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Abstract

We present in this paper a novel solution for assisting users in formulat-
ing SPARQL queries. The high-level idea is that users write “semi-formal
SPARQL queries”, namely, queries whose structure resembles SPARQL
but are not necessarily grounded to the schema of the underlying knowl-
edge graph and require only basic familiarity with SPARQL. This means
that the user-intended query over the knowledge graph may differ from
the specified semi-formal query in its structure and query elements. We
design a novel framework that systematically and gradually refines the
query to obtain candidate formal queries that do match the knowledge
graph. Crucially, we introduce a formal notion of provenance tracking
this query refinement process, and use the tracked provenance to prompt
the user for fine-grained feedback on parts of the candidate query, guiding
our search. Experiments on a diverse query workload with respect to both
DBpedia and YAGO show the usefulness of our approach.

1 Introduction
A huge body of information is stored in RDF knowledge graphs (KGs)1 such as
YAGO [49], DBpedia [32] and others. Such KGs can be queried using SPARQL,
the W3C standard query language,2 which has a relatively simple syntax, and
multiple graphical interfaces that have been developed (e.g., [22, 41, 31, 45, 53])
to further simplify query specification. Familiarity with the SPARQL syntax,
however, is not sufficient for using it: writing a SPARQL query requires a deep
understanding of the KG content and structure. In turn, in many useful KGs,
this structure is highly complex and contains many irregularities. The KG
structure often further evolves over time, and so even users who are initially
familiar with it may struggle to adapt to such modifications.3

Many existing tools were developed to address the challenge of SPARQL
Query formulation, including natural language interfaces (e.g., [9, 14, 16, 23,
43, 54, 56, 61]), auto-complete suggestions (e.g., [12, 17, 44]), query-correction
proposals (e.g., [17]) and query-by-example tools (e.g., [2, 6, 13, 27]). See discus-
sion in Section 8. Many challenges yielded by the schema complexity, however,
remain. Specifically, due to the schema complexity, queries that are generated

1RDF - Semantic Web Standards. https://www.w3.org/RDF/
2SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-query/
3For convenience, in this extended version, added material is highlighted in blue, and

revised material is highlighted in orange.
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Figure 1: Overall architecture of SPARQLIt

and proposed by such tools may not match the user intention, or not return the
expected results when evaluated with respect to the KG. Recovering from such
cases is quite difficult, since the users may not even know what went wrong.

Solution overview. To this end, we propose a novel solution that assists
non-experts in querying KGs. Our architecture is depicted in Figure 1. We
describe it here at a high level, and elaborate on each component in the fol-
lowing paragraphs. The user starts (step (0), on the left) by writing what
we call a “semi-formal query”. This is a query that consists of triples, like in
SPARQL, but whose contents – entities and properties – do not necessarily
match any entity/property name in the KG. For example, a user seeking gradu-
ates of Columbia University living in India may write a query with the selection
criteria ?x livesIn India. ?x graduatedFrom columbia. When evaluated over
YAGO, the user may discover that the query returns little or no results. One
reason is that Columbia is represented in YAGO as <Columbia_University> in
YAGO. The other, more elusive reason, is that livesIn is usually populated
with cities rather than countries, which is difficult for a user to discover even
using query formulation tools. To this end, our solution generates candidate
formal queries, i.e., queries that match the KG. Semi-formal queries are trans-
formed to candidate formal queries via sequences of operations of two flavors:
structural edits (step 1 in Figure 1), which are proposals for similar, alterna-
tive structures of semi-formal queries, e.g., replacing ?x livesIn India by ?x
livesIn ?y. ?y isLocatedIn India; and groundings (step 2) where elements of
semi-formal queries are replaced by elements of the KG, e.g., replacing columbia
by <Columbia_University>. Having constructed candidate formal queries, the
Triple Store Manager queries a Triple Store to find example results for these
queries, and to prune queries that include unwanted results or omit required
results (step (3)).

Crucially, we introduce a formal notion of provenance tracking throughout
the process: we track the sequence of transformations that are performed, lead-
ing from the input semi-formal query to each candidate formal query, as well
as the binding of variables of candidate queries to the KG. Provenance tracking
serves as the basis of procuring fine-grained feedback from the user with respect
to proposed formal queries. Namely, for a candidate formal query, we present
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not only the query itself and its example evaluation results, but also the way
in which each element in the candidate query was obtained, i.e., from which
element in the user’s semi-formal query it has been (indirectly) transformed, if
any. This is combined with the provenance of query evaluation (i.e. binding of
formal query variables to KG elements). See bottom pane of the screenshots in
Figure 2 for an example of presented provenance, in the form of (semi-formal
element, formal element, binding example). Feedback is then procured with
respect to each such piece of provenance: the user may mark “must”, “must not”
or “don’t care”. The user feedback is converted by the Constraints Manager
(step 4) to constraints on proposed queries, which are accumulated and used
by the other modules to prevent the generation of queries that do not com-
ply with user feedback. This is repeated until the user finds a proposed query
satisfactory.

We next briefly describe each of the modules, to be described in further
details in the sections that follow.

Structural Edits Generator (Section 3). The structure of the input semi-
formal query may not match the underlying KG: the subject-object order in
predicates may be reversed; a semantic relationship captured by a single triple
in the semi-formal query may be captured by a chain of triples in the KG; etc.
We formally define a set of structural edit operations that transform one semi-
formal query into another, associate a cost with each edit and then greedily
traverse the space of semi-formal queries obtained via sequences of such edits,
by increasing order of edit distance. Importantly, we use provenance to keep
track of the performed edits, and to map each part of input semi-formal query to
the part of the candidate semi-formal query that corresponds to it. Constraints
on the provenance are accumulated to avoid re-examination of the same semi-
formal query, and prune other semi-formal queries based on their relationship
to already examined queries.

Groundings Generator (Section 4). Each candidate semi-formal query
may be grounded in different ways, where a grounding corresponds to trans-
forming each non-variable element in the semi-formal query to an element from
the KG. We treat elements as strings, and use a string search engine (Elas-
ticsearch4) to find these KG elements. A subtlety is that because the search
engine is unaware of the query structure, its order of results in string search
is only weakly correlated with the expected order in element search. For that,
we post-process the search engine results, re-ordering them based on a distance
function that is tailored to our setting. We again use provenance to keep track
of grounding transformations. We also apply pruning of queries for which the
search engine yields no matches, or for which the provenance does not match
the constraints derived from past user feedback.

Triple Store Manager (Section 5). Each candidate formal query is fed
to the Triple Store Manager, which accesses a triple store such as Jena5 for
query evaluation. We allow pruning, by default, queries whose evaluation yields
no results. We combine here the standard provenance for query output with

4Elasticsearch. https://www.elastic.co/elasticsearch/
5Apache Jena. https://jena.apache.org/
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our above mentioned provenance for query transformations, and then further
prune queries that do not match the constraints on the output, i.e., contain
rejected results or do not include required results. For efficiency, pruning is
performed in batches, grouping together queries with similar structure to check,
simultaneously, if they contain relevant results. If the query result is non-empty,
examples of outputs are chosen to be presented to the user.

