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Abstract

We present a novel framework for uncertain data management. We
start with a database whose tuple correctness is uncertain and an oracle
that can resolve the uncertainty, i.e., decide if a tuple is correct or not.
Such an oracle may correspond, e.g., to a data expert or to a crowdsourc-
ing platform. We wish to use the oracle to clean the database with the
goal of ensuring the correct answer for specific mission-critical queries.
To avoid the prohibitive cost of cleaning the entire database and to min-
imize the expected number of calls to the oracle, we must carefully select
tuples whose resolution would suffice to resolve the uncertainty in query
results. In other words, we need a query-guided process for the resolution
of uncertain data.

We develop an end-to-end solution to this problem, based on the
derivation of query answers and on correctness probabilities for the uncer-
tain data. At a high level, we first track Boolean provenance to identify
which input tuples contribute to the derivation of each output tuple, and
in what ways. We then design an active learning solution for iteratively
choosing tuples to resolve, based on the provenance structure and on an
evolving estimation of tuple correctness probabilities. We conduct an
extensive experimental study to validate our framework in different use
cases.

1 Introduction

Many scenarios involve data whose correctness is uncertain. Uncertainty may
be due to data sources that are not fully reliable; due to the use of imperfect
techniques such as those employed in Data Integration or Information Extrac-
tion; or due to stale data. An example for a large-scale uncertain database is
that of NELL [69], consisting of 50M facts that were automatically extracted
from different websites. Each fact is associated with a probability, based on the
confidence level that NELL assigns to it.

While uncertain data can be highly valuable, some tasks may require cer-
tainty, e.g., mission-critical tasks. For such tasks, users may be willing to invest
manual effort and time to resolve the uncertainty, for instance, by hiring data
experts to verify the automatically extracted data against its sources. To avoid
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exhaustive cleaning of the entire database, which can be prohibitively costly,
previous work suggested approaches for semi-automated, interactive or crowd-
powered cleaning processes (e.g., [8, 11, 19, 20, 70, 22, 32, 60, 64, 81, 93, 96]).
Typically, such processes clean only a part of the data and/or only specific types
of data errors, such as constraint violations.

In the present work, we study the problem of query-guided uncertainty reso-
lution. We start from a database whose data correctness is uncertain (i.e., which
may contain incorrect tuples) and a query (or a set of queries) that capture the
data relevant for analysis. Our goal is to identify the precise set of correct query
results, by resolving the uncertainty of input tuples. Of course, we can do this
by naively verifying every input tuple, thereby achieving a certain and correct
input database. However, as mentioned above, verifying all input tuples may
be too costly. We thus aim at verifying a subset of the input tuples that suffices
to determine the correct results of the given query. As we will show, there exist
such subsets that are typically significantly smaller than the full database. Re-
solving the uncertainty of a tuple is abstractly modeled as a probe to an oracle:
in practice, the oracle may be data experts, crowd workers, high-quality exter-
nal sources, etc. Therefore, our challenge is identifying which tuples to probe in
order to minimize the number of oracle calls. Our novel solution addresses this
challenge by accounting, in a fine-grained manner, for how the data is derived
and for the probabilities of probe answers.

Example 1.1. Consider a data analyst whose task is to identify promising
entrepreneurs at the early stages of their careers. The analyst uses data on
company acquisitions and founders from NELL, and hires the services of a data
expert in order to ensure that business recommendations are made only based
on correct data. Clearly, the effort of such an expert should be minimized.

Now, assume that the analyst describes a part of NELL that is of interest
via the simple query “select all the names of company founders”. In this case,
the data expert only needs to verify tuples describing company founders, and not
even all such tuples: in order to verify if a person is a correct query result, it
suffices to find one correct input tuple describing a company they founded (or,
alternatively, establish that all such tuples are incorrect). An estimation of cor-
rectness probabilities can greatly help here, in choosing between input tuples that
associate different companies with the same founder, since e.g. the tuple from
the most reliable source may also be the likeliest to prove this person is indeed
a company founder. This analysis naturally gets more complex for queries that
are more complex. Moreover, the choice of a tuple to verify should account for
its effect on determining the correctness of other output tuples (e.g., the output
of another query that selects company names), and for its effect on estimating
the correctness of similar input tuples.

Solution Overview. Towards addressing this problem, we present an end-
to-end framework for query-guided resolution in uncertain databases. Figure 1
shows the main components and flow of our framework: first, the user issues a
query over the data (Step 1, on the left). The query is evaluated along with
fine-grained Boolean provenance tracking (Step 2). Similarly to previous work
on probabilistic databases (e.g., [24, 57, 75, 87, 27]), each output tuple is anno-
tated by a Boolean provenance expression, where each variable in the Boolean
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Figure 1: Framework architecture

expressions stands for the correctness of an input tuple, and each expression
evaluates to True iff its output tuple is correct. Unlike the semantics of [87]
for query evaluation on probabilistic databases, we now choose input tuples to
verify with the help of the oracle, i.e., variables whose truth value will be re-
vealed. We first plug into the Boolean expressions the known truth values from
previous probes that are stored within the Probes Repository, if exist. Such
known probe answers are assigned to the relevant variables, and the expressions
are simplified accordingly (Step 3). If previously resolved data suffices to de-
termine the correctness of query results, we can stop at this point. Otherwise,
we invoke Active Query Evaluation (Step 4) to select the next variable to ver-
ify. The Learner module (Sub-step 4.1) uses a classifier trained on the Probes
Repository, in order to predict correctness based on metadata such as the data
source and type. Probe answer probabilities are then passed on to the Util-
ity Computation module (Sub-step 4.2) which computes a score reflecting the
expected contribution of each candidate probe towards evaluating the Boolean
expressions. The Probe Selector (Sub-step 4.3) weighs the utility of each can-
didate probe and its expected contribution to lowering the uncertainty of the
learned model. The chosen probe is sent to the oracle and its answer is recorded
in the Probes Repository. Steps 3-5 repeat iteratively, where depending on the
choice of learning algorithm, we may update the Learner by training it on the
new answers, or by retraining it from scratch on the entire data. At each point
of this iterative process, the user can view the current subset of query results
determined to be (in)correct.

More concretely, in this work we focus on Select-Project-Join-Union (SPJU)
queries, for which provenance can be computed in the form of monotone Boolean
expressions [47, 52], i.e., without negation (see Section 2.3). As a Learner suit-
able for a small training set (Step 4.1), we use a Random Forest (RF) classifier,
and estimate the probe answer probability as the fraction of trees classifying a
candidate probe as correct. We feed this classifier to Learning Active Learning
(LAL) [59], to quantify the reduction in the uncertainty of our estimation that
each candidate probe is expected to yield (See Section 4).
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Acquisitions

Acquired Acquiring Date

A2Bdone Zazzer 7/11/2020 a0

microBarg Fiffer 1/5/2017 a1

fPharm Fiffer 1/2/2016 a2

Optobest microBarg 8/8/2015 a3

Roles

Organization Role Member

A2Bdone Founder Usha Koirala r0
A2Bdone Founding member Pavel Lebedev r1
A2Bdone Founding member Nana Alvi r2
microBarg Co-founder Nana Alvi r3
microBarg Co-founder Gao Yawen r4
microBarg CTO Amaal Kader r5

Education

Alumni Institute Year

Usha Koirala U. Melbourne 2017 e0
Pavel Lebedev U. Melbourne 2017 e1
Nana Alvi U. Sau Paolo 2010 e2
Nana Alvi U. Melbourne 2017 e3
Gao Yawen U. Sau Paolo 2010 e4
Amaal Kader U. Cape Town 2005 e5

Table 1: Example probabilistic database.

For utility Computation (step 4.2), we develop functions that compute the
expected contribution of a probe based on an analysis of algorithms from the
field of Interactive Boolean Evaluation [4, 15, 28, 43, 53, 90], and the related
work on Consent Management [31]. Briefly, Interactive Boolean Evaluation al-
gorithms get, as input, a Boolean expression and (independent) variable prob-
abilities, and sequentially select variables for which the truth value is revealed.
The goal is to minimize the overall number of observed variables, corresponding
to our oracle probes. The algorithms of [31], get as input a database with (inde-
pendent) probabilities on tuples and a query, and select tuples for which to ask
consent, corresponding to our oracle probes. In contrast, in our setting, we are
given an uncertain database with metadata and a query, while answer probabil-
ities may be unknown to the algorithm and correlated. Due to this difference,
solutions from this previous work are inadequate for our setting. Instead, we
build on three such algorithms but recast each of them in a utility function that
assigns numeric scores to all probes (see Sections 4-6). This enables us, in con-
trast with the aforementioned lines of previous work, to develop an end-to-end
solution, accounting for the (gradual) learning of answer probabilities and for
actively selecting probes based on considerations of both utility and expected
uncertainty reduction.

