
PR
EP
RI
NT

Managing Consent for Data Access in

Shared Databases

Osnat Drien
Bar-Ilan University

Antoine Amarilli
LTCI, Télécom Paris, Institut Polytechnique de Paris

Yael Amsterdamer
Bar-Ilan University

Abstract

Data sharing is commonplace on the cloud, in social networks and
other platforms. When a peer shares data and the platform owners (or
other peers) wish to use it, they need the consent of the data contributor
(as per regulations such as GDPR). The standard solution is to require
this consent in advance, when the data is provided to the system. How-
ever, platforms cannot always know ahead of time how they will use the
data, so they ofter require coarse-grained and excessively broad consent.
The problem is exacerbated because the data is transformed and queried
internally in the platform, which makes it harder to identify whose consent
is needed to use or share the query results. Motivated by this, we propose
a novel framework for actively procuring consent in shared databases, fo-
cusing on the relational model and SPJU queries. The solution includes a
consent model that is reminiscent of existing Access Control models, with
the important distinction that the basic building blocks – consent for in-
dividual input tuples – are unknown. This yields the following problem:
how to probe peers to ask for their consent regarding input tuples, in a way
that determines whether there is sufficient consent to share the query out-
put, while making as few probes as possible in expectation. We formalize
the problem and analyze it for different query classes, both theoretically
and experimentally.

1 Introduction

Data is routinely being shared online by peers on different platforms including
social networks, cloud-based file sharing, and messaging applications. Using
this data requires the consent of the data owner, according to regulations such
as GDPR [1]. Typically, consent is obtained in advance, e.g., when the peer
joins the platform (accepting the general platform policy) or when the data is
originally uploaded to the platform. This has two main limitations:

1. The future ways in which data is used may be unknown and hard to
anticipate. Consequently, a-priori consent is coarse-grained since we may

1

PR
EP
RI
NT

not know yet with which third parties it would make sense to share the
data.

2. To share original data as-is, one may simply ask the data owner for their
consent when the need arises. However, data is often transferred, pro-
cessed and combined through complex queries. Now, if one wishes to use
a query result, they are often not directly represent the data of any indi-
vidual user; but on the other hand, the owners of the data from which the
result has been derived do have rights with respect to it [1].

Similar questions are studied in the fields of data sharing, privacy and access
control (see Section 5), but to our knowledge there has been no study of the
combination of these two challenges, namely the need to actively obtain consent
and to do so for derived data.

We therefore propose a novel framework for managing consent in shared
databases, focusing on the relational setting and Select-Project-Join-Union (SPJU)
queries. The main components of this framework are as follows.

Consent Model for Derived Data As mentioned above, it is unclear who
“owns” pieces of data that are derived through data transformations. In the
context of relational databases, we use a model based on a “possible-worlds-like”
semantics: for a database D, a query Q and a query result t ∈ Q(D), we say
that consent is given with respect to t iff t appears in the result of evaluating Q
over D′ ⊆ D containing the input tuples for which consent is given.

So far, this choice is in line with standard access control models (e.g., [2, 3, 4,
5]). However, in our setting, it is also unknown if we have consent with respect
to the input tuples – see point (1) above. Thus, we cannot simply propagate
known consent from the input to the output, but we need to actively probe peers
to ask for their consent. We use the notion of probing in an abstract sense, and
in practice it may correspond to questions posed to human users [6], requests
through automated agents, etc. Data owners may give or deny consent based
on social, business or other motives, such as reciprocal data sharing.

Now, whom should we probe? Of course, if we probe all peers with respect to
all data in the shared database, we would know precisely the consent status with
respect to the entire input database and thereby for any output as well. Probing,
however, is a costly operation – in terms of latency and human effort. We thus
wish to probe in a frugal manner, which leads to our problem (defined formally in
Section 2): how to minimize the expected number of probes required to determine
consent with respect to a query result? We say “expected” (in the probabilistic
sense), since the number of probes needed in total will typically depend on the
answers that we receive, which of course are not known in advance.

