodes in the path are of types @, @ and , and in all the nodes of type @
the path proceeds to the right son and in all the nodes of type the path proceeds to the left
son.

Claim 4.5.6 There does not exist a path uy,...,u.) for which for every i =1,...,r(k) —1

one of the following conditions hold:
L. Pright(u;) — Pu;| < € and |Piee(u;) — Pu;| < €, or u; has only one child (i.e., u; is type (E[))

2. |Pleftuy) — Pu;l = € 7" > 1 —€ and uj11 = right(u;) (that is, u; is type @7 and the path
proceeds to the right son).

3. |Pright(us) — Pu;| = €, 7" < € and ujp1 = left(u;). (that is, u; is type , and the path
proceeds to the left son).

Proof: Assume by contradiction that there exists a path ui,...,u,(,) for which for every
i=1,...,7(k) — 1, one of the above conditions holds. Let u; be a node. If the first item holds
for w;, then |py,,, — py;| < € (observe that if u; has just one child then p,,,, = p,, and so
|Puisy — Pu;| < €). If the second item holds for w;, then this is a node of type @ and the path
proceeds to the right son. By Claim m this implies that |py,,, — pu,| < € (observe that the
claim can be applied since the node u; has two children by the fact that it is not of type @)
Likewise, if the third item holds for u;, then this is a node of type and the party proceeds
to the left son, and so by Claim it holds that |py, , —py,| < €. We conclude that for every
i=1,...,7(k) = 1, |[Pusy, — Pu;| < €, and so:

r(k) r(k) 1/4 B M(li)
|pur(n) = Puy| < Z |pui+1 — Pu,| < Ze =r(k)-e=r(K)- W =1/4 — p(K).
i=1 =1

Now, recall that [py, —1/2| < p(k) for some negligible function p(x). This implies that py,
13
44
This completes the proof. [ |

is non-negligibly far from the range [ ], in contradiction to the fact that it equals to 0 or 1.

Recall that nodes in V are of type (]ED and @ only, and so if they are reached in an execution
then the adversary succeeds in biasing the result. In addition, we have shown that it cannot be
the case that an entire execution is made up of nodes of type @ and nodes of type where
the execution when to the right and nodes of type in which the execution went to the left.
Thus, if no node in V is reached, it must be the case that a node of type was reached and

164



the execution went to the left, meaning that the output of the invocation of f was 0, or the
execution reached a node of type and the execution went to the right, meaning that the
output of f was 1. We now show that the probability of this occurring is small. That is, we
bound the following probability:

Pr |35 for which type(u;) : uj+1 = right(uj) VvV 3j for which type(u;) :H: Ujp1 = left(uj)] .

By the union bound, it is enough to compute the probability of each one of the terms. Observe
that:

Priujiy = left(u;) | type(u;) = (g)] < e

because by the definition of type @, % > 1 — €. We therefore have:

Pr[3j for which type(u;) = ¢ : ujy1 = left(u;)]
< > Priujpr = left(u;) | type(u;) = |
J s.t. type(u;)=c

14— u(x)

r(k)
In a similar way, we conclude that the probability to reach a node of type and to move to
the right child is bounded by 1/4 — u(k). Therefore, the probability of not reaching a node in
V is bounded by 1/2 — 2u(k).

Thus the probability of reaching a node in V is greater than 1/2. That is, we have that:

1
Z reach, > 5
vey

=1/4 — p(k).

where for every v € V, reach, denotes the probability to reach the node v (which, as discussed
in the proof of the unbalanced case, is the same in all executions of (Pi, Py), where Py €
{P27 AO’ *’41})

Concluding the proof. We have seen that the probability of reaching a node in V is greater
than 1/2. Moreover, whenever the adversaries reach such a node, the sum of the differences

2

between honest execution and execution with the adversaries is €. Combining the above, we

conclude that:

(out'(Pr, A") — out' (Pr, P»)) + (out’(Py, AY) — out?(Py, P»))

= greachv . [(outﬂv(ﬂ,fll) — outllv(P1, Pg)) + (out?v(Pl, AY) — outlov(Pl, Pg))}

> Z reach,, - (62) >

veY

-62

N |

Similarly to the proof of Theorem this implies that:

(outo(Pl,AO) — ;) + (outl(Pl,Al) - ;) > % €2 —2u(k).

and so one of the adversaries succeeds in biasing the result with non-negligible probability. This
concludes the proof. [ |

165



Conclusion: Combining Theorems [4.4.1} [4.5.1] and [4.5.4] we obtain the following corollary:

Corollary 4.5.7 Let f:{z1,...,z¢}x{y1,...,ym} — {0,1} be a function.

o [f f is strictly-balanced, then f implies the coin-tossing functionality (computationally and

information-theoretically).

o If f is not strictly-balanced, then f does not information-theoretically imply the coin-

tossing functionality in the presence of malicious adversaries.

Impossibility in the OT-hybrid model. Our proof of impossibility holds in the information-
theoretic setting only since the adversary must carry out computations that do not seem to be
computable in polynomial-time. It is natural to ask whether or not the impossibility result still
holds in the computational setting. We do not have an answer to this question. However, as a
step in this direction, we show that the impossibility still holds if the parties are given access
to an ideal oblivious transfer (OT) primitive as well as to the function f. That is, we prove the
following:

Theorem 4.5.8 Let f:{x1,...,xe} x{y1,...,ym} — {0,1} be a function. If f is not strictly-
balanced, then the pair of functions (f,OT) do not information-theoretically imply the coin
tossing functionality in the presence of malicious adversaries.

Proof Sketch: In order to see that this is the case, first observe that if f has an embedded-OR
then it implies oblivious transfer [69]. Thus, f can be used to obtain OT, and so the question
of whether f implies coin tossing or (f, OT') imply coin tossing is the same. It thus remains to
consider the case that f does not have an embedded OR but does have an embedded XOR (if
it has neither then it is trivial and so clearly cannot imply coin tossing, as we have mentioned).
We now show that in such a case f must be strictly balanced, and so this case is not relevant.
Let x1,x2,y1,y2 be an embedded XOR in f; ie., f(x1,y1) = f(x2,y2) # f(x1,y2) = f(22,91).
Now, if there exists a y3 such that f(x1,y3) = f(x2,y3) then f has an embedded OR. Thus, 1
and xo must be complementary rows (as in example function (a) in the Introduction). Likewise,
if there exists an xg such that f(zs,y1) = f(x3,y2) then f has an embedded OR. Thus, y; and
yo must be complementary columns. We conclude that f has two complementary rows and
columns, and as we have shown in the Introduction, this implies that f is strictly balanced with

§=1. [ |

4.6 Fairness in the Presence of Fail-Stop Adversaries

In order to study the feasibility of achieving fair secure computation in the fail-stop model, we
must first present a definition of security for this model. To the best of our knowledge, there
is no simulation-based security definition for the fail-stop model in the literature. As we have
mentioned in the introduction, there are two natural ways of defining security in this model,
and it is not a priori clear which is the “correct one”. We therefore define two models and study
feasibility for both. In the first model, the ideal-model adversary /simulator must either send the
party’s prescribed input to the trusted party computing the function, or a special abort symbol

166



L, but nothing else. This is similar to the semi-honest model, except that | can be sent as well.
We note that if L is sent, then both parties obtain L for output and thus fairness is preservedﬂ
This is actually a very strong requirement from the protocol since both parties either learn
the prescribed output, or they both output L. In the second model, the ideal adversary can
send any input that it wishes to the trusted party, just like a malicious adversary. We remark
that if the real adversary does not abort a real protocol execution, then the result is the same
as an execution of two honest parties and thus the output is computed from the prescribed
inputs. This implies that the ideal adversary can really only send a different input in the case
that the real adversary halts before the protocol is completed. As we have mentioned in the
Introduction, the impossibility result of Cleve [34] for coin-tossing holds in the both models,
since the parties have no input, and so for this functionality the models are identical.

4.6.1 Fail-Stop 1

In this section we define and explore the first fail-stop model. We proceed directly to define the
ideal model:

Execution in the ideal world. An ideal execution involves parties P; and P», an adversary
S who has corrupted one of the parties, and the trusted party. An ideal execution for the
computation of f proceeds as follows:

Inputs: P; and P, hold inputs ¢ € X, and y € Y, respectively; the adversary S receives the
security parameter 1" and an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by & may send its prescribed input or L.

Trusted party sends outputs: If an input | was received, then the trusted party sends L
to both parties. Otherwise, it computes f(z,y) and sends the result to both parties.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted
party outputs nothing and S outputs an arbitrary function of its view.

f-stop-1
We denote by IDEALf,S(z)

and the output of the honest party following an execution in the ideal model as described above.

(z,y,n) the random variable consisting of the output of the adversary

Security. The real model is the same as is defined in Section except that we consider
adversaries that are fail-stop only. This means that the adversary must behave exactly like an
honest party, except that it can halt whenever it wishes during the protocol. We stress that its
decision to halt or not halt, and where, may depend on its view. We are now ready to present
the security definition.

Definition 4.6.1 (Security — fail-stopl) Protocol m securely computes f with complete fair-
ness in the fail-stopl model if for every non-uniform probabilistic polynomial-time fail-stop ad-
versary A in the real model, there exists a non-uniform probabilistic polynomial-time adversary

°It is necessary to allow an explicit abort in this model since if the corrupted party does not participate at all
then output cannot be computed. The typical solution to this problem, which is to take some default input, is
not appropriate here because this means that the simulator can change the input of the corrupted party. Thus,
such an early abort must result in output L.

167



S in the ideal model such that:

f-stop-1 <
{IDEALﬁS(Z) (zl’$2’n)}xex,yey,ze{o,l}*,neN = {REALzAG) (T:9:1) e x yevioeqo 1) men

Exploring fairness in the fail-stop-1 model. We first observe that if a function contains
an embedded XOR, then it cannot be computed fairly in this model.

Theorem 4.6.2 Let f : {x1,...,x¢} X {y1,...,ym} — {0,1} be a function that contains an
embedded XOR. Then, f implies the coin-tossing functionality and thus cannot be computed

fairly.

Proof: Assume that f contains an embedded XOR; i.e., there exist inputs x1, z2, y1, y2 such
that f(x1,y1) = f(xo,y2) # f(x1,y2) = f(z2,y1). We can easily construct a protocol for
coin-tossing using f that is secure in the fail-stop model. Party P; chooses input = € {x1,x2}
uniformly at random, P» chooses y € {y1,y2} uniformly at random, and the parties invoke the
function f where P; inputs z and P» inputs y. In case the result of the invocation is L, the
other party chooses its output uniformly at random.

Since the adversary is fail-stopl, it must follow the protocol specification or abort prema-
turely. In both cases, it is easy to see that the honest party outputs an unbiased coin. Formally,
for any given fail-stop adversary A we can construct a simulator S: S receives from the coin
tossing functionality fcr the bit b, and invokes the adversary A. If A sends the trusted party
computing f the symbol L, then S responds with L. Otherwise, (if A sends some real value -
either 1,z if it controls Py, or yj,ys if it controls P,), then S responds with the bit b that it
received from for as if it is the output of the ideal call to f. It is easy to see that the ideal and
real distributions are identical. [ |

As we have mentioned, if a function does not contain an embedded XOR, or an embedded
OR then it is trivial and can be computed fairly (because the output depends on only one of
the party’s inputs). It therefore remains to consider the feasibility of fairly computing functions
that have an embedded OR but no embedded XOR. Gordon et. al [58] present a protocol
for securely computing any function of this type with complete fairness, in the presence of a
malicious adversary. However, the security of their protocol relies inherently on the ability of
the simulator to send the trusted party an input that is not the corrupted party’s prescribed
input. Thus, their protocol seems not to be secure in this model.

The problem of securely computing functions that have an embedded OR but no embedded
XOR therefore remains open. We remark that there are very few functions of this type, and
any such function has a very specific structure, as discussed in [58].

4.6.2 Fail-Stop 2

In this section we define and explore the second fail-stop model. In this case, the ideal adversary
can send any value it wishes to the trusted party (and the output of the honest party is deter-
mined accordingly). It is easy to see that in executions where the real adversary does not abort
the output is the same as between two honest parties. Thus, the ideal adversary is forced to
send the prescribed input of the party in this case. Observe that the ideal model here is identical
to the ideal model for the case of malicious adversaries. Thus, the only difference between this

168



definition and the definition of security for malicious adversaries is the quantification over the
real adversary; here we quantify only over fail-stop real adversaries. Otherwise, all is the same.

Definition 4.6.3 (Security — fail-stop2) Protocol 7 securely computes f with complete fair-
ness in the fail-stop2 model if for every non-uniform probabilistic polynomial-time fail-stop ad-
versary A in the real world, there exists a non-uniform probabilistic polynomial-time adversary
S in the ideal model such that:

C
{IDEALfvS(Z)(x’y’n)}xeX,yEY,ze{O,l}*,neN = {REAL”’A(Z) ($’y’n)}xex,er,ze{O,l}*,neN :

In the g-hybrid-model for fail-stop2 adversaries, where the parties have access to a trusted
party computing function g for them, a corrupted party may provide an incorrect input to an
invocation of g as long as it halts at that point. This may seem arbitrary. However, it follows
naturally from the definition since a secure fail-stop2 protocol is used to replace the invocations
of g in the real model. Thus, if a fail-stop adversary can change its input as long as it aborts in
the real model, then this capability is necessary also for invocations of g in the g-hybrid model.

Exploring fairness in the fail-stop-2 model. In the following we show that the malicious
adversaries that we constructed in the proofs of Theorem and Theorem can be
modified to be fail-stop2. We remark that the adversaries that we constructed did not abort

during the protocol execution, but rather continued after providing a “different”

input in one of
the f invocations. Thus, they are not fail-stop2 adversaries. In order to prove the impossibility
for this case, we need to modify the adversaries so that they halt at the node v for which they
can bias the outcome of the invocation (i.e., a node v for which v’s children in the execution
tree have significantly different probabilities for the output of the entire execution equalling 1).
Recall that in this fail-stop model, the adversary is allowed to send a different input than
prescribed in the invocation at which it halts; thus, this is a valid attack strategy.

We prove impossibility in this case by considering two possible cases, relating to the potential
difference between the honest party outputting 1 at a node when the other party aborts at that
node but until then was fully honest, or when the other party continues honestly from that

node (to be more exact, we consider the average over all nodes).

1. First, assume that there is a noticeable difference between an abort after fully honest
behavior and a fully honest execution. In this case, we construct a fail-stop adversary
who plays fully honestly until an appropriate node where such a difference occurs and
then halts. (In fact, such an adversary is even of the fail-stopl type).

2. Next, assume that there is no noticeable difference between an abort after fully honest
behavior and a fully honest execution. Intuitively, this means that continuing honestly
or halting makes no difference. Thus, if we take the malicious adversaries from Sec-
tion and modify them so that they halt immediately after providing malicious input
(as required in the fail-stop2 model), then we obtain that there is no noticeable differ-
ence between the original malicious adversary and the fail-stop2 modified adversary. We
remark that this is not immediate since the difference in this case is between aborting
and not aborting without giving any malicious input. However, as we show, if there is no
difference when honest inputs are used throughout, then this is also no difference when a
malicious input is used.

169



We conclude that one of the two types of fail-stop2 adversaries described above can bias any
protocol.

Theorem 4.6.4 Let f:{x1,...,z}x{y1,...,ym} — {0,1} be a function that is not §-balanced,
for any 0 < § < 1. Then, [ does not information-theoretically imply the coin-tossing protocol
in the fail-stop2 model.

Proof: We follow the proofs of Theorem and use the same ideas. Recall that the
adversaries play honestly until they reach a node in V. Then, the adversaries send an input value
to the invocation of f not according to the protocol, but continue to play honestly afterward. In
our case, we define similar adversaries: the adversaries play honestly until they reach a node in
V. Then, they send an input value not according to the protocol and abort. This is allowed in
our model: the adversaries play honestly and according to the protocol until they reach a node
for which they quit. In the single invocation of f for which they abort they send a different
value to that specified by the protocol. This is allowed since in the fail-stop2 model the ideal
simulator is allowed to send any input it desires in the case of an early abort.

We recall that the adversaries reach a node in the set V with probability greater than 1/2.
We now analyze whether they succeed to bias the result when the execution reaches a node
in V.

Aborting vs. continuing honestly. At each node v of the transcript tree 7, we write
in addition to the probability of outputting 1 when both parties act honestly (i.e., p,), the
probability that the output of the honest party is 1 if the execution is terminated in the node
v (i.e., the “default output” upon abort). We denote this probability by ¢,. Now, recall the
definition of the set V: the set of nodes for which the adversary does not act honestly and
changes the input. As mentioned above, the adversary act honestly until it reaches a node in
V. Then, in this node it aborts and so may send an incorrect value to the invocation of f, and
the honest party receives 0 or 1 from the invocation according the the inputs that were sent.
In all the following invocations of f, the honest party receives L and thus it chooses its output
according to the probability g,ign(v) (if the execution proceeded to the right child of v in the
last invocation of f) or gu.f,) (if the execution proceeded to the left child). Recall that 4*
denotes the probability of receiving output 1 from the invocation of f at the node v in an honest
execution, and thus this is the probability that the execution proceeds to the right child of v.
Moreover, recall that in both proofs, each node v € V has two children. We have the following
claim:

Claim 4.6.5 Let V be as above. Then, there exists a negligible function p'(-) such that:

Z (‘pleft(v) - QZeft(v)| + |pright(v) - QTight(v)D -reach, < /‘/(R)
veY

Proof: Assume in contradiction that the claim does not hold. Then, there exists a non-

negligible function w(k) such that:

Z (|pleft(v) - Qleft(v)‘ + |pright(v) - QTight(v)D -reach, > W(K‘)
veY

We construct an adversary that succeed to bias the coin with some non-negligible probability.

170



Let V' = {left(v), right(v) | v € V}, i.e., all the children of nodes in V, and define the sets
V,={v" €V [ py > qu}and V, = {v' € V' | py < qr}. Note that V, and V, constitute a
partitioning of the set V'. We now consider two adversaries B° and B! that work as follows: the
adversary B° aborts at each node v’ € V,, and B! aborts at each node for which v’ € V, (that
is, both adversaries send L to the invocation of f in the node v’), but play completely honestly
until that point (these adversaries never send “incorrect” input in an invocation of f).

Let ' € V,. The difference in the probability that an honest party outputs 0 in an honest
execution and when interacting with the adversary B°, conditioned on the event that the node
v’ is reached, is:

out|0v/ (P, B% — out|0v, (P, P) = Pr [OUTPUT(Pl (r1),B%(r2)) =0 ‘ v’ is reached}

(r1,r2)«Uni

— Pr [OUTPUT(Pl (r1), Pa(r2)) =0 ’ v is reached}

(r1,r2)«Uni

= (1_%/) _(1_pv’) =DPv — Qv -

Recall that the adversary B! plays honestly when it reaches a node v’ € V;,, and so for such
nodes v’ €V,
OUTCEU,(_Pl7 Bl) — OUTC?U,(.Pl7 PQ) =0.

Next, consider a node v’ € V(’Z. The difference in the probability that an honest party outputs 1

in an honest execution and when interacting with adversary B!, conditioned on the event that

v’ is reached, is:

out|1v/ (P, BY) — out|1v, (P, P) = Pr _[OUTPUT(Pl(Tl),Bl(T2)> =1 ‘ v’ s reached}
(r1,r2)«Uni

-  Pr [OUTPUT(Pl (r1), Pa(r2)) =1 ’ v’ is reached}

(r1,r2)«Uni

= Qv — Do
On the other hand, when v" € V;, the adversary B° plays honestly, and so for such v/ € 2%

OUt‘lv/(Pl,Bl) — OUt‘lv/(Pl, PQ) =0.

Now, recall that V' = {left(v),right(v) | v € V}. At a node v € V, since both adversaries
behave honestly, we move to the right child with probability v and to the left child with
probability 1 — 4. Therefore, for every v € V, for every P € {P,B°,B'} and for every
b € {0,1} it holds that:

OUt?U(Ph PQ*) = ’YU ’ OUTPUT?Tight(v) (Pl? PQ*) + (1 - fyv) ' OUTPUT?left(v) (P17 P2*)7
and so, for each one of the adversaries B € {B°, B'}:
OUt?U(Pl, B) — outfv(Pl, P2) = ,y'u . (OUTPUT?right(U) (Pl, B) — OUTPUT?Tight(v) (Pl, Pg))
+(1—~Y) - (OUTPUTf’left(v)(Pl, B) — OUTPUTf’left(U) (P, P2)>
Recall that for every v € V, by the definition of V it holds that ¢ < ¥ < 1 — ¢, and thus

171



Y > € and 1 — % > e¢. Combining the above, for every v € V it holds that:

(out|1v(P1, B') — outl, (P, Pg)) + <out?v(P1, B°) — out!, (P, pQ))

= ’YU ) ‘p'right(v) - QM'ght(v)’ + (1 - 7@) ’ }pleft(v) - QZeft(’u)‘
> € (‘pright(v) - qright(v)| + ‘pleft(v) - QIeft(v)‘)

and therefore we conclude:

(outl (Pl, Bl) — outl(Pl, PQ)) + (outO(Pl, BO) — outO(Pl, PQ))
= Z [(out‘lv(PhBl) — out‘IU(Pl, PQ)) + (out?U(Pl,BO) — OUt?U(Pl,P2)>i| - reach,
veY

> € Z (‘pright(v) - qright(v)’ + |pleft(v) — Gleft(v) D -reach, > €- w(’{)
veY

which is non-negligible, in contradiction to out assumption that the coin-tossing protocol is
secure. We therefore conclude that there exists a negligible function p/(-) such that:

Z (‘pm’ght(v) - qright(v)| + ‘pleft(v) — Gleft(v) ‘) - Pr [U is reaChed] < :U'/(K‘)'
veY .