User Feedback and Constraints (Section 6). The tracking of provenance
throughout our modules allows us to present a comprehensive explanation of
the candidate formal queries, in the following form: for each element of the
semi-formal query provided by the user, we present the corresponding element
in the formal query; if the element is a variable, we further present its binding
in the example query result. See Figure 2 for an example (observe that some
elements in the formal query have no counterpart in the semi-formal query
and vice versa). This explanation is crucial in allowing users to provide fine-
grained feedback at the level of triples, indicating that some parts must or
must not appear in the generated formal query. This feedback accumulates
and serves to form constraints on the generated queries in the iterations that
follow. Constraints are expressed and verified in terms of the transformation
provenance.

Experiments (Section 7). We implement SPARQLIt in a prototype sys-
tem and examine its performance over two large-scale KGs, YAGO [49] and
DBpedia [32] and a standard query benchmark [52]. Most importantly, the ex-
perimental results support the practicality of our approach, requiring only few
interactions and a few seconds overall to find most of the examined queries.
This is a significant improvement compared to other solutions where, if the user
receives a wrong query proposal, there is no methodical way of interacting with
the system to find the right query. We also isolate and demonstrate the benefit
of the optimizations that we employ. We then dive in to examine the different
factors affecting the performance of query proposal computation. We show that
the KG plays a central role here, since there is almost no correlation between the
difficulty of queries (many user interactions/ long computation time) in YAGO
to the difficulty of the same queries in DBpedia.

We overview related work in Section 8 and conclude in Section 9. This paper
is an extended version of our work published in [5], and our use of the prototype
system described below was demonstrated in [4].

2 Model
We start with preliminaries on RDF and then introduce our notions of semi-
formal queries and provenance. For convenience, the main notations used in the
sequel are summarized in Table 1.

2.1 RDF and Queries
RDF Knowledge Graphs. An RDF Knowledge Graph (KG) can be ab-
stractly viewed as a set of facts in the form of triples. Let Ent be a domain
of entity names (e.g., India, University) and Lit be a domain of literals (e.g.,

4
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Ent Domain of entities in formal queries
Pred Domain of predicates in formal queries
Pred Domain of literals in formal queries
Var Domain of query variable names

Q = (GQ, VQ) Selection query, where GQ is a basic graph pattern (set of triples
with variables) and VQ is the set of output variables

Entsf Domain of entities in semi-formal queries
Predsf Domain of predicates in semi-formal queries
Litsf Domain of literals in semi-formal queries

Tempsf Domain of placeholders in semi-formal queries
φ Assignment of elements to variables

φ(GQ) Set of triples where variables are replaced by their assignment
in φ

Q(G) Result of formal query Q over KG G
prov(Q,G,A) Query answer provenance, the set of all bindings of Q in G yield-

ing A.
prov(Q,Q′) = (P,C) Query provenance of transforming query Q to query Q′, where

P is a set of element mappings and C is the total cost

Table 1: Notation overview

2021). Let Pred be a domain of predicate names (e.g., livesIn). An RDF
knowledge base is a set of triples of the form (s, p, o) where s ∈ Ent is the sub-
ject, p ∈ Pred is the predicate and o ∈ Ent ∪Lit is the object. We use element
to refer uniformly to an entity, literal or predicate. We will sometimes represent
multiple triples ⟨s, p, o⟩, ⟨s′, p′, o′⟩ by the n3 notation s p o. s’ p’ o’.

Formal SPARQL selection queries. To query RDF, we use the notion of
Basic Graph Patterns (BGPs).

Definition 2.1 (SPARQL selection queries). Let Var = {?x, ?y, . . . } be a set
of variables. A Triple Pattern is a member of the set (Ent ∪ Var) × (Pred ∪
Var)× (Ent ∪ Lit ∪ Var). Namely, in a triple pattern, subjects, predicates and
objects may be replaced by variables. A BGP is a set of triple patterns, and its
graph view may be obtained in the same way RDF KGs are encoded as graphs.
A formal SPARQL selection query Q = (GQ, VQ) then consists of a BGP GQ

and a set of output variables VQ, which is a subset of the variables occurring in
GQ.

The general SPARQL syntax is broader, and allows for filtering conditions,
difference, and group by – but we focus here on selection queries as the most
difficult part for a user unfamiliar with the KG contents. We will assume, in
our architecture, a standard SPARQL query engine that also supports more
advanced features of RDF such as inference rules. We shall therefore regard, for
simplicity, the KG as containing all the facts that can be inferred from it, and
comment on inference when relevant.

Query evaluation. Given a formal SPARQL selection query Q = GQ, VQ)
and an RDF KG G, let φ be a mapping of all variables in GQ to RDF elements
in G. Denote by φ(GQ) the result of replacing in GQ every variable v by φ(v).
If φ(GQ) ⊆ G (i.e. all obtained triples are in the KG G) then we say that φ is
a binding. Each binding φ yields a query answer A = φ |VQ

(φ restricted to
output variables) and the query result Q(G) is the set of all such answers.

5
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(a) Different types of feedback

(b) User-intended query

Figure 2: SPARQLIt User Interface

2.2 Semi-formal queries.
We now introduce the notion of semi-formal queries, that have a similar form to
that of formal SPARQL queries, but their labels are not necessarily bound to the
corresponding set of names in the KG. Additionally, they may include special
temporary placeholder elements from Tempsf = {??X, ??Y, . . . } to be replaced
by any KG term (entity/literal/predicate) when we transform the query into a
formal one (see below). Formally,

Definition 2.2 (Semi-formal queries). Let Entsf ⊃ Ent , Litsf ⊃ Lit,
Predsf ⊃ Pred be extended sets of entity, literal and predicate names, abstractly
capturing any element the user may write, including formal elements. A semi-
formal BGP is then a BGP whose triple patterns are elements of (Entsf ∪
Var∪{Tempsf })×(Predsf ∪Var∪{Tempsf })×(Entsf ∪Litsf ∪Var∪{Tempsf }).
A semi-formal query Q = (GQ, VQ) consists of a semi-formal BGP and a dis-
tinguished subset VQ of output variables.

Example 2.3. Figure 2 shows two screenshots of SPARQLIt, in each of which
the top-left panel displays a semi-formal query: its syntax follows that of SPARQL,

6
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yet some of its elements, e.g., columbia, has_graduate, do not occur in the
queried KG (YAGO). The top-right panel displays a candidate formal query,
a different candidate each time, that matches the underlying KG, in this case
YAGO. (Ignore, for now, the bottom panel.)

2.3 Provenance Model
We introduce two types of provenance. The first captures “standard” query-to-
answer binding.

Definition 2.4 (Query answer provenance). The provenance of a binding φ
obtained by evaluating a formal SPARQL Query Q over a KG G, denoted
prov(Q,G,φ), is represented as a set of variable-value pairs of the form (x, v).
The provenance of a query answer A ∈ Q(G), denoted prov(Q,G,A) is then a
set of such provenance representations, for all the bindings of Q in G yielding A.