Solution Framework Towards a solution, we first observe that a key ingre-
dient is provenance. The provenance of a query result tells us which input tuples
it depends on, and in what way. In settings where we know whether consent
is granted for each input tuple, the Boolean provenance of the query output
(à la c-tables [7]) tells us whether we have consent to share the query results.
Furthermore, when we do not know the consent for the input, we may annotate
each input tuple with a variable, and provenance is then Boolean expression
over these variables. The problem then reduces to determining the truth value

2

PR
EP
RI
NT

for these Boolean expressions, by probing the truth values of the individual
variables. We refer to this problem as Interactive Boolean Evaluation, which
has been extensively studied in the literature in different contexts and under
different names (e.g., [8, 9, 10, 11]). Our solution thus “marries” provenance
and Boolean Evaluation, leading to different results for different query classes.

Complexity Analysis and Algorithms We analyze the complexity of our
problem for subclasses of SPJU queries. For S/SP/SU queries and for SJU
queries we show, respectively, an exact solution algorithm based on [9] and an
approximate solution based on [10, 12], works on Interactive Boolean Evaluation
which we adapt to SPJU query provenance.

Then, we consider the general class of SPJU queries, and show a solution
algorithm adapted from [8]. Here, we can show that optimal solution is NP-hard
in data complexity, even for sharing a single tuple and already for SPJs.

Experimental Results To our knowledge, there have been no practical im-
plementations, experimental studies or benchmarking close to our setting, let
alone for our problem formulation, which is new. We have thus implemented all
algorithms for the different variants and developed a benchmark that allows ex-
amining their performance over provenance expressions of various shapes. Our
algorithms exhibited superior performance beyond their theoretic guarantees
and compared to the baseline algorithms, and were (near-)optimal where the
optimal solution was known.

For lack of space, full proofs and additional results and experiments are
deferred to [13].

2 Model

We assume familiarity with standard relational database terminology [14]. Let C
be a set of Boolean variables called consent variables. A shared database is a re-
lational database D along with a one-to-one labeling function L : tuples(D) 7→ C
where each tuple is annotated by a (unique) variable from C, intuitively con-
trolling its consent status.

The premise is that there is a hidden truth value to whether or not we are
allowed to share each tuple (in a specific context, e.g., with a given third party).

Definition 2.1. A consent valuation is a function val : C 7→ {True,False}.
Next, instead of sharing the data as-is, we allow a query executed on the

database to perform some analysis and consider the sharing of its results. Most
aspects of the model may apply to any query language, but we will focus in
particular on SPJU (Select-Project-Join-Union) queries [14].

The question is then: given a shared database and an SPJU query, are
we allowed to share the result? In the spirit of previous work on incomplete
databases [7], we define that a query answer is shareable iff it appears in the
result of evaluating the query over the sub-database consisting only of the share-
able input tuples.

Definition 2.2. Given a shared database D̄ = (D,L), an SPJU query Q, a
tuple t ∈ Q(D), and a consent valuation val, t is shareable iff t ∈ Q(D′), where
D′ ⊆ D is the database consisting of every t′ ∈ D such that val(L(t′)) = True.

3

PR
EP
RI
NT

The challenge, of course, is that we may not know some or all of the consent
values, which are initially known only to data owners. To find out which query
results can be shared, we can pose questions or probes to the owners of relevant
tuples, asking whether the tuple can be shared. Our goal is to optimize the
number of questions posed in order to determine which query results can be
shared. In order to measure the performance of an algorithm, which usually
depends on the outcome, we look at the probability of the answer of a variable
being set to True, assuming independence between variables. The performance
of a probing algorithm is then the expected number of probes that it makes.