We now consider the bias of the modified fail-stop adversaries A°, A! as in the proof of
Theorem conditioned on the event that the adversaries have reached a node v € V. We
have 2 cases:

Case 1: pright(v) = Pv + € OF Plefi(v) < Pv — € Observe that in the fail-stop case, since
the adversary aborts in some node v € V, the honest party outputs 1 with probability g (.
OT Gright(v) and NOE Prepi(v) O Prighi(v)- We have that:

outf, (P1, A") — out), (P, P2) = (8fax = V") - (Gright(v) — diesi(v))

= (Ohax = ") - (@right(v) — Pright(v) T Pright(v) — Qieft(v) T Pleft(v) — Pleft(v))
= (Omax — ")+ ((Pright(v) = Prefi(w) + (Gright(v) — Pright(v)) + Diesi(w) — diefiw)))
> (Omax —7") " ((pright(v) - pleft(v)) - |Q7'ight(v) - pright(v)| - |pleft(v) - QIeft(v)’) .

V

In a similar way:

OUt\Ov(Ph AO) - OUt\Ov(Ph PQ) = (’YU - 5lzrjnin) ’ (QTight(v) - QZeft(v))
> (7v - 511;11n> : ((pright(v) _pleft(v)) - |qm'ght(v) - pright(v)‘ - ’pleft(v) - QZeft(v)D .

Summing up the differences in probabilities we derive:

(out‘lv(PhAl) - out‘lv(Pl, Pg)) + (out?U(PhAO) - out?v(Pl, Pg))

(%

> (5121&7( o éﬁliﬂ) ’ (pright(v) B pleft(v)) - (6gqax - 6min) ’ (’%“ight(v) - pright(v)‘ + ‘pleft(v) - QIeft(v)’)

Now, recall that in the proof of Theorem we showed that (pm-ght(v) — pleft(v)) > e In

addition, in the case that f is not balanced, there exists a constant ¢ > 0 such that 0, — 05, >

¢, and in the case that f is 1 or O-balanced it holds that 4}, — o,

Vi = € (as shown in the proof

172



of Theorem [4.5.4). In all cases, there exists a non-negligible value A such that 0y, — 62, >

min

A. Moreover, since d7..,0". are both probabilities it trivially holds that 67, — V. < 1.

max’ “min min —
Combining all the above, we have:

(outllv(Pl, AY) — outl, (P, pg)) + (out?v(Pl, A%) — out], (P, pz))

> A-e— (|Q’right(v) - pright(v)| + |pleft(v) — Qieft(v) ’)
Case 2: piefi(v) = Pv + € OF Pright(v) < Py — € With similar calculations we derive:
1 1 1 0 0 0
<out‘U(P1,A ) — out‘v(Pl,P2)> + <out‘U(P1,A ) — out‘U(Pl,P2)>
> A-e— (’pleft(v) - qleft(v)| + |p7"ight(v) - qright(v)‘)

where, A is the same as above.

Overall bias. We have computed the differences in the probability that an honest party
outputs 1 when interacting with an honest P, or with one of the adversaries, conditioned on
the event that a node v € V is reached. We are now ready to compute the overall bias.
1 1 1 0 0 0
(out(Py, A') — out' (P, P»)) + (out®(Py, A%) — out’(Py, P»))
= Z reach,, - [(outllv(Pl,Al) — out|1v(P1, P2)> + (out?v(Pl, Al) — out?v(Pl, Pg))}

vey

> Z reach,, - [A t€— (|pleft(v) - QIeft(v)‘ + ’pright(v) - QTight(v)’)]
vey

> Z reach, - A - € — Z (|pleft(v) - QIeft(v)‘ + |pright(v) - QM'ght(v)D -reach,
veY veY

1
> Q'A'G_NI(H)

where the last inequality is true from Claim We therefore conclude that the sum of the

biases:
<out1(P1,A1) - ;) + (outO(Pl,AO) - ;)

is non-negligible, as required. [ |

173



174



Chapter 5

Towards Characterizing Complete Fairness

In the previous chapter, we discovered what functions are ruled out using the impossibility
result of Cleve. In this chapter, we focus on the only known possibility result in complete
fairness - the protocol of Gordon, Hazay, Katz and Lindell [58] - and discover what functions
can be computed using this protocol. We show that many more functions can be computed
fairly than what has been though previously. We also present positive results for asymmetric
Boolean functions (where the parties do not necessarily receive the same output), and functions
with non-binary outputs.

5.1 Introduction

The work of Gordon, Hazay, Katz and Lindell (GHKL) [58] provides a fair protocol that com-
putes some specific non-trivial function. The work also presents a generalization of this protocol
that may potentially be used to compute a large class of functions. It also shows how to con-
struct a (rather involved) set of equations for a given function, that indicates whether the
function can be computed fairly using this protocol.

In more detail, [58] considered a particular simple (but non-trivial) 3 x 2 function, and
showed that this function can be computed fairly by constructing a protocol for this function
and a simulator for this protocol. Then, in [58] it was shown that this protocol can be general-
ized, by identifying certain values and constants that can be parameterized, and parameterized
the simulator also in a similar way. In addition, [58] showed how to examine whether the (pa-
rameterized) simulator succeeds to simulate the protocol, by constructing a set of equations,
where its solution is in fact, the actual parameters that the simulator has to use. The set of
equations that [58] presented is rather involved, relies heavily on the actual parameters of the
real protocol rather than properties of the computed function, and in particular it is hard to
decide for a given function whether it can be computed fairly using this protocol, or not.

The protocol of [58] is ground-breaking and completely changed our perception regarding
fairness. The fact that something non-trivial can be computed fairly is surprising, and raises
many interesting questions. For instance, are there many functions that can be computed fairly,
or only a few? Which functions can be computed fairly? Which functions can be computed
using this generalized GHKL protocol? What property distinguishes these functions from the

175



functions that are impossible to compute fairly?

We focus on the general protocol of GHKL (or, framework), and explore which functions
can be computed using this protocol. Surprisingly, it turns out that many functions can be
computed fairly, in contrast to what was previously thought. In particular, we show that almost
all functions with distinct domain sizes (i.e., functions f: X x Y — {0,1} with |X| # |Y]) can
be computed with complete fairness using this protocol.

Intuition. We present some intuition before proceeding to our results in more detail. The
most important and acute point is to understand what distinguishes functions that can be
computed fairly from functions that cannot. Towards this goal, let us reconsider the impos-
sibility result of Cleve. This result shows that fair coin-tossing is impossible by constructing
concrete adversaries that bias and influence the output of the honest party in any protocol
implementing coin-tossing. We believe that such adversaries can be constructed for any pro-
tocol computing any function, and not specific to coin-tossing. In any protocol, one party can
better predict the outcome than the other, and abort the execution if it is not satisfied with
the result. Consequently, it has a concrete ability to influence the output of the honest party
by aborting prematurely. Of course, a fair protocol should limit and decrease this ability to
the least possible, but in general, this phenomenon cannot be totally eliminated and cannot be
prevented.

So if this is the case, how do fair protocols exist? The answer to this question does not lie in
the real execution but rather in the ideal process: the simulator can simulate this influence in the
ideal execution. In some sense, for some functions, the simulator has the ability to significantly
influence the output of the honest party in the ideal execution and therefore the bias in the real
execution is not considered a breach of security. This is due to the fact that in the malicious
setting the simulator has an ability that is crucial in the context of fairness: it can choose what
input it sends to the trusted party. Indeed, the protocol of GHKL uses this switching-input
ability in the simulation, and as pointed out in Chapter 4| (Theorem , once we take away
this advantage from the simulator — every function that contains an embedded XOR cannot be
computed fairly, and fairness is almost always impossible.

Therefore, the structure of the function plays an essential role in the question of whether a
function can be computed fairly or not. This is because this structure reflects the “power” and
the “freedom” that the simulator has in the ideal world and how it can influence the output of
the honest party. The question of whether a function can be computed fairly is related to the
amount of “power” the simulator has in the ideal execution. Intuitively, the more freedom that
the simulator has, the more likely that the function can be computed fairly.

A concrete example. We demonstrate this “power of the simulator” on two functions. The
first is the XOR function, which is impossible to compute by a simple implication of Cleve’s
result. The second is the specific function for which GHKL has proved to be possible (which
we call “the GHKL function”). The truth tables of the functions are given in Figure

77(% s Yy Y2
(@) 7] 0 1 m @0 1
T 1 0 Tz 10

2| - 2 zs | 11

Figure 5.1: (a) The XOR function — impossible, (b) The GHKL function — possible

176



What is the freedom of the simulator in each case? Consider the case where P; is corrupted
(that is, we can assume that P; is the first to receive an output, and thus it is “harder” to
simulate). In the XOR function, let p be the probability that the simulator sends the input z
to the trusted party, and let (1—p) be the probability that it sends x5. Therefore, the output
of P, in the ideal execution can be represented as (q1,q2) = p-(0,1)+ (1—p) - (1,0) = (1—p, p),
which means that if P, inputs y1, then it receives 1 with probability 1—p, and if it uses input ¥,
then it receives 1 with probability p. We call this vector “the output distribution vector” for P,
and the set of all possible output distribution vectors reflects the freedom that the simulator
has in the ideal execution. In the XOR function, this set is simply {(1—p,p) | 0 < p < 1},
which gives the simulator one degree of freedom. Any increment of the probability in the first
coordinate must be balanced with an equivalent decrement in the second coordinate, and vice
versa. In some sense, the output of the honest party in case its input is y; is correlated to its
output in case of input yo.

On the other hand, consider the case of the GHKL function. Assume that the simulator
chooses z1 with probability p;, xo with probability pe and x3 with probability 1—p;—p2. Then,
all the output vector distributions are of the form:

(q1,92) =p1-(0,1) +p2- (1,0)+ (1 —p1—p2) - (1,1) = (1 —p1,1 —p2) .
This gives the simulator two degrees of freedom, which is significantly more power.

Geometrically, we can refer to the rows of the truth table as points in R?, and so in the
XOR function we have the two points (0,1) and (1,0). All the output distribution vectors
are of the form p - (0,1) + (1—p) - (1,0) which is exactly the line segment between these two
points (geometric object of dimension 1). In the GHKL function, all the output distribution
vectors are the triangle between the points (0, 1), (1,0) and (1,1), which is a geometric object
of dimension 2 (a full dimensional object in R?).

The difference between these two geometric objects already gives a perception for the reason
why the XOR function is impossible to compute, whereas the GHKL function is possible, as the
simulator has significantly more options in the latter case. However, we provide an additional
refinement. At least on the intuitive level, fix some output distribution vector of the honest
party (q1,q2). Assume that there exists a real-world adversary that succeeds in biasing the
output and obtain output distribution vector (¢, ¢5) that is at most e-far from (g1, ¢2). In the
case of the XOR function, this results in points that are not on the line, and therefore this
adversary cannot be simulated. In contrast, in the case of the GHKL function, these points are
still in the triangle, and therefore this adversary can be simulated.

In Figure [5.2] we show the geometric objects defined by the XOR and the GHKL functions.
The centers of the circles are the output distribution of honest executions, and the circuits
represent the possible biases in the real execution. In (a) there exist small biases that are
invalid points, whereas in (b) all small biases are valid points that can be simulated.

5.1.1 Our Results

For a given function f : {z1,...,2¢} X {y1,...,ym} — {0,1}, we consider its geometric repre-
sentation as the convex-hull of ¢ points over R, where the jth coordinate of the ¢th point is
simply f(z;,y;). We say that this geometric object is of full dimension in R™, if it cannot be
embedded in any subspace of dimension smaller than m (or, any subspace that is isomorphic to
R™~1). We then prove that any function that its geometric representation is of full dimension

177



()

o

(d) The potential output distribution vectors of the XOR (b) The potential output distribution vectors of the GHKL
function: a line segment between (0, 1) and (1,0). function: the triangle between (0, 1), (1,0) and (1,1).

Figure 5.2: The geometric objects defined by the XOR function (a) and the GHKL function (b).

can be computed with complete fairness. We prove the following theorem:

Theorem 5.1.1 (informal) Let f: X xY — {0,1} be a function. Assuming the existence of
an Oblivious Transfer, if the geometric object defined by f is of full-dimension, then the function
can be computed with complete fairness.

For the proof, we use the extended GHKL protocol (with some concrete set of parameters).
Moreover, the proof uses tools from convex geometry. We find the connection between the
problem of fairness and convex geometry very appealing.

On the other hand, we show that if the function is not full dimensional, and satisfies some
additional requirements (that are almost always satisfied in functions with |X| = |Y]), then the
function cannot be computed using the protocol of [5§].

We then proceed to the class of asymmetric functions where the parties do not necessarily
get the same output, and the class of non-binary output. Interestingly, the GHKL protocol can
be extended to these classes of functions. We show:

Theorem 5.1.2 (informal) Assuming the existence of an Oblivious Transfer:

1. There exists a large class of asymmetric Boolean functions that can be computed with com-
plete fairness.
2. For any finite range %, there exists a large class of functions f : X XY — X that can be

computed with complete-fairness.

For the non-binary case, we provide a general criterion that holds only for functions for which
|X| > (|2]—1)-]Y], that is, when the ratio between the domain sizes is greater than || —1. This,
together with the results in the binary case, may refer to an interesting relationship between
the size of the domains and possibility of fairness. This is the first time that a fair protocol
is constructed for both non-binary output, and asymmetric Boolean functions. This shows
that fairness is not restricted to a very specific and particular type of functions, but rather a
property that under certain circumstances can be achieved. Moreover, it shows the power that
is concealed in the GHKL protocol alone.

Open problems. Our work is an important step towards a full characterization of fairness
of finite domain functions. The main open question is to finalize this characterization. In
addition, can our results be generalized to functions with infinite domains (domains with sizes
that depend on the security parameter)? Finally, in the non-binary case, we have a positive

178



result only when the ratio between the domain sizes is greater than || — 1. A natural question
is whether fairness be achieved in any other case, or for any other ratio.

5.2 Definitions and Preliminaries

We cover the necessary definitions for our analysis, and we cover the mathematical background
that is needed for our results.

Notations. In most of this chapter, we consider binary deterministic functions over a finite
domain; i.e., functions f : X x Y — {0,1} where X, Y C {0,1}* are finite sets. Throughout
the chapter, we denote X = {x1,...,2¢} and Y = {y1,...,ym}, for constants £,m € N. Let My
be the ¢ x m matrix that represents the function, i.e., a matrix whose entry position (i,7) is
f(xi,y;). For 1 <i < ¢, let X; denote the ith row of My, and for 1 < j < m let Y; denote the
Jjth column of My. A vector p = (p1,...,pe) is a probability vector if p; > 0 for every 1 <i </
and Zle p; = 1. As a convention, we use bold-case letters to represent a vector (e.g., p, q),
and sometimes we use upper-case letters (e.g., X;, as above). We denote by 1j (resp. 0x) the
all one (resp. all zero) vector of size k. We work in the Euclidian space R™, use the Euclidian
norm ||z|| = /(x,x) and the distance function as d(z,y) = ||z — y||-

5.2.1 Secure Computation — Definitions

We refer the reader to Section for definitions of computationally-indistinguishability, defi-
nition of secure computation with fairness (Definition , and secure computation without
fairness (Definition [£.2.2)). These are merely the standard definitions of [27, 53]. In addition,
we use standard O notation, and let poly denote a polynomial function.

Hybrid model and composition. In Section we defined the g-hybrid model, and
mentioned the (sequential) composition theorem of [27]. In this Chapter, we consider the case
where g is a reactive functionality, which means that the functionality ¢ stores some state
between consecutive executions. We assume that the protocol w9 that uses the functionality ¢
does not contain any messages between the parties, and all the communication between them
is performed via the functionality g. Recall that any functionality (even reactive one) can
be computed with security-with-abort, and therefore there exists a protocol p that securely
computes g (with no fairness). Since there are no messages in 79 we can apply the sequential
composition theorem of [27] and obtain the following Proposition:

Proposition 5.2.1 Let g be a reactive functionality, let ™ be a protocol that securely computes
f with complete fairness in the g-hybrid model (where g is computed according to the ideal
world with abort), and assumes that ® contains no communication between the parties rather
than queries of g and that a single execution of g occurs at the same time. Then, there exists a
protocol 11 that securely computes f with complete fairness in the plain model.

179



5.2.2 Mathematical Background

Our characterization is based on the geometric representation of the function f. In the following,
we provide the necessary mathematical background, and link it to the context of cryptography
whenever possible. Most of the following mathematical definitions are taken from [93] [62].

Output vector distribution and convex combination. We now analyze the “power of
the simulator” in the ideal execution. The following is an inherent property of the concrete
function and the ideal execution, and is true for any protocol computing the function. Let A
be an adversary that corrupts the party P;, and assume that the simulator S chooses its input
according to some distribution p = (p1,...,p¢). That is, the simulator sends an input z; with
probability p;, for 1 < ¢ <. Then, the length m vector q = (gy,,- - -, qy,,) def p - M represents
the output distribution vector of the honest party P». That is, in case the input of P is y; for
some 1 < j < m, then it gets 1 with probability g,;.

Convex combination. The output distribution vector is in fact a convex combination of the
rows {X1,..., Xy} of the matrix M. That is, when the simulator uses p, the output vector
distribution of Ps is:

P M= (pis-.spe)- My =p1-Xo+...+pe- Xp.

A convex combination of points Xi,..., X, in R™ is a linear combination of the points, where
all the coefficients (i.e., (p1,...,p¢)) are non-negative and sum up to 1.

Convex hull. The set of all possible output distributions vectors that the simulator can
produce in the ideal execution is:

{p- My | p is a probability vector} .

In particular, this set reflects the “freedom” that the simulator has in the ideal execution. This
set is, in fact, the convex hull of the row vectors X7, ..., Xy, and is denoted as conv({ X1, ..., X,}).
That is, for a set S = {Xy,..., X}, conv(S) = {Zlepi X |0<p <1,5°7 pi = 1}. The
convex-hull of a set of points is a convex set, which means that for every X,Y € conv(S), the
line segment between X and Y also lies in conv(S), that is, for every X,Y € conv(S) and for
every 0 < A <1, it holds that A\- X + (1 — X) - Y € conv(S).

Geometrically, the convex-hull of two (distinct) points in R? is the line-segment that connects
them. The convex-hull of three points in R? may be a line (in case all the points lie on a single
line), or a triangle (in case where all the points are collinear). The convex-hull of 4 points may
be a line, a triangle, or a parallelogram. In general, the convex-hull of k points in R? may define
a convex polygon of at most k vertices. In R3, the convex-hull of k points can be either a line,
a triangle, a tetrahedron, a parallelepiped, etc.

Affine-hull and affine independence. A subset B of R™ is an affine subspace if A\-a+u-b €
B for every a,b € B and A\, u € R such that A + p = 1. For a set of points S = {X;,..., Xy},
its affine hull is defined as aff(S) = {Zle i Xi | Zle i = 1}, which is similar to convex
hull, but without the additional requirement for non-negative coefficients. The set of points

180



X1,..., X, in R™ is affinely independent if S>°_, \;X; = 0,, holds with Y, \; = 0 only if
A1 =...= X = 0. In particular, it means that one of the points is in the affine hull of the other
points. It is easy to see that the set of points {Xi,..., X} is affinely independent if and only
if the set {Xo — X3,..., Xy — X3} is a linearly independent set. As a result, any m + 2 points
in R™ are affine dependent, since any m + 1 points in R™ are linearly dependent. In addition,
it is easy to see that the points {Xi,..., X} over R™ is affinely independent if and only if the
set of points {(X1,1),..., (X, 1)} over R™*! is linearly independent.

Affine-dimension and affine-basis. If the set S = {Xi,..., X} over R™ is affinely inde-
pendent, then aff(S) has dimension ¢ — 1, and we write dim(aff(S)) = ¢ — 1. In this case, S is
the affine basis for aff(.S). Note that an affine basis for an m-dimensional affine space has m+1
elements. As we will see, the affine dimension of £ row vectors X1, ..., X, plays an essential role
in our characterization.

Linear hyperplane. A linear hyperplane in R™ is a (m — 1)-dimensional affine-subspace of
R™. The linear hyperplane can be defined as all the points X = (z1,...,%,,) which are the
solutions of a linear equation:

121+ ... ATy = b,

for some constants a = (ai,...,a,) € R™ and b € R. We denote this hyperplane by:

H(a,b) € {X e R™ | (X,a) = b} .

Throughout the chapter, for short, we will use the term hyperplane instead of linear hyperplane.
It is easy to see that indeed this is an affine-subspace. In R!, a hyperplane is a single point, in
R? it is a line, in R? it is a plane and so on. We remark that for any m affinely independent
points in R there exists a unique hyperplane that contains all of them (and infinitely many in
case they are not affinely independent). This is a simple generalization of the fact that for any
distinct 2 points there exists a single line that passes through them, for any 3 (collinear) points
there exists a single plane that contains all of them, etc.

Convex polytopes. Geometrically, a full dimensional convex polytope in R™ is the convex-
hull of a finite set S where dim(aff(S)) = m. Polytopes are familiar objects: in R?, we get
convex polygons (a triangle, a parallelogram etc.). In R3, we get conver polyhedra (a tetra-
hedron, a parallelepiped etc.). Convex polytopes play an important role in solutions of linear
programming.

In addition, a special case of polytope is simplex. If the set S is affinely independent of
cardinality m + 1, then conv(S) is an m-dimensional simplex (or, m-simplex). For m = 2, this
is simply a triangle, whereas in m = 3 we get a tetrahedron. A simplex in R™ consists of m + 1
facets, which are themselves simplices of lower dimensions. For instance, a tetrahedron (which
is a 3-simplex) consists of 4 facets, which are themselves triangles (2-simplex).