Contributions. The main contributions of this work are:
1. Problem formulation. We define the problem of query-guided uncertainty

resolution: start with an uncertain database, metadata and a query, and find
the precise set of ground-truth query answers using a minimal number of oracle
calls for verifying tuples.

2. Framework architecture. Our end-to-end framework is designed to solve
the problem through an iterative process of learning to estimate oracle answer
probabilities, and using this estimation to select the most effective oracle calls.
As explained above, the framework features a unique combination of techniques
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from fields such as provenance, Active Learning and Interactive Boolean Eval-
uation.

3. Analysis. We conduct a foundational analysis of our optimization problem
and show that already for restricted query classes it is intractable.

4. Algorithms and Implementation. In spite of the intractability of achieving
an optimal solution, we develop an effective end-to-end solution to our problem,
which computes the precise set of correct query answers, and, as we show em-
pirically, does so by probing only a relatively small subset of the input database.
In particular, our solution incorporates active learning of probe answer proba-
bilities, which we show to be helpful in identifying effective probes and reducing
the overall number of probes. We describe concrete implementation choices and
use them in a prototype system.

5. Experimental study. We conduct an experimental study over real, large-
scale databases. We test the effectiveness of our framework as a whole and
isolate the effect of its modules, for both real and synthesized ground truth. We
then provide practical guidelines of which solution component to use in different
cases.

Novelty. There is a large body of work dealing with uncertain data. Some
approaches propagate this uncertainty to query answers, for instance, compute
the probability of query answers (e.g., [3, 10, 24, 57, 75, 87, 79, 27]), compute the
subset of certain or consistent query answers, i.e., with probability 1 (e.g., [7, 45,
63, 95]), or condition the probabilities over additional information such as data
constraints, e.g., FDs (e.g., [91, 56, 72]). A different line of work, including, e.g.,
[19, 70, 64] focuses on an optimization problem that is in a sense dual to ours:
maximally reducing the uncertainty using a given cleaning budget. Similarly
to these lines of previous work, our solutions use (estimated) tuple correctness
probabilities; unlike these works, we identify the full ground truth query answers
to given queries, to support cases when such answers are required, e.g., when
the data is mission-critical. Our optimization focuses on minimizing the number
of tuples verified, corresponding to oracle calls, and hence the techniques that
we employ are of a different flavor.

The rest of this paper is organized as follows. The formal model and problem
statement are given in Section 2. Then, in Section 3, we show intractability re-
sults. We then describe the modules of our framework: the Learner in Section 4,
utility computation in Section 5, and probe selection in Section 6. Our imple-
mentation and experimental results appear in Section 7. We overview related
work in Section 8 and conclude in Section 9.

2 Preliminaries

We next provide formal definitions along with examples of our setting, starting
with a general model of uncertain databases that serves, in our framework, as
a vehicle for deciding which parts of the data to resolve. We then present the
unique aspects of active uncertainty resolution.
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2.1 Uncertain Databases and Possible Worlds

An uncertain database associates each tuple with a unique variable, which in-
tuitively should be assigned True if the tuple is correct and False otherwise.
A truth assignment to these variables yields a possible world of the database,
which consists of exactly the tuples whose variables were assigned to True. This
follows a standard model of an uncertain database (e.g., [52]). We will further
introduce below a probability distribution over the variables, but will not as-
sume that it is given to us as input; instead, we will learn the distribution as
part of the process.

Definition 2.1 (Uncertain databases). An uncertain database is represented as
D̄ = (D,X,L) where D is a relational database, X is a set of Boolean random
variables and L : tuples(D)→X is an injective (one-to-one) mapping of each
tuple to a variable standing for the event that this tuple is correct.

Example 2.1. Table 1 outlines an uncertain database with three relations: Ac-
quisitions, including data on companies acquired by other companies; Roles,
including data on roles of different organization members; and Education, in-
cluding data on university alumni. The rightmost column in each shows the
variable in X annotating the tuple.

SPJU queries are the queries obtainable using the Positive Relational Alge-
bra operators of Selection, Projection, Inner Join and Union [1]. In particular,
this allows us to use negation inside the Selection or Inner Join predicates (e.g.,
Year!=2017), but not query operators for negation or difference (e.g., Year NOT

IN ...). SPJU queries are monotone, i.e., for relational databases D,D′ with
the same schema, if D ⊆ D′ then Q(D) ⊆ Q(D′). For convenience, we will use
SQL syntax in our examples.

By assigning truth values to D̄’s variables, we obtain a possible world where
only a subset of the tuples is correct. Given an (SPJU) query, we can accordingly
define the correctness of output tuples.

Definition 2.2 (Truth valuations). A truth valuation val : X →{True,False}
yields a possible world Dval = {t ∈ D | val(L(t)) = True} ⊆ D, namely, the
subset of database tuples whose variables have been mapped to True. Given also
a query Q over D̄, a tuple in its output t ∈ Q(D) is said to be correct w.r.t. val
iff t is in the output of Q(Dval). A probability distribution π over X assigns,
to every truth valuation, or, equivalently, to every possible world, a probability
value in [0, 1] (such that the sum of probabilities over all valuations is 1).

Intuitively, the probability distribution π captures the likelihood of input
tuples to be correct. We will not assume that π is given as input, but rather
will learn it based on metadata.

Example 2.2. Recall Example 1.1 regarding an analyst seeking promising en-
trepreneurs. This analyst may e.g. issue the SPJU query in Figure 2 over the DB
in Table 1, which returns companies acquired since 2017 along with institutes in
which founders of these companies had studied. The query results are shown in
Table 2 (ignore, for now, the annotations on the left). In the event that the first
two tuples in the Acquisitions relation are incorrect (val(a0) = val(a1) = False)
the query has no correct results since the join of the Acquisitions table with the
other tables would necessarily be empty. If, alternatively, the first tuple of each
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1 SELECT DISTINCT a.Acquired, e.Institute

2 FROM Acquisitions AS a, Roles AS r, Education AS e

3 WHERE a.Acquired = r.Organization AND

4 r.Member = e.Alumni AND a.Date >= 2017.01.01 AND

5 r.Role LIKE ’%found%’ AND e.YEAR <= year(a.Date)

Figure 2: Query over the example database

of the three relations is correct (i.e., val(a0) = val(r0) = val(e0) = True), the
first result tuple of the query, (A2Bdone, U. Melbourne), derived from these input
tuples, is correct.

2.2 The Active Model

We next model the process of revealing the ground truth of the random variables,
i.e., the correctness of the corresponding input tuples towards determining the
full ground truth query results, by probing an oracle. As mentioned above,
our oracles may be domain experts or crowd workers, and they may verify
correctness e.g. by looking at the Web page from which the data has been
extracted. I.e., we regard, in this work, the oracle answers as the ground truth.
We discuss what happens when this is not the case in Section 9.

Let val∗ : X → {True,False} be a ground truth valuation reflecting the
correctness of input tuples; val∗ may be (fully or partially) unknown and can be
discovered by oracle probes, where each probe is a choice of a random variable
x ∈ X for which val∗(x) is revealed.

Our problem, called OPT-RESOLVE (standing for optimally resolving uncer-
tainty) is then as follows. We are given as input an uncertain database D̄ =
(D,X,L), an SPJU query Q over D and an oracle that we can probe to reveal
the ground truth valuation val∗(x) for any x ∈ X. There is an underlying prob-
ability distribution π over X, but it is not given to us as input. Our goal is to
compute the precise ground truth for the query result, i.e., Q(Dval∗), while per-
forming a minimal number of sequential oracles probes. Since the total number
of probes will typically depend on the obtained probe answers, we will aim at
minimizing the expected number of probes with respect to π.

OPT-RESOLVE may be viewed as an exploration-exploitation problem: oracle
probes are not only useful for directly revealing the ground truth but may also
be used for estimating (parts of) the underlying π, and thereby guiding the
selection of subsequent probes.

Since our goal in this work is to optimize the number of oracle probes,
sequential probing is the preferable strategy, enabling probe selection to be
optimized based on all previous probe answers. In Section 6, we explain how
probes can be selected and issued in parallel, to improve latency as a secondary
consideration.