Problem Definition The problem of OPT-PEER-PROBE (for “optimizing peer
probing”) is defined as follows, where we use italics to highlight some problem
design choices that deferred to [13]:

Definition 2.3 (OPT-PEER-PROBE). We are given a shared database D̄, a prob-
ability distribution π over consent variables in D̄, and an SPJU query Q. A
consent valuation val is drawn at random according to π, but is not given to
the algorithm. The problem OPT-PEER-PROBE is to define an algorithm that
can decide for every tuple t ∈ Q(D) whether it is shareable or not under val.
To reveal that, at each step, the algorithm may probe a consent variable x of
its choice and obtain val(x) as a result. We assume probes are sequential, i.e.,
posed one at a time so that their choice may depend on previous answers. For a
(hidden) choice of val, the algorithm’s total cost is the total number of probes.
The optimization target is to minimize the algorithm’s expected cost over the
random choice of val.

Solution Overview Our solution advantages techniques from two existing
areas, namely relational database provenance and Interactive Boolean Evalua-
tion. The first step is computing for each tuple in the query result a monotone
Boolean formula over C that reflects the way it was derived from the input. The
construction of these formulas follows the provenance semirings approach [15]
(using the PosBool[X] semiring where in our case X = C). Intuitively, the
union of two relations corresponds to taking the disjunction of the annotations
of tuples appearing in both relations. Similarly, multiplication corresponds to
joint derivation, thus, a tuple appearing in the result of a join will be anno-
tated with the conjunction of the annotations of the two joined tuples. These
formulas may be computed in PTIME and their truth value under any con-
sent valuation correctly reflects if the output tuple can be shared or not. Our
problem can now be rephrased as that of probing variables to infer the truth
value of these Boolean expressions. As mentioned above, this is related to the
area of Interactive Boolean Evaluation, whose results [8, 9, 10, 12] we will lever-
age. As explained in the Introduction, the crux lies in (1) characterizing query
classes that yield particular shapes of Boolean expression for which evaluation
may be done efficiently and (2) simultaneously evaluating multiple expressions
corresponding to many output tuples.

4

PR
EP
RI
NT

3 Complexity and Algorithms

3.1 General Characterization

In this section, we consider different classes of queries, starting from a class for
which we show an exact optimal solution, and ending with general SPJU queries
in Section 3.4. Generally, the provenance of SPJU queries can be characterized
based on the notion of k-DNFs.

Definition 3.1. Let k be a constant. A Boolean formula is in k-DNF if (a)
it is in a Disjunctive Normal Form (disjunction of conjunctions) and (b) the
size of each term, i.e., the number of (distinct) variables in a conjunction, is
bounded by k.

In fact, we can show a two-way correspondence, meaning that every k-DNF
formula is the provenance of some SPJU query result and vice versa [13]. For
subclasses of SPJU, the provenance may thus be a particular subclass of k-
DNF formulas, per tuple. For convenience, we extend the notion of valuation
to unknown consent values.

Definition 3.2. A partial consent valuation is an assignment of truth values
to C, val : C 7→ {True,False,Unknown}, where Unknown stands for unknown
consent value. Any valuation can be extended to Boolean expressions over C via
Kleene three-valued logic, e.g., True ∧Unknown = Unknown, etc.

3.2 Read-once

In Interactive Boolean Evaluation, the class of read-once DNF formulas, where
each variable occurs only once, is known to have an exact (i.e., optimal) so-
lution that minimizes the number of probes [9]. Algorithm RO (outlined in
Algorithm 1) generalizes this technique to solve OPT-PEER-PROBE given mul-
tiple formulas and supporting variable repetitions, assuming the provenance of
the query output is computed according to Section 2. I.e., the algorithm can be
applied to any monotone DNF provenance, but optimality is only guaranteed
for read-once DNF. The algorithm chooses the term (not evaluated yet) with
the highest fraction of probability over size. It then probes the variables in
increasing order of probability for an affirmative answer, until the term is eval-
uated (and if it is True so are the expressions containing it). Efficient min/max
computation can be supported by efficient data structures for terms and their
corresponding variables.

While previous work on provenance considered read-once provenance (e.g., [16,
17]), to our knowledge there has been no characterization of which queries al-
ways yield read-once DNF. Still, we can identify concrete practical subclasses
of SPJU that have this guarantee.

Proposition 3.3. Algorithm RO is a PTIME exact solution to OPT-PEER-

PROBE for S/SP/SU queries (Selection/Selection-Projection/Selection-Union)
over shared databases.