181



5.3 The Protocol of Gordon, Hazay, Katz and Lindell [58]

In the following, we give a high level overview of [58]. We also present its simulation strategy,
and the set of equations that indicates whether a given function can be computed with this
protocol, which is the important part for our discussion. We also generalize somewhat the
protocol by adding additional parameters, which adds some flexibility to the protocol and may
potentially compute more functions, and we also represent it a bit differently than the original
construction, which is merely a matter of taste.

5.3.1 The Protocol

Assume the existence of an online dealer (a reactive functionality that can be replaced using
standard secure computation that is secure-with-abort). The parties invoke this online-dealer
and send it their respective inputs (x,y) € X x Y. The online dealer computes values a1, ...,ar
and by, ...,br (we will see later how they are defined). In round 4, the dealer sends party P;
the value a; and afterward it sends b; to P». At each point of the execution, each party can halt
the online-dealer, preventing the other party from receiving its value in that round. In such a
case, the other party is instructed to halt and output the last value it has received from the
dealer. For instance, if P, aborts in round ¢ after it learns a; and prevents from P to learn b;,
P, halts and outputs b;_1.

The values (a1, ...,ag), (b1,...,br) are generated by the dealer in the following way: The
dealer first chooses a round i* according to geometric distribution with parameter «. In each
round ¢ < 7*, the parties receive bits (a;, b;), that depend on their respective inputs solely and
uncorrelated to the input of the other party. In particular, for party P; the dealer computes
a; = f(x;,7) for some random ¢, and for P it computes b; = f(&,y;) for some random Z. As
we will see, we will choose ¢ uniformly from Y, whereas & will be chosen according to some
distribution X,¢,;, which is a parameter for the protoco]ﬂ For every round i > ¢*, the parties
receive the correct output a; = b; = f(x;,y;). Note that if we set R = a1 -w(Ink), then i* < R
with overwhelming probability, and so correctness holds.

The full specification consists of the definition of the online-dealer, which is the Fyealer
functionality and is formally defined in Functionality In addition, we present the protocol
in the Fyeaer-hybrid model in Protocol Algorithm [5.3.1] is needed for both the Fyesler
functionality and the protocol.

RandOut; (z) — Algorithm for P;: RandOutz(y) — Algorithm for P;:
Input: An input x € X. Input: An input y € Y.
Parameter: Distribution X,..4;.
Output: Choose §j < Y uniformly Output: Choose & < X according to
and output f(z,7). distribution X, and output f(z,y).

ALGORITHM 5.3.1 (Default output algorithms — RandOut; (x), RandOutz(y))

1This is the generalization of the protocol of GHKL that we have mentioned, which adds some flexibility, and
will make the proof of security a bit simpler. We note that a similar distribution Y. could have been added as
well, but as we will see, this modification is not helpful and will just add complication.

182



FUNCTIONALITY 5.3.2 (The (reactive) online-dealer functionality — Fyealer)

e Inputs: P, sends z as its input, Y sends y.
e Parameters: (o, R), where 0 < a < 1 and R is the number of rounds.
e The functionality:
1. Check inputs: If z € X or y ¢ Y then send abort to both parties and halt.
2. Preliminary phase:
1. Choose i* according to a geometric distribution with parameter a.
2. Define values (ay,...,ag), (b1,...,br), where:
(a) Fori=1to¢* —1: set (a;,b;) = (RandOuty (z), RandOutz(y)).
(b) For ¢ =i* to R: set (a;,b;) = (f(z,v), f(z,y)).
3. The online phase:
1. In every round i =1 to R:
(a) Upon receiving proceed from P, send a; to P;.
(b) Upon receiving proceed from Py, send b; to Ps.

Upon receiving abort from any one of the parties at any point of the execution,
send abort to both parties and halt.

PROTOCOL 5.3.3 (Computing f in the Fyee~hybrid model)

e Inputs: P; holds x, P holds y.
e Parameters: Some value 0 < a < 1, and security parameter x.
e The protocol:
1. Set R=a"! w(logk).
2. Py computes ag = RandOut;(z), P> computes by = RandOuts(y).
3. The parties invoke the Fyeaer functionality. P; sends as input x, P» sends y.
4. For every round ¢ =1 to R:

(a) P> sends proceed to Fyealer, and P; receives a; from Fyeyer- If Py receives abort
from Fyealer, it halts and outputs a;_1.

(b) Py sends proceed t0 Fycaler, and P receives by from Fyeaer- If P receives abort from
Fyealer, it halts and outputs b;_;.

e Output: If all R iterations have been run, party P; outputs ar and party P outputs bg.

5.3.2 Security

Since P; is the second to receive an output, it is easy to simulate an adversary that corrupts Ps.
If the adversary aborts before ¢*, then it has not obtained any information about the input of
P;. If the adversary aborts at or after ¢*, then in the real execution the honest party P, already
receives the correct output f(z;,y;), and fairness is obtained. Therefore, the protocol is secure
with respect to corrupted P», for any function f.

The case of corrupted P; is more delicate, and defines some requirements from f. Intuitively,
if the adversary aborts before i*, then the outputs of both parties are uncorrelated, and no one
gets any advantage. If the adversary aborts after ¢*, then both parties receive the correct output
and fairness is obtained. The worst case then occurs when P; aborts exactly in iteration ¢*, as
P; has then learned the correct value of f(xz;,y;) while P, has not. Since the simulator has to
give P; the true output if it aborts at ¢*, it sends the trusted party the true input x; in round ¢*.
As a result, P, in the ideal execution learns the correct output f(x;,y;) in round 7*, unlike the
real execution where it outputs a random value f(Z,y;). In [58] , this problem is overcome in a

183



very elegant way: in order to balance this advantage of the honest party in the ideal execution
in case the adversary aborts at ¢*, the simulator chooses a random value & different from the
way it is chosen in the real execution in case the adversary abort before i* (that is, according
to a different distribution than the one the dealer uses in the real execution). The calculations
show that, overall, the output distribution of the honest party is distributed identically in the
real and ideal executions. This balancing is possible only sometimes, and depends on the actual
function f that is being evaluated.

In more detail, in the real execution the dealer before i* chooses b; as f(Z,y;), where &
is chosen according to some distribution X,.q. In the ideal execution, in case the adversary
sends x to the simulated online-dealer, aborts in round ¢ < ¢* upon viewing some a;, the
simulator chooses the input z it sends to the trusted party according to distribution de’g;l.
Then, define Q*% = X 7% . My, the output distribution vector of the honest party P» in this
case. In fact, the protocol and the simulation define the output distribution vectors Q%% , and
simulation is possible only if the corresponding X zig;l exists, which depends on the function f
being computed.

We now present the exact requirements from the output distribution vectors Q*%. In the
proof sketch below, we do not present the simulator nor a full proof of security; we just give a
perception for the reason why the vectors Q*% are defined in such a way. The full proof can

be found in Appendix [C|and [5§].

The output distributions vectors Q*®. Let f: {z1,...,z¢} X {y1,...,ym} — {0,1}. Fix
Xreal, and let Uy denote the uniform distribution over Y. For every = € X, denote by p, the
probability that a; = 1 before :*. Similarly, for every y; € Y, let p,, denote the probability
b; = 1 before i*. That is: p, e Prye vy [f(z,9) = 1], and py, e Pricx,,., [f(Z,y;) = 1]. For
every z € X, a € {0,1}, define the row vectors Q™* = (gy;",...,qy) indexed by y; € Y as
follows:

o0 4t { Py, it f(x,y;)

i Q- Py .
N Py + mayan @) =

a(py;—1) .
1 7 qgj,_l d:ef{ Dy; t (JW Tf fla,y;) = 1(5.3.1)
0 Py, if f(x,y;) =0

If for every € X, a € {0,1}, there exists a probability vector X7 = such that X7;% - My =
Q*® then the simulator succeeds to simulate the protocol. We therefore have the following
theorem:

Theorem 5.3.4 Let f: {x1,...,2¢} X {y1,...,ym} — {0,1} and let My be as above. If there
exist probability vector X,eq and a parameter 0 < o < 1 (where a~! € O(poly(k))), such that
for every x € X, a € {0, 1}, there exists a probability vector de’:al for which:

X0 Mf — Qx,a ,

ideal

then the protocol securely computes f with complete fairness.

Proof Sketch: The full proof, including the case where P, is corrupted, appears in Appendix|[C]
Here, we consider the case where P; is corrupted. Let A be the adversary that corrupts it, and
let S be the simulator mentioned above. Let x be the input the adversary sends to the simulated
Fyealer functionality. We recall that in case the adversary aborts exactly at i*, the simulator

184



S sends the input x to the trusted party, and so both parties receive f(z,y), unlike the real
execution. Moreover, in case the adversary has aborted in round ¢ < #*, upon viewing a in
round ¢, the simulator & chooses input & according to distribution X fd’sal. The full specification
of the simulator appears in the full proof.

We show that the joint distribution of the view of the adversary and the output of the honest
party is distribution identically in the hybrid and the ideal executions. This is done easily in the
case where the adversary aborts some round 7 > ¢* (and thus, both parties receive the correct
output f(z,y)), and is given in the full proof of this theorem. Now, we consider the case where
i < 4*. In the full proof, we show that the view of the adversary until round i (i.e., of the first
i — 1 rounds) is distributed identically in both executions. Thus, all that is left to show is that
the view of the adversary in the last round and the output of the honest party are distributed
identically in both executions, and this is what we show here in this proof sketch. That is, we
show that for every (a,b) € {0,1}2,

Pr [(VIEW}},, OUTPUThyp) = (a,b) | i < i*]

= Pr [(VIEW4es, OUTPUTideal) = (a,b) | i <] (5.3.2)

where (VIEWf]yb7 OUTPUThy) denotes the view of the adversary in round i (i.e., the round where it
has aborted), and the output of the honest party in the hybrid execution. VIEWiid eals OUTPUTideal )

denote the outputs in the ideal execution.

We now show that these probabilities are equal. First, observe that:

Prii=i"|i<i]=a and Prii<i*|i<i']l=1-a.

We now show that Eq. (5.3.2]) holds, by considering all possible values for (a,b).

Case f(x,y) = 0. We compute the probability that the outputs of the parties are (0,0) in
the real execution, when the adversary A aborts in round i < 7*. With probability o, we get that
1 = ¢*. In this case, the output of the adversary Pj is always the correct output 0. On the other
hand, the output of the honest party P» is chosen independently according to RandOuta(y).
With probability 1 — a;, we have that ¢ < ¢*. In this case both parties get uncorrelated values,
chosen according to RandOut; (x), RandOuty(y). Thus, the probability that we get (0,0) is:

Pr [(VIEW}p,, OUTPUThyp) = (0,0) | i <" =a-1-(1—py)+(1—a) (1 —pg)- (1 —py) .

On the other hand, in the ideal execution, with probability «, both parties receive the true
output f(z,y). With probability 1 — a, we have that ¢ < ¢*. Thus, the simulator sends the
adversary the value 0 with probability (1 — p,), and in case it aborts, it chooses the input &
according to distribution )g fd’gal. Since Q%0 = X fd’gal - My, the probability that the honest party
receives 0 is exactly 1—g,’". We therefore have that:

Pr [(VIEWiye,, OUTPUTideal) = (a,b) | i <i*] =a+ (1 —a) (1 —ps) - (1—q.°) .

ideal»

Similarly, we compute the above for all possible outputs (a,b) € {0,1}? and obtain:

185



output (a,b) | real ideal
(0,0) (l-a) (1-ps)- L—py)t+a - (1-py) | (1-a) - 1-p;) (1—g")+a
0,1) | (=) (1=ps)-py+a-py (1—a)-(1—p,)-g°
(1,0) (1= ) pe-(1-py) (1—a) pe-(1-qp")
(1,1) (1—-a) pe "Dy (1—-a) ps- q;l

Therefore, we get the following constraints:

a-py
1—a) (1—pyg)

q;O:py—}_ ( and q;’l =Dy
which are satisfied according to our assumption in the theorem.

Case f(x,y) = 1. This is similar to the previous case. We have:

output (a,b) | real ideal
(0,0) (I—a) (1 —ps) (1—py) (I—=a)-(1-pz) (10—%5’0)
(0,1) (I—a)-(1=p2) py (1—04)-(1—1%)'(151’
(1,0) (1=0a)pe-(I=py)+a-(-py) | (1—0)ps-(1- ")
(1,1) (1—) py-py+oa-py 1—a) ps-qy +a
and we again get the following constraints:
z,0 x,1 o (py — 1)
M= d = .
qy py an Qy Dy + —a) p
However, since X Zl’gal - My = Q*°, the above constraints are satisfied. [ |

An alternative formulation for Theorem is to require that for every x,a, the points
Q%" be in conv({Xy,...,X,}), where X; is the ith row of M. Moreover, observe that in order
to decide whether a function can be computed using the protocol, there are 2¢ linear systems
that should be satisfied, with m constraints each, and with 2¢? variables overall. This criterion
depends heavily on some parameters of the protocols (like p,, pyj) rather than on properties of
the function. We are interested in a simpler and easier way to validate criterion.

5.4 QOur Criteria

5.4.1 Possibility of Full-Dimensional Functions

In this section, we show that any function that defines a full-dimensional geometric object can
be computed using the protocol of [58]. The formal definition for this notion is as follows:

Definition 5.4.1 (full-dimensional function) Let f : {x1,...,z¢} X {y1,...,ym} — {0,1}
be a function, and let X1, ..., X, be the £ rows of My over R™. If dim(aff({X1,..., X,})) =m,
then we say that f is a full-dimensional function.

Recall that for a set of points S = {X1,..., Xy} € R™, if dim(aff(S)) = m then the convex-hull
of the points defines a full-dimensional convex polytope. Thus, intuitively, the simulator has

186



enough power to simulate the protocol. Recall that a basis for an affine space of dimension m has
cardinality m—+1, and thus we must have that £ > m. Thus, we assume without loss of generality
that this holds (and consider the transposed function f7 : {y1,...,ym} x {z1,..., 2.} — {0,1},
defined as f7(y,z) = f(z,y), otherwise). Overall, our property inherently holds only if £ # m.

Alternative Representation

Before we prove that any full-dimensional function can be computed fairly, we give a different
representation for this definition. This strengthens our understanding of this property, and is
also related to the balanced property defined in Chapter [4] We have:

Claim 5.4.2 Let f:{z1,...,2¢} x{y1,...,ym} = {0,1} be a function, let My be as above and
let S ={X1,..., Xy} be the rows of My (£ points in R™). The following are equivalent:

1. The function is right-unbalanced with respect to arbitrary vectors.
That is, for every non-zero q € R™ and any 0 € R it holds that: My - ql' #6-1,.

2. The rows of the matrix do not lie on the same hyperplane.
That is, for every mon-zero q € R™ and any 6 € R, there exists a point X; such that
X; & H(q,0). Alteratively, conv({X1,...,X¢}) € H(q,9).

3. The function is full-dimensional.
There exists a subset of {X1,...,X¢} of cardinality m + 1, that is affinely independent.
Thus, dim(aff ({ X1, ..., Xs})) = m.

Proof:
-1 & =2: By contradiction, if there exists q,d such that My - ql' = 6 - 1,4, then for every
row of the matrix My, it holds that (X;,q) = and so X; € H(q,d). This also implies that
for any point in conv({Xy,...,X,}), the point is in H(q,d). This is because any point in
conv({Xi,...,X}) can be represented as a - My where a is a probability vector, and thus we
have that

(a- Mg, q) :a-Mf-qT:a-cS-lg:(S,

since a is a probability vector and sum-up to 1. We therefore have that conv({Xy,...,X}) C
H(q, d). For the reverse direction, if such H(q, d) exists that contains all the rows of the matrix,
then clearly M - ql' =46 1? in contradiction.

3 = 2: Since the affine dimension of { X7, ..., X;} is m, then it cannot lie in a single hyperplane
(an affine subspace of dimension m — 1). Thus, this implication trivially holds.

2 = 3: We first claim that there exists a subset of m + 1 points S’ = {Xl, ey Xm+1} that does
not lie on the same hyperplane, for any hyperplane. This set can be found iteratively, where
we start with a single point, and add some other distinct point (such must exist otherwise we
found a hyperplane that contains all the points). Then we look for another point that does not
lie on the same line that is defined by the 2 points that we have (again, such must exist from the
same reason as above). We then look for a fourth point that does not lie on the same plane that
contains all the three points that we have, and so on. At the end of this process, we get the set
S = {Xl, e ,Xm+1}, which are m + 1 points that do not lie on the same hyperplane, for any
hyperplane. We now claim that S’ is affinely independent. Take the first m points, which define

187



some hyperplane H(q,d). Since X,,+1 € H(q,d) and since H(q,d) = aff({X1,..., X, }) then
X1 € aff({X1,...,Xn}), and therefore the points X7, ..., X,,+1 are affine independent.

From Alternative 1, checking whether a function is full-dimensional can be done very effi-
ciently. Giving that £ > m, all we have to do is to verify that the only possible solution q to
the linear system My - ql' = Og is the trivial one, and the there is no solution q to the linear
system My - ql = 1£T. This implies that the function is unbalanced for every ¢ € R.

The Proof of Possibility

We now show that any function that is full-dimensional can be computed with complete fair-
ness, using the protocol of [58]. The proof for this Theorem is geometrical. Recall that by
Theorem we need to show that there exists a solution for some set of equations. In our
proof here, we show that such a solution exists without solving the equations explicitly. We
show that all the points @** that the simulator needs (by Theorem are in the convex-hull
of the rows {X1,..., X/}, and therefore there exist probability vectors X;>  as required. We
show this in two steps. First, we show that all the points are very “close” to some point c,
and therefore, all the points are inside the Euclidian ball centered at ¢ for some small radius
€ (defined as B(c,e¢) def {Z € R™ | d(Z,c) < €}). Second, we show that this whole ball is
embedded inside the convex-polytope that is defined by the rows of the function, which implies
that all the points Q%% are in the convex-hull and simulation is possible.

In more detail, fix some distribution X4 for which the point ¢ = (py,, ..., Py,.) = Xrear- My
is inside the convex-hull of the matrix. Then we observe that by adjusting «, all the points Q%
that we need are very “close” to this point c¢. This is because each coordinate qgj’.a is exactly py.
plus some term that is multiplied by a/(1 — «), and therefore we can control its distance from
py, (see Eq. ) In particular, if we choose @ = 1/Ink, then for all sufficiently large x’s
the distance between @ and c is smaller than any constant. Still, for & = 1/In &, the number
of rounds of the protocol is R = a~! - w(Ink) = Ink - w(In k), and thus asymptotically remains
unchanged.

All the points Q% are close to the point c. This implies that they all lie in the m-dimensional
Euclidian ball of some constant radius € > 0 centered at c. Moreover, since the function is of
full-dimension, the convex-hull of the function defines a full-dimensional convex polytope, and
therefore this ball is embedded in this polytope. We prove this by showing that the center of the
ball ¢ is “far” from each facet of the polytope, using the separation theorems of closed convex
sets. As a result, all the points that are “close” to c (i.e., our ball) are still “far” from each
facet of the polytope, and thus they are inside it. As an illustration, consider again the case of
the GHKL function in Figure in the Introduction to t his chapter (where here, the circle
represents the ball and the center of the circle is the point ¢). We conclude that all the points
that the simulator needs are in the convex-hull of the function, and therefore the protocol can
be simulated.

Before we proceed to the full proof formally, we give an additional definition and an impor-
tant claim that will be helpful for our proof. For a set £' C R™ and a point p € R, we define
the distance between p and F' to be the minimal distance between p and a point in F', that is:
d(p, F') = min{d(p,f) | f € F'}. The following claim states that if a point is not on a closed
convex set, then there exists a constant distance between the point and the convex set. We use

188



this claim to show that the point c is far enough from each one of the facets of the polytope
(and therefore the ball centered in ¢ is in the convex). This Claim is a simple implication of
the separation theorems for convex sets, see [93]. We have:

Claim 5.4.3 Let C be a closed convex subset of R™, and let a € R™ such that a & C. Then there
exists a constant € > 0 such that d(a,C) > € (that is, for every Z € C it holds that d(a, Z) > €).

We are now ready for the main theorem of this section:

Theorem 5.4.4 Let f:{x1,...,x¢} X {y1,...,ym} — {0,1} be a Boolean function. If f is of
full-dimension, then f can be computed with complete fairness.

Proof: Since f is full-dimensional, there exists a subset of m + 1 rows that is affinely in-
dependent. Let S = {X1,..., X,,+1} be this subset of rows. We now choose parameters for
the GHKL protocol, such that ¢ will be inside the simplex that is defined by S’. For this, we
can simply define X,y to be the uniform distribution over S’ (the ith position of X,..q; is 0 if
X, ¢S and 1/(m+1) if X; € §"). We also set @« = 1/Ink, and these are all the parameters
that are needed for the real protocol.

Let ¢ = (Py1s---,Pyn) = Xpear - My, the output distribution vector that is correspond
to Xyeqr- Consider the set of points {Q™},cx qeq0,1} that are needed for the simulation as
in Eq. . The next claim shows that all these points are close to ¢, and in the m-dimensional
ball B(c, €) for some small € > 0. That is:

Claim 5.4.5 For every constant € > 0, for every x € X,a € {0,1} , and for all sufficiently
large k’s it holds that:

Q% € B(c,e) .

Proof: Fix e. Since @ = 1/Ink, for every constant § > 0 and for all sufficiently large x’s, it
holds that a/(1 — ) < §. We show that for every x,a, it holds that d(Q®%,c) < ¢, and thus
Q™" € B(c,e¢).