2.3 Provenance

A key component in our solution is that of Boolean provenance [3, 6, 5, 9,
10, 17, 18, 30, 29, 35, 41, 40, 47, 46, 50, 52, 54, 68, 77, 82, 84, 99], computed
alongside query evaluation (step 2 in Figure 1). Briefly, given an uncertain
database D̄ = (D,X,L) and a query Q over D, we compute the representation
Q(D̄) = (Q(D),Bool[X], L′) that consists of the “standard” query result and
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Acquired Institute

A2Bdone U. Melbourne (a0∧r0∧e0) ∨ (a0∧r1∧e1) ∨ (a0∧r2∧e3)
A2Bdone U. Sau Paolo (a0∧r2∧e2)
microBarg U. Melbourne (a1∧r3∧e3)
microBarg U. Sau Paolo (a1∧r3∧e2) ∨ (a1∧r4∧e4)

Table 2: Result of the example query.

a labeling function L′ that maps each output tuple t to a Boolean expression
over the input annotations. Crucially, L′ has the property that a valuation val
satisfies L′(t) if and only if t is correct w.r.t. val [47, 52]. In other words, exe-
cuting Q over the possible world corresponding to val is equivalent to assigning
truth values to the provenance expressions annotating Q(D̄) and retaining only
the tuples whose annotation evaluated to True. For SPJU queries, provenance
can be computed in polynomial time [52] as monotone k-DNF expressions, i.e.,
DNF without negation and where terms (conjunctions) include at most k vari-
ables.

Given a query Q over an annotated database D̄, we will denote the set of
Boolean expressions by Φ(Q, D̄) = {L′(t) | t ∈ Q(D)} ⊆ Bool[X], and for
brevity use Φ when Q and D̄ need not be specified.

Example 2.3. The rightmost column of the query result in Table 2 shows the
provenance annotation for each output tuple (in this case, it is in 3-DNF). In
accordance with Example 2.2, since every provenance term contains either a0 or
a1, if val(a0) = val(a1) = False then all four expressions are evaluated to False,
i.e., every output tuple is incorrect. Similarly, if val(a0) = val(r0) = val(e0) =
True, the first conjunction in the first Boolean expression and hence the entire
expression evaluates to True, hence the first output tuple is correct.

3 Intractability Results

We now study the complexity of OPT-RESOLVE, namely, of identifying the pre-
cise set of correct query results using a minimal expected number of oracle
calls. First, we note that, based on previous work, we can directly derive an
intractability result for the problem in its full generality, as follows. Recall that
Interactive Boolean Evaluation is the optimization problem of probing the truth
values of variables in order to decide the truth value of a given Boolean formula.
The work of [4] shows that this optimization problem is hard for k-DNFs, which
is the general shape of our provenance expressions (see Section 2.3). We can re-
duce this problem to OPT-RESOLVE in the same manner that was done for consent
management in [31] (Theorem III.5).

A natural question to ask is then, can we find restricted cases for which
finding an optimal solution is tractable (in data complexity)? To this end, we
next show that OPT-RESOLVE is intractable even for restricted cases: even for
Selection-Join (SJ) queries, i.e., queries that include no projection and no union
and for Selection-Projection-Union queries (SPU), that include no join; and
even in the case when input tuple probabilities are independent and known in
advance to the algorithm, i.e., the event that each tuple is correct is captured
by a binary random variable, whose probability to be True is independent of
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the other variables and given as additional input to the algorithm. For brevity,
we refer to such variables in the sequel as “known” and “independent”.

Theorem 3.1. If P ̸= NP, there exists a Selection-Join (SJ) query Q for which
there is no algorithm to solve the problem OPT-RESOLVE that is polynomial in the
database size. This holds even in the setting where the probabilities of database
tuples are known and independent.

Proof. We prove the intractability of OPT-RESOLVE for this class of queries via
a reduction from the NP-hard problem VERTEX COVER. First, we define a fixed
SJ query Q, which is used in the reduction: SELECT * FROM Vars v1, Vars v2,

Terms t WHERE v1.a = t.a1 AND v1.a = t.a2. Given an input to VERTEX COVER,
namely, a graph G = (V,E), our goal is to find a minimum cardinality vertex
cover, i.e., a subset of V such that every edge in E contains some vertex of the
subset. Define an uncertain database D̄ = (D,X,L) such that D includes the
1-ary relation Vars and the 2-ary relation Terms. For each v ∈ V , we define a
tuple tv = (v) ∈Vars, such that L(tv) = xv; and for each edge (u, v) ∈ E, we de-
fine a tuple tu,v = (u, v) ∈Terms, such that L(tu,v) = xu,v. By this construction,
the query result Q(D̄) contains, per (u, v) ∈ E, exactly one tuple (u, v, u, v),
constructed of two Vars tuples corresponding to vertices and one Terms tuple
corresponding to the edge. The provenance of such an output tuple is there-
fore xu ∧ xv ∧ xu,v.

Next, we can show that for π that assigns to variables sufficiently low proba-
bilities, given to the algorithm as additional input, and a constant False ground
truth, any optimal solution to OPT-RESOLVE would sequentially probe a minimal
number of variables sufficient to prove that all provenance expressions are False
– termed a minimal 0-certificate.

Let us use as the input to OPT-RESOLVE the database D̄, query Q, empty
metadata and the above mentioned π, and assume that the resulting optimal
strategy issues probes x1, . . . xm for the constant False ground truth valuation.
We now show that we can construct from x1, . . . , xm a minimum vertex cover
for G of size m: for each probed variable xv, add to the cover the vertex v; for
every probed variable xu,v, add to the cover the vertex u. This is indeed a cover
of G: for every edge (u, v), at least one variable of xu ∧ xv ∧ xu,v is probed, so
either u or v are in the cover. In the other direction, given a vertex cover of
size m′, we can construct a 0-certificate of size m′ by probing xv for each v in the
cover. Hence, by the minimality of the 0-certificate, the vertex cover we defined
is also minimal. This concludes our reduction. Note that some parts of this
proof are adapted from the proof technique of Theorem 1 in [4], including the
connection between 0-certificates and optimal evaluation algorithms (Lemma 1
of [4]); however, their proof was for a single 2-DNF, and so our proof includes
novel constructions including the query Q, the uncertain database D̄, and the
particular reduction for the resulting provenance expressions.

Similarly, we prove the intractability of OPT-RESOLVE for SPU queries, whose
provenance is in the form of disjunctions (since the queries are join-free).

Theorem 3.2. If P ̸= NP, there exists a Selection-Projection-Union (SPU)
query Q for which there is no algorithm to solve the problem OPT-RESOLVE that
is polynomial in the database size. This holds even in the setting where the
probabilities of database tuples are known and independent.
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Proof. We prove the intractability of OPT-RESOLVE for this class of queries via a
reduction from the NP-hard problem 3-VERTEX COVER, i.e., for graphs where all
vertices have degree ≤ 3. In this proof, we define a fixed SPU query Q: SELECT

e1 FROM Graph UNION SELECT e2 FROM Graph UNION SELECT e3 FROM Graph. Given
an input G = (V,E) to 3-VERTEX COVER, we define an uncertain database D̄ =
(D,X,L) such that D includes the 3-ary relation Graph. For each v ∈ V
contained in edges ev1 , ev2

, ev3 we define a tuple tv = (ev1 , ev2 , ev3) in Graph,
such that L(tv) = xv. (We can handle vertices with < 3 edges e.g. by set-
ting some of the tuple values to NULL and adding a selection criterion to Q to
avoid NULL results.) By the construction of Q, the query result Q(D̄) contains,
per e = (u, v) ∈ E, exactly one tuple (e), constructed of the union of the two
occurrences of e in the input tuples tu, tv. The provenance of such an output
tuple is therefore xu ∨ xv.

Next, we can use a counterpart of the connection between minimal 0-certificates
and optimal algorithms, noted in the proof of Theorem 3.1, and show that for
sufficiently high probabilities, through an optimal solution to OPT-RESOLVE, we
can obtain a minimal 1-certificate xv1 , . . . xvm for the provenance of Q(D̄), i.e.,
a minimal proof that all expressions are True. We can show, similarly to the
proof of Theorem 3.1, that in this case, xv1 , . . . xvm is a minimal vertex cover
for G, which concludes our reduction.

The above intractability results stand in contrast with previous optimality
results by [15, 31]: both SJ and SPU queries yield provenance in the form of con-
junctions and disjunctions, respectively. In particular, since variable repetitions
can be eliminated using absorption (x∨x = x), each provenance expression is in
read-once DNF, namely, does not include multiple occurrences of variables. A
PTIME optimal solution to Interactive Boolean Evaluation given a single read-
once DNF expression was shown in [15]. This result was extended in [31] to an
optimal PTIME solution for multiple DNF expressions that do not include mul-
tiple occurrences of variables across expressions. The intractability in our case
thus stems from variable repetitions across multiple provenance expressions.