By construction, the provenance of each output tuple for such queries is a
disjunction of variables, disjoint between tuples – i.e., overall read-once.

5

PR
EP
RI
NT

Input: X = {x0, x1 . . .} – a set of variables,
π : X → [0, 1] the probability of each variable to be True,
dnfs – m monotone DNF formulas over X.

val← partial valuation setting all x ∈ X to Unknown;
while ∃ψ ∈ dnfs, val(ψ) = Unknown do

T ← {t ∈ terms(ψ) | ψ ∈ dnfs ∧ val(t) = Unknown};
t← arg maxt′∈T

1
|t′|
∏
x∈t′∧val(x)=Unknown π(x);

x← arg minx∈t π(x);
b← probe x;
val← val setting x := b;

return [val(ϕ1), . . . , val(ϕm)] for dnfs = [ϕ1, . . ., ϕm].

Algorithm 1: Algorithm RO for OPT-PEER-PROBE

In the multi-expression setting, we distinguish the more restrictive case of
overall RO from cases where each individual tuple has read-once DNF prove-
nance, but variables may repeat across tuples, which we term per-tuple RO.
In [13] we consider queries that guarantee per-tuple read-once provenance, and
show OPT-PEER-PROBE is hard for this class.

3.3 Queries without Projection

The next fragment that we consider is that of projection-free queries, i.e., SJUs.
Importantly, for such queries, the provenance size for each individual tuple is in
fact independent of the database size – the number of terms is bounded by the
number of unions, and the size of terms is bounded by the number of joins in a
single conjunctive query.

We will use this property to design an approximation algorithm, Q-value,
whose details appear in Algorithms 2 and 3, and which incorporates some tech-
niques and takes its name from [10]. The main idea is as follows: given both the
CNF and DNF of some formula, termed CDNF formulas, compute exactly how
many DNF terms (conjunctions) and CNF clauses (disjunctions) are eliminated
(evaluated to True/False) if a given variable value is True or False, respectively.
A greedy selection of concepts as a specific function of the expected number
of clauses/terms they eliminate, termed Q-value, yields an expected number of
probes which approximates the optimal solution. This is shown in [10] based
on [12]. Algorithm 3 is the overall solution using Algorithm 2, first translates
the input DNF formulas into CNF.

Proposition 3.4. Let Q be a projection-free query and D̄ a shared database.

The Q-value Algorithm is a O(
∣∣D̄∣∣|Q|) time log

∣∣Q(D̄)
∣∣-approximation for OPT-

PEER-PROBE.

The approximation ratio follows from the shape and size of the computed
provenance for this fragment, and from the logarithmic approximation ratio
proved in [10, 12]. The time complexity is dominated by the cost of evaluating
Q over D̄.

6

PR
EP
RI
NT

Input: X = {x0, x1 . . .} – a set of variables,
val a valuation for X,
π : X → [0, 1] the probability of each variable to be True,
[ϕ1, . . . , ϕm] – array of m monotone DNF formulas over X,
[CNF(ϕ1) , . . . ,CNF(ϕm)] – (monotone) CNF of ϕ1, . . . , ϕm
respectively.

Output: x ∈ X – the next variable to probe
terms, clauses← arrays containing at the jth index the number of
terms and clauses in ϕj and CNF(ϕj) resp.;

QVal← array of size |X|;
for xi ∈ X s.t. val(x) = Unknown do

for b ∈ {False,True} do
Qb ← 0;
val′ ← val setting xi := b;
for j ∈ 1 . . .m do

tj ← # terms in ϕj evaluated to Unknown by val′;
cj ← # clauses in CNF(ϕj) evaluated to Unknown by val′;
Qb ← Qb + terms[j] · clauses[j]− tj · cj ;

QVal[i]← Pr(xi) ·QTrue + (1− Pr(xi)) ·QFalse;
return arg maxi QVal[i]

Algorithm 2: Algorithm Q-value-next (pick next probe).