Recall the definition of @*° as in Eq. (5.3.1): If f(z,y;) = 1 then qgj = py,, and thus

Ipy; — qgj] = 0. In case f(x,y;) =1, for § = €(1 — p,)/+/m and for all sufficiently large «’s, it
holds that:
x,0 o pyj [0 1 5 €
@0 = |p, —py, — . < . < - ,
‘pyﬂ By | =P =P T T 0 U—py)| " 1-a (A-ps) = (1—ps)  /m

Therefore, for all sufficiently large x’s, |py, — qgj’.o < €/+/m irrespectively to whether f(x,y;) is

1 or 0. Similarly, for all sufficiently large ’s, it holds that: ’pyj — qu’.l‘ < ¢/4/m. Overall, for
every z € X, a € {0,1} we have that the distance between the points @** and c is:

m . 2 m € 2
:B,
d(@"", c) = Z (qyj _pyj> < Z <m> <e,
and therefore Q™ € B(c,¢). [ |
We now show that this whole ball is embedded inside the simplex of S’. That is:

Claim 5.4.6 There exists a constant € > 0 for which B(c,€) C conv(S’).

189



Proof: Since 8" = {X1,..., X,u+1} is an affinely independent set of cardinality m+1, conv(S’)
is a simplex. Recall that c is a point in the simplex (since it assigns 0 to any row that is not
in S’), and so ¢ € conv(S’). We now show that for every facet of the simplex, there exists a
constant distance between the point ¢ and the facet. Therefore, there exists a small ball around
c that is “far” from each facet of the simplex, and inside the simplex.

For every 1 < i < m + 1, the ith facet of the simplex is the set F; = conv(S’ \ {X;}), i.e.,
the convex set of the vertices of the simplex without the vertex X;. We now show that ¢ & F;,
and therefore, using Claim c is e-far from Fj;, for some small € > 0.

In order to show that ¢ ¢ F;, we show that ¢ ¢ H(q,d), where H(q,d) is a hyperplane
that contains F;. That is, let H(q,d) be the unique hyperplane that contains all the points
S\ {X;} (these are m affinely independent points and therefore there is a unique hyperplane
that contains all of them). Recall that X; ¢ H(q,d) (otherwise, S’ is affinely dependent).
Observe that F; = conv (S’ \ {X;}) C H(q,0), since each point X; is in the hyperplane, and
the hyperplane is an affine set. We now show that since X; ¢ H(q, ), then ¢ € H(q,d) and
therefore ¢ & Fj.

Assume by contradiction that ¢ € H(q,d). We can write:

m+1
1 1 1 1 m
0= = E —X; = — (X, 75 X, q) = ——(X;, .
(c,q> < m+ 1 J’q> m—l—l< q>—i_m—i—l < ]q> m—f—l< q>—i_m—i—l

7j=1 J#

and so, (X;,q) = J, which implies that X; € H(q,d), in contradiction.

Since ¢ € F;, and since Fj is a closedE| convex, we can apply Claim to get the existence
of a constant ¢; > 0 such that d(c, F}) > ¢;.

Now, let F1,..., Fi41 be the facets of the simplex. We get the existence of €1, ..., €y for
each facet as above. Let € = min{ey, ..., €,+1}/2, and so for every ¢, we have: d(c, F;) > 2e.

Consider the ball B(c,¢€). We show that any point in this ball is of distance at least e from
each facet F;. Formally, for every b € B(c,¢), for every facet F; it holds that: d(b, F;) > e.
This can be easily derived from the triangle inequality, where for every b € B(c,€/2):

d(c,b) +d(b, F}) > d(c, F}) > 2,

and so d(b, F;) > € since d(b,c) < e.
Overall, all the points b € B(c,¢€) are of distance at least € from each facet of the simplex,
and inside the simplex. This shows that B(c,e¢) C conv(S’). [ |
In conclusion, there exists a constant € > 0 for which it holds that B(c,e) C conv(S’) C
conv({Xy,...,Xy}). Moreover, for all x € X,a € {0,1} and for all sufficiently large «’s, it
holds that Q®* € B(c,€). Therefore, the requirements of Theorem are satisfied, and the
protocol securely computes f with complete fairness. [ |

On the Number of Full-Dimensional Functions

We count the number of functions that are full dimensional. Recall that a function with
|X| = |Y| cannot be full-dimensional, and we consider only functions where | X| # |Y'|. Interest-

2The convex-hull of a finite set S of vectors in R™ is a compact set, and therefore is closed (see [93, Theo-
rem 15.4]).

190



ingly, the probability that a random function with distinct domain sizes is full-dimensional tends
to 1 when |X|,|Y| grow. Thus, almost always, a random function with distinct domain sizes
can be computed with complete fairness(!). The answer to the frequency of full-dimensional
functions within the class of Boolean functions with distinct sizes relates to a beautiful problem
in combinatorics and linear algebra, that has received careful attention: Estimating the proba-
bility that a random Boolean matrix of size m x m is singular. Denote this probability by P,,.
The answer to our question is 1 — P,,, and is even larger when the difference between |X| and
Y| increases (see Claim below).

The value of P, is conjectured to be (1/2 4 o(1))™. Recent results [72, 68, 98] are getting
closer to this conjecture by showing that P, < (1/v/2+40(1))™, which is roughly the probability
to have two identical or compliments rows or columns. Observe that this is a negligible function.
Since our results hold only for the case of finite domain, it is noteworthy that P,, is small already
for very small dimensions m. For instance, Pig < 0.29, Pi5 < 0.047 and P3g < 1.6 - 1076 (and
so > 99.999% of the 31 x 30 functions can be computed fairly). See more experimental results
in [96]. The following Claim is based on [10I), Corollary 14]:

Claim 5.4.7 With a probability that tends to 1 when |X|,|Y| grow, a random function with
| X| # Y| is full-dimensional.

Proof: Our question is equivalent to the following: What is the probability that the convex-hull
of m+ 1 (or even more) random 0/1-points in R™ is an m-dimensional simplex?

Recall that P,, denotes the probability that a random m vectors of size m are linearly
dependent. Then, the answer to our question is simply 1 — P,,,. This is because with very high
probability our m 4+ 1 points will be distinct, we can choose the first point X; arbitrarily, and
the rest of the points S = {Xa, ..., X;y41} uniformly at random. With probability 1 — P,,, the
set S is linearly independent, and so it linearly spans Xi. It is easy to see that this implies that
{X9— Xy,..., X;n41 — X1} is a linearly independent set, and thus {Xi,..., X;41} is affinely-
independent set. Overall, a random set { X1, ..., X,,+1} is affinely independent with probability
1— P, [ |

5.4.2 Functions that Are Not Full-Dimensional

A Negative Result

We now consider the case where the functions are not full-dimensional. This includes the limited
number of functions for which |X|# |Y], and all functions with |X|=|Y]|. In particular, for
a function that is not full-dimensional, all the rows of the function lie in some hyperplane
(a (m—1)-dimensional subspace of R™), and all the columns of the matrix lie in a different
hyperplane (in R). We show that under additional requirements, the protocol of [58] cannot be
simulated for any choice of parameters, with respect to the specific simulation strategy defined
in the proof of Theorem
We have the following Theorem:

Theorem 5.4.8 Let f, My, {X1,..., X} be as above, and let {Y1,...,Y,,} be the columns of
My. Assume that the function is not full-dimensional, that is, there exist non-zero p € R?,
q € R™ and some §1,02 € R such that:

Xl,...,XKEH(q,((iQ) and le,...,YmG/H(p,(Sl) .

191



Assume that, in addition, 0,1y & H(p, 1) and Oy, 1, & H(q,02). Then the function f cannot
be computed using the GHKL protocol, for any choice of parameters (o, X eqr), with respect to
the specific simulation strategy used in Theorem [5.5.4)

Proof: We first consider the protocol where P; plays the party that inputs z € X and P»
inputs y € Y (that is, P, is the second to receive output, exactly as GHKL protocol is described
in Section . Fix any X,eq, o, and let ¢ = (py,,...,Dy,) = Xreat - My. First, observe that
conv({X1,...,Xs}) € H(q,d2), since for any point Z € conv({Xi,...,X,}), we can represent
Z as a- My for some probability vector a. Then we have that (Z,q) = (a-My,q) = a-d2-1p = 2
and so Z € H(q, d2). Now, assume by contradiction that the set of equations is satisfied. This
implies that Q™% € H(q, d2) for every x € X, a € {0, 1}, since Q% € conv({Xy,...,Xs}) C
H(q, 52) .

Let o denote the entrywise product over R™, that is, for Z = (z1,...,2m), W = (w1, ..., wpn),
the point Z o W is defined as (21 - wi,...,2m - Wm). Recall that ¢ = (py,,...,Dy,, ). We claim
that for every X;, the point c o X; is also in the hyperplane H(q, d2). This trivially holds if
X; = 1,,. Otherwise, recall the definition of Q%" (Eq. ):

g&i0 def | Py; e if f(ai,y;) =1
v Py + Ty f(@y) =0 7
Since X; # 1,,, it holds that p,, # 1. Let v = (1_(1)?‘71_%) We can write @%° as follows:

Q™ =(1+7)-c—7y-(coX) .
Since for every 4, the point Q% is in the hyperplane #(q, d2), we have:

52 = (Q"°,q) = (147)-c—v-(coXy),q) = (147)-(c,q) —y-(coXi,q) = (1+7)-62—7-(coX;,q)

and thus, (c o X;,q) = d2 which implies that ¢ o X; € H(q, d2).

We conclude that all the points (coX7),...,(coXy) are in the hyperplane H(q, d2). Since all
the points Y1, ..., Y, are in H(p, 61), it holds that p- My = 61 - 1,,. Thus, Zle pi- X; =011,
which implies that:

ZE:Pi'sz = zézpz"<COXi,q>=<zejpi'(COXi)aQ>=<Co(ze:pi'Xi),Q>:<CO(51'1m)7Q>
i=1 i=1 i=1 i=1
= 01-(c,q) =61 -02

and thus it must hold that either Zle p; = 01 or 2 = 0, which implies that 1 € H(p,d;) or
0 € H(q,d2), in contradiction to the additional requirements.

The above shows that the protocol does not hold when the P party is the first to receive
output. We can change the roles and let P» be the first to receive an output (that is, we can use
the protocol to compute fT). In such a case, we will get that it must hold that > " ¢; = 02 or
91 = 0, again, in contradiction to the assumptions that 1 ¢ #(q,d2) and 0 & H(p, d1). [ |

This negative result does not rule out the possibility of these functions using some other
protocol. However, it rules out the only known possibility result that we have for fairness.
Moreover, incorporating this with the characterization of coin-tossing (Chapter , there exists

192



a large set of functions for which the only possibility result does not hold, and the only impos-
sibility result does not hold either. Moreover, this class of functions shares a similar (but yet
distinct) algebraic structure with the class of functions that implies fair coin-tossing. See more
in Subsection (.4.3]

A possible generalization of [58]. In Section we generalized the protocol such that the
algorithm RandOutz(y) chooses Z according to some distribution X, and not just uniformly
at random as in [58]. Similarly, we could have generalized the protocol for the RandOut;(x)
algorithm as well, while defining some distribution Y., and parameterized the protocol with
this additional distribution (in the same sense as we parameterized X,..,;). By using this modifi-
cation, the protocol may potentially compute more functions. However, by a simple adjustment
of the proof of Theorem as long as Y,y is “valid” (in a sense that p,, = 1 if and only
if X; =1,, and p;, = 0 if and only if X; = 0,,, otherwise the output distribution vectors *¢
are not well-defined), this generalization does not help, and the negative result holds for this
generalization also.

Our theorem does not hold in cases where either 0, € H(p, d1) or 1, € H(p, 1) (likewise, for
H(q,d2)). These two requirements are in some sense equivalent. This is because the alphabet is
not significant, and we can switch between the two symbols 0 and 1. Thus, if for some function
f the hyperplane H(p,d1) passes through the origin 0, the corresponding hyperplane for the
function f(x,y)=1—f(x,y) passes through 1 and vice versa. Feasibility of fairness for f and f
is equivalent.

On the Number of Functions that Satisfy the Additional Requirements

We now count on the number of functions with |X| = |Y'| that satisfy these additional require-
ments, that is, define hyperplanes that do not pass through the origin 0 and the point 1. As we
have seen in Theorem these functions cannot be computed with complete fairness using
the protocol of [58]. As we will see, only a negligible amount of functions with |X| = |Y| do
not satisfy these additional requirements. Thus, our characterization of [58] is almost tight:
Almost all functions with |X| # |Y| can be computed fairly, whereas almost all functions with
|X| = |Y| cannot be computed using the protocol of [58]. We have the following Claim:

Claim 5.4.9 With a probability that tends to 0 when |X|,|Y| grow, a random function with
| X| = |Y| defines hyperplanes that pass through the points O or 1.

Proof: Let m = |X| = |Y|. Recall that P,, denotes the probability that random m vectors
of size m are linearly dependent. Moreover, by Claim [5.4.7] the probability that a random set
{X1,..., X;m+1} is affinely independent with probability 1 — P,,, even when one of the points
is chosen arbitrarily.

Thus, with probability P,,, the set {X,..., X,,, 1} where X1,..., X,, are chosen at random
is affinely dependent. In this case, the hyperplane defined by { X1, ..., X,,} contains the point 1.
Similarly, the set {X1,..., X, 0} is affinely dependent with the same probability P,,. Overall,
using union-bound, the probability that the hyperplane of random points X1, ..., X, contains
the points 1 or 0 is less than or equal to 2 - P,,. From similar arguments, the probability that
the hyperplane that is defined by the columns of the matrix contains either 1 or 0 is 2 P,,, and
therefore the overall probability is 4 - Py,. [ |

193



Functions with Monochromatic Input

We consider a limited case where the above requirements do not satisfy, that is, functions
that are not full-dimensional but define hyperplanes that pass through O or 1. For this set of
functions, the negative result does not apply. We now show that for some subset in this class,
fairness is possible. Our result here does not cover all functions in this subclass.

Assume that a function contains a “monochromatic input”, that is, one party has an input
that causes the same output irrespectively to the input of the other party. For instance, P> has
input y; such that for every z € X: f(x,y;) = 1. In this case, the point 1, is one of the columns
of the matrix, and therefore, the hyperplane H(p, d;) must pass through it. We show that in
this case we can ignore this input and consider the “projected” m x (m — 1) function f’ where
we remove the input y;. This latter function may now be full-dimensional, and the existence of
a protocol for f’ implies the existence of a protocol for f. Intuitively, this is because when P,
uses y;, the real-world adversary P cannot bias its output since it is always 1. We have:

Claim 5.4.10 Let f: X xY — {0,1}, and assume that My contains the all-one (resp. all-zero)
column. That is, there exists y € Y such that for every & € X, f(z,y) =1 (resp. f(Z,y) =0).

If the function f': X xY' — {0,1}, where Y/ =Y \ {y} is full-dimensional, then f can be
computed with complete-fairness.

Proof: Assume that the function contains the all one column, and that it is obtained by
input y,, (i.e., the mth column is the all-one column). Let Xi,...,X,, be the rows of My, and
let X! be the rows over R™~! without the last coordinate, that is, X; = (X/,1). Consider the
“projected” function f": {z1,...,Zm}x{y1,. .., Ym-1} — {0,1} be defined as f'(z,y) = f(x,y),
for every x,y in the range (we just remove y,, from the possible inputs of ). The rows of My
are X1,...,X},.

Now, since f’ is of full-dimensional, the function f’ can be computed using the GHKL
protocol. Let de:al be the solutions for equations of Theorem for the function f’. It can
be easily verified that X},  are the solutions for equations for the f function as well, since for
every x, a, the first m — 1 coordinates of Q%% are the same as f’, and the last coordinate of Q**

is always 1. For QY it holds immediately, for Q%! observe that Dy, = 1 no matter what X4
is, and thus p,; + % =1+ 0=1). Therefore, X;;%  are the solutions for f as well, and
Theorem [5.3.4{ follows for f as well. [ |

The above implies an interesting criterion that is easy to verify:

Proposition 5.4.11 Let f: {x1,...,zn} X {y1,.- ., ym} — {0,1} be a function. Assume that
f contains the all-one column, and that My is of full rank. Then the function f can be computed

with complete fairness.

Proof: Let Xi,...,X,, be the rows of My, and assume that the all-one column is the last
one (i.e., input y,,). Consider the points X],..., X/, in R™~! where for every i, X; = (X/,1)
(i-e., X] is the first m — 1 coordinates of X;). Since My is of full-rank, the rows Xy, ..., X, are
linearly independent, which implies that m points X/,..., X/ in R™~! are affinely independent.

We therefore can apply Claim [5.4.10| and fairness in f is possible. [ |

Finally, from simple symmetric properties, almost always a random matrix that contains
the all one row / vector is of full rank, in the sense that we have seen in Claims and
Therefore, almost always a random function that contains a monochromatic input can be com-
puted with complete fairness.

194



Functions with no embedded XOR. [58] presents a totally different and simpler protocol
for handling functions that do not contain an embedded XOR (i.e., the Boolean AND/OR
functions, and the greater-than function). An immediate Corollary from Proposition is
that all the functions that can be computed using this simpler protocol, can also be computed
using the second generalized protocol. This is because all functions that do not contain an
embedded XOR (or their complement function) have both full-rank and monochromatic input,
and therefore can be computed using the generalized protocol by Proposition [5.4.11} This shows
that indeed, the only known possibility result that we have for fairness is Protocol

However, this first totally different protocol gives an answer to an interesting question re-
garding the round-complexity of fair protocols. In particular, [58] gives a lower bound of w(log k)
for the round complexity of protocol for computing functions that contain embedded XOR. The
simpler protocol for handling functions with no embedded XOR has round complexity that is
linear in | X|, |Y| and is independent of the security parameter .

5.4.3 Conclusion: Symmetric Boolean Functions with Finite Domain

We overview all the known results in complete fairness for symmetric Boolean functions with
finite domain, and we link our results to the balanced property of Chapter [

The Characterization

A full-dimensional function is an important special case of this unbalanced property, as was
pointed out in Claim [5.4.2] Combining the above characterization of Chapter [4 with this
chapter, we get the following Theorem:

Theorem 5.4.12 Let f: {x1,...,x¢} x{y1,...,ym} — {0,1}, and let My be the corresponding
matriz representing f as above. Then:
1. Balanced with respect to probability vectors (Chapter [4):
If there exist probability vectors p = (p1,-..,0¢), 4= (q1,---,qm) and a constant 0 < 6 < 1
such that: p-M;=45-1, and Mf.qT:(S.l?.

Then, the function f implies fair coin-tossing, and is impossible to compute fairly.
2. Balanced with respect to arbitrary vectors, but not balanced with respect to
probability vectors:
If there exist two non-zero vectors p = (p1,...,p¢) € R, q = (q1,...,qm) € R™, 61,62 €
R, such that: p-M;=6-1, and My - qT — 5y 1{
then we say that the function is balanced with respect to arbitrary vectors. Then, the func-
tion does not (information-theoretically) imply fair-coin tossing (Corollary . More-
over:
(a) If 61 and d2 are non-zero, Zle pi # 01 and Y ;" qi # 02, then the function f cannot
be computed using the GHKL protocol (Theorem .
(b) Otherwise: this case is left not characterized. For a subset of this subclass, we show
possibility (Proposition [5.4.10).
3. Unbalanced with respect to arbitrary vectors:
If for every non-zerop = (p1,...,p¢) € RY and any §; € R it holds that p-My # 01-1,,, OR
for every non-zero q = (q1,...,qm) € R™ and any d2 € R it holds that My - q # 02 - 17,
then f can be computed with complete fairness (Theorem .

195



We remark that, in general, if | X| # |Y| then almost always a random function is in subclass
Moreover, if | X| = |Y'|, then only a negligible amount of functions are in subclass and thus
only a negligible amount of functions are left not characterized.

If a function is balanced with respect to arbitrary vectors (i.e., the vector may contain
negative values), then all the rows of the function lie in the hyperplane #(q,d2), and all the
columns lie in the hyperplane #H(p,d1). Observe that 6; = 0 if and only if H(p,d1) passes
through the origin, and Zle p; = 61 if and only if H(p,d1) passes through the all one point
1. Thus, the requirements of subclass [2a] are a different formalization of the requirements
of Theorem Likewise, the requirements of subclass [3| are a different formalization of
Theorem as was proven in Claim [5.4.2

Examples

We give a few examples for interesting functions and practical tasks that can be computed with
complete-fairness.

e Set membership. Assume some finite possible elements €2, and consider the task of set-
membership: P; holds S C Q, P, holds some elements w € €2, and the parties wish to find out
(privately) whether w € S. The number of possible inputs for P; is ||, whereas the number
of possible inputs for P, is |P(€2)| = 2/’l, and the truth table for this function contains all
possible Boolean vectors of length-|Q2| (see Figure for the case of Q = {a,b}).

e Private evaluation of Boolean function. Let F = {g | g : @ — {0,1}} be the family
of all Boolean functions with || inputs. Assume that P; holds some function g € F and P»
holds some input y € Q. The parties wish to privately learn ¢g(y). This task has the exact
same truth-table as the set-membership functionality, i.e., it contains all possible Boolean
vectors of length-|Q| (in this case, each vector represents a possible function g).

e Private matchmaking. Assume that P; holds some set of preferences, while P» holds a
profile. The parties wish to learn (privately) whether there is a matching between them.
In fact, this task is a special case of the subset-equal functionality. that is, P, holds some
A CQ, P, holds B C €, and the parties wish to learn whether A C B. Although the possible
inputs for both parties is 21l (i.e., |X| = |Y]), the truth-table for this functionality satisfies
Proposition [5.4.11 contains monochromatic row and can be computed using the protocol.

