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Abstract

A key challenge in data cleaning is estimating which of the tuples in
a given database are correct and which are not. However, the output of
such systems typically includes both false positives and false negatives,
i.e., incorrect tuples labeled as correct and vice versa. When queries are
performed over the output of such cleaning systems, cleaning errors may
further have an intricate impact on the query results.

We introduce CleanEr, a generic framework that is used on top of
existing data cleaning systems and that assists users in identifying the
impact of potential cleaning errors on query results, and in deciding ac-
cordingly whether and how to proceed with the cleaning. We introduce
novel indicators reflecting the current uncertainty with respect to tuples
in the query result, as well as the effect of each relevant input tuple on this
uncertainty. We design and implement in CleanEr efficient algorithms for
computing these indicators. Based on these indicators, CleanEr helps the
data analysts decide whether to trust the query output, and guide them in
further cleaning of relevant parts of the data through an interactive pro-
cess. We propose to demonstrate CleanEr using NELL, a large database
extracted from the Web.

1 Introduction

There is a large body of work on data cleaning, where a main challenge is
estimating whether a given database tuple is correct or not. Despite great
advances in this area, this classification is still far from perfect. Systems such
as [7, 12] accompany their results with an estimation of uncertainty, e.g., the
likelihood that correct tuples are labeled by the cleaner as incorrect and vice
versa. In general, there is a tradeoff between the cost of cleaning, e.g., the
amount of manually labeled data, and the uncertainty of the cleaning output.

Furthermore, the data cleaning output may be further analyzed and fed
as input to queries. Already in the case of Select-Project-Join-Union (SPJU)
queries, the effect of cleaning errors on query results becomes intricate. This is
due to the intricate dependency of each output tuple on multiple input tuples (in
turn, captured by the notion of data provenance, e.g., [6]). It may be extremely
challenging to estimate to what extent one can trust query results, and to decide
what further cleaning steps to perform to increase this trust. For example,
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Figure 1: The architecture of CleanEr

should an additional expert be employed to assess the correctness of specific
database tuples? If so, which ones?

To this end, we introduce CleanEr, a generic framework that is used on top
of external cleaning modules and allows for the analysis and mitigation of errors
in data cleaning. We now overview the architecture of CleanEr (Figure 1) and
highlight its novel modules. Given a database and a query, we evaluate the query
over the database along with Boolean provenance (see below) using an external
Provenance-Aware Query Evaluation module (such as ProvSQL [10], denoted by
a gray frame on the top right). We also use an external Data Cleaning module
(such as [1,3,7,12], black frame on the right). The Data Cleaning module assigns
to each database tuple a correctness label along with an estimated likelihood
for this label to be erroneous.

CleanEr includes four newly developed modules that use the labeled data and
the query result provenance. These modules are designed to analyze and handle
cleaning errors where, unlike typical settings of uncertain databases (e.g., [8,11],
we do not have an estimation of the ground truth but only of potential clean-
ing errors. 1. We define a notion of input tuples that are crucial with respect
to a given output tuple, namely, incorrectly labeling them will lead to incor-
rectly labeling the output tuple. The first module computes the crucial input
tuples per output tuple. 2. We next define a worst-case error measure called
MES (stands for Maximal Error Score). Intuitively, MES reflects the maximal
likelihood of an error in the label of an output tuple. The MES Computation
Module implements efficient methods for computing the MES of each output
tuple, distinguishing between tuples labeled as correct and incorrect, since we
show the latter to be easier. 3. We then define risky input tuples, for which
further cleaning may refute the current correctness estimation by increasing the
MES. The third module efficiently identifies the risky inputs per output tuple by
invoking the MES computation module. 4. The last module implements a novel
algorithm for automatically selecting which tuples to clean further in order to
reduce the MES of user-selected output tuples. For that, it chooses effective
cleaning steps and executes them via an external Interactive Cleaning module
(blue, dotted arrows).

We next briefly review related work.
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Figure 2: Example for querying the results of data cleaning

Related Work. Several cleaning systems with human-in-the-loop have been
proposed (e.g., [1–3,5,7,9,12]), as well as query-guided systems (e.g., [1–3,9,12]
that focus on cleaning tuples relevant to given queries. CleanEr is the only
solution, to our knowledge, that can operate on top of such systems, enhancing
them by letting users analyze and handle potential errors in the cleaning pro-
cess. Provenance is a central component of our solution (see below), which has
multiple definitions (e.g., [6]) and has been used, in particular, in uncertain and
probabilistic databases (e.g., [8,11]). We differ from prior work on probabilistic
databases, in that 1. our model captures potential errors in the cleaning process
rather than a prior likelihood on the ground truth; 2. we have error likelihood
only for the data labeled by the cleaning process even though unlabeled tuples
may also be involved in the query; 3. due to (1) and (2) we are unable to com-
pute the probabilities for correct query results and instead need to define new
indicators; and 4. we aim to assist users in an interactive cleaning process and
thus focus on potential label and likelihood changes that may result from this
process.

2 Model and Indicator Definitions

We start by introducing a formal model, which will then be used in defining our
three uncertainty indicators.

Database with error estimation (DES). We view data cleaning as a prob-
abilistic process, with some likelihood of an error in each label. Therefore, we
model the output of data cleaning as a database with error estimation (DES) de-
noted by D = ⟨D, v, err⟩, where D is a relational database, v : D → {0, 1,⊥} is
a 3-value labeling function capturing the correctness labels assigned by the data
cleaning process to D’s tuples (where 0, 1 and ⊥ stand for correct, incorrect and
unknown, resp.) and err : D → [0, 0.5] ∪ {⊥} assigns error probabilities to the
tuples of D reflecting the confidence of the data cleaner in their labels. For each
ti ∈ D, err(ti) = ⊥ iff v(ti) = ⊥. For confidence computation in data cleaning
see, for example [7,12]. We assume that the error probability of a Boolean label
is up to 0.5; otherwise, we negate the label to achieve this. We use negation in
the standard 3-valued logic sense, i.e., ¬1 = 0, ¬0 = 1, and ¬⊥ = ⊥.

Queries over DES. We next explain how 3-value labels propagate from the
input DES D = ⟨D, v, err⟩ to the output of an SPJU query Q. Denote Dl =
{t | v(t) = l} ⊆ D, i.e., the subset of D assigned a label l by v. We then define
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a 3-value labeling function vQ as follows: vQ(o) = 1 if o ∈ Q(D1), v
Q(o) = 0

if o ̸∈ Q(D1 ∪D⊥), and vQ(o) = ⊥ otherwise, where Q(D) is the standard query
output of Q over D. Intuitively, output tuple o is correct if it can be derived
from correct DES tuples and incorrect if it is not derived even if all the DES
tuples with no labels are correct. This follows a standard 3-value logic semantics
for SPJU queries.

Example 2.1. Consider Figure 2. The database D on the left includes two re-
lations, recording acquired companies and the roles of members in each company.
Applying data cleaning to D yields a DES (middle frame) where each tuple is
associated with a correctness label and an estimation of the probability that this
label is erroneous, columns v and err, respectively. Next, we apply to the DES
an SQL query (top right) returning members of acquired companies. The result
(bottom right, ignore column LQ for now) includes a single tuple. This output
tuple is labeled as correct (column vQ) since it can be derived using only tuples
estimated to be correct (marked with a0 and r1).

Crucial tuples. Errors in the correctness labels assigned to input tuples may
or may not lead to errors in the labels of derived output tuples. The following
definition identifies input tuples that are crucial in the sense that an error in
their label implies an error in the label of the query output. Formally,

Definition 2.1 (Crucial tuples). Let D = ⟨D, v, err⟩ be a DES, Q be a query
and o ∈ Q(D) such that vQ(o) ∈ {0, 1}. For each t ∈ D, denote by vt the labeling
function that agrees with v on all tuples except that vt(t) = ¬v(t). Then t is

crucial w.r.t. D,Q, o if vQ(o) ̸= vQt (o).

For example, in Figure 2 both a0 and r1 are crucial, since an error in one of
their labels (i.e., if one of them is in fact incorrect) means an error in the query
output label. Crucial tuples resemble the counterfactuals of [8], except that
they are defined with respect to v, which reflects the current, partial knowledge
in an interactive cleaning process.

Worst-case error. We next propose a metric for measuring the uncertainty
of query results. Let D = ⟨D, v, err⟩ be a DES, Q a query, and o ∈ Q(D) an
output tuple such that vQ(o) ∈ {0, 1}. We look at the set of possible ground
truths, namely, possible worlds, with respect to D, each of which can be repre-
sented via a total labeling function v′ : D → {0, 1} assigning the ground truth
correctness to each tuple. Out of these possible worlds, we focus on those where,
after performing cleaning yielding D and executing Q over D, the output la-
bel vQ(o) would be erroneous. We formally denote this set of possible worlds
by Inv (v, o,Q) = {v′ : D → {0, 1} | v′Q(o) = ¬vQ(o)}. Now, formally,

Definition 2.2 (Maximal Error Score). The Maximal Error Score (MES) w.r.t.
D = ⟨D, v, err⟩, Q, o is defined as

MES(D,Q, o) = max
v′∈Inv(v,o,Q)

∏
{t∈D|v(t)=v′(t)}

(1 − err(t)) ·
∏

{t∈D|v(t)=¬v′(t)}

err(t) (1)

Intuitively, out of all the possible worlds in which the output label vQ(o) is
wrong, we look for the world that would maximize the likelihood of the observed
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labels, assuming independence of cleaning errors. A low MES thus implies
that vQ(o) is unlikely to be wrong: for every possible world in which vQ(o) is
wrong, the likelihood of obtaining the DES D is low. Conversely, a high MES
only implies that there exists a possible world in which vQ(o) is wrong, and in
which D is a likely cleaning output.

Example 2.2. Continuing Example 2.1, let W ′ be the possible world where
only a0 is correct. I.e., the cleaning process was right about a0, r0 but wrong
about r1. In W ′, the likelihood of attaining the DES in Figure 2 as a cleaning
result is (1 − err (a0)) · (1 − err (r0)) · err (r1) = 0.9 · 0.6 · 0.2 = 0.108. In fact,
W ′ is the most probable world for which the result of the query over the DES
is wrong, i.e., incorrect in contrast with its label. Therefore, the MES of the
output tuple is 0.108.

Risky tuples. MES is an indicator of lack of confidence in a query result,
based on which analysts may decide whether to apply additional cleaning steps
to the database. To assist them further in choosing which tuples to clean, we
classify each of the database tuples based on whether cleaning them further,
namely, reducing the likelihood of an error in their label, may in fact refute the
current label assigned to the query result in question. Those that may refute
the label are called risky :

Definition 2.3 (Risky input tuples). Let D = ⟨D, v, err⟩ be a DES, Q a query
and o ∈ Q(D) an output tuple such that v(o) ∈ {0, 1} and let t ∈ D. We say
that Dt = ⟨D, v′, err′⟩ is a possible cleaning result for D, t if it agrees with
D on all tuples except t, and err′ (t) < err (t). Then, Dt refutes D,Q, o if

MES(D
′
, Q, o) > MES(D,Q, o). Finally, t is a risky tuple w.r.t. D,Q, o if it

has a possible refuting cleaning result.

Example 2.3. Reconsider Example 2.2. If we ask additional experts and reduce
the likelihood of an error in r0 from 0.4 to 0.2, the worst-case world is still W ′,
but the likelihood of attaining the DES increases to 0.144. If, instead, we reduce
the likelihood of a mistake in r1 from 0.2 to 0.1, the likelihood of obtaining the
DES given W ′ (which is still the worst-case world) decreases to 0.054. Hence,
r0 is risky but r1 is not.

3 Analysis and Algorithms

We start by recalling the notion of Boolean provenance, and then use it in our
algorithms.

Provenance. In an annotated database D̂ = (D,X,L), tuples are uniquely
labeled by Boolean variables in X using a function L : D → X. The result of
a query Q over D̄ is Q(D̄) = (Q(D),Bool[X], LQ), where LQ annotates each
query output tuple with a Boolean expression over variables in X. Provenance
computation commutes with truth assignments [6]: applying the assignment
to the input database and then evaluating the query is equivalent to applying
it directly to the provenance expressions. E.g., in Figure 2, tuple annotations
appear in column L and the query output provenance appears in column LQ.
Indeed, the provenance reflects that the result is correct either if the input tuples
annotated by a0 and r0 or those annotated by a0 and r1 are correct.
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3.1 Computing the Indicators

We next analyze the complexity and show algorithms for computing the three
indicators defined in Section 2.

Crucial tuples (Def. 2.1). Given an output tuple o and its provenance LQ(o),
determining whether an input tuple t is crucial amounts to checking whether
flipping the assignment of its annotation L(t) changes the value of LQ(o), which
can be done in time linear in the size of LQ(o).

MES computation (Def. 2.2). We next characterize the complexity of MES
computation.

Proposition 3.1. Let D = ⟨D, v, err⟩ be a DES, Q(D̄) = (Q(D),Bool[X], LQ)
be the result of an SPJU query, and let o ∈ Q(D) be an output tuple.

1. If vQ(o) = 0, then MES
(
D,Q, o

)
can be computed in polynomial time in

the size of D.
2. If vQ(o) = 1, then unless P=NP, MES

(
D,Q, o

)
may not be computed in

polynomial time in the size of D.

Proof (Sketch). For part 1, we can show that the possible world that maximizes
the likelihood of v is similar to v except that it satisfies one term (i.e., con-
junction) in the DNF provenance of o. Therefore, we can compute the MES by
computing the probability of v for every such possible world. Part 2 is proved
by a reduction from Independent Set.

The above proof yields a PTIME algorithm for computing the MES of out-
put tuples labeled 0. For output tuples labeled 1, we implement two alterna-
tives: first, for some subclasses of SPJU, the provenance may be transformed
in PTIME into conjunctive normal form (CNF) [3]. In such cases, a PTIME
algorithm analogous to the one in the above proof exists. For the general case,
we formulate the problem as an integer linear program (ILP) that can be solved
using state-of-the-art solvers.

Risky tuples (Def. 2.3). Finally, we study the detection of risky tuples.
Here, we can prove that interestingly, if reducing the error probability of in-
put tuple t to some pj increases the MES of output tuple o, the same is
true for every p < pj . We can thus detect risky tuples by 3 MES compu-
tations, as follows. Given a DES D = ⟨D, v, err⟩, let v′ be identical to v
except that v′(t) = ¬v(t), and err′ identical to err except that errt0 = 0. Tu-
ple t is risky with respect to D,Q, o iff MES(⟨D, v, err′⟩, Q, o) > MES(D,Q, o)
or MES(⟨D, v′, err′⟩, Q, o) > MES(D,Q, o), the latter capturing t’s label being
inverted by additional cleaning.

3.2 Selecting Further Cleaning Steps

So far, we have focused on computing indicators both with respect to the un-
certainty of each output tuple and for the effect of each input tuple on this
uncertainty. The analysts may use this information to select input tuples which
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Figure 3: Query results screen Figure 4: Input tuples indicators screen

they wish to clean further, e.g., asking additional experts whether they are cor-
rect. To assist the analyst further in this choice, we propose an algorithm that
automatically selects these tuples.

The input to the algorithm is a set of output tuples of interest, a desired
MES level p∗, set, by default, to the minimal error probability of any input
tuple, and optionally maximal execution time. The algorithm iteratively selects
tuples to clean further until the MES of all the selected output tuples is at
most p∗ or until a timeout is reached. In each iteration, a batch of input tuples
is selected and is passed to the external Interactive Cleaning module, and this
module returns as output the tuples with their updated error probability and
possibly updated correctness labels (blue, dotted arrows in Figure 1).

We next overview the operation of the algorithm for a single output tuple o,
and the extension to multiple output tuples is straightforward. The candidate
tuples for further cleaning are those who participated in the derivation of o
(which can be read from the provenance). We select in each iteration a batch
of such tuple according to the provenance structure and the current correctness
label of the output, vQ(o), as follows. If vQ(o) = 1, we choose one satisfied
term in LQ(o) with the smallest number of variables whose error probabilities
are above p∗, and add its variables to the batch. Otherwise, we choose from
each term, among the variables set to 0, the one with minimal probability and
add it to the batch. The chosen tuples are passed on to the Interactive Cleaning
module, that can process them in parallel. We repeat this iteratively until the
MES of o reaches the desired level.

4 Implementation and Demo Scenario

We now describe our prototype implementation, whose code and screenshots
can be found in https://github.com/ransch/CleanEr. Recall Figure 1. The
MES Computation and Risky Tuple Computation modules are implemented in
Python 3.9 using SymPy (https://www.sympy.org) for processing Boolean for-
mulae and OR-Tools library (https://developers.google.com/optimization/
introduction/python) for solving ILPs. The Crucial Tuple and Cleaning Se-
lection Algorithms are implemented in Javascript, and the User Interface is built
using Next.js (https://nextjs.org), accessing the python modules through a
Flask REST API (https://flask.palletsprojects.com). We use an exist-
ing query-guided data cleaning solution for data management and for the three
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external tools [3]. We also provide our own implementation, with expert in-
teraction incorporated in the display, allowing participants to play the role of
human experts and control the errors in the cleaning process.

We will demonstrate the use of CleanEr over NELL [4], a general-purpose
database constructed by information extraction from the Web that therefore
contains many errors. NELL also includes many readily available real expert
correctness labels. To illustrate the initial cleaning process, we will choose a
query, and play the role of data experts by entering correctness labels (some of
which will be deliberately erroneous) for input tuples on request by the Data
Cleaning module. We will then show the query result screen (Figure 3), display-
ing the output tuples estimated to be correct and incorrect in white and gray
resp., both in decreasing MES order by default.

We will then ask participants to choose output tuples of interest. By clicking
them they will be able to see which input tuples contributed to their derivation
(Figure 4). Each input tuple is presented with its correctness label, its error
probability, and whether it is crucial or risky with respect to the selected out-
put tuple. The input tuples may further be filtered by the user according to
their properties (e.g., whether they are crucial, risky, etc.). We will explain to
the audience the intuition on how MES is computed. Based on the presented
indicators, we will choose input tuples and perform further cleaning steps on
them. We will observe the effect of these cleaning steps on the labels and MES
of the output tuples (Figure 3), e.g., via arrows showing for which tuples the
MES increased or decreased. We will also invite participants to choose which
tuples to clean and observe the effect.

Finally, we will demonstrate the execution of the algorithm from Section 3.2
on output tuples of the audience’s choice, observing the effect on the output
tuples in comparison with the effect of manually selected tuples.

Acknowledgments. This work was partly funded by the Israel Science Foun-
dation (grant No. 2015/21) and by the Israel Ministry of Science and Technol-
ogy.
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