3.4 General SPJU Queries

To conclude our analysis of the complexity of our problem, we consider the
general problem setting, where the class of queries that is considered is SPJU,
with no restrictions imposed. For this class, OPT-PEER-PROBE is hard.

Theorem 3.5. OPT-PEER-PROBE is NP-hard (in data complexity) even for SPJ
queries (without union), even on shared databases where all tuples have the same
probability, and even for sharing a single output tuple.

We next propose Algorithm General (outlined in Algorithm 4) as a heuristic
solution for OPT-PEER-PROBE, by adapting the Interactive Boolean Evaluation
algorithm of [8], which has approximation guarantees for k-DNF, but only for
a single formula. The algorithm of [8] alternates between two sub-algorithms,
alg0 and alg1, which respectively try to show that the formula is False and True;
we halt as soon as one of them succeeds. To allow simultaneous evaluation
of multiple formulas, we apply alg0 on the disjunction of tuple provenances in
DNF (such that it tries to prove every DNF term in the entire provenance is
False, each time discarding evaluated terms and formulas). We replace alg1 by
the extension of RO to multiple formulas, as they operate on a similar principle
(greedily selecting the term by which proving a formula is True is cheapest and
sequentially probing its variables).

7

PR
EP
RI
NT

Input: X = {x0, x1 . . .} – a set of variables
π : X → [0, 1] the probability of each variable to be True
dnfs – m monotone DNF formulas over X.

val← partial valuation setting all x ∈ X to Unknown;
cnfs← monotone CNF for every ϕ ∈ dnfs;
while ∃ϕ ∈ dnfs, val(ϕ) = Unknown do

x← Q-value-next(X,π, dnfs, cnfs);
b← probe x;
val← val setting x := b;

return [b1, . . . , bm] the consent values in {True,False} for the formulas
of dnfs.

Algorithm 3: Algorithm Q-value for OPT-PEER-PROBE

Input: X = {x0, x1 . . .} – a set of variables,
π : X → [0, 1] the probability of each variable to be True,
dnfs – m monotone DNF formulas over X.

val← partial valuation setting all x ∈ X to Unknown;
cost1, cost2← 0;
while ∃ϕ ∈ dnfs, val(ϕ) = Unknown do

if cost1 ≥ cost0 then
x← choose probe using Alg0 from [8], Section 5.1 on∨

ψ∈dnfs|val(ψ)=Unknown ψ;

else
x← choose probe using RO on dnfs, val;

b← probe x;
val← val setting x := b;

return [b1, . . . , bm] the consent values in {True,False} for the formulas
of dnfs.

Algorithm 4: Algorithm General for OPT-PEER-PROBE

4 Experimental Study

We have implemented all algorithms described in Section 3 and examined their
performance. We start by describing our experimental settings, and then present
the results.

4.1 Experimental Settings

To our knowledge, the problem that we study has not been investigated before,
so we are not aware of a standard benchmark or of existing implementations
to use as competitors. We have thus designed a dedicated benchmark for the
problem.

Dataset Our dataset, skewed, is a parametrized dataset that we generate
randomly based on parameters such as the number of tuples, the number of joins,
and the average number of repetitions per variable. The default parameters
we have used are 1000 query output rows, 4 joins, 8 as projection limit, and
where each variable repeats 2.6 times on average. The average total DNF/CNF

8

PR
EP
RI
NT

0

1000

2000

3000

4000

5000

0.1 0.3 0.5 0.7 0.9

#p
ro
b
e
s

probability

Q-value
General
RO
Freq
Random

(a) # probes for varying probabilities

0

1000

2000

3000

4000

5000

1 2 3 4 5

#p
ro
b
es

#joins

Q-value
General
RO
Freq
Random

(b) # probes for varying number of joins

0

2000

4000

6000

8000

10000

12000

1 2.5 10 45

#p
ro

b
e

s

Avg. #variable repetitions

Q-value
General
RO
Freq
Random

(c) # probes for varying # repetitions

Figure 1: Qualitative experiments for skewed dataset (less probes is better).

provenance sizes for the reported experiments (summed over all rows, averaged
over experiment repetitions) were up to 0.4M and 2.2M, respectively.