See Figure [5.3]

e Set disjointness. The set-disjointness is another functionality that is feasible although
|X| = Y|, and is defined as follows: P; holds A C €, P, holds B C (Q, and the parties
learn whether AN B = (). In fact, the possibility of this function is easily derived from the
possibility of A C B, using the following observation:

ANB=0) < ACB

196



{o} {b} {a,b}

a b 0
O [0 0 o |1 1 1 1
{a} |1 0 {fa} |0 1 0 1
w01 o oo 1 1
{a,b} |1 1 {a,b} |0 0O 0 1
(a) The set-membership functionality (b) The functionality A C B

Figure 5.3: The set-membership and A C B functionalities with Q = {a, b}

5.5 Extensions: Asymmetric Functions and Non-Binary Out-
puts

5.5.1 Asymmetric Functions

We now move to a richer class of functions, and consider asymmetric Boolean functions where the
parties do not necessarily get the same output. We consider functions f(z,y) = (f1(z,y), f2(z,y)),
where each f;, i € {1,2} is defined as: f; : {z1,..., 20} X {y1,...,ym} — {0,1}. Interestingly,
our result here shows that if the function f> is of full-dimension, then f can be computed fairly,
irrespectively to the function f;. This is because simulating P; is more challenging (because it
is the first to receive an output) and the simulator needs to assume the rich description of fo
in order to be able to bias the output of the honest party P». On the other hand, since P; is
the second to receive an output, simulating P, is easy and the simulator does not need to bias
the output of P;.

The protocol. We first revise the protocol of [58]. The RandOut;(x) algorithm is changed
such the function that is being evaluated is f1, and the algorithm RandOuty(y) is modified such
that the function that is being evaluated is fo. Step 2.2.b in the Fyeaer functionality (Func-
tionality is modified such that each party receives an output according to its respective
output, that is:

Step 2.2.b: For i =1i* to R: set (a;,b;) = (fi(x,y), fa(z,y)).

Analysis. The proof for the case where P, follows exactly along the lines of the proof of
Claim|[C.1.1] We now turn to corrupted P;. Here, we again define the probability p, for every = €
X as Pryepy [f1(2,9) = 1]. Then, for every y; € Y, we define p,, = Prz. x,.,, [f2(Z,9;) = 1].
This time, (py,;- - -, Pym) = Xreat - M,, where My, represents the function fo.

The case where P; is corrupted is very similar to the symmetric case; however, the constraints
and the vectors Q™® are different. Using the same calculations as the symmetric case, we get

the following vectors Q0 = (¢&°, ..., ¢%0%) and Q™! = (¢&, ..., ¢ib):
a-py; .
Py, + iy i (@) =(0,0)
a-(py. — .
gr0 %y Py T Tyt f@y) =01 7
’ py] lf f(xvyj) = (LO)
Dy if f(z,y;)=(1,1)

197



Py, if f(z,y;) = (

21 def Dy, apy if f( )= (

qyj - pyj + ﬁ lf f([]j,yj) - (

a(py;—1) :

Py; + Ty if f(z,y;) = (

Observe that if fi(z;,y;) = 0 it implies that p,, # 1, and therefore Q% is well-defined (i.e.,

pz; = 1 if and only of the row X is the all one row). Similarly, if fi(zs,y;) = 1 it implies that
pz; # 0, and therefore Q! is well-defined. Overall, we get:

Theorem 5.5.1 Let f: {x1,...,z¢} X {y1,...,ym} — {0,1} x {0,1}, where f = (f1, f2). Let
My, be the matriz that represents fa. If there exist Xyeqr, 0 < o < 1 such that a~! e O(poly(k)),
such that for every x € X, a € {0,1}, there exists a probability vector X l such that:

deeal Mf2 - Q%a )
then Protocol[5.3.3 securely computes f with complete fairness.

Proof: The case of P is corrupted follows exactly the same as the case in the proof of
Theorem All that is left is just what are the requirements from f(x,y;) in each one of
the possible outputs (0,0), (0,1),(1,0),(1,1). The cases of (0,0) and (1,1) are exactly the same
as in the proof of Theorem where the case of (0,0) corresponds to the symmetric case of
f(z,y;) = 0, and the case of (1,1) corresponds to the symmetric case f(x,y;) = 1. This defines
the following requirements (exactly as Equation :

. o —1
g [P, @O e o G ) = 0,0
v Py + sy I S(@y) = (0,00 Py, if f(z,y;) = (0,0)

We now turn to the cases where the outputs are distinct.

The case where f(x,y;) = (0,1). That is, we consider the case where fi(z,y;) = 0,
whereas fa(z,y;) = 1. We get the following four possibilities:

output (a,b) | REAL IDEAL
(0,0) 1-a)- (1—ps) - (I—py)+a-1-p) | (1—a)-1—ps)(1—gq")
(0,1) (1—a) - (1 =ps) py+a-p, 1-a) - (1-ps) g’ +a
(1,0) (1—a) pa-(1—py) (1—0a) pa-(1—gy")
(1,1) (1-a) ps- Dy (1_0‘)']91"];’1

The only difference from the case of f(z,y;) = (0,0) is that in the ideal execution, the +o is
obtained in the second row instead of the first row. The probabilities are equal if and only if
the following hold:

a-(py—1)
1—a) (1 —pg)

G = p+ 7 and g =p,

The case where f(x,y) = (1,0). Similarly to the above, we obtain:

198



output (a,b) | REAL IDEAL
(0,0) (1—a) (1 =pz) (1 —py) (1-a) (1—pa) - (1—qy”)
(O>1) (1_a)'(1_px)'py (1_a)'(1_pz)'QZ’O
(1,0) 1=a) pe-(I—py)+a-1=p) | (1—a)p.-(1—gy')+a
(1,1) (I—a)-pz-py+a-py (1-a) ps-q'

The only difference from the case of f(z,y;) = (1,1) is that in the ideal execution, the +« is
obtained in the second row instead of the fourth row, which result in the following constraints:

;" =py and gpl=p,+ (l—oa)y.pm '

Similarly to the case of single output, the above implies that:

Corollary 5.5.2 Let f : {z1,...,z¢} X {y1,...,ym} — {0,1} x {0,1}, where f = (f1, f2). If
fo is a full-dimensional function, then f can be computed with complete fairness.

Proof: It is easy to see that for every constant € > 0, for every € X and a € {0, 1}, and for
all sufficiently large «’s, it holds that Q" € B(c,€), where ¢ = (py,,...,Dy, ). As we saw, in
case fo is of full-dimension, we can embed c inside the convex and there exists a constant € > 0
such that B(c,e) C conv({X{m7 . ,XéQ)}), where Xi(2) is the ith row of fy. The corollary
follows. [

5.5.2 Functions with Non-Binary Output

Until now, all the known possibility results for fairness dealt with the case of binary output.
We now extend the results to the case of non-binary output. Let ¥ = {0,...,k — 1} be an
alphabet for some finite £ > 0 (the alphabet may be arbitrary, we use [0, k — 1] for the sake of
convenience), and consider functions f: {z1,...,z¢} X {y1,.. ., ym} — =.

The protocol is exactly the GHKL protocol presented in Section [5.3] where here a;, b; are
elements in ¥ and not just bits. We just turn to the analysis. The proof of corrupted P> again
follows along the lines of the proof of Claim The difficult part is corrupted P;. Again, all
the claims follow exactly in the same way and we just need to compare the output distributions
of the parties in case the adversary aborts before or at i*. We analyze this in the following.

Fix some X,..q;, and let Uy denote the uniform distribution over Y. For any symbol o € X,
and for every z € X, denote by p,(c) the probability that RandOuti(z) is o. Similarly, for
every y; € Y, let p,. (o) denote the probability that the output of RandOuta(y;) is 0. That is:

def ~ def N
pel0) = Pr [f(@.5) =0l and py(0) = B [f(&,y;) =0l .
Observe that ) v pe(0) =1 and ) xpy (o) =1.
For every o € 3, we want to present the vector (py, (0),...,py,,(0)) as a function of X,¢q

and My, as we did in the binary case (where there we just had: (py,,...,DPy,) = Xreat - My).
However, here it is a bit more complicated than the binary case. Therefore, for any o € X, we
define the binary matrix M7 as follows:

- 1 if f(z,y) =0
Ma’ — v ]
f(l’]) { 0 otherwise

199



Then, for every o € ¥, it holds that (py, (0),...,py,,(0)) = Xyear- M7 . Moreover, it holds that:
Y oes M]‘Z = Jyxm, where Jyy,, is the all one matrix with sizes £ X m. In the binary case, My
is in fact M }, and there was no need to consider the matrix M}), for a reason that we will see
below (intuitively, since in the binary case, py,(0) + py, (1) = 1).

The output distribution vectors. Similarly as in the binary case, in case the adversary

sends z to the simulated Fyesler and aborts in round ¢ < ¢* upon receiving some symbol a € X,

the simulator chooses its input # according to some distribution Xf;l’g’al. For each such a vector

X5 we define |X| points Q%(o1),...,Q%%(o) in R™, where each vector Q%%(b) (for b € )

ideal’
is obtained by: Q™*(b) = X;i%, - M}.
For a given x € X,y; € Y and a,b € ¥, we define the requirements from each vector

Q™ (b) = (qy;"(b), - .., gy (b)). We have:

a (py; (0)-1) .
py; (0) + 725 - pyéz(a) if f(z,yj)=a=0
T,a def (b )
'O = by, )+t e i fley) =a b (5.5.1)
Py; (0) if f(z,y;)#a

We then require that for the same distribution X7, it holds that X;;%, - M} = Q™%(b) for

ideal
every b € ¥, simultaneously. We have the following Theorem:

Theorem 5.5.3 Let f : {x1,...,2¢} X {y1,...,ym} — X be a function. If there exists a
parameter 0 < a < 1, a=! € O(poly(k)) and a distribution X,eq, such that for every x € X,
for every a € ¥ and for every b € ¥, it holds that:

Xpo - My =@Q"(b)

Then the function f can be computed with complete fairness.

Proof: The simulator for P; is exactly the same as in Theorem [5.3.4] All that is left is to show
that the outputs are distributed identically in case the adversary aborts before or at ¢*.

The real execution. We now consider the output distribution where the adversary halts in
round ¢ for which ¢ < ¢*. In such a case, both parties output independent outputs according
to RandOut; (z) and RandOuts(y;), where (z,y;) are the inputs sent to the Fyealer. As a result,
they receive output (a,b) with probability (1—a)-pz(a)-py,(b), where (1 — ) is the probability
that i < i* given that i < i*. In case ¢ = ¢* (which given ¢ < ¢*, it happens with probability
), the adversary P; learns the correct output f(z,y;), whereas P gets an output according to
RandOuts(y;). Overall, we have that:

Pr [(VIEW}},, OUTPUThyp) = (a,b) | i < i*]

(1-0)-pola)-pyy () 40 1-py,(0)  if flay) =a=b
= 3 (1-) pol@) py,(0) +a-1op, () if flay) =a A
(1= ) pa(a) -y, (B) it f(,y;) # a

(We differentiate between the first two cases although they are equal here, since they are different
in the ideal.)

200



The ideal execution. In case the adversary aborts at ¢*, the simulator sends the true input
x to the trusted party and both parties receive the correct output f(z,y;). On the other hand,
in case the adversary aborts in round ¢ < ¢* after sending some z € X to the simulated Fyealer
and upon receiving a symbol a € ¥, the simulator chooses an input & according to distribution
Xﬁl’:al, and the output of the honest party is determined accordingly, where we denote by qz"fj’.a(b)

the probability that the output of the honest party P is b in this case. Therefore, we have that:

Pr [(VIEW(gey, OUTPUTigeal) = (a,b) | i < i*]
(1—a) ps(a) gy (b) + o if f(z,y;) =a=0
= { (1—a) ps(a)- g (D) if f(z,y;) =a#b
)

(1 —a)-pa(a) - gy" (b

Therefore, if Eq. (5.5.1)) holds, then we have for every (a,b) € %

Pr [(VIEW},},, OUTPUThyp) = (a,b) | i < i*] = Pr [(VIEW}4e,, OUTPUTigeal) = (a,b) | i <i*] .

ideal»

This, combining with the rest of the proof of Theorem shows that the protocol can be
simulated.

Relaxing the requirements. In the above Theorem, for the same distribution X% it is
required that X

things much harder, smce it involves convex combinations with the same coefficients (X%

= @Q%%(b) for every b € ¥ simultaneously. This requirement makes
) of
different convex—hulls M}”, ey M}”“ We therefore want to encode all the requirements together

zdeal

for the same X>% .. We do it in two steps. First, we show that it it is enough to consider equality

zdeal
with respect to || — 1 symbols in the alphabet, and the last one is a simple derivation of the
others (this also explains why in the binary case, we did not consider the matrix M?) Next,

we show hot to encode all the requirements together into a single system.

Claim 5.5.4 Let f, be as above and let 0 € X be arbitrary. Then, if there exists 0 < a < 1
(such that a=' € O(poly(k)), distribution X,.q such that for every x € X, for every a € ¥ and
for every b e ¥\ {0}

Xigear” Mf = Q(b)

ideal

then it holds that X% MJ‘Z = Q%% o) as well and thus f can be computed with complete

ideal
fairness.

Proof: Fix g, a, X,¢q and assume that for every x € X, a € X there exists XZi’Zal as above. We

now show that the X 7% - M7 = Q%*(o). The key observation is that the sum of all matrices

Y obes Mf is Jyxm (the all-one matrix). Moreover, for every z, a, it holds that ), Q**(b) = 1,,
This can is derived by analyzing each coordinate quﬁa separately as follows:

e Case 1: f(z,y;) # a. In this case, g;}"(b) = py, (b) for every b € ¥. Therefore,
Doapt) = py, ) =
bew bes

201



e Case 2: f(x,y;j) = a. In this case, for every b # a, we have that:

x,a _ « . Pyj (b)
4" O =ru O+ T @

Observe that ;. py, (b) = 1—py,(a) (since they all sum-up to 1), and therefore we have:

T,a _ _ a « . 1 — Dy; (a)
2= 0@ ey

(py;(a)-1)
pa(a)

On the other hand, for b = a we have: ¢y“(a) = py,(a) + (1f‘a) , and thus:

D aptd) = qp(a) + Y ap(d)

bex ba

- <pyj(a)+( a .(pyﬂ'(a)1)>+<(1—pyj(a))+( - -1pyj(a)>:1.

1—a) pz(a) 1—a) pz(a)

Therefore, we can conclude that for every z,a it holds that: Q™%(0) = 1 — >, @™*(D).
Thus, we conclude:

X M = Xt (o — 3 M) = o X MY = 10— Y Q50 = Q7o)
b#o b#o b#o

and the claim follows. B

Encoding the requirements together. Let My denote the £ x (|X| — 1) - m binary matrix
defined as the concatenation of M{'||... HM}I'“”. Let @™ be the (|X| — 1) - m vector which is
a concatenation of Q7 = (Q**(01),...,RQ"%(0k—1)). Then we have that:

Corollary 5.5.5 Let f:{z1,...,x¢} x{y1,...,ym} = X, Ms, Q™" be as above. If there exists
a parameter 0 < a < 1 (for which a=! € O(poly(r)), and a distribution X,cq;, such that for
every x € X, for every a € ¥ it holds that:

xT,a _ s
Xideal ’ Mf - Qma ’
then the function f can be computed with complete fairness.

As a result, if the rows of the matrix M; define a full-dimensional object (this time, in
Rex(m*l)'m), then the function can be computed fairly.

Corollary 5.5.6 Let My be an € x ((|X| — 1) - m) matriz as above and let Xq,..., X, be the
rows of Mg. If there exists a subset of cardinality (|| —1)-m + 1 of {X1,..., X} that is
affinely-independent, then f can be computed with complete fairness.

Proof: Let s = (|X| — 1) -m. Fix a = 1/In(k) and let X,y be the uniform distribution over
the affinely independent rows in My (and assigns 0 to the others, if they exist). Similarly to the
binary case, we observe that all the points @*® (this time - points in R® and not R™) are in the
Euclidian ball B(c,¢€), where ¢ = X,¢q - My. Moreover, since conv({Xi,...,X,}) defines an
s-dimensional simplex in R®, the ball B(c,¢) is inside it, and therefore there exist probability
vectors X ;% | as above. [

202



Alternative representation. We now write the above in a different form. Giving a function
f: X xY = %, let p € ¥ be arbitrarily, and define ¥, = ¥\ {p}. Define the Boolean function
i X xY* —{0,1}, where Y> = {y7 ly; € Y,0 € X}, as follows:

1 if f(z,y;) =0
! ) = 19
Fa ) { 0 otherwise
Observe that |[Y>¢| = (|X| — 1) - |Y]. It is easy to see that if f is full-dimensional, then the
function f can be computed with complete-fairness. This provides a property that may be
satisfied only when | X|/[Y] > || — 1.

An example. We give an example for a non-binary function that can be computed with
complete-fairness. We consider the trinary alphabet ¥ = {0,1,2}, and thus we consider a
function of dimensions 5 x 2. We provide the trinary function f and the function f’ that it is
reduced to. Since the binary function f’ is a full-dimensional function in R*, it can be computed
fairly, and thus the trinary function f can be computed fairly as well. We have:

Flwm w vl v | vi 3

a0 1 oo 1]0 o0

w1 0 w1 o0olo o
—

T3 1 1 I3 1 1 0 0

w2 o oo o1 o

|1 2 1 o0lo 1

203



204



Appendix A

Full Specification of the BGW Protocol

In this Appendix, we provide a full specification of the BGW protocol, for both the semi-honest
and malicious settings. We note that all these specifications of subprotocols and functionalities
already appear in the body of this work (Chapter ; however, a reader may find it beneficial
and more convenient to read all the description centralized. In the electronic version of this
thesis, the reader may also use the hyperlinks (appear in the SEE: label) to jump to the detailed
explanation of each functionality and protocol.

A.1 The Protocol for Semi-Honest Adversaries

A.1.1 The Functionalities

FUNCTIONALITY A.1.1 (The degree-reduction functionality F2¢ )
SEE: Section [2.4.3]

Let h(x) = ho + ...+ hax? be a polynomial, and denote by trunc;(h(x)) the polynomial of degree t
with coefficients hg, ..., hs. That is, truncy(h(z)) = ho + b1z + ... + hyxt. Then:

Fo9  (h(ay),...,h(an)) = (h(en), ..., h(ay))

reduce

where h(x) = trunc,(h(z)).

FUNCTIONALITY A.1.2 (The F? . functionality)

rand

SEE: Section [2.4.3]

F2t ()\,,)\) = (T’(Oél),.‘.,r(an))v

rand

where 7(x) € P%? is random, and X denotes the empty string.

205



FUNCTIONALITY A.1.3 (The F,,.;: for sharing a produce of shares)

SEE: Section 2.4.3]

Fvate (faln), fo(@)s - (falan), folen))) = (fan(an), . favlem))

where f,(x) € P%t, fy(x) € P>, and fup(x) is a random polynomial in Pt

A.1.2 The Protocols

PROTOCOL A.1.4 (Computing F%7 )

reduce

SEE: Claim R.4.11]
e Inputs: Each party P; holds h(«;).
e The protocol: The parties invoke the semi-honest BGW protocol (Protocol 2.4.1)) for the linear
. . T T
functionality (h(al), ce h(Om)) =A- (h(al), ce h(ozn)) , where A = Vz-Pr-V:"'. (V5 denote

the Vandermonde matrix, and Py is the linear projection of T').

PROTOCOL A.1.5 (Privately Computing F2 )

SEE: Protocol 2.4.9
e Input: The parties do not have inputs for this protocol.
e The protocol:

— Each party P; chooses a random polynomial ¢;(z) €g P%2'. Then, for every j € {1,...,n}
it sends s; ; = ¢;(a;) to party P;.

. n
— Each party P; receives $1, ..., Sy, and computes §; = Zj:1 Sji-

e Output: Each party P; outputs ¢;.

PROTOCOL A.1.6 (Computing Fy,.¢ in the F2t . — Frd:guce-hybrid model)

SEE: Protocol

e Input: Each party P; holds values f3;,7;, such that reconstructz (81, ..., 8,) € P! and
reconstructg (1, .. .,7n) € P%! for some a,b € F.
e The protocol:
1. Each party locally computes s; = f3; - ;.

2. Randomize: Each party P; sends A to Ffjnd (formally, it writes A on its oracle tape for
Ffjnd). Let o; be the oracle response for party P;.

3. Reduce the degree: Each party P; sends (s; +o0;) to Ff:dguce. Let &; be the oracle response
for P;.

e Output: Each party P; outputs 6;.

206



PROTOCOL A.1.7 (t-Private Computation in the F,,,;:-Hybrid Model)

SEE:

Protocol 2.4.1]

Inputs: Each party P; has an input x; € F.

Auxiliary input: Each party P; has an arithmetic circuit C' over the field F, such that for every
Z € F™ it holds that C(Z) = f(&), where f : F* — F". The parties also have a description of F
and distinct non-zero values aq, ..., q, in F.

The protocol:
1. The input sharing stage: Each party P; chooses a polynomial ¢;(x) uniformly from the

set P¥i¢ of all polynomials of degree ¢ with constant term z;. For every j € {1,...,n}, P;
sends party P; the value ¢;(¢;).
Each party P; records the values ¢1 (), ..., ¢n(a;) that it received.

. The circuit emulation stage: Let Gq,...,Gy be a predetermined topological ordering of

the gates of the circuit. For kK =1, ...,/ the parties work as follows:

— Case 1 — Gy, is an addition gate: Let 8F and v¥ be the shares of input wires held by
party P;. Then, P; defines its share of the output wire to be §¥ = gF + ~F.

— Case 2 — Gy is a multiplication-by-a-constant gate with constant c: Let Bf be the share
of the input wire held by party P;. Then, P; defines its share of the output wire to be
ok =c. Bk

— Case 3 — Gy, is a multiplication gate: Let BF and 4 be the shares of input wires held
by party P;. Then, P; sends ( f,%’“) to the ideal functionality Fi,.;: of Eq. and
receives back a value 0¥. Party P; defines its share of the output wire to be J¥.