4 Learning Probabilities

Our theoretical results indicate that achieving the optimal, minimum number
of oracle calls, even for restricted query classes, is generally infeasible. In this
section and the following, we nevertheless propose practical solutions to our
problem, further accounting for probability estimation by active learning from
metadata, and showing how to incorporate the gradual learning of probabilities
in the Boolean evaluation process.

We start by “zooming-in” on the sub-components of the Learner Module
(Sub-step 4.1), as depicted in Figure 3. These sub-components provide, for each
candidate probe, estimates of (1) the probability this probe will be answered
affirmatively and of (2) the expected uncertainty reduction following the probe
answer.

Estimating probabilities based on metadata. Metadata attributes, to-
gether with the ground truth correctness of tuples that were already probed,
can be used to estimate the correctness probability of the remaining tuples.
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Definition 4.1 (Metadata). A metadata attribute is a pair a = v of an attribute
name a ∈ A and value v ∈ Da, respectively, for some attribute name and value
domains A,D. The function meta : D→P[A,D] maps each tuple t ∈ D to a
set of metadata attributes.

The Known Probes Repository (see Figure 3) is a (possibly empty) set of
tuples in D, along with their metadata and correctness truth values obtained
from past probes (e.g., of other queries).

Example 4.1. In the database of Figure 1, the metadata of the first tuple,
annotated by a0, may include attributes reflecting its source, e.g., source =
example.com, attributes related to its schema, e.g., rel name = Acquisitions and
attributes related to its content or even containing (parts of) its content, e.g.,
has value = A2Bdone, has value = Zazzer, etc.

We describe, in Section 7, practical derivation of such metadata from general-
purpose datasets, and discuss the effect of available metadata. In what follows,
we model the probability distribution for tuple correctness as a function of
the metadata attributes, and leverage past probe answers to estimate (relevant
parts of) this function. We discuss alternative probabilistic models in Sections 8
and 9.

Learning a classifier. The first step of the Learner is training a classifier
to predict probe answers based on the metadata of the input tuples. We use
two learning modes: offline, where the classifier is only trained once in the first
Learner invocation, based on the initial known Probes Repository; and online,
where the classifier is updated with each incoming probe answer.

The choice of the learning algorithm may depend on the setting (e.g., data
domain and type of available metadata). However, since we are interested in
minimizing oracle calls, active learning solutions that require relatively large
training data such as Deep Neural Networks (e.g., [73, 85]), Generative Adver-
sarial Networks (e.g., [65]), and Support Vector Machines (e.g., [13, 48]) are less
adequate for our purpose.

In our implementation, we use Random Forests (RFs) for the classifier
(e.g. [25]). This model admits highly efficient training algorithms and can be
trained on a small initial input, which makes RF a lightweight solution partic-
ularly suitable for an active learning setting [16, 59]. We have also conducted
experiments with a Näıve Bayes classifier [94], which performed similarly or
slightly worse than RF and therefore these results are omitted.

Estimating probabilities. In our framework, we do not predict the answers
of Boolean probes, but rather estimate the probability that each answer is True.
We thus use a Probability Estimator (see Figure 3), which gets as input the
classifier and candidate probes (variables whose truth value is unknown, along
with their metadata). The Probability Estimator computes, for each variable x,
the probability that x is classified as “correct”. In particular, Random Forests
admit a common generalization as probability estimators by considering each
tree as a “vote” for the class it assigns to x and using the percentage of votes
as the probability of each class.
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…

…

variables, metadata

Figure 3: “Zoom-in” on the Learner Module (Sub-step 4.1 of Figure 1) with
implementation choices in square brackets.

Estimating uncertainty reduction. In the online learning mode, we con-
sider the effect of probes in extending the training set of known probe answers,
thereby improving the classifier and thereby also improving the estimation of
probe answer probabilities (the improved model will in turn lead to better probe
selection in subsequent steps, and so forth). Concretely, we quantify the ex-
pected contribution of a candidate probe to decreasing the generalization error
of the model, namely, prediction errors stemming from insufficient training. In
our implementation, we use a recent solution called Learning Active Learning
(LAL) [59]. Briefly, LAL uses a regressor that is trained on an annotated dataset
(which does not need to come from the domain of interest). The regressor is
transferred to predict the error reduction for an instance in a specific learning
state (in our case, a candidate probe and a trained classifier), treating it as a
regression problem.

5 Utility Computation

Using the estimated probe answer probabilities, the Utility Computation module
(step 4.2 in Figure 1) estimates the utility of each candidate probe towards
evaluating the Boolean provenance expressions, i.e., verifying the correctness
of query output tuples. Recall that, as explained above, Interactive Boolean
Evaluation algorithms get as input Boolean expressions with an independent
probability that each variable is True, and sequentially reveal the truth values
of variables in order to reveal the truth values of formula. The following
example illustrates why we need to assign utility scores to variables rather than
directly use such algorithms.

Example 5.1. Consider the following scenario: in the query output in Table 2,
some Interactive Boolean Evaluation algorithm may choose a0 as the next vari-
able to probe, based on some properties of a0. However, it could be the case
that a1 is similar to a0 in terms of the properties that the algorithm uses (e.g.,
a False answer to either a0 or a1 would lead to the evaluation of two Boolean
expressions as False). In this case, if a1 leads to a greater improvement of the
learned model, it may be preferable to select a1. The utility scores allow us to
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quantify and compare the expected contribution of each variable, and to combine
this quantity with other considerations.

An optimal utility score for OPT-RESOLVE would assign, at each point, the
highest score to the variable that minimizes the expected number of subsequent
probes; however, the intractability results of Section 3 imply that computing
such a utility value is not possible in PTIME. Instead, we recast three PTIME
algorithms for Interactive Boolean Evaluation in utility functions that capture
the principle by which probes are selected in each original algorithm. In partic-
ular, for any Boolean expression and probabilities, the probe that the algorithm
would have chosen is given the highest utility score. In case of a tie, when the
algorithm chooses arbitrarily among a set of probes, the corresponding utility
would assign these probes equal scores. We also explain below, for each utility
function, how it accounts for the evaluation of multiple provenance expressions.

Definitions and notations. Formally, we are given a query answer Q(D̄) =
(Q(D),Φ, L′), computed by the Query Evaluation Module (Figure 1). We
are also given a partial truth valuation val : Xknown → {True,False} for vari-
ables whose truth value has been revealed and recorded in the Known Probes
Repository. For the other, unobserved variables, we are given an estimation
π̃ : X −Xknown → [0, 1] of the variable probabilities computed by the Learner
Module, and our goal is to compute util(Φ, π̃, val, x), i.e., the utility of x for Φ
with respect to our current knowledge on the probabilities and truth values.

Since we will gradually construct partial valuations, we denote by valx=True

the valuation identical to val except that it also assigns True to a variable
x ∈ X −Xknown, and define valx=False in the same way. We abuse notation and
denote by val(φ) the Boolean expression obtained from φ by replacing each x
in the domain of with val(x). For a set Φ, val(Φ) = {val(φ) | φ ∈ Φ}. Given
a formula φ ∈ Φ, denote by nt(φ) and nc(φ), respectively, the number of terms
(conjunctions) in the DNF of φ and the number of clauses (disjunctions) in its
CNF.

Q-Value. The first utility function that we define, called the Q-Value utility
function (by its connection to [28], as explained below), measures the utility
of a variable according to the number of DNF terms (i.e., conjunctions) and
CNF clauses (i.e., disjunctions) expected to be evaluated when revealing this
variable’s truth value. The utility function is defined as:

util(Φ, π̃, val, x) =∑
φ∈Φ

{nt(φ) · nc(φ)− π̃(x) · nt(valx=True(φ)) · nc(valx=True(φ))

− (1− π̃(x)) · nt(valx=False(φ)) · nc(valx=False(φ))} (1)

Consider a Boolean expression φ ∈ Φ, whose truth value is unknown at the
current point of evaluation, and a variable x whose truth value is unknown.
The Q-Value utility is maximized if, by probing x, we are guaranteed to dis-
cover the truth value of φ, i.e., either the number of terms or the number of
clauses is 0 regardless of the probe answer, which means that the two subtracted
products are 0. It is also maximized when we are certain that x is True/False

13



PR
EP
RI
NT

(i.e., π̃(x) ∈ {1, 0}) and in this case φ is evaluated. Specifically, multiplication
is used so that it suffices that one of the multiplicands is 0. When Φ includes
multiple expressions, we observe that the sum of individual expression utilities
reaches its maximum iff each individual utility reaches its maximum, i.e., all the
expressions are evaluated, which is our goal. Hence, our utility function sums
over the utilities of individual expressions. Our design of the utility function is
based on several results from [28], including the use of multiplication to cap-
ture alternatives (we either want to evaluate all terms or all clauses, Lemma 1
of [28]) and the use of sum to capture joint evaluation of multiple expressions
(Theorem 7 of [28]).