Algorithms We have compared the following algorithms.
• Random. A baseline probing variables in random order.
• Freq. A baseline that greedily probes a variable with the maximal number

of occurrences in the DNF provenance.
• RO. Algorithm 1 from Section 3.2
• Q-value. Algorithm 3 from Section 3.3.
• General. Algorithm 4 from Section 3.4.

Of course, all the algorithms that we benchmark will maximally simplify ex-
pressions after each probe answer, so that they never make useless probes. For
fairness, all algorithms break ties by the same arbitrary criterion.

We have implemented all algorithms in node.js using Express, and in Java 13.
Experiments were run on a Windows 10 machine using an Intel Core i7 5600U
processor with 8 GB of DDR4 memory. Each experiment was executed 10
times (50 times for Random) and the reported results are the averages over these
executions, each time drawing a valuation uniformly at random according for a
fixed variable probability 0.7 (leading to ∼ 50% True expressions), and executing
all algorithms over this valuation.

4.2 Experimental Results

We next describe the results of our experiments. See further results in [13]. We
evaluate our algorithms based on the number of probes that they issue, which is
the criterion that we are trying to optimize; we discuss execution times at the
end of the section. Note that all algorithms can be used even in cases where they
do not have optimality guarantees – an algorithm with no optimality guarantees
can still turn out to be efficient in practice.

Figure 1a shows the performance of the algorithms for varying probabilities
that a probe is answered affirmatively. The advantage of our algorithms over
Random is large (up to 93.5% deviation). Freq performs more poorly at proving
an expression is True, intuitively since it does not account for the likelihood of
terms to be True. Its comparative performance thus deteriorates when proba-
bility increases (up to a 52% deviation). RO performs poorly for both low and
high probabilities, since term sizes are mostly equal and thus its choice of term

9

PR
EP
RI
NT

is almost arbitrary (up to 92% deviation). General and Q-value are the best for
all tested probabilities, with a slight advantage to Q-value (up to 9% deviation).

Figure 1b shows the number of probes issued by each of the algorithms when
varying the number of joins (corresponding to the DNF term sizes) from 1 to 5.
The overall cost increases with the number of joins for all algorithms. When the
provenance expressions are very simple (at most 2 variables per clause), choosing
the most frequent variable performs as well as the more sophisticated solutions.
As expressions become more complex, General and Q-value become significantly
superior, also comparing to Random and RO. The reason is that they perform a
finer analysis of the provenance structure, and in particular rely on techniques
for choosing variables whose probing is effective for either proving True or False.
They deviate by only up to 1.3% from the best performing algorithm for any
probability.

In Figure 1c, we vary the average number of times that a variable is re-
peated. When this number is low (i.e., the expression is “close to” read-once),
the advantage of our solutions is more significant. In particular, when there
are no repetitions, provenance becomes overall read-once and RO is provably
optimal; in contrast, Freq and Random perform equally badly (deviating by 42%
from RO). As observed in the Figure, expressions that are close to read-once are
“more difficult”, since when variables are often repeated a single probe can elim-
inate many terms. This exacerbates the importance of our optimality results
for read-once expressions.

Execution time We have thus far focused on measuring the number of probes
performed by the algorithms, which is our main optimization goal. The algo-
rithms’ execution time, i.e., the time it took to choose the next probe, was
typically a few milliseconds, and up to 1.3 seconds in all of our experiments
– much less than the latency of obtaining probe answers in realistic scenarios,
e.g., over the Web or with manual answers from peers.

5 Related Work

Provenance As described in Section 2, we use provenance to track the de-
pendencies of derived data on the input data, and consequently decide on whose
consent should be probed. Provenance has been extensively studied, with mul-
tiple models and applications, e.g., [18, 19, 7, 4, 20, 17, 21, 16]. Specifically,
provenance has been used for access control, which is related to consent man-
agement [2, 22, 3, 5, 23]. In that work, the collection of atomic permissions is
out of scope: they are fully given as input, either before or after the computation
of provenance. Previous work on provenance considered read-once provenance
(e.g., [16, 17]) – but to our knowledge, not read-once DNF. In contrast with
read-once DNF, Interactive Boolean Evaluation for general read-once formulas
is an open problem [24].