. The output reconstruction stage: Let o04,...,0, be the output wires, where party P;’s

output is the value on wire o;. For every k = 1,...,n, denote by 8¥,..., ¥ the shares that
the parties hold for wire o;. Then, each P; sends P, the share S5¥.

Upon receiving all shares, P, computes reconstructgz(37,..., %) and obtains a polynomial
gr(z) (note that t + 1 of the n shares suffice). Py then defines its output to be g5 (0).

A.2 The Protocol for Malicious Adversaries

A.2.1 The Functionalities

FUNCTIONALITY A.2.1 (The Fygss functionality)

SEE: Functionality

Fyss (q(z),A,...,\) = { (a(ar), .- alan)) if deg(q) <t

(L,...,1) otherwise

207



FUNCTIONALITY A.2.2 (The ﬁvss functionality)
SEE: Functionality

if deg(S) <t

F S(z,y), A, .. A
vss(S(z,y) ) (L,..., 1) otherwise

Il
/_/H
—
—~
)
iy
—
8
NI
Na)
—
—~
<
=
:—/
;\
?1
—~
8
S—
s
—
<
S—
S—
=

where f;(x) = S(z, ;), 9:(y) = S(ay,y).

FUNCTIONALITY A.2.3 (Functionality F4

ot for matrix multiplication, with A € F™"*™)

SEE: Functionality

The FA ,-functionality receives as input a set of indices I C [n] and works as follows:
1. F2,, receives the inputs of the honest parties {g;(z)};¢r; if a polynomial g;(z) is not received or

its degree is greater than ¢, then F4

mat

resets g;(x) = 0.

2. Fa,, sends shares {g;(c;)}¢rer to the (ideal) adversary.

m

3. FA_, receives the corrupted parties’ polynomials {g;(x)}ics from the (ideal) adversary; if a poly-

nomial g;(z) is not received or its degree is greater than ¢, then FA4 . resets g;(x) = 0.

4. F;:at computes 17(1:) = Yi(x),...,Yn(2) = (g1(2),...,gn(x)) - A.

ot

A . sends party P; the entire length-m vector i = Y (0),
together with P;’s shares (g1(¢;),...,gn(;)) on the input polynomials.

(a) For every j ¢ I, functionality F2

(b) In addition, functionality F,, sends the (ideal) adversary its output: the vector of poly-
nomials Y (x), and the corrupted parties’ outputs (¢ together with (g1 (), ..., gn(;)), for
every i € I).

FUNCTIONALITY A.2.4 (Functionality Fgws"er for subsharing shares)

SEE: Functionality

Fgubshare receives a set of indices I C [n] and works as follows:

1. Fyushare receives the inputs of the honest parties {8;};¢;. Let f(z) be the unique degree-t
polynomial determined by the points {(«;, Bj)}j¢lﬂ

2. For every j ¢ I, F‘ﬁqubgh“’“e chooses a random degree-t polynomial g;(x) under the constraint that
9;(0) = B; = f(a).
3. Fgbshare sends the shares {g;(c;)} ¢rier to the (ideal) adversary.

4. Fgubshare receives polynomials {g;(7)}ies from the (ideal) adversary; if a polynomial g;(x) is not

received or if g;() is of degree higher than ¢, then Fgbshare sets g;(x) = 0.
5. Fgushare determines the output polynomials i (z), ..., gl (x):
(a) For every j ¢ I, Fy'd5h™r sets gfi(x) = g;(x).

208



(b) For every i € I, if g;(0) = f(a;) then F3¥@share sets gi(x) = gi(z). Otherwise it sets
gi(x) = f(ay), (i-e., gj(x) is the constant polynomial equalling f(c;) everywhere).

6. (a) Forevery j ¢ I, Fgbshare sends the polynomial g;(z) and the shares (g1(c;), ..., g, (a;)) to
party P;.
(b) ].i‘unctionality Fgubshare sends the (ideal) adversary the vector of polynomials
Y(x) = (91(2),...,9n(x))- HT, where H is the parity-check matrix of the appropriate Reed-
Solomon code (see below). In addition, it sends the corrupted parties’ outputs g.(x) and
(g1 (ai)s ..., gh(a;)) for every i € I.

FUNCTIONALITY A.2.5 (Functionality F¥

ol for evaluating a polynomial on ay)

SEE: Functionality [2.6.10

Fk . receives a set of indices I C [n] and works as follows:

€

1. The F e’“ml functionality receives the inputs of the honest parties {3;},¢;. Let f(z) be the unique
degree-t polynomial determined by the points {(c;, 3;)};¢;. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained; see Footnote @)

2. (a) Forevery j ¢ I, F¥ , sends the output pair (f(«;), f(ax)) to party P;.

(b) For every i € I, F¥ , sends the output pair (f(;), f(ax)) to the (ideal) adversary, as the
output of P;.

FUNCTIONALITY A.2.6 (Functionality F{/'%4 for sharing a product of shares)

SEE: Functionality [2.6.13

Fnell veceives a set of indices I C [n] and works as follows:

1. The Fyn¥Y functionality receives an input pair (a;,b;) from every honest party P; (j ¢ I). (The
dealer Py also has polynomials A(x), B(z) such that A(a;) = a; and B(a;) = b, for every j ¢ I.)

2. Fydlt computes the unique degree-t polynomials A and B such that A(a;) = a; and B(a;) = b;
for every j ¢ I (if no such A or B exist of degree-t, then Fygg behaves differently as in Footnote@).

3. If the dealer P; is honest (1 ¢ I), then:

(a) Fyrult chooses a random degree-t polynomial C' under the constraint that C(0) = A(0)- B(0).

(b) Outputs for honest: FI'4l! sends the dealer P; the polynomial C(z), and for every j ¢ I it
sends C(a;) to Pj.

(c) Outputs for adversary: Firél sends the shares (A(«;), B(;),C(a;)) to the (ideal) adversary,
for every i € I.
4. If the dealer P; is corrupted (1 € I), then:
(a) Fyult sends (A(x), B(z)) to the (ideal) adversary.
(b) Fpult receives a polynomial C' as input from the (ideal) adversary.

(c) If either deg(C) >t or C(0) # A(0) - B(0), then FJf&Y resets C(x) = A(0)- B(0); that is, the
constant polynomial equalling A(0) - B(0) everywhere.

(d) Outputs for honest: FIr4 sends C(a;) to Pj, for every j & I.

(There is no more output for the adversary in this case.)

209



FUNCTIONALITY A.2.7 (Functionality Fj,,;; for emulating a multiplication gate)

SEE: Functionality [2.6.16)

Fuir Teceives a set of indices I C [n] and works as follows:

1. The Fpu; functionality receives the inputs of the honest parties {(8;,v;)};¢r- Let fo(x), fo(x) be
the unique degree-t polynomials determined by the points {(a;, 8;)};¢r, {(a;,7j)}je1, respectively.
(If such polynomials do not exist then no security is guaranteed; see Footnote @)

2. Frue sends {(fa(;), fo(ai))}ier to the (ideal) adversary.

3. Finu receives points {0;};er from the (ideal) adversary (if some d; is not received, then it is set
to equal 0).

4. Fiue chooses a random degree-t polynomial fu,(z) under the constraints that:
(a) fan(0) = fa(0) - f(0), and
(b) For every i € I, fop(ay) = d;.
(such a degree-t polynomial always exists since |I| < t).

5. The functionality F,.;: sends the value fos(c;) to every honest party P; (j € I).

A.2.2 The Protocols

PROTOCOL A.2.8 (Securely Computing Fygg in the ﬁvss-hybrid model)

SEE: Protocol

e Input: The dealer D = P; holds a polynomial g(x) of degree at most ¢ (if not, then the honest
dealer just aborts at the onset). The other parties Ps,..., P, have no input.

e Common input: The description of a field F and n non-zero elements a;,...,a, € F.
e The protocol:

1. The dealer selects a uniformly distributed bivariate polynomial S(z,y) € B4, under the
constraint that S(0, z) = ¢(z).

2. The parties invoke the ﬁvss functionality where P; is dealer and inputs S(z,y), each other
party has no input.

e Output If the output of Fygs is (fi(x),g:(y)), output f;(0). Otherwise, output L.

PROTOCOL A.2.9 (Securely Computing ﬁvss)

SEE: Protocol 2.5.9

e Input: The dealer D = P; holds a bivariate polynomial S(x,y) of degree at most ¢ in both variables
(if not, then the honest dealer just aborts at the onset). The other parties Ps, ..., P, have no input.
e Common input: The description of a field F and n non-zero elements aq, ..., a, € F.

e The protocol:

210



1. Round 1 (send shares) — the dealer:

(a) For every i € {1,...,n}, the dealer defines the polynomials f;(x) def S(x,a;) and ¢;(y) def

S(a,y). Tt then sends to each party P; the polynomials f;(x) and g;(y).
2. Round 2 (exchange subshares) — each party P;:
(a) Store the polynomials f;(z) and g;(y) that were received from the dealer. (If f;(x) or g;(y)
is of degree greater than ¢ then truncate it to be of degree t.)
(b) For every j € {1,...,n}, send fi(c;) and g;(c;) to party P;.
3. Round 3 (broadcast complaints) — each party P;:
(a) For every j € {1,...,n}, let (u;,v;) denote the values received from player P; in Round 2
(these are supposed to be u; = f;j(;) and v; = g;()).
If u; # gi(oy) or v; # fi(ey), then broadcast complaint(z, j, fi(a;), gi(c;)).
(b) If no parties broadcast a complaint, then every party P; outputs f;(0) and halts.
4. Round 4 (resolve complaints) — the dealer: For every complaint message received, do the
following:
(a) Upon viewing a message complaint(é, j, u,v) broadcast by P;, check that v = S(a;, o;) and
v = S(ay, ;). (Note that if the dealer and P; are honest, then it holds that u = f;(a;)
and v = g¢;(ej).) If the above condition holds, then do nothing. Otherwise, broadcast

reveal(i, fi(z), gi(y)).
5. Round 5 (evaluate complaint resolutions) — each party P;:

(a) For every j # k, party P; marks (j, k) as a joint complaint if it viewed two messages
complaint(k, j,u1,v1) and complaint(j, k, ug, v2) broadcast by P, and P;, respectively, such
that u; # vy or vy # ug. If there exists a joint complaint (j, k) for which the dealer did
not broadcast reveal(k, fi(z), gx(y)) nor reveal(j, f;(x), g;(y)), then go to Step@ (and do not
broadcast consistent). Otherwise, proceed to the next step.

(b) Consider the set of reveal(j, f;(x), g;(y)) messages sent by the dealer (truncating the poly-
nomials to degree t if necessary as in Step :

i. If there exists a message in the set with j = i then reset the stored polynomials f;(z) and
gi(y) to the new polynomials that were received, and go to Step |§| (without broadcasting
consistent).

ii. If there exists a message in the set with j # i and for which f;(¢;) # g,(as) or gi(aj) #
fj(a;), then go to Step |§| (without broadcasting consistent).
If the set of reveal messages does not contain a message that fulfills either one of the above
conditions, then proceed to the next step.

(c) Broadcast the message consistent.

6. Output decision (if there were complaints) — each party P;: If at least n — ¢ parties
broadcast consistent, output (f;(z), g:(y)). Otherwise, output L.

PROTOCOL A.2.10 (Securely computing F4

mat

in the Fy ggs-hybrid model)

SEE: Protocol 2.6.5
e Inputs: Each party P; holds a polynomial g;(x).

e Common input: A field description F, n distinct non-zero elements «y, ..., o, € F, and a matrix
AeFrxm,

e Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
(fictitiously corruption-aware) functionality Fy gg is given the set of corrupted parties I.

211



e The protocol:
1. Each party P; checks that its input polynomial is of degree-t; if not, it resets g;(z) = 0. It
then invokes the Fygg functionality as dealer with g;(z) as its private input.

2. At the end of Step |1} each party P; holds the values g1 (;),. .., gn(e;). If any value equals
L, then P; replaces it with 0.

3. Denote & = (g1(;), ..., gn(a;)). Then, each party P; locally computes 7* = #* - A (equiva-
lently, for every k = 1,...,m, each P; computes Yy (c;) =>",_, ge(c;)-apr, where (a1 g, ..., an )"

is the kth column of A, and stores 7" = (Y1(a;), ..., Yin())).
4. Each party P; sends §* to every P; (1 <j <n).

=

5. Forevery j = 1,...,n, denote the vector received by P; from P; by Y (a;) = (Yi(ey), ..., Yin(aj)).
(If any value is missing, it replaces it with 0. We stress that different parties may hold dif-
ferent vectors if a party is corrupted.) Each P; works as follows:

— For every k = 1,...,m, party P; locally runs the Reed-Solomon decoding procedure
(with d = 2t + 1) on the possibly corrupted codeword (Yi(a1),...,Vi(an)) to get the
codeword (Yi(a1),...,Yxr(aw,)); see Figure It then reconstructs the polynomial
Y5 (z) and computes yi = Y% (0).

e Output: P; outputs (y1,...,ym) as well as the shares g1 (;), . .., gn().

PROTOCOL A.2.11 (Securely computing Fg¥shere in the FH  -hybrid model)

SEE: Protocol 2.6.8

o Inputs: Each party P; holds a value ;; we assume that the points («;, 8;) of the honest parties all
lie on a single degree-t polynomial (see the definition of F‘i’gbghare above and Footnote |§| therein).

F2t><n

e Common input: The matrix H € which is the parity-check matrix of the Reed-Solomon

code.
e The protocol:

1. Each party P; chooses a random degree-t polynomial g;(x) under the constraint that ¢;(0) =
Bi

2. The parties invoke the FX . functionality (i.e., Functionality for matrix multiplication
with the transpose of the parity-check matrix H). Each party P; inputs the polynomial g;(z)
from the previous step, and receives from F , as output the shares g (), ..., gn(a;), the

degree-t polynomial g;(z) and the length 2¢ vector 5= (s1,...,52) = (91(0),...,9,(0))-HT.

Recall that §is the syndrome vector of the possible corrupted codeword ¥ = (g1(0), . .., g, (0)).

3. Each party locally runs the Reed-Solomon decoding procedure using § only, and receives
back an error vector €= (ey,...,ey).

4. For every k such that e, = 0: each party P; sets g; (o) = gr(c).
5. For every k such that ey # 0:
(a) Each party P; sends gi(a;) to every P;.

(b) Each party P; receives gi(a1), ..., gx(an); if any value is missing, it sets it to 0. P; runs
the Reed-Solomon decoding procedure on the values to reconstruct gy (x).

(c) Each party P; computes gx(0), and sets g (o;) = gx(0) — ex (which equals f(a)).

e Output: P; outputs ¢;(z) and ¢} (a),..., g, (a;).

212



PROTOCOL A.2.12 (Securely computing Fek o 0 the F‘S}lgbg‘ha"e—hybrid model)

v

SEE: Protocol 2.6.111

e Inputs: Each party P; holds a value f;; we assume that the points (a;, 3;) for every honest P; all

lie on a single degree-t polynomial f (see the definition of F*  above and Footnote E[)

v

e Common input: The description of a field F and n distinct non-zero elements a;,...,a, € F.

e Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
corruption-aware functionality F‘s,%bgh”e receives the set of corrupted parties I.

e The protocol:

1. The parties invoke the F3%shere functionality with each party P; using j3; as its private input.
At the end of this stage, each party P; holds g} (o), ..., g} (a;), where all the g;(x) are of degree
t, and for every 7, g}(0) = f(a).

2. Each party P; locally computes: Q(;) = >y A¢- gj(c;), where (A1, ..., \,) = dy - V&_I. Each
party P; sends Q(«;) to all P;.

3. Each party P; receives all the shares Q(aj) from each other party 1 < j < n (if any value is
missing, replace it with 0). Note that some of the parties may hold different values if a party is
corrupted. Then, given the possibly corrupted codeword (Q(al), cel, Q(an)), each party runs
the Reed-Solomon decoding procedure and receives the codeword (Q(aq),...,Q(ay)). It then
reconstructs Q(z) and computes Q(0).

e Output: Each party P; outputs (8;, Q(0)).

PROTOCOL A.2.13 (Securely computing F",n;ét in the Fy gs-Feyqi-hybrid model)

SEE: Protocol 2.6.15
e Input:
1. The dealer P; holds two degree-t polynomials A and B.
2. Each party P; holds a pair of shares a; and b; such that a; = A(«;) and b; = B(«).
e Common input: A field description F and n distinct non-zero elements asq, ..., a, € F.
e Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
(fictitiously corruption-aware) functionality Fygs and the corruption-aware functionality Feyq
receives the set of corrupted parties I.

e The protocol:

1. Dealing phase:
(a) The dealer P; defines the degree-2¢t polynomial D(x) = A(z) - B(x); denote D(x) =
a'b+zgt=1dg'$e.
(b) Py chooses t? values {ry ;} uniformly and independently at random from F, where k =
1,...,t,and 7 =0,...,t — 1.
(¢) Forevery £ =1,...,t, the dealer P; defines the polynomial D,(z):

t—1 t
D@(l’) = (Z Te,m '$m> + (d@—i—t - Z T77L,t+€—m> -xt.
m=0

m=~+1
(d) P, computes the polynomial:

C(z) = D(x) — Zme - Do(x).

t
=1

213



(e) P; invokes the Fygg functionality as dealer with input C(z); each party P; receives
C(a).

(f) Pp invokes the Fy gg functionality as dealer with input Dy(x) for every £ = 1,...t; each
party P; receives Dy(cy;).

2. Verify phase: Each party P; works as follows:

(a) If any of the C(«;), D¢(a;) values equals L then P; proceeds to the reject phase (note
that if one honest party received L then all did).

(b) Otherwise, P; computes ¢; = ai-bifzzzl(ai)LDg(ai). If ¢/ # C(oy) then P; broadcasts
(complaint, 7).

(¢) If any party Py broadcast (complaint, k) then go to the complaint resolution phase.

3. Complaint resolution phase: Run the following for every (complaint, k) message:

(a) Run ¢t 4+ 3 invocations of Fekval: in each of the invocations each party P; inputs the
corresponding value a;, b;, C(c;), D1(a), ..., Di(a;).

(b) Let A(ag), B(ax),C(ar), Di(ag), ..., Di(oy) be the respective outputs that all parties
receive from the invocations. Compute C'(ag) = A(ay) - B(ag) — Zzzl(ak)e - Dy(aug,).
(We denote these polynomials by C, Dy, ... since if the dealer is not honest they may
differ from the specified polynomials above.)

(c) If Cay) # C'(ay), then proceed to the reject phase.

4. Reject phase (skip to the output if not explicitly instructed to run the reject phase):
(a) Every party P; broadcasts the pair (a;,b;). Let @ = (a1,...,a,) and b = (by, ..., by)
be the broadcast values (where zero is used for any value not broadcast). Then, ]??
computes A’(z) and B’(z) to be the outputs of Reed-Solomon decoding on @ and b,
respectively.
(b) Every party P; sets C(a;) = A’(0) - B'(0).
e Output: Every party P; outputs C(«;).

PROTOCOL A.2.14 (Computing Fp,u¢ in the (Fgulshere, Frrelt)-hybrid model)

SEE: Protocol [2.6.17]

e Input: Each party P; holds a;, b;, where a; = f.(«;), b; = fp(;) for some polynomials f,(x), fp(z)
of degree t, which hide a, b, respectively. (If not all the points lie on a single degree-t polynomial,
then no security guarantees are obtained. See Footnote @)

e Common input: A field description F and n distinct non-zero elements aq, ..., a, € F.

e Aiding ideal functionality initialization: Upon invocation, the trusted party computing the

corruption-aware functionalities F@share and FIPUY receives the set of corrupted parties I.

e The protocol:

1. The parties invoke the F{jfgbgh”e functionality with each party P; using a; as its private input.
Each party P, receives back shares A1 (o), ..., An(a;), and a polynomial A;(z). (Recall that
for every 4, the polynomial A;(z) is of degree-t and A;(0) = fo(o) = a;.)

2. The parties invoke the Félfgbghme functionality with each party P; using b; as its private input.
Each party P; receives back shares Bi(«;),. .., By(a;), and a polynomial B;(x).

3. For every i = 1,...,n, the parties invoke the Fygg functionality as follows:

(a) Inputs: In the ith invocation, party P; plays the dealer. All parties P; (1 < j < n) send
Fralt their shares A;(ay), Bi(a;).

214



utputs: e dealer I7; receiwves C;(x) where C;(x) €r aBrEiEht hand every party Pj
b) O The dealer P; receives C. here C. PAiO)Bi(0):t and P;
(1 < j < n) receives the value C;(c;).

4. At this stage, each party P; holds values C1(«;),...,Ch(e;), and locally computes Q(«a;) =
Sioi A - Co(ay), where (Aq, ..., \,) is the first row of the matrix V; '

e Output: Each party P; outputs Q(«;).

PROTOCOL A.2.15 (t-Secure Computation of f in the (Fp,uit, Fvss)-Hybrid Model)

SEE: Protocol 2.7.11

e Inputs: Each party P; has an input x; € F.

e Common input: Each party P; holds an arithmetic circuit C over a field F of size greater than
n, such that for every & € F" it holds that C(&) = f(Z), where f : F” — F™. The parties also hold
a description of F and distinct non-zero values aq, ..., ay, in F.

e Aiding ideal functionality initialization: Upon invocation, the trusted parties computing the
(fictitiously corruption-aware) functionality Fy gs and the corruption-aware functionality Fu
receive the set of corrupted parties I.

e The protocol:

1. The input sharing stage:

(a) Each party P; chooses a polynomial ¢;(z) uniformly at random from the set Pt of
degree-t polynomials with constant-term x;. Then, P; invokes the Fy gs functionality
as dealer, using ¢;(x) as its input.