RO. Next, we introduce a utility function whose value is maximized for vari-
able(s) least likely to be True, in the DNF term(s) most likely to be True.
Intuitively, such variables are useful for proving that a Boolean expression is
True, since this requires finding one DNF term that evaluates to True, and we
choose the term most likely to be True; and it is also useful for proving that a
Boolean expression is False, since for that we need to find a False variable in
each DNF term, and the variable we choose is most likely to be False in its term.
We extend this intuition to account for multiple expressions, by assigning higher
utility scores to variables in the terms most likely to be True overall, across all
expressions.

To this end, we first define the weight of a term T in the DNF of any φ ∈ Φ
to be W(T ) = 1

|T |
∏

x∈T π̃(x). Intuitively, if variables are independent, this

reflects the probability of a term to be True, and we divide it by the number of
probes required to evaluate the term in the worst case. We then write the RO
utility function as

util(Φ, π̃, val, x) = (1− π̃(x))

+ max
φ∈val(Φ)

max
T∈{terms(φ)|x∈vars(T )}

α · (W(T ) + ε) (2)

In Formula (2), to ensure that the variables of higher-weight terms get higher
utility scores, we multiply the term weight by a factor α large enough to ensure
that α · (W(T )+ε) > 1 (second summand), and then take the highest score over
all the terms across all the Boolean expressions in which the variable occurs. For
example, we can choose α to be 1+ε

ε+minT∈terms(φ) W (T ) . Next, the first summand is

higher for variables more likely to be False. Since this summand is ≤ 1, utility
is strictly greater for variables occurring in terms with maximal weight. This
utility score is inspired by the Interactive Boolean Evaluation algorithm of [15],
which does not compute a score per variable, but directly selects the lowest prob-
ability variable in the highest probability term, breaking ties arbitrarily. Thus,
as desired, the variable it selects coincides with our maximal utility variable.
In [31], the algorithm of [15] was extended to account for multiple formulas and
multiple variable occurrences, by taking the conjunction of Boolean expressions;
this coincides with our utility, which is based on the overall likeliest terms.

General. In contrast with the Q-Value utility function (Formula (1)), which
balances between proving that expressions are True or False by assigning high
scores to variables that promote either of them, we now take a different approach
that, with each step, aims to promote only one of them. For that, we use two
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separate functions: one of the functions is higher for variables that advance the
evaluation towards proving that expressions are True, and the other does the
same for False. If we knew that all the expressions are True (or False), the
corresponding function would be preferable; but since we do not know the truth
values of expressions, and since some expressions may be True and some False,
we use the two functions alternately.

We have observed above (RO utility function) that to prove the falseness of
an expression φ, we need to find one False variable in each of its DNF terms. We
therefore use, as the utility score of a variable x, the number of terms that will
be set to False if x is False. To account for proving that multiple expressions
are False, we count the overall number of terms set to False in the expression
set Φ. We multiply this by the probability that x is False. Formally,

util(Φ, π̃, val, x) = (1− π̃(x))
∑
φ∈Φ

{nt(φ)− nt(valx=False(φ))} (3)

For proving the truth of Boolean expressions, we can similarly use a function
that counts CNF clauses set to True; however, unlike the Q-Value function,
we can avoid here the expensive computation of CNF by using Formula (2),
which, as explained above, also promotes proving that expressions are True.
This function is inspired by the Interactive Boolean evaluation algorithm of [4],
which alternates between two algorithms, trying, respectively, to prove that a
given Boolean expression is True or False.

Example 5.2. Recall our running example (the input database of Table 1 and
query output of Table 2). To exemplify utility computation, we describe it for the
utility functions RO and General. Assume that at the current point of evaluation:
Xknown = {a0} (i.e., only a0 has been probed), val(a0) = True, the estimated
probability π̃ of a1, r1, e1, r4, e4 is 0.1, and π̃ of the rest of the variables is 0.9.
We can now use our utility functions to assign scores to the possible next probes.
For instance, if we use the General utility function, and at this point the choice
is made by Formula (3), then a1 gets the maximal utility (1− 0.1)(1+ 2) = 2.7.
Recall that this function targets proving the falseness of Boolean expressions –
indeed, a1 is likely to be False (first multiplicand in the above computation) and
in this event to falsify a maximal number of terms (second multiplicand).

If, alternatively, the choice is made by Formula (2), used in the RO utility as
well as alternately in the General utility, then e0, e2, e3, r0 and r2 get the same,
maximal utility score (1 − 0.1) + α(0.81/2 + ε) = 1211.5. The reason is that
after assigning True to a0 and simplifying, all of these variables participate in
terms of two variables with probability 0.9, e.g., r0 ∧ e0, whose weight is ac-
cordingly .81/2, and are intuitively the likeliest terms to be evaluated to True by
the current estimation of π̃. Note that in both cases, the corresponding Boolean
Evaluation algorithms of [4, 15, 31] would have arbitrarily chosen one of the
variables with highest utility. However, in our case we are able to break ties or
decide among variables with similar utility by considerations of actively learning
the probabilities, as discussed next.

6 Probe Selector

The modules described thus far quantify, at each point, the expected utility and
estimated uncertainty reduction associated with each candidate probe. The
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role of the Probe Selector is then to select probes based on these two fac-
tors, balancing between exploitation (probes utility) and exploration (probes
uncertainty reduction). Unlike classic exploration-exploitation problems such
as Multi-Armed Bandit [92], exploitation in our case has a different flavor,
since each probe can be selected at most once and its answer may eliminate
other candidate probes. The Probe Selector will thus implement a function
f evaluated over util(Φ, π̃, val, x) (the utility of x for Boolean evaluation) and
uncertainty(x,meta(x)) (the effect of x on the uncertainty of the Learner) de-
signed to balance the optimization goals. Let x, x′ be variables in X and denote
u = util(Φ, π̃, val, x), u′ = util(Φ, π̃, val, x′), v = uncertainty(x,meta(x)) and
v′ =
uncertainty(x′,meta(x′)). We identify two desiderata on f , formalized as fol-
lows, for a certain ε ≥ 0.

1. Monotonicity. If u ≥ u′ and v ≥ v′ then f(u, v) ≥ f(u′, v′).

2. ε-Convergence to Utility (ε-CtU). If v, v′ ≤ ε and u > u′ then f(u, v) >
f(u′, v′).

Intuitively, the monotonicity desideratum requires that probes that are both
more useful for evaluation and for learning are preferred. The ε-CtU criterion
formalizes the assumption that with sufficient training the learner computes
probabilities that are “accurate enough”, and thus uncertainty reduction is no
longer a consideration in probe selection. In this case, when uncertainty is
smaller than some threshold ε, probes should be ranked according to their utility
only.

We next list possible choices for the function f that balance between the
utility (u) and the uncertainty (v), and satisfy the above desiderata.

• f(u, v) := u·(v+1). This function is in line with previous work on combin-
ing scores in Information Retrieval (e.g., [38]). The use of +1 is required
for the fulfilment of the CtU desideratum: as the model becomes more ac-
curate and uncertainty reduction decreases, this function approaches the
utility score.

• f(u, v) := αu+βv, a linear combination of the factors, also very commonly
used in IR [83, 98].

• f(u, v) := u, which vacuously fulfills both desiderata, yet is based only on
utility.

• f(u, v) := Iv≤Θu+ Iv>Θ(v +MAX UTIL). This function chooses according
to uncertainty if the estimated reduction is greater than some predefined
threshold Θ, and according to utility otherwise, using indicator functions.
The addition of the maximal utility MAX UTIL (which depends on the
utility function) is required for the fulfilment of the monotonicity desider-
atum.