Interactive Boolean Evaluation We have adapted previous work to devise
efficient algorithms for selecting probes and evaluating Boolean provenance ex-
pressions, and specifically [9, 10] and [8] for read-once DNF, DCNF and k-DNF
provenance. This problem has been studied in other contexts and under other

10

PR
EP
RI
NT

names, including system testing, e.g., [9, 24] (where it is termed Sequential Sys-
tem Testing, active learning [12] and its connection to other problems such as
Stochastic Set Cover [10, 11] (where it is termed Stochastic Boolean Function
Evaluation (SBFE)). This line of work differs from the present work in several
aspects: first, OPT-PEER-PROBE considers the simultaneous evaluation of mul-
tiple, possibly many expressions corresponding to the provenance of multiple
tuples, whereas Interactive Boolean Evaluation is concerned with a single for-
mula. The only exception to our knowledge is [10], which proposes constructions
for simultaneous evaluation, but not in the context of query provenance. We
have used a similar idea in Algorithm 3. Second, the works most related to ours
are theoretical, and do not include an empirical study of algorithm performance.

Data sharing Studies on data sharing in social networks aim at studying how
access policies [25], privacy [26], trust [27] and willingness to share data [28] can
be defined over the network. Different cryptographic means and implementa-
tion designs have been proposed for this purpose [29, 30, 31, 32, 27]. While our
work focuses on establishing whether consent for sharing is given or not, crypto-
graphic techniques as in [30] may be employed to enforce these policies. Multiple
ownership over data items has also been considered in this context [33, 31, 27],
focusing on enforcing a policy that adheres to the individual policies of the in-
volved peers. However, these studies do not consider data derivation/querying
but rather the sharing of atomic items, which leads to technical problems dif-
ferent from ours.

6 Conclusion

We have proposed in this paper a new framework for managing consent in
shared databases. Consent is managed at the tuple level, and we formalize the
problem of determining consent for query output tuples via probing peers for
their consent for relevant input database tuples. We have studied the complexity
of the resulting optimization problem, showing intractability in general and
identifying tractable sub-classes and approximate solutions. Our experimental
study has validated the effectiveness of our algorithms, demonstrating their
optimal or near-optimal performance in different cases and their superiority
with respect to baseline alternatives.

Acknowledgements

This work was funded in part by the Israel Science Foundation (grant No.
1157/16).

References

[1] European Council and European Parliament. Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation). European Commission.

11

PR
EP
RI
NT

[2] S. Abiteboul, P. Bourhis, and V. Vianu, “A formal study of collaborative
access control in distributed datalog,” in ICDT, 2016.

[3] J. N. Foster, T. J. Green, and V. Tannen, “Annotated XML: queries and
provenance,” in PODS, 2008.

[4] G. Karvounarakis, Z. G. Ives, and V. Tannen, “Querying data provenance,”
in SIGMOD, 2010.

[5] V. Z. Moffitt, J. Stoyanovich, S. Abiteboul, and G. Miklau, “Collaborative
access control in Webdamlog,” in SIGMOD, 2015.

[6] Y. Amsterdamer and O. Drien, “PePPer: Fine-grained personal access
control via peer probing,” in ICDE, 2019.

[7] T. Imielinski and W. L. Jr., “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, 1984.

[8] S. R. Allen, L. Hellerstein, D. Kletenik, and T. Ünlüyurt, “Evaluation of
monotone DNF formulas,” Algorithmica, vol. 77, no. 3, 2017.

[9] E. Boros and T. Ünlüyurt, “Sequential testing of series-parallel systems of
small depth,” in Computing tools for modeling, optimization and simula-
tion. Springer, 2000.

[10] A. Deshpande, L. Hellerstein, and D. Kletenik, “Approximation algorithms
for stochastic Boolean function evaluation and stochastic submodular set
cover,” in SODA, 2014.