(b) Each party P; records the values ¢1 (), ..., gn(c;) that it received from the Fy gg func-
tionality invocations. If the output from Fy gg is L for any of these values, P; replaces
the value with 0.

2. The circuit emulation stage: Let G1,..., G, be a predetermined topological ordering of
the gates of the circuit. For kK =1,..., ¢ the parties work as follows:

e Case 1 — Gy is an addition gate: Let B¥ and 4¥ be the shares of input wires held by
party P;. Then, P; defines its share of the output wire to be % = 8F + /¥,

o Case 2 — Gy is a multiplication-by-a-constant gate with constant c: Let ,Bf be the share
of the input wire held by party P;. Then, P; defines its share of the output wire to be
5k =c. gk

e Case 3 — G}, is a multiplication gate: Let BF and vF be the shares of input wires held
by party P;. Then, P; sends ( f , %k) to the ideal functionality Fj,.;; and receives back a
value 6F. Party P; defines its share of the output wire to be J¥.

3. The output reconstruction stage:

(a) Let o01,...,0, be the output wires, where party P;’s output is the value on wire o;. For
every i = 1,...,n, denote by %,..., 3¢ the shares that the parties hold for wire o;.
Then, each P; sends P; the share ﬂ;

(b) Upon receiving all shares, P; runs the Reed-Solomon decoding procedure on the possible
corrupted codeword (3, ..., 3%) to obtain a codeword (B}, ce B;L) Then, P; computes
reconstructy(3:,...,3") and obtains a polynomial g;(z). Finally, P; then defines its
output to be g;(0).

215



216



Appendix B

Full Specification of the Efficient
Perfectly-Secure Multiplication Protocol

In this Appendix, we provide a full specification of the efficient perfectly-secure multiplication protocol
that was given in Chapter [3] This is similarly to the previous appendix that gives full specification of
the BGW protocol (Chapter .

B.1 Functionalities

FUNCTIONALITY B.1.1 (The Fyss functionality)

SEE: Functionality

Foss(S@g) A A) = { (@) g1 (9)s- s (Fal@) galw)) i deg(S) <t

(L,...,1) otherwise

where fi(z) = S(z, ), gi(y) = S(u,y).

FUNCTIONALITY B.1.2 (The Foutend Functionality for Extending Shares)

SEE: Functionality

Fortena receives a set of indices I C [n] and works as follows:

1. The ﬁemtend functionality receives the shares of the honest parties {Bj }ngI- Let ¢(x) be the unique
degree-t polynomial determined by the points {(c;, 3j)};¢7. (If no such polynomial exists then no
security is guarantee(ﬂ)

2. In case that the dealer is corrupted, Fotond sends q(z) to the (ideal) adversary.

3. Fegtend receives S(x, y) from the dealer. Then, it checks that S(x,y) is of degree-t in both variables
and S(x,0) = g(x).

4. If both condition holds, define the output of P; to be the pair of univariate polynomials (S(z, «;), S(a;, y))-
Otherwise, define the output of P; to be L.

217



5. (&) Fegtena sends the outputs to each honest party P; (j € I).

(b) Festena sends the output of each corrupted party P; (i € I) to the (ideal) adversary.

FUNCTIONALITY B.1.3 (The Functionality ﬁ’fml)

SEE: Functionality [3:34]

ﬁfwl receives a set of indices I C [n] and works as follows:

1. The F k . functionality receives from each honest party P; the pair of degree-t polynomials
(fi(z),g;(y)), for every j ¢ I. Let S(z,y) be the single bivariate polynomial with degree-t in
both variables that satisfies S(x, o) = f;(x), S(aj,y) = g;(y) for every j ¢ I. (If no such S(z,y)
exists, then no security is guaranteed; see Footnote [2)).

2. (a) Forevery j ¢ I, F¥ , sends the output pair (S(z, o), S(ak,y)).

(b) In addition, for every i € I, F*  sends the output pair (S(x,ax),S(ak,y)) to the (ideal)
adversary.

FUNCTIONALITY B.1.4 (The ﬁ"’,”s“ét functionality for sharing a product of shares)

SEE: Functionality [3:3.7]
ﬁ(,"gét receives a set of indices I C [n] and works as follows:
1. The F{'#4 functionality receives an input pair (aj,b;) from every honest party P; (j ¢ I). The
dealer P; has polynomials A(z), B(x) such that A(a;) = a; and B(«; ) = b;, for every j.

2. ﬁ&g‘éﬁ computes the unique degree-t univariate polynomials A and B such that A(a;) = a; and
B(aj) = b; for every j ¢ I (if no such A or B exist of degree-t, then F/*4! behaves differently as
in Footnote .

3. If the dealer P; is honest (1 ¢ I), then:
(a) ﬁ{,”;ét chooses a random degree-t bivariate polynomial C(x,y) under the constraint that
C(0,0) = A(0) - B(0).

(b) Outputs for honest: ﬁ"}lg‘g sends the dealer P; the polynomial C(x,y), and for every j & I
it sends the bivariate shares (C(z, a;), C(a;,y)).

(¢) Output for adversary: For every i € I, the functionality f‘%fét sends the univariate shares

A(ay), B(oy), and the bivariate shares (C(z, «;), C(ou, y)).
4. If the dealer P is corrupted (1 € I), then:

(a) Fyradt sends (A(z), B(x)) to the (ideal) adversary.

(b) N‘ng receives a polynomial C' as input from the (ideal) adversary.

(c) If either deg(C) >t or C(0,0) # A(0) - B(0), then ﬁ‘}"é‘g resets C'(z,y) = A(0) - B(0). That
is, the constant polynomial equalling A(0) - B(0) everywhere.

(d) Output for honest: ﬁ&"gg sends the bivariate shares (C(z, o), C(a;,y)) to P; for every j & I.
(There is no more output for the adversary in this case.)

218



FUNCTIONALITY B.1.5 (Functionality F,,.;: for emulating a multiplication gate)

SEE: Functionality [3:3.10]

Fuit receives a set of indices I C [n] and works as follows:

1. The Fyu functionality receives the inputs of the honest parties {(f8(2), 95 W), (f2 (), g2 (W) }j¢1-
Let A(z,y), B(x,y) be the unique degree-t bivariate polynomials determined by these, respectively.
(If such polynomials do not exist then no security is guaranteed; see Footnote )

2. Fpuu sends {(A(z, a;), Aai, y)), (B(z, o), B(ai, y)) Yies to the (ideal) adversary.

3. Fouit receives a degree-t bivariate polynomial H(x,y) from the (ideal) adversary. If the adversary
sends a polynomial of higher degree, truncate it to polynomial of degree-t in both variables.

4. Fipue defines a degree-t bivariate polynomial C(z,y) such that:

(a) C(0,0) = A(0,0) - B(0,0),
(b) Let T be a set of size exactly ¢ indices such that I C T, where T is fully determined from I;
Then, for every i € T, set C(z, ;) = H(x, ;) and C(o,y) = H(ay, y).
(such a degree-t polynomial always exists from Claim )

5. Output: The functionality Fyn.: sends the polynomial (C(x,a;),C(ey,y)) to every honest party
P (5 ¢1).

(There is no more output for the adversary.)

B.2 The Protocols

PROTOCOL B.2.1 (Securely Computing Fegteng in the Fy gs-Hybrid Model)

SEE: Protocol B.3.2

e Input: The dealer P; holds a univariate polynomial of degree-t, ¢(x), and a degree-t bivariate
polynomial S(x,y) that satisfies S(z,0) = ¢(z). Each party P; holds ¢(«;).

e Common input: A field description F and n distinct non-zero elements aq, ..., a, € F.

e Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
(fictitiously corruption-aware) functionality Fy sg receives the set of corrupted parties I.

e The protocol:

1. The parties invoke the F v ss functionality, where P; (the dealer) uses the bivariate polynomial
S(z,y), and any other party inputs A (the empty string).

2. If ﬁvss returns |, each outputs L and halts.

3. Otherwise, let (S(z,q;),S(a,y)) be the output shares of Fygs. If S(a;,0) # g(a;), then

broadcast complaint(i).

e Output: If more than ¢ parties broadcast complaint, output L. Otherwise, output (f;(x), ¢:(y)) =
(S(x, i), S(ci, y))-

219



PROTOCOL B.2.2 (Securely Computing F¥ )

SEE: Protocol B.3.5]

e Input: Each party holds two degree-t polynomials f;(x), g;(y).

(It is assumed that there there exists a single bivariate polynomial S(z,y) such that for every
i € [n]: S(z,0;) = fi(x) and S(ay,y) = gi(y). If such a polynomial does not exists, then no
security is guaranteed; see the definition of the functionality).

e Common input: A field description F and n distinct non-zero elements aq, ..., «a, € F.
e The protocol:
1. Each party P; sends to each party the values (f;(ax), gi(ax)) (which are the values (gr (), fr(a;)) =
(S(ag, a;), S(ay, ayr)), respectively).

2. At the end of this stage each party holds the sequences (S(ay,az),...,S(an, o)) and
(S(ag,a1),...,S(ak, a,)), where each is a possibly corrupted codeword of distance at most-t
from each one of the following codewords, respectively:

S(ar,ag),...,S(an,ax)) = (gr(ar),..., gr(an)),
Slak,a1), ..., 8(ag, ) = (fular),..., fxlay)) .

3. Using the Reed-Solomon decoding procedure, each party decodes the above codewords and
reconstructs the polynomials S(z, ) = fi(z) and S(ag,y) = g (y).

e Output: Each party outputs (S(z, ax), S(ak,v)) = (fe(z), gx(y)).

PROTOCOL B.2.3 (Computing F7"% in the (Fyss, Feval, Fetena)-hybrid model)

SEE: Protocol 3.3.8
Input:
1. The dealer P; holds two degree-t polynomials A and B.

2. Each party P; holds a pair of shares a; and b; such that a; = A(e;) and b; = B(«;).

Common input: A field description F and n distinct non-zero elements aq,...,a, € F. Aiding
ideal functionality initialization: Upon invocation, the trusted party computmg the (fictitiously
corruption-aware) functionality Fvss, and the corruption-aware functionality Fwtend and F,,,; receives
the set of corrupted parties 1.

The protocol:

1. Dealing phase:

(a) The dealer P; defines the degree- 2t polynomial D(z) = A(z) - B(z);
Denote D(z) = a - b—|—zk L dy - ¥

(b) P chooses t2 values {rg ;} uniformly and independently at random from F, where £ = 1,...,t,
and j = 0,...,t — 1. For every £ = 1,...,t, the dealer defines the polynomial Dy(z):

Dg(x) = Zir::lO er . xm —+ (dg+t — mezf-i-l rm,t—‘,—[—m) . xt.
(¢) P, computes the polynomial: C’'(x) = D(x) — 22:1 2t - Dy(x).
(d) Py chooses ¢t random degree t bivariate polynomials Di(x,y), ..., Di(z,y) under the con-

straint that Dy(x,0) = Dy(z) for every £ = 1,...,t. In addition, it chooses a random
bivariate polynomial C(z,y) of degree-t under the constraint that C(z,0) = C'(z).

220



(e) P invokes the Fyss functionality as dealer with the following inputs: C(z,y), and Dy(z,y)
for every £ =1,...,t.

2. Each party P; works as follows:

(a) If any of the shares it receives from Fygs equal L then P; proceeds to the reject phase.

(b) P; computes ¢ b — S (ai)k - Dp(ai,0). If C(ay,0) # ¢, then P; broadcasts
(complaint, 7); note that C(«y,y) is part of P;’s output from Fygg with C(z,y).

(c) If any party Py broadcast (complaint, k) then go to the complaint resolution phase.

3. Complaint resolution phase:

(a) P; chooses two random bivariate polynomials A(x,y), B(x,y) of degree ¢t under the constraint
that A(x,0) = A(z) and B(x,0) = B(x).

(b) The parties invoke the ﬁeztmd functionality twice, where P; inserts A(x,y), B(z,y) and each
party inserts a;,b;. If any one of the outputs is L (in which case all parties receive L), P;
proceeds to reject phase.

(c) The parties run the following for every (complaint, k) message:

i. Run t+3 invocations of ffval, with each party P; inputting its shares of A(z,y), B(z,y),

Dl(xv y)a AR Dt(mu y)7 C($7 y)7 respectively.

Let A(ag,y), B(ak,y), D1(ak,y), ..., Di(ak,y), C(ak, y) be the resulting shares (we ig-

nore the dual shares S(x, ay) for each polynomial).

ii. If: C(au,0) # A, 0) - Blag,0) — S5_, ak Dy(au, 0), proceed to the reject phase.
4. Reject phase:

(a) Every party P; sends a;,b; to all P;. Party P; defines the vector of values @ = (a1,...,ay)
that it received, where a; = 0 if it was not received at all. P; sets A’(x) to be the output of
Reed-Solomon decoding on @. Do the same for B'(z).

(b) Every party P; sets C(z, ;) = C(ay,y) = A’(0) - B'(0); a constant polynomial.

5. Outputs: Every party P; outputs C(z, o), C(ay,y). Party Py outputs (A(x), B(x), C(z,y)).

PROTOCOL B.2.4 (Computing Fyn,; in the Fi@dt hybrid model)
SEE: Protocol B.3.11]

e Tnput: Each party P; holds ((f(x), g2 (1)), (f*(x), ¢*(4))) for some bivariate polynomials A(z, ), B(x,y)
of degree ¢, which hide a, b, respectively. (If not all the points lie on a single degree-t bivariate
polynomial, then no security guarantees are obtained. See Footnote )

e Common input: The description of a field F and n distinct non-zero elements «q,...,a, € F.
In addition, the parties have constants ~1,...,7, which are the first row of the inverse of the
Vandemonde matrix (see [51]).

e Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
corruption-aware functionality FIP4! receives the set of corrupted parties I.
e The protocol:

1. For every ¢ = 1,...,n, the parties invoke the ﬁ{}g‘g functionality as follows:

(a) Imputs: In the ith invocation, party P; plays the dealer. We recall that all parties
hold shares on the univariate polynomials A(x, ;) = f(x) and B(z,a;) = f2(x).
Specifically, each party P; sends Fy4l their shares 95 (a;) = Ay, i) = fif(a;) and
gh(ai) = Blaj, i) = f ().

221



(b) Outputs: The functionality F mull chooses a random degree-t bivariate polynomial C;(x, y)
with constant term f2(0) - f2(0) = A(0, ) - B(0,;). Every party P; receives the bi-
variate shares (C;(z, a;), Ci(ay,y)), for every 1 < j <mn.

2. At this stage, each party P; holds polynomials C1(x, «;), ..., Cp(z, ;) and C1 (s, y), . . ., Crn(ai, y).
Then, it locally computes C(z, ;) = >0, 75 - Cj(x, i), and Cai, y) = 375 ;- Cj(ai, y).

e Output: Each party P; outputs (C(x, a;), C(a;,y)).

222



Appendix C

Security Proof for Protocol 5.3.3

We now analyze the security of the protocol of [58]. All the analysis that we present in this section
appears also in [58], and is given here for completeness.

First, when both parties are honest, they both receive an output except for some negligible probabil-
ity. Recall that in the first step of the protocol, the number of rounds R is set as a~!-w(log x). Both par-
ties learn the correct output unless i* > R, which happens with probability (1—a)f < e~ R < g=w(log "),
which is negligible in k. Note that we can set « to be polynomially small (say, 1/x), and still get number
of rounds which is polynomial (k- w(logk)). In our results, we set « = 1/Ink.

C.1 Security with Respect to Corrupted P»

In each round, P is the first to receive a message from Fyeaer- As a result, in round ¢* the party P
gets an output after P, has already received its output. Therefore, simulating corrupted P is easy:
the simulator invokes the adversary and receives its input y to the simulated Fyeaer- It then chooses
the round i* as Fyealer, and gives the adversary values according to RandOuty(y) for each round until i*.
In case the round * is reached, the simulator sends y to the trusted party computing f, receives the
output f(z,y), and gives the adversary this value until round R. Clearly, if the adversary aborts after
or at ¢*, the honest party P; has already learned the correct output in the real execution and also in the
ideal. If the adversary aborts before i*, the output of the honest party P; is determined according to
RandOuty (z), that is, f(x,3) where § is chosen uniformly at random. Therefore, in case the adversary
aborts before ¢*, the simulator chooses § according to the uniform distribution over Y and sends this
input to the trusted party. Overall, the protocol can be simulated for any function f. the following
Claim is proven in [58], and is given here for completeness:

Claim C.1.1 For every function f : {z1,...,2¢} X {y1,...,ym} — {0,1}, for every set of distribution
Xyeal, for every 0 < a < 1 such that a=! € O(poly(k)), Pmtocol securely computes f in the
presence of malicious adversary corrupting Ps.

Proof: Fix f, X,cq and a. Let A be an adversary that corrupts P,. We construct the simulator S as
follows:

1. S invokes A on input y and with auxiliary input z.

2. S chooses § « Y uniformly, as in algorithm RandOut;. This value will be sent to the trusted party
as the input of A in case A aborts before i*.

3. S receives y' from A as was sent t0 Fyealer (Step [3|in the protocol). It then verifies that ¢y € YV, if
not — it sends abort as response from Fyealer, sSends ¢ to the trusted party and halts.

223



4. S chooses i* according to geometric distribution with parameter .
5. Foreveryi=1,...,¢" — 1:

(a) If S receives proceed from A, then it sets b; = RandOuty(y’) and sends b; to A as was given
from Fdealer-

(b) If S receives abort from A, it sends to A the message abort as was given from Fyeger- In
addition, it sends ¢ to the trusted party computing f, outputs whatever A outputs and
halts.

6. In the simulated round 7 = 7*:

(a) If S receives proceed from A, then it sends 3’ to the trusted party computing f and receives
back the output b,y = f(x,y’). It then gives b,,: back to A.

(b) If S receives abort from A, it gives back to A the message abort as was sent from Fyealer-
Then it sends the default input  to the trusted party computing f, outputs whatever A
outputs and halts.

7. In the simulated rounds i = i* + 1 to R:

(a) If S receives proceed from A, then it gives by to A.

(b) If S receives abort from A, it sends abort to A as was given from Fyealer-
8. If S has not halted yet and +* > R, then S sends § to the trusted party.

9. S outputs whatever A outputs and halts.

There is no communication between P; and P, and all the view of P, consists of the outputs of the
Fyealer functionality to P;. Moreover, Py only sends g’ in the first round to Fyeaer, and all the rest of
the messages are either proceed or abort. Therefore, after sending 3, all what A can do is either send
proceed or to abort the interaction. Assume that A aborts at some round ¢. If i = 0, i.e., if A does not
send the input ¥’ to Fyealer, then in the real execution P; outputs RandOut;(«) which is independent of
y'. In the ideal, S chooses § uniformly from Y, and sends to the trusted party computing f the value
9, which determines the output of P; to be f(x,9). This is exactly the same as the implementation
of RandOut;(z). In case A aborts at some round ¢ < ¢*, the view of P, consists of i independent
invocations of RandOuty(y’), while the output of the honest P; consists of RandOut; (x). S works exactly
in the same way — for every round until ¢*, it sends to P» a fresh output that depends only on the value
Yy’ — RandOutz(y’). In case it aborts, it sends § as we above, resulting the output of P; to distribute
identically as in the real execution. In case A aborts at i* or after i* (i.e., in case i* > i), P; has already
learned the output by, = f(x,y’) in the real execution. Therefore, S can send the true input ¢’ to the
trusted party, which determines the output of P; to be f(z,%’). It learns the output by, and gives this
value to A as the outputs of Fyealer, €xactly as in the real execution. B

C.2 Security with Respect to Corrupted P;

This case is more complex. Intuitively, the adversary does have an advantage in the real execution, in
case it succeeds to predict correctly and aborts exactly at round ¢*. In such a case, the corrupted party
Py learns the correct output f(x,y), whereas P5 learns a value according to RandOuts(y). However, as
we will see, this advantage in the real execution can be simulated in the ideal execution under certain
circumstances, for some functions f.

224



The output vector distributions Q*®. Let f: {x1,...,z¢} x{y1,. .-, ym} — {0,1}. Fix Xyear,
and let Uy denote the uniform distribution over Y. For every x € X, denote by p, the probability that
the output of RandOut; is 1 on the input z. Similarly, for every y; € Y, let p,, denote the probability
that the output of RandOut; is 1 on the input y;. That is:

def ~ def ~
xr = P , =1 d .= P S Yi) = 1
pe = Pr lf(@g)=1] and py, = Tr [f(2y)=1]
For every z € X, a € {0, 1}, define the m-dimensional row vectors Q* = (g;;%, ..., ¢;:*) indexed by
y; €Y as follows:
if fz,y;) =1 olpy; =1 g N =
q;c,O def Py; ap if f L, Yj5) = qx,l def Dy, + I—a)ps ! f(x,y]) =1 (C 9 1)
. Py T Ty f@y) =0 7 Dy, if f(z,y;) =0
We have:

Theorem C.2.1 Let f: {z1,...,z¢} X {y1,...,ym} — {0,1} and let My be as above. If there exist
probability vector X a1, parameter 0 < o < 1 such that a=* € O(poly(k)), such that for every x € X,
a € {0,1}, there exists a probability vector X ;% . for which:

ideal

X:c,a . Mf _ Qz,a ,

ideal

then Protocol[5.3.3 securely computes f with complete fairness.

Proof: We start with the description of the simulator §. The simulator chooses i* as Fyealer. If the
adversary aborts after *, then both parties learn output and so the simulator sends the true input to
the trusted party and fairness is obtained. If the adversary aborts i*, then the simulator needs to give
the adversary the true output f(z,y). Thus, it sends the true input to the trusted party. However, by
doing so the honest party learn the correct output unlike the real execution, when it outputs a random
value according to RandOutzy(y). Thus, if the adversary aborts before ¢*, the simulator chooses the input
to send to the trusted party not according to X,..q;, but according to X;¢ /. This should balance the

ideal”
advantage that the simulator gives the honest party in case the adversary aborts exactly at ¢*.
The simulator S.
1. S invokes A with input z and auxiliary input z.