In our experimental study, we have tested all of these functions and have
empirically chosen u · (v + 1), which outperformed the rest. Intuitively, the
reason was that this function converges faster to the utility function compared
with αu + βv, but still gives some weight to improving the learned model in
early stages of the evaluation.
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Parallel probe selection. So far, we have assumed probes are selected se-
quentially based on the answers to previous probes and on the Learner that
is trained over previous probes. However, in many cases we can issue probes
concurrently without compromising the primary optimization goal, namely the
total number of probes. Specifically, when we can partition the set of prove-
nance expressions into subsets that are disjoint in terms of their variables, we
verify them separately and concurrently. During the iterative evaluation pro-
cess, and even if no partition was initially possible, tuple correctness becomes
increasingly known, and so variables, terms and expressions are simplified away.
We are thus typically able to gradually partition our set of Boolean expressions
into smaller subsets handled concurrently until evaluation is complete.

Of course, for enhanced parallelism, such splitting may also be done when the
expressions are not fully disjoint; but then sub-optimal probes may be selected.
It is left to future work to study this trade-off between the number of probes
and parallelism.

7 Experimental Study

We have implemented our solutions in a prototype system and use it in our
experimental study to test the performance of our solutions in realistic scenarios.
Our implementation uses Python 3.7 with the Scikit-learn package (https:
//scikit-learn.org) for the Learner, using 100 different trees in the RF by
default. We have used boolean.py (https://pypi.org/project/boolean.py/)
to handle Boolean operations, and MongoDB (https://www.mongodb.com/) for
the database.

7.1 Experimental Setting

We next describe our experimental settings, and the results follow.

Datasets. We show results for two benchmarks. First, the NELL dataset [69]
includes 50M facts in the format entity-relation-value, e.g., Volkswagen acquired

Audi, extracted from textual Web sources. A subset of 1.3M facts from this
data includes manual (in)correctness labels, and we used this subset including
the manual labels that served as our ground truth oracle answers.1 The available
metadata includes the data source and categories, as well as metadata derivable
from the data itself such as values and relation names. The data also includes
correctness probabilities, but by default, we learn correctness probabilities from
scratch (see a comparison in Section 7.2).

Our second dataset, TPC-H (SF1) [89], includes ∼8M tuples. This dataset
does not include probabilities nor correctness indications, and therefore we gen-
erate them synthetically, using one of two options: By default, we construct
probabilities using a random decision tree: inner leaves are random decisions
based on metadata, and the leaves are randomly drawn probabilities. For each
tuple, we apply the decision tree on its metadata to obtain a probability and
then randomly draw a correctness value according to this probability. This
simulates a realistic setting when correctness probabilities are affected by the

1http://rtw.ml.cmu.edu/rtw/resources
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1 SELECT DISTINCT a.team, b.sport, c.league

2 FROM athleteplaysforteam as a, athleteplayssport as b,

3 athleteplaysinleague as c, generalizations as d

4 WHERE a.athlete = b.athlete AND a.athlete=c.athlete AND

5 d.entity = b.sport AND

6 (d.value LIKE ’%sport%’ or d.value LIKE ’%hobby%’)

Figure 4: NELL Query MS1

data/metadata. In some experiments, we isolate the effect of Boolean expres-
sion structure or probability values by using a fixed probability (0.5 by default),
and drawing a correctness value for each tuple with this probability.

Query workload. We have conducted experiments on 18 queries. From the
TPC-H query workload, we retained queries Q1-Q10 (see [89]), which are with-
out nesting or negation. We stripped out aggregation (GROUP BY without
aggregation is equivalent to projection). NELL does not include a query load,
thus we have created one by hand, as follows.

We observed that a main factor in our context is the skewness of the result-
ing provenance: namely, whether there is a small set of variables, that together
cover all DNF terms, i.e., at least one of them occurs in every term. We use the
term cover size to denote the size of this set, where a smaller cover size indicates
greater skewness. We then categorize queries as skewed (cover size ≤ 10), mod-
erately skewed (cover size 11-50) and non-skewed (larger cover size). We have
split the queries into three groups, according to the skewness of their prove-
nance. In TPC-H, Q1, 3, 4 and 6 are unskewed; Q5, 7 and 8 are skewed; and
Q9-10 are moderately skewed. Q1 and Q6 of TPC-H are SP queries and hence
their provenance is read-once. Their provenance is in the form of disjunctions
so all of our baselines require only a few probes for verifying the correctness
of their output. For NELL, we created queries by choosing relations for which
there were comparatively many facts (e.g., for company acquisitions as in our
running example, and for sports), and then added natural join and projection.
See, e.g., an example query in Figure 4, selecting teams with their corresponding
sport and league. Following our observations about the impact of skewness in
TPC-H, here too we selected, based on their provenance, representative queries
with different levels of skewness, and named them accordingly (S, MS and NS
for skewed, moderately skewed and non-skewed respectively).

For lack of space, we restrict our analysis to 5 representative queries of the
two datasets and three skewness groups. Table 3 shows statistics for these
queries, namely, the number of expressions in the output provenance (corre-
sponding to output tuples), the number of unique variables occurring in these
expressions and the cover size. In the latter, we use “-” for queries where a
cover of size < 50 was not found (non-skewed queries).

Compared Solutions. Since our problem setting is novel, we are not aware
of existing systems that can be compared directly with ours (see Section 8). Fol-
lowing our intractability results in Section 3, we cannot compare our algorithms
to an optimal solution, even if we have an accurate probability estimation. We
thus compare the performance of the following solutions. First, as a sanity
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Figure 6: Effect of varying sizes of result subsets, for TPC-H queries

check, we consider baselines that do not follow our framework design, and in
particular ignore variable probabilities.

• Random. Variables are probed in a random order.

• Greedy. Variables with the maximal number of occurrences in the DNF
provenance are greedily probed.

Next, we examine solutions that instantiate our framework with a combina-
tion of choices for its modules. The function used by the Utility Computation
Module is one of RO, Q-Value, and General, described in Section 5. For the
Learner module, we use a Random Forest classifier with LAL, and vary the
(re-)training approach:

• EP. Learning is never executed, and the learner returns equal probabil-
ity 0.5 for every variable.

• Offline. The learner estimates probabilities based on the initial probe
repository, but does not update the model based on subsequently obtained
information.

• LAL. The classifier is retrained with each probe answer to refine probabil-
ity estimation, and LAL is applied to recompute expected error reduction.
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Dataset NELL TPC-H

Query MS1 MS2 Q3 Q8 Q10

# Expressions 469 93 11,895 2,602 41,253
# Unique variables 1,991 232 50,782 68,797 201,725

Term Size 4 4 3 8 4
Cover Size 13 17 - 6 25

Table 3: Statistics for representative queries

The Probe Selector module can combine uncertainty and utility or use only
one of them. When active learning (LAL) is used, by default, we combine
the utility score u and uncertainty reduction score v to prefer probes that both
advance Boolean evaluation and learning. For that, we use the function u·(v+1),
described in Section 6. Multiplying by v+1 ensures that as the model becomes
more accurate and uncertainty reduction decreases, probe selection is dominated
by the utility score. When active learning is not used (EP and Offline), the
selector chooses probes based on utility only. We further examine a LAL only
approach where the Probe Selector uses only the learner uncertainty, like in
standard active learning.

Combinations of these choices yield full instantiations of our framework. For
example, Q-Value+Offline uses the Q-Value utility function, learns the proba-
bilities based on initial data only and selects probes based on utility only.

General setting and default parameters. All experiments were run on a
PC with Intel processor i7-1260P (2.10 GHz) and 32GB of DDR4 memory. The
reported results for experiments that involve randomization are averaged over at
least 10 executions. We populate the Known Probes Repository (see Section 4)
with a fixed number of initial probes (by default 1280) drawn randomly from
tuples not participating in the provenance of query results. These are used as
training data for the Learner Module.

Pre-processing. Our execution can be divided into two phases. In the pre-
processing stage, we execute the query and compute the provenance of its output
tuples. This step requires under 30 seconds on average and up to 1.5 minutes for
TPC-H, our largest dataset. A particular preprocessing step required for Q-Value
is the conversion of DNF provenance to CNF, which was executed for most
output tuples directly (95-99%, depending on the query). For the remaining
tuples, the computation exceeded our bound for the number of CNF clauses,
so we have split their provenance into smaller Boolean expressions, to allow
comparison with Q-Value: given a large DNF expression φ =

∨m
l=1(∧k

j=1xlj),

we partition its terms into smaller DNF expressions φ1 =
∨B

l=1(∧k
j=1xlj), φ2 =∨2B

i=B+1(∧k
j=1xlj), . . . i.e., disjunctions of at most B terms of φ, where B is a

fixed bound and the choice of terms is done randomly. As a result, the CNF
of each φi is of size O(B · kB) rather than O(m · km). Evaluating all of the
φi expressions determines the value of φ, but may require more probes. We
experimentally show below that for most queries it is still worthwhile to perform
splitting and use Q-Value.
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Figure 7: Effect of answer probabilities (Q8)

Metrics. Recall that our algorithms are correct by design as they find the
truth value of all expressions. In the experimental study below, we focus on
number of issued probes, which is our optimization goal. For completeness, we
also report execution times.

7.2 Overall Performance Evaluation

We start by analyzing the overall performance of our solutions, and then dive
into the contribution of each component. Figure 5 shows the overall performance
of the baselines and instantiations of our framework over representative queries:
Q8 of TPC-H and MS1 and MS2 of NELL.

First, observe the improvement contributed by each component. For in-
stance, the TPC-H database includes 8M tuples. If we focus only on tuples
participating in the provenance of Q8, we are left with 68K tuples (i.e., unique
variables) to verify. Using näıve sequential probe selection over the provenance,
e.g., by Random, reduces this number to ∼2500. Considering the Boolean ex-
pression structure reduces it to ∼350 (Greedy and EP variants). If we further
use probability learning we need only ∼300 probes (Offline variants) and finally
active learning saves 20 more probes (Q-Value and General+LAL). A similar
gradual gain for each component is observed for the other queries and datasets,
where the percentage of gain depends on properties such as the provenance size
and shape.

Q-Value or General with active learning are generally the strongest competi-
tors across different settings and queries. Per choice of utility function, we can
see the gradual decrease in the number of probes between the EP, Offline and
LAL choices, resulting from adding probability estimation and active learning,
respectively. The Random and Uncertainty-only baselines perform poorly in ev-
ery setting. Greedy is outperformed by a smaller gap: it makes 27% more probes
in Figure 5a, 25% in 5b and 15% in Figure 5c. This is still significant if we con-
sider that answering probes incurs human effort, monetary cost and/or latency
on a larger scale than probe computation.

Omitted from the graph is the performance of variants using the probabil-
ities provided with NELL instead of learning them, which perform about 10%
more probes than with active learning, for the three utility functions. For exam-
ple, General performs 150 probes on MS2 with NELL probabilities, compared
with 134 probes with our Learner and LAL. In light of the substantial man-
ual effort invested in curating NELL, this exemplifies that resolving a smaller,
query-relevant subset of the data can achieve higher quality with a fraction of
the effort.
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Avg. Median Max. 90th %ile

Learner 0.329 0.295 1.151 0.463
LAL 0.186 0.161 0.855 0.297

Q-Value 0.117 0.063 3.601 0.156
General 0.048 0.014 1.721 0.088

RO 0.022 0.011 0.199 0.068
Selector 0.01 0.007 0.106 0.018

Table 4: Execution times per probe (seconds), Q8

Execution times. We have also measured the execution times of each com-
ponent of our framework. The results for a representative query (Q8) appear in
Table 4. The table shows the average, median, maximum and 90th percentile
time it takes to execute each of our components in a choice of a probe along
the execution, which is typically well under a second. We report times sepa-
rately for the Learner (including the retraining of the classifier and probability
estimation) and LAL (including uncertainty reduction estimation), and for our
different utility functions. The total time it takes to choose a probe depends
on the choice of components, but even for the most costly such combination
(Q-value with LAL, Learner and Probe Selector), the total cost of the 90th
percentile is 0.9 seconds. As another example, the Offline+General combina-
tion (General with the Probe Selector) takes 0.06 seconds on average to select a
probe. Generally, the few most costly probes are the first probes, and execution
time drastically decreases as we progress. Overall, the total probe selection time
is marginal with respect to the time it would take to answer probes by humans.

7.3 The Effectiveness of Utility Computation

We now analyze the contribution of the Utility Computation module in isolation,
by using a Learner sufficiently trained to produce accurate probabilities.

The effect of output size and skewness. To examine the effect of the
number of tuples in the query output, in isolation from other factors, we have
executed our algorithms on T output tuples (500, 1000, and 5000 tuples) selected
uniformly at random, along with their provenance, from the output of different
queries; this resembles, e.g., the use of a LIMIT operator in SQL (over a random
ordering of the output). Figure 6 shows the results for this experiment. We
observe that the number of probes generally grows sub-linearly in the output
size, since while there are more expressions to evaluate, each probe may advance
the evaluation of more expressions. We also observe that trends across different
queries are affected by the skewness of variable frequencies: Q3 yielded a non-
skewed provenance, where each variable repeats, if at all, only a few times. As
shown in Figure 6a, the difference (absolute and relative) between algorithms
increases with the number of output tuples that need to be verified, up to
a difference of 1421 probes (17%) between Q-Value and RO over 5000 output
tuples. In contrast, Q8 and Q10 are highly and moderately skewed respectively,
i.e., some of their variables are much more frequent than others. Consequently,
in Figures 6b and 6c, we can see that algorithms that do not take variable
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Figure 8: The effect of splitting large Boolean expressions

frequency into account (Random, RO) are outperformed by a large margin by the
others. E.g., Random makes 580% more probes than Q-Value in Figure 6b. The
gap between our algorithms and Greedy also grows. E.g., Greedy makes 13%
more probes than Q-Value for 5000 output tuples in Figure 6c.

The effect of probe answer probabilities. Figure 7 shows the number of
probes issued by our different algorithms over 1000 output tuples from the result
of Q8 for equal probabilities 0.3-0.9 as well as varying probabilities (yielded by
the Random Decision Tree). Observe that all the algorithms make more probes
with the increase in probability, since it decreases the number of False terms
that are easier to eliminate.

The relative performance of RO, however, improves as the probability in-
creases (from 2415% more probes compared with Q-Value for probability 0.3
to 1% for probability 0.9), since its strategy is to find terms likely to be evalu-
ated to True. Greedy performs well for fixed probabilities, but when probabilities
vary it is outperformed by the other algorithms (making, e.g., 41% more probes
than Q-Value).

The effect of expression splitting. Recall that to allow CNF computation
and hence comparison with Q-Value, we have split long Boolean expressions.
The majority of queries have yielded some expressions that needed to be split,
but their number was small (e.g., 2% of the expressions in Q3, 5% in Q10). In
Figure 8 we analyze the performance of algorithms with and without splitting,
for the two queries where the largest portion of splits was performed. Since, as
explained in Section 7.1, in both cases the precise correct query output is com-
puted (we can recover the correctness of the original output tuples from the split
ones), we compare the effect of splitting on the number of oracle calls. Without
splitting, we show only the performance of other algorithms and not of Q-Value.
For Q3 (and all other queries we tested), performance was very similar with
and without splitting. An exception was Q5, which originally included only 5
large expressions and hence required significant splitting. In this case, General
achieves the best performance by a large gap and improves both absolutely and
relatively to other algorithms; and Greedy, which performs comparatively well
without splitting, performs poorly (it makes 4718% more probes than General).

7.4 The Effectiveness of Learning

We now turn to examining the effect of learning probabilities on the number of
issued probes. In Figure 9, we compare three configurations that differ only in
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Figure 9: The effect of learning (Q8)

their mode of learning: no learning (EP), learning only from the initial Known
Probes Repository (Offline) and retraining with each iteration (Online). Each
of the three is combined with the same Utility Computation Module (Q-Value)
and the same Probe Selector (selecting only based on utility). We further vary
the size of the initial Known Probes Repository, to compare the effect of offline
and online learning. Since for a small initial repository, there is insufficient data
to properly train the RF, we use EP to select probes until the probes repository
is of size at least 20; i.e., for an empty initial Probes Repository, the Offline

variant is not trained at all and identical to EP, and the Online variant exe-
cutes 20 iterations selecting probes as in EP and then starts performing learning
with each iteration. We observe the following.

1. In all settings, Online is better than Offline, which in turn is better than
EP. Importantly, we observe that the effect of online probes (collected during the
current session) on performance is more significant than increasing the initial
Known Probes Repository. E.g., given a Known Probes Repository of size 1280,
Offline has issued more probes than Online has issued when given a Known
Probes Repository of size 320. Online with an empty initial Repository performs
less probes than Offline with an initial repository of 80 probes.

2. When we increase the size of the initial Known Probes Repository, both
learning variants improve, and Offline narrows the gap from Online, from 15%
additional probes to only 3%, since initial probabilities become more accurate.
The performance of Online is less affected by the size of the initial repository,
which suggests that Online is effective at performing the right probes.