The second type of provenance is novel, and is geared towards tracking the
gradual refinement of queries, as follows. In order to prune irrelevant candi-
date queries effectively, we use fine-grained user feedback at the level of query
parts. For that, instead of attaining feedback solely on elements of the candidate
query, we ask whether elements of the input query were correctly transformed
into elements of the candidate query. This allows us (a) to explain to users
why certain query elements appear in the candidate query; (b) to “affix” cor-
rect transformations and use them in subsequent query candidates; (c) to avoid
incorrect transformations without entirely avoiding an element; and (d) incor-
porate, in our query cost, the distance between corresponding elements.This is
demonstrated in the next example.

Example 2.5. Consider the running example semi-formal query (top-left of
Figure 2a), and the candidate formal query

Select * {?x <graduatedFrom> <Indiana_University>.}
<Cole_Umbria> <graduatedFrom> ?x.}

At first glance, the meaning of this query and its connection to the input query
may be unclear. Now, consider the following display of the corresponding ele-
ments of the input and output query elements.

Original Element Proposed Element

lives_in <graduatedFrom>
india <Indiana_University>
columbia <graduatedFrom>
has_graduate <Cole_Umbria>

The above display hints at what went wrong (e.g., india was wrongly trans-
formed to <Indiana_University> due to their similarity). At this point, providing
feedback at the element level is less meaningful: in particular, <graduatedFrom>
is used twice, once incorrectly and once correctly. Should the users approve
or reject this element? In contrast, using feedback at the transformation level
allows users to specify “lives_in is incorrectly grounded as <graduatedFrom>”
and “has_graduate is correctly grounded as <graduatedFrom>”. In subsequent
candidate queries, we can narrow our search to queries that include the correct
transformation and avoid the wrong ones.

7
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Source Can be mapped to

e ∈ Ent∪Pred∪Lit e (self), ⊥
e ∈ Var e (self), ⊥
e ∈ Tempsf e (self), Ent∪Pred∪Lit, ⊥
e ∈ Entsf ∪Predsf ∪Litsf −Ent∪Pred∪Lit e (self), Ent∪Pred∪Lit, ⊥
e = ⊥ Ent,Pred,Lit, fresh Var, fresh Tempsf , ⊥

Table 2: Allowed sound transformations by element type. A “fresh” Var/Tempsf

is a variable/placeholder that does not occur in the source query.

We next define the second type of provenance, where element pairs encode
“mappings” of individual elements in Q to the corresponding elements in Q′.

Definition 2.6 (Query transformation provenance). Let Q = (GQ, VQ) and
Q′ = (GQ′ , VQ′) be two (formal or semi-formal) queries. A provenance expres-
sion for a transformation of Q to Q′ is denoted by prov(Q,Q′) = (P,C): P ,
referred to as the transformation mappings, is a set of pairs (e, e′) where either
e = ⊥ or e ∈ T ∈ GQ is an element of a triple T of the BGP of Q, and similarly
either e′ = ⊥ or e ∈ T ∈ GQ′ . C ∈ N is the transformation cost.

The notation ⊥ is used to mark deletions/insertions of elements. This means
that the used elements as well as the topology of candidate queries may differ
from the input query. We discuss the computation of cost values in Sections 3
and 4.

We next define two sets of requirements from the mappings of queries. The
first set restricts the mapping to be bijective, i.e., every query element is mapped
to exactly one element of the other query (or added/deleted). Intuitively, these
requirements ensure that the transformation of every query element is explained,
and that feedback can be given at the level of single elements rather than sets.
Formally, given Q = (GQ, VQ) and Q′ = (GQ′ , VQ′) with prov(Q,Q′) = (P,C),
we say that P is valid if it satisfies the following.

• Functionality. For every triple T ∈ GQ, for every element e ∈ T , there
exists exactly one pair (e, e′) ∈ P , for some e′.

• Inverse functionality. For every triple T ′ ∈ GQ′ , for every element e′ ∈ T ′,
there exists exactly one pair (e, e′) ∈ P , for some e.

The second set of requirements relates to the gradual process of transforming
an informal query to a formal one, ensuring, e.g., that formal elements are not
transformed into non-formal ones. We say that P is sound if every (e, e′) ∈ P
matches the possible mappings listed in Table 2.

Intuitively, every type of query element can be deleted by a transformation
or left unchanged.

In our search of formal queries, we will track changes to queries via mapping
compositions, which we can show to preserve validity.

Definition 2.7 (Mapping composition). Given three (formal or semi-formal
queries) Q0, Q1, Q2, prov(Q0, Q1) = (P1, C1) and prov(Q1, Q2) = (P2, C2), the
mapping composition P2 ◦ P1 is a set of element pairs such that

8
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1. For every e1 ̸= ⊥ such that (e0, e1) ∈ P1 and (e1, e2) ∈ P2, it holds that
(e0, e2) ∈ P2 ◦ P1

2. For every (e0,⊥) ∈ P1, it holds that (e0,⊥) ∈ P2 ◦ P1

3. For every (⊥, e2) ∈ P2, it holds that (⊥, e2) ∈ P2 ◦ P1

4. For every (e0, e2) ∈ P2 ◦P1, it either holds that (e0, e1) ∈ P1 and (e1, e2) ∈
P2 for some e1 ̸= ⊥, or that (e0, e2) ∈ P1 and e2 = ⊥, or that (e0, e2) ∈ P2

and e0 = ⊥.

The composition provenance is then prov(Q0, Q2) = (P2 ◦ P1, C1 + C2).

We can now show:

Proposition 2.8. Let Q0, Q1, Q2 be three (formal or semi-formal queries), such
that prov(Q0, Q1) = (P1, C1) and prov(Q1, Q2) = (P2, C2). The mapping com-
position P2◦P1 is a mapping from Q0 to Q2; if P1 and P2 are valid then P2◦P1 is
valid; and if P1 and P2 are sound then P2 ◦P1 is sound up to variable freshness.

Proof. ⇒ P2 ◦ P1 is a mapping. P2 ◦ P1 is a set of pairs (e0, e2) such that, by
Def. 2.7 item 4, e0 is either ⊥ or (e0, e1) in P1, and then by definition e0 is an
element of Q0 (or ⊥). By a symmetric argument, e2 is either ⊥ or an element
of Q2.
⇒ Composition preserves validity. Assume that P1 and P2 are valid. We

need to show functionality and inverse functionality for P2 ◦ P1. Let e0 be an
element of Q0. By the functionality of P1 there is exactly one pair (e0, e1) ∈ P1.
If e1 = ⊥, by item 2 of Def. 2.7, (e0,⊥) ∈ P2◦P1; and otherwise, e1 is an element
of Q1 and then by the functionality of P2, there is exactly one pair (e1, e2) in
P2, and by item 1 of Def. 2.7 we have that (e0, e2) ∈ P2 ◦ P1. This shows there
is at least one (e0, e2) for each element e0 of Q0. We now need to show it is
unique. Assume by contradiction that for some e0 ̸= ⊥ and some e2 ̸= e′2 we
have (e0, e2), (e0, e