2. When A sends 2’ t0 Fyealer, S checks that 2/ € X and sets x = 2. If 2/ € X, S chooses a default
input £ € X according to the distribution X,.4;, sends Z to the trusted party, outputs whatever
A outputs and halts.

3. S chooses i* according to geometric distribution with parameter .
4. For every i =1 to i* — 1:
(a) S chooses a; = RandOut; (x) and gives a; to A as was sent from Fyeaer-

(b) If A sends abort back to Fyealer, then S chooses # according to the distribution X7 . Tt

ideal”
then sends & to the trusted party computing f, outputs whatever A outputs and halts. If A
sends proceed, then S proceeds to the next iteration.

5. In round ¢ = 7*:

(a) S sends the input x to the trusted party computing f and receives agur = f(z,y).

(b) S gives to A the value ay,; as was sent from Fyeajer-
6. In rounds i =¢* + 1 to R:

(a) If A sends proceed, S gives back to A the value ay,; and proceeds to the next iteration.

225



7. If S has not halted yet and i* > R, then S chooses & according to the distribution X,.q;, it sends
Z to the trusted party.

8. S outputs whatever A outputs and halts.

Let VIEWhy(x,y) denote the view of P; in an execution of the protocol with the adversary A, where
A’s input is z, its auxiliary input is z and P’s input is y. Let OUTPUThyb(z, y) be the output of P in
such an execution. Let VIEWigeq (2, y) denote the view of the adversary in the ideal execution where the
parties are invoked with the inputs (z,y), respectively, and the auxiliary input of the simulator is z. Let
OUTPUTjdeal be the output of P5 in the ideal execution.

Since A can only abort the execution, let ¢ denote the round for which A has aborted. In case A does
not abort during the execution of the protocol, then set i = R+ 1. Note that .4 may also abort before the
invocation of Fyealer; in such a case we say that i = 0. We want to show that for every (@,b) € {0, 1},
it holds that:

Pr [(VIEWhyb (2, y), OUTPUThy (2, y)) = (&, b)]
= Pr[(VIEWideal (%, y), OUTPUTigeal (2, y)) = (&, )] (C.2.2)

If A aborts before the invocation of Fyealer (0r has sent an invalid input to Fyealer), then the view of
the adversary is empty, and the honest party P, outputs a value according to RandOuts(y). The same
happens in the ideal execution, since S sends in such a case a value Z distributed according to X,eq;. In
such a case, both terms of Eq. are 0 in case @ is not empty, and clearly both terms have the same
probability for any value of b. Thus, we get that for every b € {0,1}:

Pr [(VIEWhyb (%, y), OUTPUThyb (2, y)) = (A, ) | i = 0]
= Pr[(VIEWigeal (%, y), OUTPUTigeal (2, y)) = (A, 0) | i = 0] .

In case i = R+ 1 (i.e., the adversary does not abort), in the real the adversary sees values aq, ..., a;«_1
that are independent to y, and all the values a;«,...,ag are f(z,y). In the ideal, we have the exact same
thing. Therefore, Eq. holds conditioning on the event ¢ = R 4+ 1. Moreover, the above is true
whenever the adversary aborts at a round ¢ > ¢*, and thus the equation holds also when we condition
on the event ¢ > ¢*.

We remain with the case where 1 < ¢ < ¢*. If ¢ = ¢*, in the real execution the output of P; is
independent of x, and is determined according to RandOut;(z). However, In the ideal execution, the
simulator S queries the trusted party computing f on x, receives back f(z,y), which determines the
output of P to be the correct output. Therefore, if A aborts exactly at ¢*, in the real execution it
learns the correct output while P, does not, and in the ideal execution both parties output the true
output f(z,y). Therefore, in order to simulate the protocol correctly, the simulator modifies the output
of P, in case the adversary aborts before i*, and chooses # according to some distribution X, and
not according to X,.q as apparently expected. In the following, we show that if X% - My = Q™%

ideal
then Eq. (C.2.2)) is satisfied.

Let @ = (@;1,a), and VIEWhy(z,y) = (VIEW, .}, VIEW} ). We have that:

Pr [(VIEWhyb (2, y), OUTPUThyp (2, y)) = (&, b) | ¢ < 07

= Pr [(VIEwab,OUTPUThyb) = (a,b) | VIEW} ;= d@; 1, i < z*} -Pr [VIE o = i1, <"
= Pr[(VIEW},, OUTPUThy) = (a,b) | i <i*] - Pr {VIE o = i1 | i< z*}

where the last equations is true since conditioning on the even that ¢ < ¢*, the random variables
i . Soi—1 Qi . Trai—1 ]
(VIwawb, OUTPUThyp) are independent of VIEW} p. Similarly, write VIEWigeal (%, y) = (VIEW ,}, VIEW 1),

226



we have:

Pr [(VIEWideal (2, Y), OUTPUTdeal (2, ¥)) = (@, b) | i <i¥]

—i— - . . - . .
= Pr [(VIEWy), OUTPUTigeal) = (a,b) | VIEWi) = @1, @ < i*] - Pr [VIEWig) = @1, @ < i*]

=d;—1 | i <i"

ideal»

. —
= Pr[(VIEW)e,, OUTPUTigeat) = (a,b) | i < *] - Pr [VIEW! ],
It is easy to see that for any values @;_; € {0,1}*"1:

Pr [VIEW! ., =d;—1 | i<i*] =Pr [VIE b =ai | i< z*}

since in both the simulation and the real execution, the adversary receives values according to RandOut; ().
It is left to show that for every (a,b) € {0,1}?, it holds that:

Pr [(VIEW}p, OUTPUThyp) = (a,b) | i <i*] = Pr [(VIEWe,, OUTPUTjdeal) = (a,b) | i <i*] (C.2.3)

We have already seen it in the proof sketch in Section We just give the high-level overview.

In case f(x,y) = 0. The probabilities are as follows:

output (a,b) | real ideal
(0,0) (l-a) - 1=pz) - Q=py)ta-(l-p) | 1-a) 1-ps) (1-g;°) +a
(071) (1*0‘) (1*par) Dy + -y (lfa)'(lfpac)'qy
(1,0) (I1—=a) ps-(1—py) (1_a)'pw'(1_q$’l)
(1,1) (1—a) ps-py (1—a) pe- g0
Therefore, we get the following constraints:
z,0 Q- Dy z,1
=, d =
KA O B
which are satisfied according to our assumption in the theorem.
In case f(x,y) = 1. Similarly, for the case of f(x,y) =1, we have:
output (a,b) | real ideal
(0,0) (I—a)- (1 =pz)-(1-py) (I—a) (1—-pg)-(1—qy°)
(0,1) (I—a) - (1=p:)-py (I1—a) - (1—pe)-qy
(1,0) (I—a)ps-(I—py)+a-(1—py) | A=) ps-(1—gi")
(1,1) (1—a) ps-py+a-py (1-a) pe-gp' +a
we again get the following constraints:
x,0 z,1 Q- (py — 1)
Y= and t=p, + ——L 7.
However, since de’:al My = Q%*, the above constraints are satisfied. B

227



228



Bibliography

[1]

Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern. Distributed comput-
ing meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. In PODC| pages 53-62, 2006.

Shashank Agrawal and Manoj Prabhakaran. On fair exchange, fair coins and fair sampling.
In CRYPTO (1), pages 259-276, 2013.

Gilad Asharov. Towards characterizing complete fairness in secure two-party computation.
In TCC, pages 291-316, 2014.

Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game theoretic view of secure
computation. In EUROCRYPT, pages 426-445, 2011.

Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational secret
sharing. In CRYPTO, pages 559-576, 2009.

Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for perfectly-secure
multiparty computation. TACR Cryptology ePrint Archive, 2011:136, 2011. An abbrevi-
ated version appeared as a book chapter in [7].

Gilad Asharov and Yehuda Lindell. The BGW Protocol for Perfectly-Secure Multiparty
Computation, pages 120 — 167. I0S Press, 2013. Chapter 5 in [90].

Gilad Asharov, Yehuda Lindell, and Tal Rabin. Perfectly-secure multiplication for any ¢
< n/3. In CRYPTO, pages 240-258, 2011.

Gilad Asharov, Yehuda Lindell, and Tal Rabin. A full characterization of functions that
imply fair coin tossing and ramifications to fairness. In T'CC, pages 243-262, 2013.

N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair ex-
change. In ACM Conference on Computer and Communications Security, pages 717,
1997.

N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures (extended abstract). In EUROCRYPT, pages 591-606, 1998.

Giuseppe Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures.
In ACM Conference on Computer and Communications Security, pages 138-146, 1999.

Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and practical fair exchange proto-
cols with off-line ttp. In IEEE Symposium on Security and Privacy, pages 77-85, 1998.

229



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

Donald Beaver. Multiparty protocols tolerating half faulty processors. In CRYPTO, pages
560-572, 1989.

Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377-391,
1991.

Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority (ex-
tended announcement). In FOCS, pages 468-473, 1989.

Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with
dispute control. In TCC; pages 305-328, 2006.

Zuzana Beerliova-Trubiniova and Martin Hirt. Perfectly-secure mpc with linear commu-
nication complexity. In T'CC, pages 213-230, 2008.

Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-secure multiparty compu-
tation without honest majority and the best of both worlds. In CRYPTO, pages 277296,
2011.

Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with dis-
honest majority. In CRYPTO, pages 538-557, 2010.

Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L. Rivest. A fair protocol for
signing contracts. IEEE Transactions on Information Theory, 36(1):40-46, 1990.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages
1-10, 1988.

Manuel Blum. How to exchange (secret) keys. ACM Trans. Comput. Syst., 1(2):175-193,
1983.

Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, pages 236-254, 2000.

Ernest F. Brickell, David Chaum, Ivan Damgéard, and Jeroen van de Graaf. Gradual and
verifiable release of a secret. In CRYPTO, pages 156-166, 1987.

Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In CRYPTO,
pages 93-111, 2000.

Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tology, 13(1):143-202, 2000.

Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In FOCS, pages 136-145, 2001.

Ran Canetti, Ivan Damgard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adaptive
versus non-adaptive security of multi-party protocols. J. Cryptology, 17(3):153-207, 2004.

Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and
secure channels. In EUROCRYPT, pages 337-351, 2002.

230



[31]

32]

33]

[34]

[35]

[37]

[38]

[39]

[41]

[42]

[43]

[44]

[46]

[47]

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, pages 494-503, 2002.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11-19, 1988.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In FOCS,
pages 383-395, 1985.

Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC, pages 364-369, 1986.

Richard Cleve. Controlled gradual disclosure schemes for random bits and their applica-
tions. In CRYPTO, pages 573588, 1989.

Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and discrete
control processes (extended abstract), 1993. http://www.cpsc.ucalgary.ca/~cleve/
pubs/martingales.ps.

Ronald Cramer, Ivan Damgard, and Ueli M. Maurer. General secure multi-party compu-
tation from any linear secret-sharing scheme. In EUROCRYPT, pages 316-334, 2000.

Ivan Damgard. Practical and provably secure release of a secret and exchange of signa-
tures. In EUROCRYPT, pages 200-217, 1993.

Ivan Damgard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. In CRYPTO, pages 572-590, 2007.

Yevgeniy Dodis, Pil Joong Lee, and Dae Hyun Yum. Optimistic fair exchange in a multi-
user setting. In Public Key Cryptography, pages 118-133, 2007.

Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically secure
computation. In CRYPTO, pages 74-92, 2000.

Shimon Even. Protocol for signing contracts. In CRYPTO, pages 148-153, 1981.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. In CRYPTO, pages 205-210, 1982.

Shimon Even and Yacov Yacobi. Relations among public key signature schemes. Technical
Report #1775, Technion Israel Institute of Technology, Computer Science Department,
1980.

P. Feldman. Optimal Algorithms for Byzantine Agreement. PhD thesis, Massachusetts
Institute of Technology, 1988.

Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM J. Comput., 26(4):873-933, 1997.

Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret sharing
in standard communication networks. In T'CC, pages 419-436, 2010.

231


http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps
http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

[48]

[49]

[50]

[51]

[63]

[64]

Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-free optimistic
contract signing. In CRYPTO, pages 449-466, 1999.

Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fairness
and composability of cryptographic protocols. In TCC, pages 404-428, 2006.

Juan A. Garay and Carl Pomerance. Timed fair exchange of standard signatures: [ex-
tended abstract]. In Financial Cryptography, pages 190-207, 2003.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track multi-
party computations with applications to threshold cryptography. In PODC, pages 101—
111, 1998.

Oded Goldreich. A simple protocol for signing contracts. In CRYPTO, pages 133-136,
1983.

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218-229, 1987.

Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence
of immoral majority. In CRYPTO, pages 77-93, 1990.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365-377, 1982.

S. Dov Gordon. On fairness in secure computation. PhD thesis, University of Maryland,
2010.

S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness
in secure two-party computation. In STOC, pages 413-422., 2008. Extended full version
available on: http://eprint.iacr.org/2008/303. Journal version: [59].

S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in
secure two-party computation. J. ACM, 58(6):24, 2011.

S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On complete
primitives for fairness. In T'CC, pages 91-108, 2010.

S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In
EUROCRYPT, pages 157-176, 2010.

Branko Grinbaum. Convex Polytopes : Second Edition Prepared by Volker Kaibel, Victor
Klee, and Giinter Ziegler (Graduate Texts in Mathematics). Springer, May 2003.

Joseph Y. Halpern and Vanessa Teague. Rational secret sharing and multiparty compu-
tation: extended abstract. In STOC, pages 623-632, 2004.

Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party com-
putation. In CRYPTO, pages 101-118, 2001.

232


http://eprint.iacr.org/2008/303

[65]

[66]

[67]

[68]

Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-party com-
putation. In ASIACRYPT, pages 143—-161, 2000.

Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with linear com-
munication complexity. In CRYPTO, pages 463—482, 2006.

Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In
CRYPTO, pages 40-51, 1987.

J. Komlos J. Kahn and E. Szemeredi. On the probability that a random +1-matrix is
singular. Journal of Amer. Math. Soc., 8:223-240, 1995.

Joe Kilian. A general completeness theorem for two-party games. In STOC, pages 553
560, 1991.

Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In TCC, pages 320-339, 2008.

Gillat Kol and Moni Naor. Games for exchanging information. In STOC, pages 423-432,
2008.

J. Komlos. On the determinant of (0,1) matrices. Studia Sci. Math. Hungar, 2:7-21,
1967.

Alptekin Kiipccii and Anna Lysyanskaya. Optimistic fair exchange with multiple arbiters.
In ESORICS, pages 488-507, 2010.

Alptekin Kiipccii and Anna Lysyanskaya. Usable optimistic fair exchange. In CT-RSA,
pages 252-267, 2010.

Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure proto-
cols and security under composition. SIAM J. Comput., 39(5):2090-2112, 2010.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, 1982.

Andrew Y. Lindell. Legally-enforceable fairness in secure two-party computation. In
CT-RSA, pages 121-137, 2008.

Yehuda Lindell. General composition and universal composability in secure multi-party
computation. In FOCS, pages 394-403, 2003.

Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of protocols
without simultaneous termination. In PODC| pages 203-212, 2002.

Michael Luby, Silvio Micali, and Charles Rackoff. How to simultaneously exchange a
secret bit by flipping a symmetrically-biased coin. In FOCS, pages 11-21, 1983.

Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior in
multi-party computation. In CRYPTO, pages 180-197, 2006.

233



[82]

[83]

R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes. Commun.
ACM, 24(9):583-584, September 1981.

Silvio Micali. Certified email with invisible post offices, 1997. Technical report; an invited
presentation at the RSA 97 conference (1997).

Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In PODC,
pages 12-19, 2003.

Silvio Micali and Phillip Rogaway. Secure computation, unpublished manuscript, 1992.
Preliminary verstion in CRYPTO, pages 392-404, 1991.

Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In TCC, pages 1-18,
2009.

Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228-234, 1980.

Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Optimal efficiency of opti-
mistic contract signing. In PODC, pages 113-122, 1998.

Benny Pinkas. Fair secure two-party computation. In EUROCRYPT, pages 87-105, 2003.

Manoj Prabhakaran and Amit Sahai, editors. Secure Multi-Party Computation. I10S
Press, 2013.

Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report
TR-81, Aiken Computation Lab, Harvard University, 1981.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In STOC, pages 73-85, 1989.

Steven Roman. Advanced Linear Algebra 3rd ed. Graduate Texts in Mathematics 135.
New York, NY: Springer. xviii, 2008.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random number generators,
with applications to protocol design. In FOCS, pages 23-30, 1983.

Thomas Voigt and Giinter M. Ziegler. Singular 0/1-matrices, and the hyperplanes spanned
by random 0/1-vectors. Combinatorics, Probability and Computing, 15(3):463-471, 2006.

John von Neumann. Various Techniques Used in Connection with Random Digits. J. Res.
Nat. Bur. Stand., 12:36-38, 1951.

Philip J. Wood. On the probability that a discrete complex random matriz is singular.
PhD thesis, Rutgers University, New Brunswick, NJ, USA, 2009. AAI3379178.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160-164, 1982.

234



[100] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162-167, 1986.

[101] Giinter M. Ziegler. Lectures on 0/1-polytopes. Polytopes: Combinatorics and Computa-
tion, Vol. 29 of DMV Seminar, Birkhauser, Basel, pages 1-40, 2000.

235



	Introduction
	Secure Computation
	Perfect Security 
	A Full Proof of the BGW Protocol (Chapter 2)
	Efficient Perfectly-Secure Multiplication Protocol (Chapter 3)

	Complete Fairness in Secure Two-Party Computation
	Fairness in Secure Computation – Related Work
	The Work of Gordon, Hazay, Katz and Lindell GHKL08
	A Full Characterization of Coin-Tossing (Chapter 4)
	Towards Characterizing Complete Fairness (Chapter 5)

	Organization

	I Perfect Security
	A Full Proof of the BGW Protocol
	Introduction
	The BGW Protocol
	Our Results

	Preliminaries and Definitions
	Perfect Security in the Presence of Semi-Honest Adversaries
	Perfect Security in the Presence of Malicious Adversaries
	Modular Composition

	Shamir's Secret Sharing Scheme Shamir79 and Its Properties
	The Basic Scheme
	Basic Properties
	Matrix Representation

	The Protocol for Semi-Honest Adversaries
	Overview
	Private Computation in the Fmult-Hybrid Model
	Privately Computing the Fmult Functionality
	Conclusion

	Verifiable Secret Sharing (VSS)
	Background
	The Reed-Solomon Code
	Bivariate Polynomials
	The Verifiable Secret Sharing Protocol
	Sharing a Bivariate Polynomial

	Multiplication in the Presence of Malicious Adversaries
	High-Level Overview
	Corruption-Aware Functionalities and Their Use
	Matrix Multiplication in the Presence of Malicious Adversaries
	The FVSSsubshare Functionality for Sharing Shares
	The Feval Functionality for Evaluating a Shared Polynomial
	The FVSSmult Functionality for Sharing a Product of Shares
	The Fmult Functionality and its Implementation

	Secure Computation in the (FVSS,Fmult)-Hybrid Model
	Securely Computing any Functionality
	Communication and Round Complexity

	Adaptive Security, Composition and the Computational Setting
	Multiplication in the Case of t<n/4

	Efficient Perfectly-Secure Multiplication Protocol
	Introduction
	An Overview of the Multiplication Protocol
	FVSSsubshare for Free
	Our Results

	Preliminaries and Definitions
	Properties of Bivariate Polynomials
	Verifiable Secret Sharing of a Bivariate Polynomial

	The Multiplication Protocol
	A High-Level Overview
	The F"0365Fextend Functionality for Transforming Univariate to Bivariate 
	The F"0365Fevalk Functionality for Evaluating a Shared Bivariate Polynomial
	The F"0365FVSSmult Functionality for Sharing a Product of Shares
	The F"0365Fmult Functionality and its Implementation
	Wrapping Things Up – Perfectly-Secure Protocol



	II Complete Fairness in Secure Two-Party Computation
	A Full Characterization of Functions that Imply Fair Coin-Tossing
	Introduction
	Definitions and Preliminaries
	Secure Two-Party Computation with Fairness – Malicious Adversaries
	Secure Two-Party Computation without Fairness (Security with Abort)
	Hybrid Model and Composition
	Coin-Tossing Definitions

	The Criterion
	-Balanced Functions
	The Criterion
	Exploring the -Balanced Property

	Strictly-Balanced Functions Imply Coin Tossing
	Unbalanced Functions Do Not Information-Theoretically Imply Coin Tossing
	Fairness in the Presence of Fail-Stop Adversaries
	Fail-Stop 1
	Fail-Stop 2


	Towards Characterizing Complete Fairness
	Introduction
	Our Results

	Definitions and Preliminaries
	Secure Computation – Definitions
	Mathematical Background

	The Protocol of Gordon, Hazay, Katz and Lindell GHKL08
	The Protocol
	Security

	Our Criteria
	Possibility of Full-Dimensional Functions
	Functions that Are Not Full-Dimensional
	Conclusion: Symmetric Boolean Functions with Finite Domain

	Extensions: Asymmetric Functions and Non-Binary Outputs
	Asymmetric Functions
	Functions with Non-Binary Output


	Appendix Full Specification of the BGW Protocol
	The Protocol for Semi-Honest Adversaries
	The Functionalities
	The Protocols

	The Protocol for Malicious Adversaries
	The Functionalities
	The Protocols


	Appendix Full Specification of the Efficient Perfectly-Secure Multiplication Protocol
	Functionalities
	The Protocols

	Appendix Security Proof for Protocol 5.3.3
	Security with Respect to Corrupted P2
	Security with Respect to Corrupted P1