This experiment also shows the potential effect of available metadata: EP

simulates a scenario where the available metadata is irrelevant for correctness
estimation; Offline represents learning from tuples not used in the query; and
Online learns from tuples that are used in the query. We have analyzed the
importance of different attributes for learning using the feature importance tool
provided with the Scikit-learn package. For example, for the NELL dataset,
recall that facts are in the form entity-relation-value. For Offline and Online

learning, the most important features were entity and value. Entities and
values repeat across tuples, so e.g., if a tuple stating that kevin garnett plays
basketball is correct, this increases the correctness likelihood of other tuples
regarding kevin garnett, since at least we know this is a valid entity name. This
can explain the empirical advantage of Online over Offline, since the entities
and values that we see during online learning are more relevant to the query and
thus also more relevant for estimating the correctness probability of other tuples
used in the query. Next in importance was the data source, which may have
only been third since it was missing for many tuples. We have also observed
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a gradual increase in the importance of relation with online learning, again,
since many tuples used in a given query are from the same relation. Note that
features like entity, value and relation, which are extracted from the data, are
always available for learning.

7.5 Conclusions from the Experiments

Our primary goal in this paper is to identify the precise set of ground truth query
results while minimizing the number of oracle probes. Across multiple datasets
and queries, our solutions were able to do so using a few hundreds of probes,
which can be handled by a data expert; or a few thousands of probes, which can
be handled by crowdsourcing (as was the case in other data cleaning solutions,
e.g., [60, 93]) or automated oracles. In any case, the cost of our algorithm is
much less than the alternatives of verifying the full database or even just the
tuples participating in the derivation.

We are also able to characterize which of our solutions to use in different
cases. If the provenance per tuple is small, with only a few larger expressions
(that can be split), Q-Value+LAL is recommended as the best performer in most
experiments. Otherwise, General+LAL is recommended since it is more scalable,
and in particular does not require CNF computation.

Finally, our results shed light on solutions to other variants of our problem
setting. In a setting when users are willing to relax the task in order to save
further probes, they can do so by (i) limiting the set of output tuples, and
particularly discarding output tuples with “costly” provenance (non-skewed),
following the results of Figure 6; and (ii) modifying the query, e.g., by adding
projection to obtain fewer and larger expressions following Figure 8. In a setting
when users are willing to issue more probes in order to optimize computation
time, we can observe that algorithms that do not involve online learning are
faster; among these, General+Offline Greedy are fast options that issue a low
number of probes (though higher than our solutions that use LAL, see e.g.,
Section 7.2).

8 Related Work

Multiple lines of work are related to ours. Some of these are used as building
blocks in our solutions (the model of Boolean data provenance, probabilistic
databases and possible worlds), others are adapted to our framework (algorithms
for Interactive Boolean Evaluation and Consent Management), and others are
just similar in terms of high-level approach (characterizing query classes based
on their provenance structure). Yet we stress that our contributions are all
novel, and the overall solution is the first, to our knowledge, that is designed
to start with an uncertain database and get to correct SPJU query answers by
actively selecting tuples to verify.

Data cleaning. There is a large body of work on identifying and correcting
errors in databases [51], and solutions vary in terms of which errors are detected
(e.g., constraint violations [2, 11, 21, 37, 66, 81] or statistical analysis [97]),
what means are used to correct them (e.g., algorithmic [2, 12, 21, 37, 39, 66, 81]
or Machine Learning-based [71, 80]), and the involvement of humans in the
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loop (e.g.,[8, 11, 19, 20, 70, 22, 32, 60, 64, 93, 96]). Most of these solutions aim
to clean the database as a whole, whereas we aim to resolve a minimal fragment
relevant to given queries.

Some work within this line adopts a query-guided approach for cleaning,
e.g., [11, 93, 96], but does not use probabilities to decide which query-relevant
tuples to verify. [19, 70, 64] and followup work perform query-guided cleaning of
probabilistic databases, but in a sense, tackle a problem dual to ours: maximally
reducing the uncertainty under a cleaning budget. For this reason, and for
other differences in their settings, their analysis and solution techniques are
very different from ours, and cannot be directly used in our experimental setting.
For instance, they focus on queries such as selection, MAX [19], and Top-k [70]
where each output tuple corresponds to an input tuple and output probabilities
can be efficiently computed (entity-based queries). For general SPJU queries,
considered in this work, this is not the case [87], and in fact, a key challenge
that our solutions address is the intricate dependence of output on input in the
selection of tuples to resolve.

Uncertain databases and data provenance. There is a large body of work
on query evaluation with respect to uncertain or probabilistic databases [3, 10,
24, 57, 75, 87, 27] where, as explained in the Introduction, the probabilities of
tuples in the query results are computed based on the input probabilities. Addi-
tional work in this field is related to Conditioning Probabilistic Databases which
deals with computing the uncertainty if conditions such as FDs are added to
the uncertain database [91, 56, 72, 88, 100]. As constraints add information and
eliminate possible worlds, they may reduce the uncertainty of the probabilistic
mode. We are inspired by these works in the use of provenance [47, 52] to de-
rive output correctness and in some properties of the probabilistic model (e.g.
possible worlds). Yet, these works do not aim at the active revelation of ground
truth, and hence cannot be compared to our solutions theoretically or exper-
imentally. We also mention consistent query answering (e.g., [7, 45, 63, 95]),
which seeks certain answers that appear in the query result when evaluated with
respect to every repair of an inconsistent database. Some of this work deals in
particular with probabilistic databases [63, 95] and with approximating the cer-
tain answers [45]. Our work differs from this line in several respects: first, since
we reveal the ground truth answers, our answers are a superset of the consistent
answers. Moreover, consistent query answers are typically defined with respect
to constraints on the legal repairs, whereas in our case we do not build on such
constraints. Consequently, our techniques and results are also very different.

Crowdsourced databases. Works on crowd data-sourcing involve an inter-
play of algorithmic and human processing. Database systems such as [36, 62,
67, 76] execute and optimize queries that include operators such as filter, join,
and sort, which are implemented as crowdsourcing tasks. There is also work
on crowdsourced data cleaning [11, 19, 20, 70, 22], fact checking [49], Entity
Recognition [61] and other related tasks (reviewed in “Data cleaning” above).
The present work relates to this research area, if oracles are implemented by
crowdsourcing. In particular, as in other crowdsourcing work, the involvement
of humans necessarily increases latency and results are not instantly obtained;
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yet when human involvement is required, as in mission-critical tasks, these tools
and ours are helpful in reducing cost and effort.

Interactive Boolean Evaluation and Consent Management. The prob-
lem of Interactive Boolean Evaluation, which is a component of our framework,
has been studied extensively in different contexts. These include system testing,
e.g., [15, 90], BDD design, e.g., [23, 34, 55], active learning [43] and its connec-
tion to other problems such as Stochastic Set Cover [28, 53]. The only work that
we are aware of that use Interactive Boolean Evaluation in databases is in [31],
in the context of consent management [14, 33, 42, 58, 74, 78]. Differently from
our work, [31] does not study probability learning, but rather assume probabil-
ities are independent and given. In terms of theoretical analysis, our results in
Section 3 refine Theorem III.5 of [31] by showing hardness for more restricted
query classes.

9 Conclusions and Future Work

In this paper, we have proposed a modular end-to-end framework for query-
guided uncertainty resolution, which involves active learning for selecting input
tuples to be sent for verification by an oracle so that query answers may be
decided with certainty. We have proposed solutions for each of the identified
sub-tasks and our experimental study has shown the efficacy of the solutions in
identifying the correct query results while sending for verification only a small
fraction of the input database.

We conclude by mentioning a few of the many variants and extensions of the
problems we have studied here that are of potential interest. First, in this work,
we regarded the oracle answers as the correct ground truth, similarly to other
work on interactive data cleaning with experts (e.g., [8, 11, 19, 20, 70, 60, 93]).
In our ongoing work, we examine the effect of erroneous/noisy oracles on our
correctness results. For example, we observe that not every erroneous probe
answer affects the truth value of an output tuple; we study the identification of
“critical” (subsets of) variables, that may lead to an error in our results, and
the probability of an error. This problem is also related to previous work on
learning with noisy oracles (e.g., [26, 44, 86]). Second, we also intend to study
the effect of constraints, such as Functional Dependencies, on the problem at
hand. Constraints are known to have significant effects on the complexity of
query processing (and specifically in the context of probabilistic databases),
and it is intriguing to explore their effect in our context as well. Third, we have
focused in this paper on SPJU queries, which is the class typically studied in the
context of probabilistic databases [24, 57, 75, 87, 27]. A future research direction
includes extending our results to additional query languages and data models.
Last, validation of some tuples may require more effort than the validation
of others. Given estimations on the cost/latency associated with each such
validation request, we can incorporate them to the probe selection process and
examine their effect on our results.
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