′
2) ∈ P2 ◦ P1. W.l.o.g assume that e2 ̸= ⊥. A pair of non-⊥

elements may only occur in P2 ◦ P1, according to item 4 above, if (e0, e1) ∈ P1

and (e1, e2) ∈ P2 for some e1 ̸= ⊥. Then, by the functionality of P1 and inverse
functionality of P2, respectively, there is at most one e1 such that (e0, e1) ∈ P1

and such that (e1, e2) ∈ P2. Therefore, e′2 cannot be an element of Q2, so it must
be ⊥, and, by item 4, (e0,⊥) ∈ P1. This, together with (e0, e1) ∈ P1, contradicts
the functionality of P1. This proves (by contradiction) that P2◦P1 is functional.
Inverse functionality is proved by a symmetric argument. Consequently, P2 ◦P1

is indeed valid.
⇒ Composition preserves soundness. Assume that P1 and P2 are sound. We

will analyze the soundness of P2 ◦ P1 by case for any pair (e0, e2) ∈ P2 ◦ P1. If
e0 = ⊥, e2 can be of any type or value (we do not prove freshness in case of a
variable or placeholder; see discussion below). If e2 = ⊥, e0 can be of any type
without contradicting soundness. Otherwise, e0, e2 ̸= ⊥ and for some e1 ̸= ⊥,
we have that (e0, e1) ∈ P1, (e1, e2) ∈ P2. We can now ignore cases when e0 = e1
or e1 = e2, because then (e0, e2) is either in P1 or P2 and does not contradict
soundness. We are left with the case when e0 e2 ̸= e1 and e0, e1, e2 ̸= ⊥, but
this is impossible by Table 2: if we start with a e0 that is formal element or
variable, it can only be deleted (e1 = ⊥); and if e0 is a non-formal or placeholder
element, it can only be transformed to a formal element e1 ∈ Ent∪Pred∪Lit,
but then e1 can only be deleted (e2 = ⊥). Hence, P2 ◦ P1 is sound.

9
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Note that mapping composition does not necessarily follow the require-
ment in Table 2 that added variables/placeholders are fresh: if for some vari-
able/placeholder e2, (e2, e1) ∈ P1 and (⊥, e2) ∈ P2, then (e2, e1), (⊥, e2) ∈
P2 ◦ P1. e2 is fresh with respect to Q1 but not with respect to Q0. This issue
can be technically solved by ensuring that newly added variables/placeholders
have unique names.

We also note that our mappings are oblivious to the number of occurrences
of an element in a query and to the positions of these occurrences within the
query. As we show below (in Section 6), this enables a simple yet expressive
and fine-grained form of user feedback.

In the following sections, we introduce different transformations on query
structures and contents. The above defined provenance will serve to track se-
quences of transformations, the connections between the components of the
resulting query to the input query, and to compute the transformation cost.

3 Structural Edits
A first type of edits that we apply to semi-formal queries is geared towards
modifying the query structure. Edits are applied to triple patterns, capturing,
intuitively reordering/deletion/insertion of query elements. We note, however,
that our approach is generic and other types of edits may easily be incorporated.
For each edit operation, we also define its provenance (see Definition 2.6), but
keep the costs abstract at this point and discuss concrete cost choices below.

Subject-Object Switching: switch the subject and object of a query triple
T = ⟨s, p, o⟩, yielding a new triple T ′ = ⟨o, p, s⟩. The provenance captures an
identity mapping, i.e., its set of pairs is {(e, e)} for each element e of the (original
and result) query.

Element Exclusion: replace a formal/semi-formal subject/object/predicate
of a query triple T = ⟨s, p, o⟩ by a fresh variable ?x, yielding T ′ = ⟨?x, p, o⟩ or
T ′ = ⟨s, ?x, o⟩ or T ′ = ⟨s, p, ?x⟩. The fresh variable is not in the output and thus
can be bound to any element of the KG. For T ′ = ⟨?x, p, o⟩ the provenance will
include the pairs (s,⊥), (⊥, ?x), (p, p) and (o, o) and (e, e) for every other ele-
ment e; the provenance is similarly defined for T ′ = ⟨s, ?x, o⟩ or T ′ = ⟨s, p, ?x⟩.
Note that the excluded element is mapped to ⊥, which intuitively means that
the candidate query will not include an element corresponding to it.

Predicate Splitting: replace T = ⟨s, p, o⟩ by two triples T ′ = ⟨s, p, ?x⟩, T ′′ =
⟨?x, ??Y, o⟩ where ?x is a fresh variable and ??Y is a fresh placeholder. This stands
for replacing a predicate by a path with two predicates. The provenance includes
(s, s), (p, p), (⊥, ?x), (⊥, ??Y), (o, o), and (e, e) for every other element e.

We have chosen the three operations above to support common cases of
reordering, insertion and exclusion required to match a semi-formal query to
a formal one. In our experimental study (see Section 7), we show that the
combination of these operations is already sufficient to support the translation
of most of the informal queries we have tested. We discuss additional operations
below.

10
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Example 3.1 (Structural edit operations). Consider the triple pattern columbia
has_graduate ?x. If an inverse predicate is used in the KG, a candidate query
may be generated by Subject-Object Switching yielding ?x has_graduate columbia.
This will allow the triple to be later grounded, e.g., to ?x graduatedFrom
Columbia_University.

Applying Element Exclusion to the same triple could yield columbia ?p ?x
or ?y has_graduate ?x, generalizing the query by placing a variable that may be
bound to any predicate in the former case, and to any entity in the latter case.
For example, if the KG does not include any predicate corresponding to “has
graduate”, we may relax the requirement to retrieving Indian residents that are
related in any way to Columbia University.

Last, the connection between institutes and graduates in the KG may be ex-
pressed by a 2-edge path rather than one, e.g., using the thesis as an intermediate
node. Applying Predicate Splitting on columbia has_graduate ?x would yield the
two triple patterns columbia has_graduate ?s1. ?s1 ??P1 ?x. These triples may
then be later grounded, e.g., to Columbia_University hasGraduateThesis ?s1. ?s1
author ?x, in particular by replacing the placeholder ??P1 by a concrete predicate
name.

By Prop. 2.8, if a single edit operation produces a mapping that fulfills the
validity and soundness requirements, then a sequence of such edit operations will
also produce a composed mapping that is valid and sound. We can show that
each of the three operations above indeed produces a valid and sound mapping.

Proposition 3.2. The operations Subject-Object Switching, Element Exclusion
and Predicate Splitting, as defined above, produce valid and sound transforma-
tion mapping.

Proof. Let prov(Q,Q′) = (P,C) be the provenance resulting from a single struc-
tural edit operation on a query Q. We now show that P is valid and sound ac-
cording to the requirements in Section 2.3, for each of the three structural edit
operators defined above. Per element e, if e occurs only in the identity mapping
(e, e) in P , then e does not violate validity and soundness. As Subject-Object
Switching produces the identity mapping, we can conclude that it produces
valid and sound transformation mapping. Next, we need to focus only on pairs
(e, e′) with e ̸= e′ in the other operations. Element Exclusion produces the
pairs (s,⊥), (⊥, ?x), i.e., each element in the input and/output query is mapped
to exactly one element (validity). Since ?x is fresh, both mappings are sound
by Table 2 (soundness). Finally, Predicate Splitting produces the pairs (⊥, ?x),
(⊥, ??Y) – the insertion of a fresh variable and a fresh placeholder – which follow
the requirements of both validity and soundness.