[11] H. Kaplan, E. Kushilevitz, and Y. Mansour, “Learning with attribute
costs,” in STOC, 2005.

[12] D. Golovin and A. Krause, “Adaptive submodularity: Theory and applica-
tions in active learning and stochastic optimization,” J. Artif. Intell. Res.,
vol. 42, 2011.

[13] O. Drien, A. Amarilli, and Y. Amsterdamer, “Managing consent for data
access in shared databases (full version),” https://u.cs.biu.ac.il/∼amstery/
files/managingconsent.pdf, 2021.

[14] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-
Wesley, 1995.

[15] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in SIGMOD, 2007.

[16] D. Suciu, D. Olteanu, C. Ré, and C. Koch, Probabilistic Databases. Morgan
& Claypool, 2011.

[17] S. Roy, V. Perduca, and V. Tannen, “Faster query answering in probabilis-
tic databases using read-once functions,” in ICDT, 2011.

[18] Y. Amsterdamer, D. Deutch, and V. Tannen, “Provenance for aggregate
queries,” in PODS, 2011.

12

https://u.cs.biu.ac.il/~amstery/files/managingconsent.pdf
https://u.cs.biu.ac.il/~amstery/files/managingconsent.pdf

PR
EP
RI
NT

[19] D. Deutch, T. Milo, S. Roy, and V. Tannen, “Circuits for datalog prove-
nance,” in ICDT, 2014.

[20] D. Olteanu and J. Zavodny, “Factorised representations of query results:
size bounds and readability,” in ICDT, 2012.

[21] P. Senellart, L. Jachiet, S. Maniu, and Y. Ramusat, “ProvSQL: Provenance
and probability management in PostgreSQL,” PVLDB, vol. 11, no. 12,
2018.

[22] A. Bates, B. Mood, M. Valafar, and K. R. B. Butler, “Towards secure
provenance-based access control in cloud environments,” in CODASPY,
2013.

[23] J. Park, D. Nguyen, and R. S. Sandhu, “A provenance-based access control
model,” in PST, 2012.

[24] T. Ünlüyurt, “Sequential testing of complex systems: a review,” Discrete
Applied Mathematics, vol. 142, no. 1-3, 2004.

[25] Y. Cheng, J. Park, and R. S. Sandhu, “An access control model for online
social networks using user-to-user relationships,” IEEE Trans. Dependable
Sec. Comput., vol. 13, no. 4, 2016.

[26] L. Yu, S. M. Motipalli, D. Lee, P. Liu, H. Xu, Q. Liu, J. Tan, and B. Luo,
“My friend leaks my privacy: Modeling and analyzing privacy in social
networks,” in SACMAT, 2018.

[27] N. C. Rathore, P. Shaw, and S. Tripathy, “Collaborative access control
mechanism for online social networks,” in ICDCIT, 2016.

[28] E. Gudes and N. Voloch, “An information-flow control model for online
social networks based on user-attribute credibility and connection-strength
factors,” in CSCML, 2018.

[29] A. K. Abdulla and S. Bakiras, “HITC: data privacy in online social net-
works with fine-grained access control,” in SACMAT, 2019.

[30] M. Davidson, T. Tassa, and E. Gudes, “Content sharing schemes in DRM
systems with enhanced performance and privacy preservation,” Journal of
Computer Security, vol. 24, no. 6, 2016.

[31] P. Ilia, B. Carminati, E. Ferrari, P. Fragopoulou, and S. Ioannidis, “SAM-
PAC: socially-aware collaborative multi-party access control,” in CO-
DASPY, 2017.

[32] I. Kayes and A. Iamnitchi, “Privacy and security in online social networks:
A survey,” Online Social Networks and Media, vol. 3-4, 2017.

[33] H. Hu, G. Ahn, Z. Zhao, and D. Yang, “Game theoretic analysis of multi-
party access control in online social networks,” in SACMAT, 2014.

13

	Introduction
	Model
	Complexity and Algorithms
	General Characterization
	Read-once
	Queries without Projection
	General SPJU Queries

	Experimental Study
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion

