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LTCI, Télécom Paris, Institut Polytechnique de Paris

Yael Amsterdamer
Bar-Ilan University

Abstract—Data sharing is commonplace on the cloud, in social
networks and other platforms. When a peer shares data and
the platform owners (or other peers) wish to use it, they need
the consent of the data contributor (as per regulations such
as GDPR). The standard solution is to require this consent in
advance, when the data is provided to the system. However,
platforms cannot always know ahead of time how they will use
the data, so they ofter require coarse-grained and excessively
broad consent. The problem is exacerbated because the data is
transformed and queried internally in the platform, which makes
it harder to identify whose consent is needed to use or share the
query results.

Motivated by this, we propose a novel framework for actively
procuring consent in shared databases, focusing on the relational
model and SPJU queries. The solution includes a consent model
that is reminiscent of existing Access Control models, with the
important distinction that the basic building blocks – consent for
individual input tuples – are unknown. This yields the following
problem: how to probe peers to ask for their consent regarding
input tuples, in a way that determines whether there is sufficient
consent to share the query output, while making as few probes as
possible in expectation. We formalize the problem and analyze it
for different query classes, both theoretically and experimentally.
Our analysis shows that the problem is NP-hard in general even
for simple SELECT-PROJECT-JOIN queries, yet we develop a
suite of optimal and approximate algorithms, for different query
classes of interest. The algorithms connect the two seemingly
unrelated research areas of Data Provenance and Interactive
Boolean Evaluation. We provide theoretical guarantees as well
as empirical evidence for the efficiency of our solutions.

I. INTRODUCTION

Data is routinely being shared online by peers on dif-
ferent platforms including social networks, cloud-based file
sharing, and messaging applications. Using this data requires
the consent of the data owner, according to regulations such
as GDPR [1]. Typically, consent is obtained in advance,
e.g., when the peer joins the platform (accepting the general
platform policy) or when the data is originally uploaded to the
platform. This has two main limitations:

1) The future ways in which data is used may be unknown
and hard to anticipate. As a consequence, a-priori consent
is coarse-grained. For example, a consent form could in-
clude a question of the sort: “do you agree that your data
will be shared with third parties?”. This is suboptimal:
a peer might be fine with her data being shared with an
NGO, but reluctant to having it shared with the press. At
the time of data sharing, we can’t get to such granularity,
because we may not know yet with which third parties it
would make sense to share the data.

2) To share original data as-is, one may simply ask the data
owner for their consent when the need arises. However,
data is often transferred, processed and combined through
complex queries. Now, if one wishes to use a query result,
whose consent is needed? On one hand, the query result
will often not directly represent the data of any individual
user; but on the other hand, the owners of the data from
which the result has been derived do have rights with
respect to it [1].

Similar questions are studied in the fields of data sharing,
privacy and access control (see Section VI), but to our knowl-
edge there has been no study of the combination of these two
challenges, namely the need to actively obtain consent and to
do so for derived data.

We therefore propose a novel framework for managing
consent in shared databases, focusing on the relational set-
ting and Select-Project-Join-Union (SPJU) queries. The main
components of this framework are as follows.

Consent Model for Derived Data: As mentioned above,
it is unclear who is the “owner” of pieces of data that are
derived through data transformations. If, for instance, we join
two database relations and now wish to share a tuple in the
join result, do we need the consent of owners of the two joined
tuples, or could one of them suffice? How about if we union
two relations (under set semantics) and a tuple appears in both?

In the context of relational databases, we propose a model
based on a “possible-worlds-like” semantics: for a database D,
a query Q and a query result t ∈ Q(D), we say that consent
is given with respect to t if and only if t appears in the result
of evaluating Q over D′ ⊆ D containing the input tuples for
which consent is given. This in particular means that for a
joined tuple we need the consent for both input tuples, and
for union only one suffices.

So far, this choice is in line with standard access control
models (e.g., [2], [3], [4], [5]). However, in our setting, it
is also unknown if we have consent with respect to the input
tuples, is also unknown – see point (1) above. Thus, we cannot
simply propagate known consent from the input to the output,
but we need to actively probe peers to ask for their consent. We
use the notion of probing in an abstract sense, and in practice
it may correspond to questions posed to human users [6],
requests through automated agents, etc.

But who should we probe? Of course, if we probe all peers
with respect to all data in the shared database, we would know
precisely the consent status with respect to the entire input



Class Provenance Shape Consent for Full Query Result Consent for Single Tuple

S/SP/SU Disjunctions, overall read-once PTIME Exact solution (Section IV-B) PTIME Exact solution (Section IV-B)

SPU Disjunctions, per-tuple read-once NP-hard, approximate solution (Section IV-C) PTIME Exact solution (Section IV-B)

SJ Conjunctions, per-tuple read-once NP-hard, approximate solution (Section IV-C) PTIME Exact solution (Section IV-B)

SJU k-DNFs (Section IV-A),
per tuple read-once if partitioned

NP-hard, approximate solution (Section IV-C) Approximate solution (Section IV-C),
exact if partitioned (Section IV-B)

SPJ/SPJU k-DNFs (Section IV-A) NP-hard (Section IV-D)
approximate solution for projection-limited
queries (Section IV-C)

NP-hard (Section IV-D),
approximate solution (Section IV-D)

TABLE I: Summary of the theoretical guarantees for different query classes and the consent decision problem. We use standard
notations for the query operators: S – selection, P – Projection, J – Join and U – Union. See full analysis in Section IV.

database and thereby for any output as well. Probing, however,
is a costly operation – in terms of latency and human effort.
We thus wish to probe in a frugal manner, which leads to
our problem (defined formally in Section II): how to minimize
the expected number of probes required to determine consent
with respect to a query result? We say “expected” (in the
probabilistic sense), since the number of probes needed in total
will typically depend on the answers that we receive, which
of course are not known in advance.

Solution Framework: Towards a solution, we first observe
that a key ingredient is provenance. The provenance of a query
result tells us which input tuples it depends on, and in what
way. In settings where we know whether consent is granted
for each input tuple, the Boolean provenance of the query
output (à la c-tables [7]) tells us whether we have consent to
share the query results. Furthermore, when we do not know
the consent for the input, we may annotate each input tuple
with a variable, and provenance is then Boolean expression
over these variables. The problem then reduces to determining
the truth value for these Boolean expressions, by probing
the truth values of the individual variables. We refer to this
problem as Interactive Boolean Evaluation, which has been
extensively studied in the literature in different contexts and
under different names (e.g., [8], [9], [10], [11]). Our solution
thus “marries” provenance and Boolean Evaluation, leading to
different results for different query classes.

Complexity Analysis and Algorithms: We analyze the
complexity of our problem, focusing on SPJU (Select-Project-
Join-Union) queries, and considering both the sharing of a
single tuple or of multiple tuples from the query result. Our
main findings, also summarized in Table I, are as follows. We
start with classes of queries (SPU, or so-called partitioned
SJU) which we show to yield read-once provenance, where
consent variables occur only once. By combining the prove-
nance construction of [7] with an algorithm adapted from [9]
we then achieve an exact PTIME solution. Unfortunately, we
show that when variables repeat across tuples (per-tuple read-
once), exact solution becomes NP-hard in data complexity
even for SJ and SPU queries.

We next consider classes of queries that are either
projection-free (SJUs) or projection-limited, i.e., the projec-
tion groups together a bounded number of tuples (this last

characteristic depends on both the query and the database).
For these classes we show an approximate algorithm using
results from [10] and analyze its approximation ratio.

Finally, we consider the general class of unrestricted SPJU
queries. Here, we can show that the problem is NP-hard in
data complexity, even for sharing a single tuple and even for
SPJs. In contrast, approximation is possible, even for general
SPJUs, by adapting an algorithm of [8].

Experimental Results: To our knowledge, there have
been no practical implementations, experimental studies or
benchmark for Interactive Boolean Evaluation in a setting
close to ours, let alone for our problem formulation, which
is new. We have thus implemented all algorithms for the
different variants and developed a benchmark that allows
examining their performance over provenance expressions of
various shapes. This includes two datasets: one specifically
tailored to allow computation of the optimal probing strategies
to be used as a yardstick (recall that this is in general NP-
hard); and another that is designed to allow control over the
provenance shape. As baselines algorithms, we have used two
simple strategies: one that randomly chooses probes (among
variables occurring in the provenance) and one greedily prob-
ing variables that occur most frequently in the provenance.
Our algorithms performance was either optimal or very close
to optimal in all cases where we could compare to the optimal
strategy. For both datasets, our algorithms performance was
always at least as good as that of the baselines algorithms,
and in most cases it was significantly superior.

The rest of this paper is organized as follows. In Section II
we introduce our consent model and formalize the problem
of optimizing the number of probes. We start describing our
solution to the problem in Section III by introducing a general
framework combining provenance and Interactive Boolean
Evaluation. In Section IV we analyze the problem complexity
and propose algorithms for different classes of queries. Our
experimental results are detailed in Section V. Section VI
surveys related work and Section VII discusses alternative
design choices and future work. We conclude in Section VIII.