Example 3.3 (Sequences of edit operations). Reconsider the semi-formal query
in Figure 2, and consider the application of Predicate Splitting to ?x lives_In
India to ?x lives_In ?s2. ?s2 ??P1 India, followed by Subject-Object Switching
for columbia has_graduate ?x. Composing the two provenance expressions we
obtain the pairs (⊥, ?s2) and (⊥, ??P1) along with the identity mappings for the
rest of the query elements.

11



PR
EP

RIN
T

NextSemiFormalQuery (Frontier,Cahce, constraintsMgr)
1 iterator← Frontier . iterator();
2 Qcandidate ← iterator .next();
3 while Qcandidate! = null and !Qcandidate. isActive() do
4 if !Qcandidate.hasNextOperator() then

Frontier . remove(Qcurr);
5 Qcandidate ← iterator .next();
6 else
7 Qnew ← Qcurr. applyNextOperator();
8 Qnext ← iterator .peek();
9 if ! Cache . contains(Qnew) then

10 Cache . add(Qnew);
11 Frontier . add(Qnew);
12 if constraintsMgr . isPruned(Qnew) then
13 Qnew. setInactive();
14 else if Qnext = null or Qnew. score < Qnext. score then
15 return Qnew;
16 if Qnext! = null and Qnew. score > Qnext. score then
17 Qcandidate ← iterator .next();
18 return Qcandidate;

Algorithm 1: Getting the next semi-formal candidate.

Searching for structural edits. We store a frontier of semi-formal queries,
ordered by increasing cost and initially including only the input semi-formal
query. Whenever prompted, the Generator operates similarly to Dijkstra’s
minimum-distance path search algorithm, to find the next least costly semi-
formal structure, as described in Algorithm 1.

We next overview the steps of Algorithm 1. We start iterating over the
Frontier (lines 1-2). If the current candidate semi-formal query, Qcandidate, is not
active, i.e., it was already pruned, we check if there is any additional operator we
can apply to it to get a new candidate query. If not (line 4), we remove it from
the Frontier. Otherwise, we try to generate the next minimal-cost candidate
query, by applying the next minimal-cost operator that was not applied yet to
Qcandidate; for example, we can try to apply Subject-Object Switching to each
triple of the query, then Predicate splitting to each triple, etc. This yields a
semi-formal query Qnew (line 7). We then check if we have already seen and
cached Qnew (line 9): this can occur since the same candidate semi-formal query
can be computed via different operator sequences. E.g., we can compute the
same query by applying Subject-Object Switching once or three times on the
same triple. Next (line 12), we check if the query is pruned by the constraints
in the Constraints Manager. If it is, we set Qnew to be inactive, which means
it will not be returned as a semi-formal query candidate, but we may use it to
construct other semi-formal queries in the following iterations of the algorithm.
If Qnew is not pruned, and there is no following query in the Frontier with lower
cost, then we return Qnew as the minimal cost query candidate (lines 14-15).
Indeed, the next query on the Frontier is the minimal cost of all the queries in
the Frontier, and queries generated by applying further operations only have
larger costs. Otherwise (line 16), if there is a following query in the Frontier
with a lower score, we repeat the process, until we find a query candidate, or

12
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we have no more candidates left in the Frontier (Qcandidate = null).

Cost. The assignment of cost for each operation may be viewed as a con-
figuration choice. We have experimented with different cost assignments, and
observed that it generally useful to render a single structural edit operation
more costly than grounding the entire query (i.e. we prefer groundings that
use the current structure, if exist). We thus set the structural edit costs to be
greater than C, which is an upper bound on the grounding cost (see Section 4).
Specifically, we have empirically obtained superior results with costs 2C, 100C
and 30C for Subject-Object Switching, Element Exclusion and Predicate Split-
ting, respectively. The cost of a sequence of operations is defined to be the sum
of individual operation costs. A candidate query can be obtained via different
sequences of operations with different total costs. However, by the Dijkstra-like
algorithm we employ, the first time a query is returned by the algorithm is when
it has a minimal weight. Then, by caching the considered queries, we can avoid
reconsidering it in the future.

4 Grounding Generator
The Grounding Generator gets as input a semi-formal query Q′ and the KG G.
It generates formal queries by replacing entities/predicates in Q′ that do not
occur in G by ones that do. We start by generating a ranked list of groundings for
individual triple patterns in Q and then combine groundings that are consistent
with each other to form a query. We next explain each of the two steps.

Triple Groundings. Given a semi-formal triple pattern t′ we generate a
ranked list of k formal triple patterns t1, ..., tk. These are generated as follows.
First, we represent t as a string s(t) by removing SPARQL syntax (including
variables and placeholders) and performing tokenization. Then we feed s(t) to
an off-the-shelf search engine (e.g., Elasticsearch) that indexes triples from the
KG. The engine returns the top-k relevant KG triples along with their string
representation. We augment these triples back to triple patterns, plugging into
them any variable that has occurred in t′. Unlike variables, placeholders are not
added back to the triple patterns, so that they are grounded by KG elements.

Example 4.1. Consider, for example, the triple pattern ?x lives_in India.
First, we remove SPARQL notations and perform an initial tokenization, which
yields “lives in India”. The search engine results includes, e.g., the strings
“Aadya lives in India” and “Aarav lives in Indianapolis”, attached to the KG
triples <Aadya> <livesIn> <India>, <Aarav> <livesIn> <Indianapolis>. Since
the original triple pattern has ?x as subject, we replace the subject in the KG
triples by ?x and obtain the ranked list ?x <livesIn> <India>, ?x <livesIn>
<Indianapolis>.

Provenance. We define the provenance for groundings in a similar way to
that of refinements. For a semi-formal triple pattern t′ = (s′, p′, o′) and a
choice of formal triple pattern t = (s, p, o) as grounding, we introduce the pairs
(s′, s), (p′, p), (o′, o) to be stored in the provenance. We discuss costs below.

13
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From grounded triple patterns to formal BGPs. We use the ranked
lists of formal triple patterns obtained for each triple pattern t′ in the semi-
formal query, to yield candidate formal BGPs. We traverse these lists in order,
each time choosing a single candidate triple pattern for each t′ (i.e. we start
with the set of all top-1 triple patterns). For each choice of triples, we check
their provenance for consistency, namely, that no two pairs (x, y), (x, z) such
that y ̸= z appear in their provenance. If the set is consistent then the formal
triple patterns are concatenated to form a BGP GQ. Otherwise (or when the
Grounding Generator is prompted for the next query), the process is repeated,
with one of the triple patterns being replaced by the next-best one in the ranked
list, and so forth.

