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Abstract

We demonstrate SubTab, a framework for creating small, informative
sub-tables of large data tables to speed up data exploration. Given a table
with n rows and m columns where n and m are large, SubTab creates a
sub-table Tsub with k << n rows and l << m columns, i.e. a subset of
k rows of the table projected over a subset of l columns. The rows and
columns are chosen as representatives of prominent data patterns within
and across columns in the input table. SubTab can also be used for query
results, enabling the user to quickly understand the results and determine
subsequent queries.

1 Introduction

Data exploration is an important first step in data analytics. During this step,
the analyst tries to understand an unfamiliar dataset and determine what part
of the data is relevant to their task by displaying the table, looking at the
table description, or visualizing column values. However, when displaying a
large table only a small subset of the table is typically shown – and without
input from the user, the subset is arbitrary. For example, the default display
of Pandas1 tables using the Python display() command includes the first and last
several rows and columns. Frequently, this is not very informative as the sub-
table may contain a lot of missing values and/or fail to capture the range of
possible values in a column; it may also elide columns that are important for
further exploration.

Example 1.1. Consider a table T taken from the Kaggle flights dataset2 which
contains 31 columns and ∼6M rows. The analyst is using T to predict flight can-
cellations, and hence is interested in a specific target column, CANCELLED.
The analyst starts by visually inspecting the data using Pandas display(T ), which
yields the table displayed at the top of Figure 1. This display of T is not in-
formative for the analysis task, as it does not include the target column. More
crucially, its usefulness for data exploration is limited: e.g., the last five columns

1Pandas: Python Data Analysis Library. https://pandas.pydata.org/
2https://www.kaggle.com/usdot/flight-delays?select=flights.csv
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SCHEDULED 
ARRIVAL

AIR
TIME

WHEELS 
OFF

WHEELS 
ON

DISTANCE DEPARTURE 
TIME

SCHEDULED 
DEPARTURE

CANCELLED

2157 242.0 1505.0 2207.0 1979 1448.0 1450 0

1925 NaN NaN NaN 733 NaN 1605 1

1059 31.0 1009.0 1040.0 109 955 1000 0

846 140.0 606.0 826.0 954 9551.0 600 0

1419 77.0 1231.0 1348.0 602 1222.0 1237 0

1920 135.0 1646.0 1901.0 1013 1620.0 1625 0

1643 156.0 1240.0 1616.0 1276 1228.0 1235 0

2050 79.0 1932.0 2051.0 550 1916.0 1916 0

YEAR MONTH DAY DAY OF 
WEEK

… SECURITY 
DELAY

AIRLINE 
DELAY

LATE AIRCRAFT 
DELAY

WEATHER 
DELAY

2015 1 1 4 … NaN NaN NaN NaN

2015 1 1 4 … NaN NaN NaN NaN

2015 1 1 4 … NaN NaN NaN NaN

… … … … … … … … …

2015 12 31 4 … NaN NaN NaN NaN

2015 12 31 4 … NaN NaN NaN NaN

2015 12 31 4 NaN NaN NaN NaN

SubTab

Pre-Processing 
Step:
• binning
• embedding

Selecting Step:
• clustering
• centroid 

selection

Query  
Result

Query

Raw Dataset (6M Rows X 31 Columns):

Informative Sub-Table (8 Rows X 8 Columns):

Figure 1: System Architecture
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contain only NaN values, and other columns include many repetitions of arbitrary
values.

The goal of SubTab is to support the data exploration task by selecting small,
informative sub-tables through which analysts can view data. Given a table T
with n rows and m columns, SubTab creates a sub-table with k << n rows and
l << m columns, which is a subset of k rows projected over a subset of l columns
of T .

Intuitively, a sub-table is informative if it captures data patterns within and
across columns in T . We formalize this intuition based on a combination of two
complementary metrics: coverage and diversity. Coverage, measures how well
the sub-table covers patterns in the data, where we define patterns through the
standard notion of association rules. For the second metric, diversity, we rely
on the average pair-wise similarity between the rows of the sub-table.