Preliminary results for this work were demonstrated in
a prototype user system for calendar data sharing [6], and
discussed in a vision paper in [12].



Companies

cid name

11 PennSolarExperts Ltd.

Vacancies

vid cid position amount

111 11 analyst 3
112 11 supervisor 1

JobSeekers

sid name education agency

1 David Env. studies Bob
2 Ellen Env. studies Bob
3 Frank Env. studies Alice
4 Georgia Env. studies Bob

Assignment

sid vid status agency

1 111 hired Bob
2 112 rejected Alice
2 111 hired Bob
3 111 rejected Alice
4 112 hired Alice

TABLE II: Example database of Alice’s recruitment agency.

II. MODEL

We assume familiarity with standard relational database
terminology [13]. Let C be a set of Boolean variables called
consent variables. A shared database is a relational database
where each tuple is annotated by a (unique) variable from C,
intuitively controlling its consent status.

Definition II.1 (Shared Database). A shared database D̄ =
(D,L) consists of a relational database D and of a one-to-
one function L : tuples(D) 7→ C mapping each tuple t in D
to a consent variable L(t) of C called the annotation of t.

Example II.2. Table II outlines a simple shared DB for
recruitment agencies, including details of job seekers with
their name, education, and agency to which they have applied;
companies and job vacancies in these companies, including
the type of position and the number of open positions; and
the assignment of seekers to vacancies, including status and
the responsible agency. Each tuple is associated with a consent
variable (not shown in the table).

The premise is that there is a hidden truth value to whether
or not we are allowed to share each tuple (in a specific context,
e.g., with a given third party).

Definition II.3. A consent valuation is a function val : C 7→
{True,False}.

Example II.4. Recall the database in Table II, and assume
that Alice wishes to share the JobSeekers table with Carol.
As the owner of tuple 3, she may give her consent for this
sharing, i.e., the consent valuation val maps the annotation of
this tuple to true. In contrast, she may not know (at this stage)
whether Bob agrees to share his tuples with Carol.

Next, instead of sharing the data as-is, we allow a query
executed on the database to perform some analysis and con-
sider the sharing of its results. Most aspects of the model may
apply to any query language, but we will focus in particular
on SPJU (Select-Project-Join-Union) queries [13] and discuss
extensions in Section VII.

Example II.5. Recall our running example and now assume
that Alice wishes to share with Carol the names of companies
where environmental studies graduates have successfully found

1 SELECT DISTINCT c.name
2 FROM Companies c, JobSeekers j, Vacancies v,
3 Assignments a
4 WHERE c.cid = v.cid AND v.vid = a.vid AND
5 a.status = ‘hired’ AND a.sid = s.sid AND
6 s.education = ‘Env. studies’

Fig. 1: Query Qex over the example database

jobs. To this end, she runs the query Qex in Figure 1 on the
database in Table II. In our simple example the answer is the
single company in the database – “PennSolarExperts Ltd.”,
where David, Ellen and Georgia have been hired.

The question is then: given a shared database and an SPJU
query, are we allowed to share the result? In the spirit of
previous work on incomplete databases [7], we define that
a query answer is shareable iff it appears in the result of
evaluating the query over the sub-database consisting only of
the shareable input tuples.

Definition II.6. Given a shared database D̄ = (D,L), an
SPJU query Q, a tuple t ∈ Q(D), and a consent valuation
val, t is shareable iff t ∈ Q(D′), where D′ ⊆ D is the database
consisting of every t′ ∈ D such that val(L(t′)) = True.

Example II.7. Assume that the consent valuation maps tuple 3
of JobSeekers to True, maps all other tuples of this table to
False (Bob did not allow us to share them), and maps all tuples
of the other tables to True. The shareable fragment of Qex

for this database is its single result “PennSolarExperts Ltd.”,
because this result would be returned even if the JobSeekers
table consisted only of tuple 3.

The challenge, of course, is that we may not know some
or all of the consent values, that are initially known only to
data owners. To find out which query results can be shared,
we can pose questions or probes to the owners of relevant
tuples, asking whether the tuple can be shared. Our goal is to
optimize the number of questions posed in order to determine
which query results can be shared.

To formally define this problem, we must talk about the
performance of an algorithm to choose probes, which is
challenging because this performance will usually depend on
the outcome. To measure the performance, we use a simple
probabilistic model: we assume that each consent variable
x ∈ C is given a known probability π(x) of being set to True in
the consent valuation, independently from all other variables.
We discuss below (Section VI, “Predicting probe answers
and probabilities”) existing means that could potentially be
employed for estimating these probabilities based on e.g., peer
properties. The performance of a probing algorithm is then the
expected number of probes that it makes, under the probability
distribution on consent valuations given by the probabilities.

Problem Definition: The problem of OPT-PEER-PROBE
(for “optimizing peer probing”) is defined as follows, where
we use italics to highlight some problem design choices that
we will revisit in Section VII:



Definition II.8 (OPT-PEER-PROBE). We are given a shared
database D̄, a probability distribution over consent variables
in D̄, and an SPJU query Q. A consent valuation val is drawn
at random according to the distribution, but is not given to
the algorithm. The problem OPT-PEER-PROBE is to define an
algorithm that can decide for every tuple t ∈ Q(D) whether it
is shareable or not under val. To reveal that, at each step, the
algorithm may probe a consent variable x of its choice and
obtain val(x) as a result. We assume probes are sequential,
i.e., posed one at a time so that their choice may depend on
previous answers. For a (hidden) choice of val, the algorithm’s
total cost is the total number of probes. The optimization target
is to minimize the algorithm’s expected cost over the random
choice of val.

We also consider the variant OPT-PEER-PROBE-SINGLE,
where we are additionally given as input one tuple t in the
query result Q(D), and we only need to determine whether
this specific tuple is shareable.

In the next section, we propose a general solution frame-
work for OPT-PEER-PROBE (-SINGLE). We then “instantiate”
it, in subsequent sections, with exact and approximate algo-
rithms for different query classes.

III. SOLUTION OVERVIEW

Our framework leverages techniques from two existing
areas, namely relational database provenance and Interactive
Boolean Evaluation, which we now present.

A. Provenance

We recast the notion of Boolean provenance tracking (or
equivalently, c-tables [7]) to our setting. We start by extend-
ing the notion of a shared database from Definition II.1 to
derived relations, by supporting annotations that are Boolean
combinations of consent variables from C.

Definition III.1. For any set of variables X , let us denote
by PosBool(X) the set of all positive Boolean expressions
over X (i.e. constructed via conjunctions and disjunctions over
elements of X). An annotated relation R̄ = (R,L) is a relation
R with an annotation function L : tuples(R) 7→ PosBool(X).

Now, let D̄ = (D,L) be a shared database as in Definition
II.1, and let Q be an SPJU query. We define the annotated
result of evaluating Q over D̄, denoted Q(D̄), as an annotated
database Q(D̄) = (Q(D), L′) where:
• Q(D) is the result of “standard” query evaluation of Q

with respect to D;
• L′ : tuples(Q(D)) 7→ PosBool(C) is an annotation

function over the tuples of Q(D) that we define below.
The annotations in Q(D̄) are inductively defined based on

the structure of Q:
• For a selection over a relation R, the annotation of each

output tuple t is the same as the annotation of the tuple
t′ of R that is identical to t.

• For the union of two relations R and S in D̄, the
annotation of each output tuple t is the disjunction of

the annotation of the tuple t′ in R and of that of the
tuple t′′ in S that are identical to t (or just the annotation
of one of them, if the other does not exist).

• For a projection applied to a relation R in D̄, the
annotation of each output tuple t is the disjunction of
the annotation of all tuples t′ in R that project to t, i.e.,
have the same values as t on the projected attributes.

• For the Cartesian product of relations R,S in D̄, the
annotation of each output tuple t is the conjunction of
the annotations of the tuples t′ ∈ R and t′′ ∈ S such that
the concatenation of t′ and t′′ yields t.

Observe that for each output tuple t, and for any assignment
of truth values to the consent variables, the truth value of the
Boolean provenance formula labeling t tells us whether the
tuple may be shared. In other words:

Proposition III.2 (Adapted from [7], [14]). For every shared
database D̄ = (D,L), SPJU query Q, and consent valuation
val, the shareable fragment of Q(D) consists of the tuples in
Q(D̄) whose annotations evaluate to True under val.

We also note that the provenance construction is asymptot-
ically as efficient as standard query evaluation:

Proposition III.3 (Adapted from [7], [14]). For every shared
database D̄ = (D,L) and SPJU query Q, the annotated result
Q(D̄) may be computed in time O(|D||Q|).

Combined, the above results mean that we may compute,
in time O(|D||Q|), a monotone Boolean expression for each
tuple, whose truth value under any consent valuation correctly
reflects if the output tuple can be shared or not. Thus, our
problem can be rephrased as that of probing variables to infer
the truth value of this Boolean expression. This is the topic of
investigation in an area called Interactive Boolean Evaluation,
which we now present.

B. Interactive Boolean Evaluation

The field of Interactive Boolean Evaluation focuses on the
following problem: given a Boolean formula, determine a
probing strategy on its variables to identify its truth value,
in a way that minimizes the number of probes. Of course, the
probing strategy may depend on the result of previous probes;
for instance, in a simple disjunction, the evaluation process can
halt as soon as we observe a variable whose value is True.

The probing strategy of a given formula is formally captured
by the notion of a Binary Decision Diagram (BDD), which
we extend here to account for simultaneous evaluation of
multiple formulas: intuitively, given a set of formulas Φ =
ϕ1 . . . ϕm, a BDD is a DAG representing the sequence of
probes produced by a deterministic algorithm, such that each
inner node represents a probed variable x and its outgoing
edges represent the sequences of probes in case x = False
and x = True respectively. Each leaf of the DAG represents
an outcome that describes the evaluation result (True/False)
of every formula ϕi ∈ Φ. Note that BDDs are only a way to
formalize evaluation strategies and describe their performance,
but the BDD is usually not materialized (its size may be



exponential in Φ) and is only represented implicitly, e.g., as
the possible execution traces of a given algorithm.

We measure the efficiency of a BDD is via the notion of
expected cost:

Definition III.4 (BDD Expected Cost). Let D be a BDD on a
set of variables X for which we have a probability distribution
π such that each x ∈ X has probability π(x) of being True,
independently from all other variables. The expected cost of D
under π is the expected total number of variables tested on
the path in D from a root node to a leaf node.

Note that, if we denote by n := |vars(Φ)| the number of
distinct variables appearing in a given set of formulas Φ, then
the expected cost of a BDD of Φ can clearly be bounded
by n, and in some cases all BDDs have cost equal to n
(e.g., for XOR formulas). However, as stated by the following
theorem, some formulas, even monotone ones, have BDDs that
are exponentially more efficient.

Theorem III.5. For arbitrarily large integers n, there is a
monotone Boolean formula with n variables such that, for
any probability distribution π mapping all variables to values
different from 0 and 1, there is a BDD of O(log n) expected
depth as well as a BDD of expected depth Ω(n). Moreover, the
O(log n) BDD is optimal for a constant distribution π : X→p
giving the same probability p ∈ (0, 1) to every variable.

Proof sketch. Define the monotone DNF formula ψ0 := (w ∧
x) ∨ (x ∧ y) ∨ (y ∧ z) and recursively define ψi+1 := (ui ∧
ψi)∨ (ui ∧ vi)∨ (vi ∧ψ′i) where ui, vi are fresh variables and
ψ′i is obtained by consistently replacing the variables of ψi
by fresh variables. We can show that |vars(ψi)| is exponential
in i, and that there exists a BDD ψi whose expected cost is
O(i) (by probing first the ui, vi variables) and a BDD whose
expected cost is Θ(n) even though it does not make useless
probes (by probing first the copies of ψ0).

This result illustrates that we can achieve large performance
savings in some cases if we intelligently choose which vari-
ables to probe, motivating the Interactive Boolean Evaluation
problem of finding an optimal strategy. As we will show, the
interplay of provenance generation and Interactive Boolean
Evaluation algorithms thus leads to different performance
results when making different assumptions on the database
and query. This is what we study in subsequent sections.

IV. COMPLEXITY AND ALGORITHMS

A. General Characterization

In our framework, the key to understanding the complexity
of our problem is to characterize which Boolean expressions
may be obtained as provenance, depending on the query class.
For SPJU queries, we propose such a characterization, based
on the notion of k-DNFs.

Definition IV.1. Let k be a constant. A Boolean formula is in
k-DNF if (a) it is in a Disjunctive Normal Form (disjunction
of conjunctions) and (b) the size of each term, i.e., the number
of (distinct) variables in a conjunction, is bounded by k.

Input: X = {x0, x1 . . .} – a set of variables,
π : X → [0, 1] the probability of each variable
to be True,
dnfs – m monotone DNF formulas over X .

val← partial valuation setting all x ∈ X to Unknown;
while ∃ψ ∈ dnfs, val(ψ) = Unknown do

T ← {t ∈ terms(ψ) | ψ ∈ dnfs ∧ val(t) =
Unknown};
t← arg maxt′∈T

1
|t′|
∏
x∈t′∧val(x)=Unknown π(x);

x← arg minx∈t π(x);
b← probe x;
val← val setting x := b;

return [val(ϕ1), . . . , val(ϕm)] for dnfs = [ϕ1, . . ., ϕm].
Algorithm 1: Algorithm RO for OPT-PEER-PROBE

We show a two-way correspondence between the prove-
nance of SPJUs and the class of Boolean k-DNF formulas.

Proposition IV.2. 1) For each SPJU query Q there exists a
value k (intuitively, the maximal number of joins in Q)
such that for every shared database D̄, the provenance of
each tuple in Q(D̄) may be represented in a monotone
k-DNF form. This form may further be constructed in
PTIME in data complexity (i.e., as a function of D̄).

2) Conversely, for every monotone k-DNF formula ϕ, there
exists an SPJ query Q depending only on k, a shared
database D̄ whose size is linear in ϕ and a probability
distribution π such that the query output Q(D̄) is a
singleton tuple whose provenance is equivalent to ϕ.

We next consider different classes of queries, starting from
a class for which we show an exact optimal solution, and
ending with general SPJU queries in Section IV-D. But first,
for convenience, we extend the notion of valuation to account
for unknown consent values.

Definition IV.3. A partial consent valuation is an assignment
of truth values to C, val : C 7→ {True,False,Unknown}, where
Unknown stands for unknown consent value. Any valuation
can be extended to Boolean expressions over C via Kleene
three-valued logic, e.g., True ∧ Unknown = Unknown, etc.

B. Read-once

In Interactive Boolean Evaluation, the class of read-once
DNF formulas, where each variable occurs only once, is
known to have an exact (i.e., optimal) solution that minimizes
the number of probes [9]. Algorithm RO (outlined in Algo-
rithm 1) builds on this technique to solve OPT-PEER-PROBE,
assuming the provenance of the query output is computed
according to Section III. It orders the DNF terms of all the
expressions (that are not evaluated yet) by their probability to
be True (as a product of variable probabilities), then chooses
the term with the highest fraction of probability over size. It
then probes the variables in increasing order of probability for
an affirmative answer, until the term is evaluated (and if it is
True so are the expressions containing it).



In the multi-expression setting, we distinguish cases where
each individual tuple has read-once DNF provenance, termed
here per-tuple RO, from the more restrictive condition where
we require the provenance of the entire query result to be
read-once, termed overall RO (where each variable only occurs
once and in only one tuple). Clearly, running an SPJU query
on a database may happen to produce read-once provenance,
in which case Algorithm RO is optimal for overall RO and
OPT-PEER-PROBE, or per-tuple RO and OPT-PEER-PROBE-
SINGLE. However, this does not identify the cases where RO
is guaranteed to be optimal, i.e., the queries whose provenance
is guaranteed to have this form on every database.

While previous work on provenance considered read-once
provenance (e.g., [15], [16]), to our knowledge there has been
no characterization of which queries always yield read-once
DNF. Still, we can identify concrete practical subclasses of
SPJU that have this guarantee.

Proposition IV.4. Algorithm RO is a PTIME exact solution to
OPT-PEER-PROBE for S/SP/SU queries (Selection/Selection-
Projection/Selection-Union) over shared databases.

By construction, the provenance of each output tuple for
such queries is a disjunction of variables, disjoint between
tuples – i.e., overall read-once.

We further identify classes of queries that guarantee per-
tuple read-once provenance for every database.

Proposition IV.5. Algorithm RO is a PTIME exact solution
to OPT-PEER-PROBE-SINGLE for SPU and SJ queries over
shared databases.

The provenance of these queries is in the form of disjunc-
tions and conjunctions respectively, and hence per-tuple read-
once, but variables may repeat across expressions, e.g., when
a tuple is matched to more than one other tuple in a join.
When the query involves both join and union, another syntactic
property is required to ensure read-once provenance.

Definition IV.6. We say that a SPJU query is partitioned if
for every relation of the shared database, for every relation,
all of its occurrences appear in a single SPJ query (this query
may feature self-joins).

Example IV.7. Queries without union, such as the query in
Figure 1, are trivially partitioned. A non-partitioned query
would be, e.g., taking the union of this query with another
that uses one of its relations, e.g., SELECT DISTINCT c.name
FROM Companies WHERE c.name LIKE ’Penn%’.

If the query is partitioned and has no projection, then we
have an efficient and optimal algorithm for our problem.

Proposition IV.8. Algorithm RO is a PTIME exact solution to
OPT-PEER-PROBE-SINGLE for partitioned SJUs over shared
databases.

Unfortunately, this optimality result does not extend to OPT-
PEER-PROBE. In fact, the following theorem proves that OPT-

PEER-PROBE is intractable even in a case where we have
per-tuple read-once provenance.

Theorem IV.9. There is a fixed SJ query Q for which the OPT-
PEER-PROBE problem is NP-hard, even when all variables
have the same probability.

The proof (omitted) is by reduction from VERTEX COVER.
We can construct a query Q such that for every instance of
VERTEX COVER we construct an input shareable database D̄
such that each tuple of Q(D̄) correspond to an edge of the
graph. We then show that an exact solution to OPT-PEER-
PROBE corresponds to a minimal vertex cover. The latter part
of the proof is partly based on the proof from [8] for the
hardness of Boolean evaluation for k-DNF formulas.

Similarly, we can prove the hardness of OPT-PEER-PROBE
for SPU queries, whose provenance is in the form of disjunc-
tions (since they are is join-free) and thus per-tuple read-once.

Theorem IV.10. There is a fixed SPU query Q for which
the OPT-PEER-PROBE problem is NP-hard, even when all
variables have the same probability.

C. Queries with Limited Projection

The next fragment that we consider is that of projection-free
queries, i.e., SJUs, not necessarily partitioned. Importantly, for
such queries, the provenance size for each individual tuple is
in fact independent of the database size – the number of terms
is bounded by the number of unions, and the size of terms is
bounded by the number of joins in a single conjunctive query.

We will use this property to design an approximation
algorithm, specifically the Q-value Algorithm, whose details
appear in Algorithms 2 and 3, and which incorporates some
techniques of [10]. The main idea is as follows: given both the
CNF and DNF of some formula, termed CDNF formulas, com-
pute exactly how many DNF terms (conjunctions) and CNF
clauses (disjunctions) are eliminated (evaluated to True/False)
if a given variable value is False or True, respectively. A
greedy selection of concepts as a function of the expected
number of clauses/terms they eliminate, termed Q-value, then
yields an expected number of probes which approximates
the optimal BDD. This is shown in [10] based on [17], and
presented below.

We first overview Algorithm 2 for a greedy selection of the
next probe, then explain how it is used in the full Algorithm 3.
The outermost loop iterates over variables xi whose value
is Unknown – namely, variables that have not been probed
yet. For each such variable we iterate over possible probe
responses (b =True/False) and create a hypothetical updated
assignment val′ where xi = b. We then iterate (innermost
loop) over input formulas. For each formula we compute the
number of terms/clauses that are not eliminated by setting
x := b, which we denote respectively by tj and cj . The
formula terms[j] · clauses[j]− tj · cj computes the Q-value of
a single CDNF, reaching its maximum value when all terms
or clauses are eliminated, and strictly increasing with each
elimination (Theorem 1 of [10]). Similarly, the sum of these



Input: X = {x0, x1 . . .} – a set of variables,
val a valuation for X ,
π : X → [0, 1] the probability of each variable
to be True,
[ϕ1, . . . , ϕm] – array of m monotone DNF
formulas over X ,
[CNF(ϕ1) , . . . ,CNF(ϕm)] – (monotone) CNF
of ϕ1, . . . , ϕm respectively.

Output: x ∈ X – the next variable to probe
terms, clauses← arrays containing at the jth index

the number of terms and clauses in ϕj and CNF(ϕj)
resp.;

QVal← array of size |X|;
for xi ∈ X s.t. val(x) = Unknown do

for b ∈ {False,True} do
Qb ← 0;
val′ ← val setting xi := b;
for j ∈ 1 . . .m do

tj ← # terms in ϕj evaluated to Unknown
by val′;
cj ← # clauses in CNF(ϕj) evaluated to
Unknown by val′;
Qb ← Qb + terms[j] · clauses[j]− tj · cj ;

QVal[i]← Pr(xi)·QTrue+(1−Pr(xi))·QFalse;
return arg maxi QVal[i]

Algorithm 2: Algorithm Q-value-next (pick next probe).

Input: X = {x0, x1 . . .} – a set of variables
π : X → [0, 1] the probability of each variable
to be True
dnfs – m monotone DNF formulas over X .

val← partial valuation setting all x ∈ X to Unknown;
cnfs← monotone CNF for every ϕ ∈ dnfs;
while ∃ϕ ∈ dnfs, val(ϕ) = Unknown do

x← Q-value-next(X,π, dnfs, cnfs);
b← probe x;
val← val setting x := b;

return [b1, . . . , bm] the consent values in {True,False}
for the formulas of dnfs.

Algorithm 3: Algorithm Q-value for OPT-PEER-PROBE

individual CDNF Q-values is a Q-value for evaluating all of
them, reaching its maximum when all CDNFs are evaluated
(using a construction like that of Section 7 of [10]). To put
everything together, Algorithm 3 first translates the input DNF
formulas into CNF, and then repeatedly probes the variable
selected by Algorithm 2 until all formulas are evaluated.

The following proposition summarizes the time complexity
and approximation ratio of this algorithm. In particular, for
OPT-PEER-PROBE-SINGLE we show that these depend only
on the query size.

Proposition IV.11. Let Q be a projection-free query with j
joins and u unions over D̄.

1) The Q-value Algorithm is a O(
∣∣D̄∣∣|Q|) time log

∣∣Q(D̄)
∣∣)-

approximation for OPT-PEER-PROBE.
2) Given a tuple t ∈ Q(D), the Q-value Algorithm is a

O(ju |Q|2) time (u log j)-approximation for OPT-PEER-
PROBE-SINGLE.

The proof follows from the algorithm structure and from the
approximation ratios of the general Q-value approach [10],
[17]. The time complexity for OPT-PEER-PROBE is domi-
nated by the cost of evaluating Q over D̄; note that for OPT-
PEER-PROBE-SINGLE we can compute the provenance of the
specific output tuple t we are interested in, without evaluating
the whole query. As for the CNF representation, in the worst
case, we can compute it for each tuple using a brute force
algorithm that checks all the combinations of variables from
different terms; this costs O(ju).

Extending the fragment: We have devised an algorithm
for projection-free queries but it is also applicable, with the
same complexity guarantees, to a larger class of instances to
the OPT-PEER-PROBE problem, where the number of tuples
that agree on the projected attributes is bounded by a small
constant p. We call this fragment “projection-p-limited”. This
fragment can occur quite naturally in practical settings:

Example IV.12. Considering the Example DB in Table II, the
number of possible values in some attributes is practically a
small constant, e.g., the agency which refers to a collaborator
of Alice, and the status of the job application. Assume that
Alice has x collaborators (including herself) and that there
are y possible statuses. In the query SELECT DISTINCT sid,
vid FROM Assignment, at most xy tuples can agree on the
columns that are projected out. Thus, each answer tuple can
have at most xy terms in its DNF annotation. As long as xy
is small it may still be feasible to compute the corresponding
CNF of this DNF.

Proposition IV.13. Let Q be a projection-p-limited query with
j joins and u unions over D̄.

1) The complexity and approximation ratio for Q-value
Algorithm and OPT-PEER-PROBE is the same for Q and
D̄ as in Prop. IV.11.

2) Given a tuple t ∈ Q(D), the Q-value Algorithm is
a O(jup |Q|2) time (pu log j)-approximation for OPT-
PEER-PROBE-SINGLE.

The proof is by arguments similar to Prop. IV.11, but
noticing that the number of DNF terms is a product of the
number of unions in the query and of p.

Finally, recall that for SPU queries (without joins), prove-
nance is in the form of disjunctions of individual variables,
so it is already provided both in DNF and in CNF form.
Consequently, Q-value provides an approximate solution for
this class of queries as well, even when projection is not
limited (while by Theorem IV.10 exact solution is NP-hard).

Proposition IV.14. Let Q be an SPU query over D̄. The Q-
value Algorithm is a PTIME (log |D|)-approximation for OPT-
PEER-PROBE.



Input: X = {x0, x1 . . .} – a set of variables,
π : X → [0, 1] the probability of each variable
to be True,
dnfs – m monotone DNF formulas over X .

val← partial valuation setting all x ∈ X to Unknown;
cost1, cost2← 0;
while ∃ϕ ∈ dnfs, val(ϕ) = Unknown do

if cost1 ≥ cost0 then
x← choose probe using Alg0 from [8],

Section 5.1 on
∨
ψ∈dnfs|val(ψ)=Unknown ψ;

else
x← choose probe using RO on dnfs, val;

b← probe x;
val← val setting x := b;

return [b1, . . . , bm] the consent values in {True,False}
for the formulas of dnfs.

Algorithm 4: Algorithm General for OPT-PEER-PROBE

This approximation ratio comes from the fact that, when we
allow projection, the provenance of a single output tuple may
be a disjunction of all the input annotations.

D. General SPJU Queries

To conclude our analysis of the complexity of our problem,
we consider the general problem setting, where the class
of queries that is considered is SPJU, with no restrictions
imposed. In Section IV-B we have already shown that OPT-
PEER-PROBE is hard. For general SPJUs (and even just SPJs),
this hardness also holds for OPT-PEER-PROBE-SINGLE:

Theorem IV.15. OPT-PEER-PROBE and OPT-PEER-PROBE-
SINGLE are NP-hard (in data complexity) for SPJ queries,
even on shared databases where all tuples have the same
probability.

The proof follows the characterization of Prop. IV.2 and the
hardness proof of Theorem IV.9, by projecting out all the vari-
ables (Boolean query) to obtain a single output tuple, whose
provenance is “as hard” for OPT-PEER-PROBE-SINGLE as it
was without projection for OPT-PEER-PROBE.

Due to the hardness of the problem, we propose Algorithm
General (outlined in Algorithm 4) as an approximate solution
for OPT-PEER-PROBE, by extending the algorithm of [8]. The
algorithm of [8] alternates between two sub-algorithms, alg0
and alg1, which respectively try to show that the formula is
False and True; we halt as soon as one of them succeeds. To
allow simultaneous evaluation of multiple formulas, we apply
alg0 on the disjunction of tuple provenances in DNF (such that
it tries to prove every DNF term in the entire provenance is
False, each time discarding evaluated terms and formulas). We
then replace alg1 by the extension of RO to multiple formulas,
as they operate on a similar principle (greedily selecting the
term by which proving a formula is True is cheapest, and
sequentially probing its variables).

Based on the result of [8], we obtain the following.

Theorem IV.16 ([8], Theorem 5.3). Algorithm General is a
PTIME constant-factor (Data Complexity) approximation for
OPT-PEER-PROBE-SINGLE.

The problem of proving approximation guarantees for OPT-
PEER-PROBE over general SPJUs remains open. However,
in our experimental study in Section V we observe that
General performs almost as well as Q-value, which does have
approximation guarantees.

Beyond syntactically-defined fragments: We have pro-
vided syntactic characterizations of queries for which our
algorithms have proven approximation/optimality guarantees.
However the algorithms are in fact more general, and rely on
the provenance structure. It may e.g. be the case that an SPJU
query yields read-once provenance for some input database,
or that provenance becomes read-once at some point of the
evaluation process. Thus, we can perform runtime checks of
the provenance structure and decide accordingly which of the
algorithms to use.

V. EXPERIMENTAL STUDY

We have implemented all algorithms described in Section IV
and examined their performance. We start by describing our
experimental settings, and then present the results.

A. Experimental Settings

To our knowledge, the problem that we study has not
been investigated before, so we are not aware of a standard
benchmark or of existing algorithms to use as competitors. We
have thus designed a dedicated benchmark for the problem.

Datasets: Our first dataset, called the ψ-dataset, is used
to compare our algorithms to a known optimal strategy. As we
explained in Section IV, computing optimal strategies is NP-
hard in general, hence our choice to design a dataset where
the optimal solution is known by construction. The ψ-dataset
consists of single-tuple query outputs whose provenance is of
the form ψi as defined in the proof sketch for Theorem III.5.
The size of ψi increases exponentially with i while the optimal
strategy makes O(i) probes. By default we use ψ6 with 382
distinct variables. The total DNF/CNF provenance size for this
experiment was up to 4.3K.

Our second dataset, skewed, is a parametrized dataset that
we generate randomly based on parameters such as the number
of tuples, the query projection limit (p for projection-p-limited
queries, as defined in Section IV-C, affecting the number
of terms), the number of joins, and the average number of
repetitions per variables. To allow ensure that our algorithms
can handle complex Boolean expression structure that also
occurs in real queries, the variables in this dataset are split
in four types: frequent/infrequent variables that co-occur with
frequent/infrequent variables. E.g., in the provenance formula
(a∧b∧c)∨(a∧e∧f)∨(g∧h∧i)∨(g∧h∧j), a is frequent and
co-occurs with infrequent variables, while g and h are frequent
and co-occur with each other. The default parameters we have
used are 1000 query output rows, 4 joins, 8 as projection
limit, and where each variable repeats 2.6 times on average.
The average total DNF/CNF provenance sizes for the reported
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Fig. 2: Comparing to Optimal over the ψ-dataset (less probes is better).

experiments (summed over all rows, averaged over experiment
repetitions) were up to 0.4M and 2.2M, respectively.

Algorithms: The algorithms that we have compared are:
• Random. A baseline probing variables in a random order.
• Freq. A baseline that greedily probes a variable with the

maximal number of occurrences in the DNF provenance.
• RO. Algorithm 1 from Section IV-B
• Q-value. Algorithm 3 from Section IV-C.
• General. Algorithm 4 from Section IV-D.

Of course, all the algorithms that we benchmark will maxi-
mally simplify expressions after each probe answer, so that
they never make useless probes. For fairness, all algorithms
break ties by the same arbitrary criterion.

We have implemented all algorithms in node.js using Ex-
press, and in Java 13. Experiments were run on a Windows 10
machine using an Intel Core i7 5600U processor with 8 GB
of DDR4 memory. Each experiment was executed at least 10
times (at least 50 times for Random) and the reported results
are the average over these executions, each time drawing
a valuation uniformly at random according to the variable
probabilities, and executing all algorithms over this valuation.
For the skewed dataset we have further re-generated the data
for each execution. In every experiment we have used the same
probability for all variables. Except when stated otherwise,
we have used probability 0.5 for the ψ-dataset and 0.7 for
skewed (leading to a roughly even number of shareable and
unshareable tuples in most cases).

B. Experimental Results

We next describe the results of our experiments. We evaluate
our algorithms based on the number of probes that they issue,
which is the criterion that we are trying to optimize; we
discuss execution times at the end of the section. Note that
all algorithms can be used even in cases where they do not
have optimality guarantees – an algorithm with no optimality
guarantees can still turn out to be efficient in practice.

We start by comparing algorithm performance to the optimal
algorithm for the ψ-dataset (for which, as we explain above,
the optimal solution is known by construction). Figure 2a
shows the performance of all algorithms for provenance
expressions of varying sizes of this dataset. Note that our
algorithms fare well with respect to the optimal strategies, and

in particular Q-value matched the optimal average number of
probes in all our experiments. General and RO deviated from
the optimal by at most 50%. Even as the dataset grows, the
required number of probes remains almost constant. In con-
trast, the number of probes made by Random grows linearly
with the data size, which serves to show the importance of
informed probing choices. Freq behaves well for this setting,
and deviated from the optimal by at most 43%.

Figure 2b shows the performance of the algorithms for
varying probabilities that a probe is answered affirmatively.
Again, random choices of probes perform poorly, whereas
our algorithms are close-to-optimal: the observed deviation
from the optimal strategy were at most 4.5% for Q-value and
similarly for General except for probability 0.5 where the latter
deviated by 57%. We can also observe here a general trend: for
non-read-once provenance, RO is less efficient in proving an
expression is False, since it ignores variable frequencies and
thus eliminates less terms with each probe returning False.
Therefore its comparative performance deteriorates when the
probability decreases (up to a 270% deviation). Conversely,
Freq performs poorly at proving an expression is True, since
it does not account for the likelihood of terms to be True (up
to 258% deviation).

We then show experimental results for the skewed dataset
described above. In this experiment, the optimal strategies are
not known, so they do not appear in the figures.

Figure 3a shows the number of probes issued by each of the
algorithms when varying the number of joins (corresponding
to the DNF term sizes) from 1 to 5. Here again, observe that
in all cases, an informed choice of probes is significantly
superior to a simple random choice. When the provenance
expressions are very simple (at most 2 variables per clause),
then choosing the most frequent variable performs well. As
expressions become more complex, though, the algorithms that
we have developed become significantly superior. In particular,
General and Q-value perform the smallest number of probes,
since they perform a finer analysis of the provenance structure,
and in particular rely on techniques for choosing variables
whose probing is effective for either proving True or False.
They deviate by only up to 1.3% from the best performing
algorithm for any probability.
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Fig. 3: Qualitative experiments for the skewed dataset (less probes is better).

In Figure 3b we vary the projection limit as defined in
Section IV-C. The provenance of such queries is characterized
by a bounded number of DNF terms, and as explained in
Section IV-C, while this number is small, brute-force compu-
tation of CNF is feasible and hence Q-value is applicable. For
larger limits, Q-value is no longer applicable, so we compare
the other algorithms. The trend we observe is that as the
limit grows, the advantage of our algorithms (Q-value – when
applicable) over Freq and Random becomes larger (up to 196%
and 528% respectively). Generally, the larger expressions are,
the more optimizations our algorithm can perform, because
one term/variable evaluated to True can eliminate many other
terms. For this experiment we have also tested a hybrid
approach, which acts like General but switches to Q-value
as soon as possible and to RO as soon as the provenance is
overall read-once, but as its performance was very close to
General, we omit it from the figure.

Figure 3c shows the number of probes issued by each
algorithm for valuations drawn at random according to the
stated variable probabilities. Similarly to the corresponding
experiment over the first dataset, we observe that the advantage
of our algorithms over Random is steady and large, whereas
the advantage with respect to Freq increases as the probability
increases. RO performs comparatively poorly for both low and
high probabilities, since term sizes are mostly equal and thus
its choice of term is essentially arbitrary.

In Figure 3d we vary the average number of times that
a variable is repeated. When this number is low (i.e., the
expression is “close to” read-once), the advantage of our
solutions is most significant. In particular, when there are
no repetitions, provenance becomes overall read-once and RO

is provably optimal; in contrast, Freq and Random perform
equally badly (deviating by 42% from RO). As observed
in the Figure, expressions that are close to read-once are
“more difficult”, since when variables are often repeated a
single probe can eliminate many terms. This exacerbates the
importance of our optimality results for read-once expressions.

To conclude, for their respective subclasses, Algorithms RO
and Q-Value achieved optimal or near-optimal results – for
RO this is guaranteed, and for Q-value this was observed in
cases when the optimal is known. Within these subclasses,
Algorithm General performed well and deviated from Q-value
by at most 10% except for two cases on the ψ-dataset;
and beyond these subclasses, it significantly outperformed the
alternatives.

Execution time: Our experiments have focused on mea-
suring the number of probes performed by the algorithms,
and how well they achieved their optimization goal. The
algorithms’ execution time, i.e., the time it took them to choose
the next probe, was typically a few milliseconds, and up to 1.3
seconds in all of our experiments – so it is much less than the
latency of obtaining probe answers in realistic scenarios, e.g.,
over the Web or with manual answers from peers.

VI. RELATED WORK

Provenance: As described in Section III, we use prove-
nance to track the dependencies of derived data on the input
data, and consequently decide on whose consent should be
probed. Provenance has been extensively studied, with mul-
tiple models and applications, e.g., [18], [19], [7], [4], [20],
[16], [21], [15]. Specifically, provenance has been used for
access control, which is related to consent management [2],



[22], [3], [5], [23]. Differently from our setting, in these works
the collection of atomic permissions is out of scope: they are
fully given as input, either before or after the computation of
provenance. In contrast, our focus is on achieving consent by
probing the permissions of tuples.

Interactive Boolean Evaluation: In this work, we have
leveraged previous work to devise efficient algorithms for se-
lecting probes and evaluating Boolean provenance expressions,
and specifically [9], [10] and [8] for read-once, DCNF and
k-DNF provenance. This problem has been studied in other
contexts and under other names, including system testing,
e.g., [9], [24] (where it is termed Sequential System Testing
or Sequential Diagnosis), BDD design, e.g., [25], [26], [27]
(where it is also called Discrete Function Evaluation), active
learning [17] (where it is a particular case of Bayesian
Active Learning) and its connection to other problems such as
Stochastic Set Cover [10], [11] (where is is termed Stochastic
Boolean Function Evaluation (SBFE)). Some work, although
in different settings, considered other metrics for BDD effi-
ciency, such as the maximal depth that has been studied in the
contexts of probing edges to test graph properties (e.g., [28],
[29]) or computing BDDs with minimum depth for input-
output sample pairs (e.g., [25], [26]). These works differ from
the present work in a few aspects: first, our OPT-PEER-PROBE
considers the simultaneous evaluation of multiple, possibly
many expressions corresponding to the provenance of multiple
tuples, whereas Interactive Boolean Evaluation is concerned
with a single formula. The only exception to our knowledge
is [10], which proposes constructions for simultaneous evalua-
tion. We have used a similar idea in Algorithm 3. Second, even
in OPT-PEER-PROBE-SINGLE the Boolean expressions that
we obtain are derived by queries; and there had been no study
of the interplay between query classes and the performance of
Interactive Boolean Evaluation over their provenance. Last, the
works most related to ours are theoretical, and do not include
an empirical study of algorithm performance.

Data sharing: The theory and practice of managing
sharing permissions have been extensively studied in different
contexts, including social networks (see below), distributed
systems (e.g., [2], [5]), cloud services (e.g., [22], [30], [31]),
Web applications (e.g., [32]), databases (e.g., [3], [4]), and
many other areas. Specifically, social networks are commonly
used for data sharing while facilitating social interactions
in which access control is crucial. Access control in such
networks is generally managed in a coarse level, namely, peers
who have originally contributed data either have no control
over the re-sharing of their data, or give a broad consent
to re-sharing within some group (e.g., friends of friends), or
disallow re-sharing altogether [33].

Studies on data sharing in social networks aim at refin-
ing this approach by studying on how access policies [34],
privacy [33], trust [35] and willingness to share data [36]
can be defined over the network. Different cryptographic
means and implementation designs have been proposed for
this purpose [37], [38], [39], [40], [35]. While our work
focuses on establishing whether consent for sharing is given or

not, cryptographic techniques as in [38] may be employed to
enforce these policies. Multiple ownership over data items has
also been considered in this context [41], [39], [35], focusing
on enforcing a policy that adheres to the individual policies
of the involved peers. However, these studies do not consider
data derivation/querying but rather the sharing of atomic items,
which leads to technical problems different from ours.

Predicting probe answers and probabilities: In the
present work we have assumed that probabilities for probe
answers are given in advance. This could be done, e.g., by
coarse means like computing the average likelihood for con-
sent in past probes. Finer-grained estimation could potentially
be obtained through work on (semi-)automatically computing
access control policies, which captures relationships between
peers based on example permissions [42], [43]; evaluating the
credibility of peers [36]; mining user roles, which may allow
distinguishing peers and their relationships inside an organiza-
tion [44], [45]; and using game-theoretic considerations with
respect to risk minimization [41].

VII. POSSIBLE EXTENSIONS

In our definition of the problem studied here, we have
made several design choices. In this section, we explore how
alternative choices could be studied in our framework, and
how they would affect our results.

Beyond SPJU: A natural first question is extending our
results beyond SPJU queries. Fortunately, our framework is
modular, so we could rely on the long line of results on
provenance for various query languages, e.g., Datalog [19].
Extending our results to more expressive query languages is
an intriguing goal for future research.

Different problem variants: In this work, we have focused
on optimizing the expected cost of full evaluation of consent
for sharing certain output tuples. Other variants in ongoing re-
search consider other optimization metrics, such as optimizing
the number of probes per peer, or the worst-case number of
probes; or other optimization variables, such as optimizing the
number of evaluated expressions for a fixed number of probes.

Different semantics for consent: As explained in Sec-
tion II, our semantics for consent naturally follows previously
proposed possible-worlds semantics for Access Control. There
are other reasonable consent semantics, e.g., based on privacy
models such as K-anonymity.

Different models for probes and answers: Our problem
the setting involves sequential probing of peers. In general,
probing can be asynchronous or sent in batches, to reduce
latency at the expense of possibly making unnecessary probes.
Similarly, we have assumed that peers always answer, but this
may not be the case; and we have assumed a uniform probing
cost, whereas the cost could differ across peers.

Beyond independent probabilities: We have assumed
that the probabilities for consent for each tuple are given
and independent of each other. In general, more complex
probability distributions are conceivable and may be concisely
represented: e.g., probe answers may be constrained by logical
implications captured by a Bayesian Network or an ontology.



Beyond unique annotations: We have further assumed
that each tuple is uniquely annotated by a consent variable –
but in general there may be logical “blocks” of tuples for
which consent is wither given or not given uniformly. This
kind of dependency between probe answers is particularly
interesting, and it has significant effects on our results as they
lead to co-occurrences of variables in the Boolean expressions.
Extending our results to such settings would likely require
other constraints on the query and/or database shape.

VIII. CONCLUSION

We have proposed in this paper a new framework for
managing consent in shared databases. Consent is managed
at the tuple level, and we formalize the problem of determin-
ing consent w.r.t. query output tuples via probing peers for
their consent w.r.t. relevant input database tuples. We have
studied the complexity of the resulting optimization problem,
showing intractability in general and identifying tractable sub-
classes and approximate solutions. Our experimental study has
validated the effectiveness of our algorithms for the various
classes, demonstrating their optimal or near-optimal perfor-
mance in different cases and their superiority with respect to
baseline alternatives.

As mentioned above, we have followed in this paper
particular design choices, but many others may also make
sense. Thus, this paper is by no means the last word on the
subject, but rather we view it as opening up a new area of
investigation.
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of monotone DNF formulas,” Algorithmica, vol. 77, no. 3, 2017.
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APPENDIX

PROOFS FOR SECTION III (SOLUTION OVERVIEW)

We now give the full proof of Theorem III.5:

Theorem III.5. For arbitrarily large integers n, there is a monotone Boolean formula with n variables such that, for any
probability distribution π mapping all variables to values different from 0 and 1, there is a BDD of O(log n) expected depth
as well as a BDD of expected depth Ω(n). Moreover, the O(log n) BDD is optimal for a constant distribution π : X → p
giving the same probability p ∈ (0, 1) to every variable.

We define the monotone DNF formula ψ0 := (w∧x)∨(x∧y)∨(y∧z) and recursively define ψi+1 := (ui∧ψi)∨(ui∧vi)∨
(vi ∧ ψ′i) where ui, vi are fresh variables and ψ′i is obtained by consistently replacing the variables of ψi by fresh variables,
as explained in the proof sketch.

By this construction for ψi we have 2i copies of ψ0, and 2 + 4 + 8 + . . .+ 2i = 2 · (2i − 1) copies of the variables ui, vi,
leading to 6 · 2i − 2 = Θ(2i) variables in total. Given a natural number m, we can clearly choose a large enough i such that
n = vars(ψi) > m.

We will next illustrate a BDD of expected depth O(i) = O(log n): start by probing ui and vi. By our construction, if
ui = vi then ψi is evaluated and we are done. Otherwise, assume w.l.o.g. that ui = True and vi = False. We are left with
True ∧ ψi−1 = ψi−1, and can proceed recursively to query ui−1 and vi−1. At the worst case this recursion reaches ψ0 which
can then be evaluated by 3 probes - leading to a total of 2i+ 3 = O(i) probes. The worst possible depth is O(i), so the same
is true of the expected depth.

In contrast, consider a BDD that first evaluates the 2i copies of ψ0. Their variables are mutually distinct, they are all useful
(i.e., it can in fact be important to probe them), and by construction we must evaluate either ui or vi or both to evaluate ψi,
regardless of the values of ψi−1 and ψ′i−1. Consequently, the evaluation of each copy will be done independently, leading to
2 · 2i = Θ(n) probes in every case, hence also in expectation.

We now argue that the first BDD that we defined is optimal, which is somewhat technical. Fix the value 0 < p < 1, and
write p+i the probability that ψi evaluates to true and p−i the probability that it evaluates to false, for all i. We first claim:

Claim A.1. For all p and i, we have: p+i ≤ 2p.

Proof. The proof is by induction.
For the base case, consider ψ0, and distinguish all possible outcomes depending on the value of x and y. If they are both

true, with probability p2, then ψ0 is true. If they are both false, with probability (1− p)2, then ψ0 is false. In the other cases,
with probability 2p(1− p), ψ0 is true with probability p (by looking at w, or at z, depending on which of x and y is true). In
other words, we have p+0 = p2 + 2p2(1− p). Let us show that p+0 ≤ 2p, by studying the polynomial p2 + 2p2(1− p)− 2p and
showing that it is always negative or 0. We can simplify by p to obtain: −2p2+3p−2. The discriminant is 32−4×2×2 = −7,
so this polynomial has no roots and is always negative, so we have p+0 ≤ 2p for all 0 < p < 1.

For the induction, consider ψi, and distinguish all possible outcomes depending on the value of ui and vi. If they are both
true, with probability p2, then the formula is true, if they are both false then the formula is false, and otherwise the formula
is true with probability p+i−1. So we have: p+i = p2 + 2p(1 − p)p+i−1. By induction hypothesis, we have p+i−1 ≤ 2p. So we
have p+i ≤ p2 + 2p(1− p)2p. Let us show that this is ≤ 2p, by studying the sign of p2 + 4p2(1− p)− 2p. We can simplify
by p again and obtain −4p2 + 5p− 2. The discriminant is 52 − 4× 2× 4 = −7, so again this polynomial has no roots and is
always negative, so we have p+i ≤ 2p for all 0 < p < 1.

We next claim:

Claim A.2. For all p and i, we have: p−i ≤ 2(1− p).

Proof. This is the same proof as before, but reversing the roles of true and false. Specifically, for ψ0, it is false with probability
(1− p)2 or, with probability 2p(1− p), with probability (1− p). So we have p−0 = (1− p)2 + 2p(1− p)(1− p), and we are
comparing this to 2(1 − p), so subsituting p for 1 − p and applying the argument of the base case of the previous claim we
have p+−0 ≤ 2(1− p).

For the induction case of ψi, the formula is false with probability (1 − p)2 + 2p(1 − p)p−i−1, so we can again apply the
induction hypothesis, compare to 2(1− p), and conclude as before.

We are now ready to argue that our choice of BDD for ψn is optimal. The claim is obvious for n = 0, so we show it for
all n > 0. First, notice that you cannot conclude that the formula is true or false without having observed one of un or vn; so
there is an optimal BDD which probes one of these first. As they play symmetric roles, say we probe un. Now, if un is false,
then we can simplify and are left with vn ∧ ψn−1. If un is true, then we are left with vn ∨ ψn−1.



These are respectively a conjunction and disjunction, with the two branches not sharing any variables. In either case, we
can always choose an optimal BDD that will first test one branch of the operator, and then the other if necessary; the only
question is how to order them. We claim that, in both cases, it is never worse to start with vn. This will conclude the proof,
as the rest of the BDD will study the truth value of ψn−1, and we can finish the argument by induction.

We first consider the case of vn ∨ ψn−1. The first strategy is to first probe vn, paying 1 with probability p (if it is true),
and otherwise probing ψn−1. Let Cn−1 be the expected cost of the latter; we pay Cn−1 + 1 with probability 1− p. Hence the
expected cost of this strategy is p+ (1− p)(1 + Cn−1), or equivalently 1 + (1− p)Cn−1. We call this quantity Γ1.

The second strategy is to first determine the truth status of ψn−1, and if it is false then probing vn. Let us write C+
n−1

and C−n−1 the expected cost of an optimal decision tree on ψn−1 conditioned respectively by the fact that it will evaluate to
true or that it will evaluate to false. We have by definition: Cn−1 = p+n−1C

+
n−1 + p−n−1C

−
n−1. This strategy has expected cost:

p+n−1C
+
n−1 + p−n−1(1 +C−n−1). Let us expand and regroup to obtain: Cn−1 + p−n−1, or equivalently Cn−1 + 1− p+n−1. We call

this quantity Γ2.
Let us compare both strategies by doing the difference Γ1−Γ2. We obtain: p+n−1−pCn−1. Now, observe that for all n > 0,

we have Cn−1 ≥ 2, as we must always test at least two variables to decide (already in the case of ψ0). So this quantity is
≤ p+n−1 − 2p. By Claim A.1, we conclude that this is negative or 0, so indeed strategy 1 is no worse than strategy 2.

We now consider the case of vn∧ψn−1. The reasoning is the same: strategy 1 will have performance (1−p)+p(1+Cn−1),
i.e., 1−pCn−1, and strategy 2 will have performance Cn−1+p+n−1, i.e., Cn−1+1−p−n−1. The difference is p−n−1−(1−p)Cn−1,
and again this is ≤ p−n−1 − 2(1− p), and we conclude this time by Claim A.2. This concludes the proof.

PROOFS FOR SECTION IV (COMPLEXITY AND ALGORITHMS)

Proposition IV.2. 1) For each SPJU query Q there exists a value k (intuitively, the maximal number of joins in Q) such
that for every shared database D̄, the provenance of each tuple in Q(D̄) may be represented in a monotone k-DNF form.
This form may further be constructed in PTIME in data complexity (i.e., as a function of D̄).

2) Conversely, for every monotone k-DNF formula ϕ, there exists an SPJ query Q depending only on k, a shared database
D̄ whose size is linear in ϕ and a probability distribution π such that the query output Q(D̄) is a singleton tuple whose
provenance is equivalent to ϕ.

Proof. The first part of the proposition holds with k being the maximal number of joins of a conjunctive query within Q. To
observe that this is the case, note that conjunctions in the provenance construction are associated with joins and disjunctions
are associated with projection and union.

For the second part, we again exploit the correspondence between query and Boolean operations. Given a monotone k-DNF
formula f , consider a DB D̄ with two relations. Relation R encodes the variables of f , where for each variable x in f we have
a tuple R(x) (using x as a value) annotated by x. Relation S encodes the terms of f such that for each term x1∧x2∧ . . .∧xk
in f we have a tuple S(x1, x2, . . . , xk) (using x1, x2, . . . , xk as values) and annotated by a fresh variable y. If a term is of
size < k we can repeat one of its variables to obtain an equivalent term of size exactly k. For the probability distribution over
variables, we will use a distribution that is identical to the original distribution on f ’s variables, and the probability of the
fresh variables to be True equals 1, which allows us to simplify them away in the provenance.

The query Q is a binary CQ fixed for k (no unions, using only equality joins and a projection on all variables) : ans() :
−S(z1, . . . , zk)R(z1) . . . R(zk). By this construction, each tuple in the join result corresponds to a term in f and has a
provenance of the form of a conjunction x1 ∧x2 ∧ . . .∧xk ∧ y, where every xi stands for an original variable, and y is a fresh
variable that can be ignored since its value is fixed to 1. Then projecting out all the variables yields the disjunction of these
conjunctions which is equivalent to f .

Theorem IV.9. There is a fixed SJ query Q for which the OPT-PEER-PROBE problem is NP-hard, even when all variables
have the same probability.

Proof. We reuse the same schema as in the proof of Theorem IV.15, and reuse the same query without the projection, that is,
Q(x, y) : Var(x),Var(y),Clause(x, y). The provenance of every tuple of Q on a uniquely 1-annotated database is such that
each result tuple has as provenance a conjunction of three variables.

We consider the Boolean function ϕ with multiple return values defined by the various rows of the result of Q on an input
uniquely 1-annotated database. We extend the notion of a certificate to functions with multiple outputs: a minimum-cardinality
0-certificate contained in 0 is a subset of the variables having minimal cardinality so that setting them to 0 suffices to witness
that all outputs of the function are 0. Formally, all valuations that extend the certificate are such that the value of the multivalued
function is 0.

We now consider the single-valued Boolean function ϕ′ defined as the disjunction of the output values of ϕ. Again, this
is the same function used in the proof of Theorem IV.15, and we have shown that finding a minimum-cardinality certificate
contained in 0 for this function is NP-hard. But now, observe that a partial assignment is such a certificate for ϕ iff it is for ϕ′.



This is because witnessing that ϕ′ evaluates to 0 means witnessing that every disjunct evaluates to 0, which is the same as
witnessing that all output values of ϕ are 0. Thus, finding a minimum-cardinality 0-certificate for ϕ contained in 0 is NP-hard
too.

The only remaining thing is to note that the latter problem reduces to OPT-PEER-PROBE, in the same way as in the proof
of Theorem 1 of [8]. This is because Lemma 1 straightforwardly extends to decision trees computing multivalued functions:
if all variables have sufficiently low probability (the same as in their lemma statement), then the performance of a decision
tree is dominated by its performance on the assignment 0, so any optimal decision tree must be testing some minimal-cost
certificate contained in 0. Thus, OPT-PEER-PROBE is also NP-hard, concluding the proof.

Theorem IV.10. There is a fixed SPU query Q for which the OPT-PEER-PROBE problem is NP-hard, even when all variables
have the same probability.

Proof. We reduce from the VERTEX COVER problem on graphs, which is already NP-hard for cubic graphs, i.e., graphs
where all vertices have degree 3.

We consider a table R with 4 attributes, and the SPU query Q : π2(R) ∪ π3(R) ∪ π4(R). For a given cubic graph G, we
create the R-instance having one tuple (v, e1, e2, e3) per vertex v, where e1 and e2 and e3 are its three incident edges. The
provenance annotation of every tuple is identified with its first element v.

The result of the query gives us one tuple per edge, whose provenance is the disjunction of the provenance annotation of
its two incident vertices.

Let us now argue that finding an optimal decision tree for the multivalued Boolean function where we wish to identify the
truth status of all tuples is NP-hard. To do so, as in the proof of Theorem IV.10, we use a variant of Lemma 1 from [8].
First notice that this lemma straightforwardly extends, with the same proof, to variables with a high probability of being
true, to argue that on an assignment where all variables are true, an optimal decision tree must be testing the variables of a
minimum-cost 1-certificate. Now, for the multivalued function that we consider, on the assignment where all variables are true,
an optimal decision tree must be testing all variables of a minimum-cost certificate that shows that all functions evaluate to 1.

We are now ready to conclude the reduction. Assume we can solve OPT-PEER-PROBE efficiently for the query Q. Then,
as we argued, for any cubic graph G, we can design an algorithm that follows an optimal decision tree for the multivalued
function having one function per disjunctive clause x ∨ y corresponding to an edge {x, y} of G. As we argued, there is an
assignment of probabilities to variables such that the optimal decision tree determines a minimum-cost certificate showing that
all functions evaluate to 1, i.e., a minimum subset of vertices such that all edges are covered, which solves the VERTEX
COVER problem on the input cubic graph. This concludes the proof.

Theorem IV.15. OPT-PEER-PROBE and OPT-PEER-PROBE-SINGLE are NP-hard (in data complexity) for SPJ queries, even
on shared databases where all tuples have the same probability.

Proof. Consider a schema having a 1-ary relation Vars and a 2-ary relation Clauses , and let us define a Boolean CQ on this
schema by: Q : ∃x y Vars(x),Vars(y),Clauses(x, y). We show that the OPT-PEER-PROBE-SIGNLE problem is NP-hard for
this query.

To do this, let us describe the Boolean provenance of this query on an arbitrary input uniquely-1-annotated database D. For
each row of the Clauses table, we write ta,b for the unique variable annotating a row (a, b), and likewise for each row of the
Vars table we write xa for the unique variable annotating a row (a). We let Clauses ′ be the subset of Clauses that joins with
Vars , i.e., those tuples (a, b) of Clauses where a and b also occur in Vars . The provenance of Q on a database D is then∨

(a,b)∈Clauses′ xa ∧ xb ∧ ta,b. In other words: the Boolean expressions that can be obtained as the provenance of the fixed
query Q on some database D are precisely the subclass of monotone 3-DNFs characterized by the following property: they
are a monotone 2-DNF on a subset of the variables (the x•’s), and we add to every clause a fresh variable occurring only in
that clause (the t•,•’s). In other words, they are the monotone 3-DNFs for which there a subset X of variables guaranteeing
that every clause consists of exactly two variables from X and a variable not in X which is fresh to that clause, and there are
no two clauses containing the same pair of variables from X . Let us call this fragment of Boolean formulas the distinguished
3-DNFs.

To conclude the hardness proof, it suffices to argue that the OPT-PEER-PROBE-SIGNLE problem is NP-hard for distinguished
3-DNFs. Throughout the proof, we will always assume that all variables for Boolean formulas have the same probability, when
counting the performance of OPT-PEER-PROBE-SIGNLE or the cost of certificates for a formula. We show this hardness claim
by an adaptation of the hardness proof in [8], Theorem 1. They reduce from the VERTEX COVER problem, where we are
given an undirected graph G = (V,E) and must find a minimum cardinality vertex cover, i.e., a subset of V such that every
edge in E contains some vertex of the subset. They observe that, letting ϕ :

∨
{u,v}∈E xu ∧ xv be the monotone 2-DNF built

from G in the expected way, then minimum cardinality vertex covers are in one-to-one correspondence with minimum-cost
certificates for ϕ contained in 0, i.e., a minimum cardinality subset of the variables such that setting all variables of that
set to False suffices to witness that ϕ must evaluate to False. (The intuitive argument for this correspondence is that such



a certificate must contain at least one variable from each clause.) Hence, it is also NP-hard to find such a minimum-cost
certificate for a monotone 2-DNF.

We now argue that the same is true of distinguished 3-DNFs, by reducing from the latter problem. Indeed, consider any
monotone 2-DNF ϕ, and build in PTIME a distinguished 3-DNF ϕ′ by adding a fresh variable to every clause. Now, consider a
minimum-cost certificate for ϕ′ contained in 0. Observe that we can modify it to another such minimum-cost certificate which
does not select any of the fresh additional variables of every clause. This is because these variables only occur in that clause,
so they can always be replaced by some other variable of the clause (by minimality of the certificate, these variables are not
already part of the certificate). So, if we can find a suitable certificate for ϕ′, then we can in PTIME modify it iteratively to
a certificate that does not involve the fresh variables. It is now clear that this certificate is also a suitable certificate of ϕ, and
that it has minimum cost (because any certificate for ϕ also yields a certificate for ϕ′ with the same cost). Thus, we have
shown that it in NP-hard to find a minimum-cost certificate contained in 0 for a distinguished 3-DNF.

Finally, we show that we can reduce from this problem to the OPT-PEER-PROBE-SINGLE problem. This is exactly as in
the proof of Theorem 1 of [8], using Lemma 1 which argues that for any Boolean function, there is a choice of probabilities
giving the same probability to every variable (intuitively a very low one), so that any optimal decision tree must be testing
on assignment 0 exactly the variables of some minimum-cost certificate contained in 0 for the function. (Intuitively: the
assignment 0 is so likely that the performance of the tree is dominated by its performance on that specific assignment, and
any tree doing some other test is less efficient on 0, which can never be offset by any increase in efficiency even on all other
assignments.) Thus, the problem of finding a minimum-cost certificate contained in 0 for a distinguished 3-DNF reduces to
OPT-PEER-PROBE for the same formula, even if probability given to all variables is the same. This concludes the proof for
OPT-PEER-PROBE-SINGLE.