Provenance revisited. Recall that only triple patterns with consistent prove-
nance expressions were combined. The overall provenance is then defined as fol-
lows: its pair set is the union of pair sets in the provenance of all triple patterns;
the cost is the sum of costs stored in these provenance expressions.

From BGPs to queries. So far, we have generated formal BGPs as candi-
dates, mapping the semi-formal BGP to each of them. Recall that the semi-
formal query Q′ includes a distinguished subset VQ′ of output variables. For
each formal BGP GQ with provenance prov(GQ′ , GQ) = (P,C), the set of out-
put variables is defined as VQ = {v | (v′, v) ∈ P ∧ v′ ∈ VQ′}. The query
Q = (GQ, VQ) is the obtained candidate, with the carried provenance staying
intact, i.e., prov(Q′, Q) = prov(GQ′ , GQ). We next show how provenance of
edits and groundings may be composed.

Example 4.2. Following Example 3.3, we generate candidate groundings for
lives_In, India, has_graduate, columbia and the placeholder ??P1. A formal
query resulting from one such combination of groundings is shown on the top-
right part of Figure 2 with its provenance on the bottom: e.g., has_graduate has
transformed to <graduatedFrom>, while isLocatedIn is newly added (so it has no
counterpart).

Cost. The cost for grounding a triple pattern t to t′ is set based on the
string distance measures between their representative strings s(t), s(t′), gen-
erated by the search engine as explained above. Specifically, we use the Lev-
enshtein edit distance. An exception is the grounding of placeholders, which
has 0 cost by definition. To account for semantic synonyms that are repre-
sented by very different strings, we generate a set of synonyms (using https:
//www.datamuse.com/api/) for each string, and take the minimal edit distance
between a synonym of s(t) and a synonym of s(t′). We revisit this design choice
in Section 7. Last, recall that our choice of structural edit costs relied on an
upper bound C for the grounding cost; we set C to be the maximal string length
of a representative string of an element in the KG, multiplied by the number of
query terms.
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5 Triple Store Manager
The Triple Store Manager receives as input a formal SPARQL query produced
by the Grounding Generator, and executes it over a triple store to obtain query
results. If the query result is non-empty, it chooses an example result with bind-
ing yielding it. To procure feedback, we combine the provenance accumulated
throughout the process of generating the candidate query, with the provenance
of the example query result.

Definition 5.1. Let Q′, Q be a semi-formal and formal query respectively and
let prov(Q′, Q) = (P,C). Further let G be a KG, A ∈ Q(G) an answer,
φ a binding yielding A and prov(Q,G,φ) its provenance. The provenance
prov(Q′, Q,G, φ) = (P ′, C) where P ′ = {(e, e′, v) | (e, e′) ∈ P∧e′ ∈ Var∧(e′, v) ∈
prov(Q,G,φ)}∪ {(e, e′,⊥) | (e, e′) ∈ P ∧ e′ ̸∈ Var∧(e, e′) ̸= (⊥,⊥)}.

Query Pruning and Optimizations. The user may choose to receive only
proposals for queries whose result is non-empty, and may provide feedback on
required/prohibited query results (see Section 6). In this case, the Triple Store
Manager serves as a key component in pruning candidate queries: we observed
that even with the pruning performed by previous modules, typically only a
small fraction of the queries that get to this stage have actual results in the KG.
The following main optimizations are employed to this end: first, instead of
individually executing each grounding, we group together queries with the same
structure and generate a query where each element is replaced by a special
variable restricted be one of the candidate groundings of this position. The
results then include the results of all the combined candidate queries (and more)
and we can find for each result the query that yields it by considering the values
assigned to the added special variables (see example below). A downside that we
observe is that execution of the resulting queries is often not well optimized by
the query engine. To this end, we rely on the monotonicity of SPARQL selection
queries, and start by executing only two triples of the query.6 Only if this query
has a result, we remove the irrelevant groundings, and add a third triple, and
so on. This method of gradual execution gives an additional major benefit of
caching sub-queries with empty results, and pruning subsequent queries that
include these sub-queries at the Grounding Generator stage.

Example 5.2. Assume that for the semi-formal query from Example 2.3, we
have obtained two candidate formal queries: one has the BGP ?x livesIn <India>.
<Columbia_University> <hasWebsite> ?x., and the other has the BGP ?x livesIn
<Indianapolis>. <Cole_Umbria> <graduatedFrom> ?x. The Triple Store Manager
can batch together these two queries, since they have the same structure. The
executed query would then be

Select * {
?x livesIn ?o1.
FILTER(?o1 = <India> || ?o1 = <Indianapolis>).
?s1 ?p1 ?x.
FILTER(?s1 = <Cole_Umbria> || ?s1 = <Columbia_University>).
FILTER(?p1 = <graduatedFrom> || ?p1 = <hasWebsite>).

6The Apache Jena framework provides a tool that heuristically proposes, according to a
selectivity estimation, in which order the triples of a SPARQL query should be executed. This
is also useful in our context.
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In this query we have introduced special variables (?o1, ?s1, ?p1) and added
FILTER expressions that list the grounding options for each of them. The re-
sults of this query contain those of our 2 queries (up to assignments to the
special variables), as well as queries with additional element combinations such
as <Cole_Umbria> <hasWebsite> ?x.

6 Procuring Feedback
The provenance of candidate queries that were not pruned in earlier stages and
example query result (if exists) are returned to the GUI and presented to the
user. The user is then prompted for feedback on each triplet in the provenance,
and may choose one of the following responses for a given triplet (e, e′, v).

• MUST: from now on, only formal queries Q for which (e, e′, v) ∈ prov(Q′, Q,G, φ′)
for some binding φ′ will be proposed.

• MUST NOT: only formal queries Q for which (e, e′, v) ̸∈ prov(Q′, Q,G, φ′) for
all bindings φ′ will be proposed.

• MAYBE: no restrictions are imposed on the triplet.

The feedback obtained in each step is accumulated and the corresponding
constraints that it entails on the search space of queries are stored by the Con-
straints Manager. The Groundings Generator then only generates groundings
that are valid according to the constraints, and the Triple Store Manager prunes
queries whose results do not comply with the feedback.

Example 6.1. The bottom pane of the screenshots in Figure 2 show triples of
original element, proposed element and example variable binding, corresponding
to our overall query provenance. Figure 2a shows our running example same
semi-formal query alongside a proposed formal query that we shall call Q6 (on
the top-right, where we also have a counter of the number of user interactions
done so far). As in Example 3.3, each element of the semi-formal query is
mapped to an element of Q6. Here, the user gave a MUST feedback to the mappings
of lives_in, columbia, has_graduate (marking ∨ in the checkbox on the left-most
column on the bottom pane). The user rejected (by marking an X) the elements
dealsWith and ?s27→Canada, which means that for queries based on the same
semi-formal query (3 triples, a two-step path between the person ?x and India)
this predicate and query result should not reoccur. The mapping of ?x remains
a MAYBE because the user does not know if this person is included in the correct
answer or not.

Both positive and negative feedback on Q6 significantly narrow the search
space of possible queries. As a result, and accounting for user feedback from
previous iterations, the formal query in Figure 2b is proposed by the system in
the next iteration. Indeed, dealsWith and Canada do not appear here, and the
elements marked with MUST remain from Q6 (automatically marked with a ∨ by
the GUI).
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Figure 3: Overall performance for DBpedia and YAGO
7 Implementation and Experimental Study
We next describe our experimental study, starting with the implementation and
experimental setup, and then providing the experimental results.

7.1 Implementation
We have implemented our solution in a prototype called SPARQLIt. The proto-
type is implemented in .Net, using Blazor7 for its front-end, Elasticsearch for the
search engine used by the Grounding Generator (recall Section 4) and Apache
Jena for the Triple Store (recall Section 5. In our computation of grounding
edit distance we have used Levenstein edit distance from the input element and,
in the case of predicate, the minimum edit distance from a synonym of this
predicate. Synonyms were taken from Datamuse.8

Recall the GUI screenshots in Figure 2. So far, we have described the main
flow of interaction with the user: the user enters a semi-formal query (top-left
panel), and then iteratively receives formal query proposals and gives feedback
to refine the proposals (check-boxes on the bottom left). Our implementation
further supports additional user actions via the icon buttons on the top panels.
From left to right, these buttons stand for: (i) Configuration: allows the user
to set system parameters such as k, the number of results retrieved from the
search engine. (ii) Reset : returns the users to their initial query canceling all
interactions. (iii) Undo: returns to the previous interaction step, by removing
the constraints derived from the last user feedback and returning to the formerly
proposed formal query. (iv) Cancel : terminates the current search execution, to
allow the user to change their feedback. (v) Full Results: displays the full results
of the current formal query proposal (as opposed to the bottom pane, which only
shows one example result; this enables the user to gain further intuition about
the query output, e.g., if there were too few or too many results. (vi) Next :
submits the user feedback and gets the next formal query proposal.

7Blazor. https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor/
8Datamuse. https://www.datamuse.com/api/
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7.2 Experimental Setup
All of our experiments were executed on Intel i7-core processors with 32GB of
RAM.

The following RDF KGs were used in our experiments.

• YAGO [49]. A KG Derived from Wikipedia, WordNet, WikiData, GeoN-
ames, and other data sources. Only English facts were used which consist
of approximately 160M triples.

• DBpedia [32]. A KG derived mainly from Wikipedia, which consists of
approximately 363M triples. By default, we show results for this KG.

Since the notion of semi-formal queries is novel, to our knowledge, no existing
benchmarks are available. To this end, we have constructed benchmarks based
on the first 50 NL questions in the training set of QALD-9 [52]. Their translation
to gold formal queries w.r.t. DBpedia is given in [52], and we have formulated
the gold queries w.r.t. YAGO; we have stripped aggregation to obtain selection
queries, see the list of used queries in our code repository.9 We have then
constructed three benchmarks of semi-formal queries

• QALD Translated is based on manual translation that is oblivious to the
terminology used in the KGs, e.g., “Who is the tallest player of the At-
lanta Falcons?” is translated to the semi-formal selection query ?x type
AtlantaFalcons. ?x height ?y;

• QALD Cross-KG uses the formal query for YAGO as a semi-formal query
to be evaluated with respect to DBpedia, and vice versa.

• A synthetic dataset that includes semi-formal queries that vary different
aspects of the query structure (e.g., number of edits needed to obtain the
formal query), to examine their effect on our solutions.

Intuitively, QALD Translated includes semi-formal queries that depend only
on the natural language queries, and hence are independent from any KG, but
may depend on the query writer’s subjective interpretation. QALD Cross-KG
queries are not affected by subjective judgement, since their structure is dictated
by one of the KGs; but since they are formal queries on one KG, they can only
be used as semi-formal input for the other KG. We have tested all benchmarks
on both KGs, simulating user feedback using the underlying, hidden, formal
query.

As solution baselines we have used the both a natural language query engine,
and multiple variants of SPARQLIt, as follows.

• The NL-to-SPARQL query engine gAnswer [23], which achieved the best
results in the QALD-9 Challenge [52].

• With-Empty. A variant that does not prune queries with empty results.

• No-Syn. This variant does not use synonyms for distance computation,
unlike our standard implementation (see Section 4).

9Code and Query Repository for SPARQLIt: https://github.com/ycallen/dexa22

18

https://github.com/ycallen/dexa22


PR
EP

RIN
T

SPARQLIt+
QALD Translated

SPARQLIt+
QALD Cross-KG

With-Empty+
QALD Translated

gAnswer+
QALD-9

DBpedia 78% 81% 64% 36%
YAGO 84% 81% 64% -

Table 3: Percent of successfully found QALD queries
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Figure 4: Time segmentation for SPARQLIt
• Top-50. By default, we configure the Search Engine to return the top-100

results, whereas in this variant it is configured to return only 50.

Our evaluation metrics are the number of user interactions, i.e., the number
of executions of step 4 in Figure 1; and the total response time, i.e., the total
computation time of proposed queries, throughout the interactive session.

7.3 Experimental Results
We next summarize our experimental results.

Overall Performance. In Figures 3a and 3b, we show the cumulative per-
centage of formal queries successfully found by the different solutions, for the
QALD Translated workload and DBpedia, with different bounds on the number
of user interactions and total computation time. For both metrics, SPARQLIt
exhibited the best results. In particular, interacting once with the user is already
sufficient to outperform gAnswer, and to successfully find 52% of the queries;
with up to 3 interactions this percentage increases to 62%; and with up to 10
interactions (and up to 23 seconds total time) this percentage increases to 68%.
All restricted variants perform worse than SPARQLIt in terms of the number
of interactions, showing the effect of our design choices. Figures 3c and 3d show
results for the same experiment over the YAGO KG. We exclude gAnswer here
since it is tailored for DBpedia. SPARQLIt achieves the best results in both
metrics; With-Empty is significantly worse, indicating that the design choice
of discarding queries that yield empty results is effective. We summarize the
success rates of SPARQLIt using up to 50 interactions in Table 3 and contrast
them with With-Empty and gAnswer (columns 1, 3 and 4 respectively).

We have executed the above experiments using the QALD Cross-KG work-
load (where YAGO queries are used as semi-formal queries over DBpedia and
vice versa). The trends were similar: with one interaction, we have successfully
found 44% of the queries in both KGs; using up to 3 interactions we found 53%
(resp., 56%) of the queries in DBpedia (resp., YAGO); and using up to 10 inter-
actions we found 67% (resp., 65%) of the DBpedia (resp., YAGO) queries. We
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Figure 5: KGs correlation (each point denotes a QALD query)

parameters #interactions total time #triples #variables

#interactions 1
total time -0.07 1
#triples -0.16 0.23 1
#variables 0.04 -0.05 0.65 1
#structural edits 0.22 -0.06 0.48 0.52

Table 4: Correlation Matrix
summarize the success rates with up to 50 interactions in Table 3 (second col-
umn). Overall, SPARQLIt had a high success rate and has succeeded in finding
formal queries for the same semi-formal input over different KGs, as well as in
finding the same formal query starting from different semi-formal queries.