If one or more target columns are known in advance to be the focus of the
analysis, they must be included in the l selected columns, and we measure cell
coverage only according to association rules that include the target columns.

Example 1.2. Continuing with the flights dataset, the output of SubTab is
shown at the bottom of Figure 1. This sub-table is informative in a number
of ways. First, it represents diverse, prominent association rules that include
the target column CANCELLED. We visualize this by highlighting, in each row,
the cells that participate in a rule that holds for this row (many more rules
hold, to avoid visual clutter we only highlight one per row). For example, the
first row of the sub-table exemplifies an association rule stating that long flights
(AIR TIME ∈ [198.0, 422.0] and DISTANCE ∈ [1546.0, 2724.0]) are likely not
to be cancelled (highlighted in orange). The second row of the sub-table ex-
emplifies an association rule stating that short afternoon flights (according to
the SCHEDULED DEPARTURE and SCHEDULED ARRIVAL columns) are
likely to be cancelled (CANCELLED = 1, highlighted in blue). Beyond these
association rules, the sub-table gives useful insights about the column values, by
showing diverse rows and diverse values per column.

Unfortunately, we can show that optimizing this informativeness score di-
rectly is NP-hard (see full paper in [9]). Moreover, even computing the as-
sociation rules is not practical in our setting: while there are several efficient
techniques for mining association rules (e.g., [10]), they are not fast enough for
an interactive setting.

We therefore consider a sub-table computation method which indirectly ac-
counts for association rules using table embedding [1, 2]: we compute a vector
representation for table cells, rows and columns which is based on co-occurrences
of values. Hence, the patterns captured by this representation implicitly corre-
spond to association rules. To do this, given a table T we use binning [10] to
split each column’s values into a small set of meaningful groups. We then use
Word2Vec [6] to learn an embedding for table cells in vectors, a technique which
was shown to be useful (e.g., [1, 2]).

An important benefit of our solution design is in responding to queries over
T : we compute the binning and cell embedding once upon loading the data
table (Pre-processing step in Figure 1). Then, if the analyst issues a selection-
projection (SP) query on T and wishes to view its result as a sub-table, we need
only to compute the vector representation of rows and columns in Q(T ) based
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on the cells of T that appear in them, and re-execute clustering and centroid
selection (Selecting step in Figure 1). This significantly speeds up sub-table
computation compared with computing everything from scratch (a few seconds
instead of up to a minute for large tables). Note that our solution design is
independent of the concrete choices of cell embedding, binning and clustering
techniques. The specific components that we use allow for fast response in an
interactive setting. Moreover, they work well in practice and apply to a variety
of datasets, even when compared with more complex alternatives [9].

Demo We show how SubTab is used in data exploration sessions over several
real-life datasets. Our SubTab implementation seamlessly integrates with Pandas,
and replaces its default query results presentation, so users can keep using the
same exploratory operations they are used to. Participants will use Jupyter
notebooks3 to explore a dataset of their choice, and observe the generated sub-
table for each query they perform, see Section 3 for more details.

Related work Existing work primarily addresses the task of selecting either
rows or columns. Representative rows selection has been studied mainly in the
context of results diversification (e.g., [3]), and data visualizations (e.g., [8]).
Choosing columns is done mainly for feature selection (e.g., [4]). Database sum-
marization techniques (e.g., [7]) were suggested for approximated query process-
ing, with the goal of constructing a small summary table over which queries
are evaluated faster than on the original data. The summary augments and
compresses the original data and need not preserve the original data represen-
tation. Our work differs by generating informative sub-tables, which contains
the actual data from representative rows and columns in the original table.

2 Approach

In this section, we define our metrics of cell coverage and diversity, and the
problem of finding an optimal sub-table based on their combination. We then
briefly discuss the infeasibility of directly computing an optimal sub-table ac-
cording to our metrics, followed by an efficient embedding based algorithm that
can empirically be shown to perform well in practice.

2.1 Informativeness Metrics

Cell coverage A table T is a set of tuples associated with a set of columns
U , such that t(u) is the cell of tuple t ∈ T in column u ∈ U . An association rule
R over T has the form

{(u1, v1), . . . (ur, vrR)}→{(urR+1, vrR+1), . . . (urR+pR
, vrR+pR

)

where each ui ∈ U is an attribute and each vi is a cell value [10]. Denote by UR

the set of attributes {u1, . . . , urR+pR
}, which we assume w.l.o.g. to be distinct.

Denote by TR ⊆ T the subset of tuples for which R holds, i.e., t(ui) = vi for
every t ∈ TR and 1 ≤ i ≤ rR + pR.

3Project Jupyter. https://jupyter.org

https://jupyter.org
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Figure 2: Example usage of SubTab – presenting an informative, 10X10 sub-table
for a large query results-set

We are given a sub-table Tsub whose tuples are a subset of T ’s tuples pro-
jected over a subset of the attributes Usub ⊆ U , and a set R of prominent4

association rules mined from T .To measure the coverage of Tsub with respect to
T and R we consider the following.

(q1) Which of the rules of R are captured or covered by Tsub?

(q2) What is the marginal contribution of each covered rule to Tsub’s informa-
tiveness?

(q3) How do these contributions aggregate to an overall numerical score for
Tsub?

Formal definitions for q1-q3 are given below, leading to a metric which cap-
tures the ratio of cells in T that are describable by association rules in R that
are represented in Tsub.

Definition 2.1 (Cell coverage). Let T be a table, R a set of association rules
mined from T , and Tsub a sub-table of T .

(d1) A rule R ∈ R is said to be covered by Tsub if UR ⊆ Usub, the attributes
of Tsub, and {Tsub}R ̸= ∅, i.e., there exists a tuple t ∈ Tsub for which R
holds. Denote by Rsub the set of all rules in R that are covered by Tsub.

(d2) The marginal contribution of a rule r ∈ R is denoted by cell(R, T ) :=
{t(u) | t ∈ TR ∧ u ∈ UR}, i.e., the subset of table cells it describes.

(d3) The cell coverage of Tsub with respect to T,R is denoted by

cellCovR(T, Tsub) :=
1

N

∣∣∣∣∣ ⋃
R∈Rsub

cell(R, T )

∣∣∣∣∣
where the normalization factor N :=

∣∣⋃
R∈R cell(R, T )

∣∣ ensures that the
value of cellCovR(T, Tsub) is in [0, 1].

4There are standard metrics we can use to measure the prominence of association rules in
T , such as Support and Confidence [10].
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Pre-processing (T̃ ) // Raw table

1 T ← sample, normalize and bin T̃ ;
2 return T ;

Embedding Computation (T ) // Pre-processed table
3 S ← rows and columns of T as text;
4 M← Word2Vec(S,windowSize = max{n,m});
5 returnM ; // cell-to-vector model: M : T × U→Rγ

Centroid Selection (T, k, l, Q, U∗)
6 rowVecs, colVecs ← empty dictionaries;
7 if Q ̸= NULL then T ← Q(T );
8 U ← columns of T ;
9 for t ∈ T do

10 v ← avgu∈U (M(t(u)));
11 rowVecs ← rowVecs ∪{v 7→ t};
12 C ← cluster(rowVecs, k);
13 Tsub ← rowVecs. getValues(centroids(C));
14 for u ∈ U − U∗ do
15 v ← avgt∈T (M(t(u)));
16 colVecs ← colVecs ∪{v 7→ u};
17 C ← cluster(colVecs, l − |U∗|);
18 Usub ← U∗ ∪ colVecs. getValues(centroids(C));
19 Tsub ← Π

Usub
Tsub;

20 return Tsub, Usub;

Algorithm 1: Sub-table selection.

Diversity Sub-tables with high cell coverage may seem repetitive to humans:
values that do not participate in rules are ignored, and the association rules
themselves may be overlapping and leading to repeated values. This calls for
combining cell coverage with a diversity metric. Following previous work on
diversity in other contexts, the metric that we use is based on a pairwise Jaccard
similarity metric [5]. To handle categorical and continuous columns uniformly,
we use a binning function to split continuous column values into sub-ranges
based on their distribution.

Definition 2.2 (Diversity metric). Let Tsub be a sub-table of T with attributes
Usub. Let B be a binning function mapping each column u ∈ U to a finite set
of distinct bins: for a continuous column u, for every value t(u) there exists
exactly one bin [minVal,maxVal] ∈ B(u) such that minVal ≤ t(u) < maxVal.
For a categorical column u ∈ U , for every category value c in u there is exactly
one bin [c, c] ∈ B(u) that matches it.

Given a pair of tuples t, t′ ∈ Tsub, their similarity is defined by

Jaccard(t, t′, Tsub) :=
|{u ∈ Usub | ∃B ∈ B(u). t(u), t′(u) ∈ B}|

|U |

We then define the diversity of Tsub according to the average similarity between
its tuples, namely, divers(Tsub,B) := 1− avgt,t′∈Tsub

Jaccard(t, t′, Tsub).

Optimization problem Based on the metrics defined above, the optimiza-
tion goal of SubTab (which also accounts for optional target columns) can be
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stated as follows. We are given as input a table T , dimensions k, l, a set of tar-
get columns U∗ such that |U∗| ≤ l, a set of association rules R mined from T , a
binning B of U ’s columns as in Def. 2.2 above and a parameter α ∈ [0, 1] (by de-
fault, α = 0.5). If U∗ ̸= ∅ let R∗ := {R ∈ R | {ur1 , . . . , urR+pR

} ∩ U∗ ̸= ∅}, i.e.,
we retain only the rules whose attributes includes a target attribute, and oth-
erwise R∗ = R. Our goal is to find a k× l sub-table Tsub where U∗ ⊆ Usub, i.e.,
that includes the target attributes, and that among all such tables maximizes
the following score:

combined(Tsub, T,R∗) = α · cellCovR*(T, Tsub) + (1− α) · divers(Tsub,B)

2.2 Impracticality of an Optimal Solution

Unfortunately, we can show that computing a sub-table that optimizes combined
is NP-hard (by a reduction from Vertex Cover in a graph with degree 3, details
omitted). However, when the sub-table columns are fixed, cellCov is a monotone
submodular function with respect to the rows. Hence, it follows that if we
can enumerate all possibilities for column selection we can execute a greedy
algorithm over each possibility, and take the sub-table with maximal score to
achieve an (1 − 1

e ) approximation of the optimal cell coverage. This approach
only works for rows, since cellCov is not submodular with respect to columns.

There are several issues with this approach: first, it is typically infeasible to
enumerate all

(
m
l

)
possibilities for column selection. Second, it only accounts

for cell coverage, and not for diversity. Third, even if columns are fixed and
diversity is ignored, the greedy approach is still impractical, due to the need
to compute association rules: as mentioned in Section 1, mining rules generally
does not meet reasonable requirements for interactive time response.

2.3 Computing Sub-Tables by Table Embedding

Given the impracticality results explained above, our solution takes an approach
based on table embedding, which does not explicitly calculate rules nor directly
performs coverage optimization. Our algorithm is detailed in Algorithm 1 and
explained below.

Algorithm 1 includes three functions: Pre-processing, Embedding Computa-
tion and Centroid Selection. Pre-processing/Embedding Computation operate
over the raw table T̃/pre-processed table T , respectively, and can be executed
as soon as the data is loaded. Centroid Selection is called for each sub-table
display, and hence gets as input the sub-table dimensions k, l, an optional SP
query Q and a (possibly empty) set of target attributes U∗.

To allow fast response times, Pre-processing first takes a 100K-tuple random
sample from the table, then normalizes values (e.g., removes illegal characters)
and bins continuous columns, such that values are replaced by bin names (e.g.,
splits the Distance column into short, medium and long distances). Embed-
ding Computation then learns a model M (line 5) which returns, for each ta-
ble cell, a vector representation capturing the context (other cells in the same
rows/columns) in which it appears. This implicitly captures data patterns in
which cells participate, such as association rules.

In Centroid Selection we select rows and columns in the query output that
represent diverse data patterns. For that, Q (if provided) is first executed over
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the table T ; the query output is then considered as the table (line 7). We
then capture compute the vector of each row as the average of its cells vectors
(averaging is done entry-by-entry), now corresponding to data patterns in which
the row participates, and save a mapping from vectors to rows (lines 9-11). We
cluster the vectors into k clusters and select their centroids as the rows of Tsub.
We similarly compute Usub, the columns of Tsub, as the average of their cell
vectors. Since the columns of U∗ must be included in the sub-table, we exclude
them from clustering, compute only l− |U∗| clusters and then add U∗ columns
to the selected centroids.

Note that since SubTab does not directly attempt to optimize the cell-coverage
and diversity metrics, there are no guarantees it will always obtain high scores.
However, when rules are prominent rather then arbitrary, they are likely to be
captured by the cell embedding and our solution achieves high scores (See [9]).

3 System and Demo Overview

We implemented SubTab as a local Python library that hooks into Pandas, so
users can explore datasets, e.g. in Jupyter notebooks, using the same operations
they are used to. To use SubTab the user must import the library and initialize
a subtab object on the dataset, given as a Pandas DataFrame. Our system then
computes the cells’ vector representations, which takes less than a minute. The
user can then start exploring the dataset using Pandas queries, and view the
generated sub-tables using the display() method of the SubTab object, as illustrated
in Figure 2. Since the system is already initialized, generating a sub-table only
takes a few seconds.

To assist users in analyzing the resulting sub-table, we developed a visual
layer that automatically highlights the captured patterns. As shown in Figure 2,
cells associated with the same pattern are highlighted using the same color. By
hovering over a highlighted pattern, the user can then see more details, such as
its support, confidence, and lift score. This graphical interface also displays the
coverage, diversity and combined scores for each sub-table.

SubTab uses Kernel Density Estimation implemented by sciPy (https://
scipy.org) to bin continuous column values. It uses the gensim library (https:
//radimrehurek.com/gensim) for computing cell-vectors (cell embedding into
vector representations), using a window-size configuration that eliminates the
the word proximity factor in natural language sentences, since we assume rows
and columns are unordered. The embedding method is configured to gener-
ate cell-vectors of size 50 with a minimum cell occurrences frequency of 10.
Clustering over the rows and columns is done using the sklearn (https://
scikit-learn.org) implementation of K-means.

Demo scenario Our demo begins with a sample EDA session performed on
a dataset (such as the Kaggle Flights dataset described above), using a Jupyter
Notebook interface. For each query, we will initially see its intermediate results
via the Pandas default sub-table. Next, we will activate SubTab and replay the
EDA session. Instead of the default sub-tables, SubTab will generate informative
sub-tables for each query in the session. Next, we will invite participants to
choose another dataset and optionally one exploration goals. They will then
explore it using a Jupyter Notebook interface (with our assistance). After each

https://scipy.org
https://scipy.org
https://radimrehurek.com/gensim
https://radimrehurek.com/gensim
https://scikit-learn.org
https://scikit-learn.org
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query, the participant will be able to inspect the sub-table and evaluate its
usefuless by eye as well as through our visual interface, and compare it with
the default Pandas sub-table by toggling between the two. We also provide the
audience a look under-the-hood of the sub-table generation process.
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