Component Breakdown. Figure 4 shows a breakdown of the total compu-
tation time to the Search Engine, Triple Store and all other components. The
Triple Store and Search Engine are indeed responsible for a large fraction of the
overall execution time (median 93% and 86% of the total time, respectively for
YAGO and DBpedia); among the two, the time incurred by the Search Engine is
typically higher: many query candidates are typically pruned and do not reach
the Triple Store Manager. In contrast, when the overall response time is slower,
we observe that it is mainly due to high latency Triple Store queries.

Effect of the KG. Figures 5a and 5b examine the effect of the KG on the
difficulty of finding the target query. They show for each query the needed num-
ber of interactions (resp., total response time) for DBpedia (x-axis) vs. YAGO
(y-axis). The graphs show relatively weak correlation (Pearson correlation co-
efficient is∼0.6 for both graphs), given that DBpedia and YAGO have many
common information sources (most notably, Wikipedia). This serves as evi-
dence that the specifics of the KG structure are indeed essential when writing
formal queries.

We have also checked correlation between different parameters of the inter-
active process for QALD queries over DBpedia, including (1) the number of user
interactions;(2) total response time; (3) number of triples in the output formal
query; (4) number of distinct variables in the output formal query; (5) number
of structural edits performed by SPARQLIt in the background.The results are
displayed in the matrix table of Table 4. The highest correlation is observed
between query properties (number of variables versus triples). We also observe
that the number of performed structural edits is correlated with the numbers
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Figure 6: Response time vs. number of Subject-Object Switches.
of triples and variables, since indeed when there are more triples and variables,
there are more edits that can be computed and examined. However, note the
weak or no correlation between these parameters and the main performance
metrics, namely, the total execution time and number of interactions. This sug-
gests that the query difficulty is mainly determined by deeper semantics of the
KG, rather than structural aspects of the query.

Synthetic Queries. Figure 6 shows the response time of SPARQLIt for rep-
resentative synthetic queries (in milliseconds). The synthetic queries include 8
triple patterns structured as chains (subsequent triple patterns share a single
variable) or stars (all triple patterns share a single variable), and we vary the
number of edits needed to obtain the correct formal query. The response time
grows roughly linearly, although the space of relevant structures grows expo-
nentially with the number of edits. This demonstrates the effectiveness of our
approach in pruning irrelevant sub-queries.

8 Related Work
There are many lines of work on algorithms and systems that assist in query
formulation for different languages, including SPARQL, and interactive solutions
that allow for gradual refinement of the query. We next elaborate on ones most
related to our setting.

Natural language interfaces. A vast body of work has been dedicated to
interfaces that receive as input an unstructured natural language question and
translate it into a structured query to execute against a KG (e.g., [9, 14, 16,
23, 43, 54, 56, 61]) or a relational database (e.g., [8, 10, 24, 25, 30, 33, 47, 42]),
by using either rule based, statistical, machine learning or deep learning tech-
niques. Compared to the NL approach, our solution requires users to provide
a more structured specification in a semi-formal query; however, as we show
in our paper, and as indicated in other previous work [60, 43] this structure
is helpful. In particular, the recent [43] proposed a deep neutral approach to
question answering by first translating the natural language question to a sil-
houette SPARQL query, and then matching this query to the KG. In our case,
the interactive traversal of candidate queries is guided in a principled way by
the transformations performed on the semi-formal query, hence it is eminent to
our interactive solution (see Section 7). Another shortcoming of some NL inter-
faces is that the solution typically requires expensive training data (in the case
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of ML solutions with supervision) or manual rule specification, and is therefore
not easily transferable from one KG to another.

Interactive Querying and Information Retrieval. Another research field
related to ours is that of interactive querying/information retrieval, which has
been studied from different perspectives. One line of research studies the trans-
lation NL questions or searches to queries in the context of previous ques-
tions [26, 38, 50, 57]. While resembling our work in allowing for interactivity,
this line of work focuses on the interpretation of questions based on the context,
and not on an interactive search for the right query. In our case, the interaction
focuses on feedback from the user, which points out what parts of the proposed
query were not correctly captured. Another line of work considers guiding in-
formation retrieval or query reformulation via ontological information [20, 48].
This work mostly focuses on selecting terms, adding related terms or resolving
the ambiguity of terms based on domain knowledge recorded in an ontology.
A crucial difference of our setting with respect to this work is the use of semi-
formal queries, allowing to capture, on the one hand, structural properties of
the user intent, but on the other hand allowing to manipulate this structure
according to the queried KG.

Keyword search. This line of work considers the finding of sub-graphs in
the KG containing all or some of given query keywords and formulating a query
that captures these sub-graphs (e.g., [21, 28, 29, 34]) which was also considered
for SQL interfaces [3, 51]. This approach has common properties with the above
mentioned NL approach, as it is appealing to novice users. Compared with the
NL approach, solutions here typically rely on the sub-graph structure and hence
do not require expensive training. Again, a major challenge is recovering from
a situation where no suitable query was found, i.e., how to make the process
interactive.

Auto-completion and visual interfaces. Different interfaces allow users
to type SPARQL queries and automatically receive proposals for the potential
values, elements or query parts that match the partial user input, by typing,
selecting from lists or from visual elements (e.g., [12, 17, 44, 41, 45, 31, 55]). The
work of [17] further propose corrections to the formed query, such that these
corrections may for instance increase the number of query results. The draw-
back of this approach is that KGs are typically very sparse and noisy. Hence,
there may exist many real KG elements/query snippets that superficially seem
relevant but actually do not match the real user intention or the other parts of
the query. In contrast, our approach (i) simultaneously searches for all the parts
of the user-specified query, such that we prefer candidate formal queries that
match all the properties requested by the user; and (ii) through their feedback
on both query parts and results, users can browse additional candidate queries
without reaching a “dead-end”. We may view this approach as complementary
to ours: the users may use auto-completion or a visual interface to guide their
editing of a semi-formal query, and then use our approach to interactively browse
through related queries and find ones that return the intended results.
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Faceted browsing. Faceted (navigational) Search enables users to refine their
search options by navigating (drilling) down, and has been studied in the context
of RDF querying (e.g., [7, 19, 22, 37, 53]). The challenge for interaction in this
context is similar to the above mentioned auto-completion and visual interfaces:
when the browsed query parts may not match the other intended parts of the
user query. If the user performs a sequence of drilling-down steps leading to a
“dead-end”, it is unclear which steps should be modified and how.

Semantic similarity search and query reformulation. Similarity search
is a means of extending or reformulating an initial query with similar queries
that return additional results (e.g., [18, 39, 40, 46, 58, 63, 64]. In particular,
Zheng et al. [63] studied semantic similarity search for SPARQL, and introduced
an edit distance notion for RDF graphs. The edit operations that we consider
are different, since we do not require a formal query as input. Instead, we use
measures based on syntactic similarity and string similarity.

Query by example. This area of research studies the “reverse-engineering” of
queries based on positive/negative result examples provided by the use (e.g., [1,
2, 11, 6, 13, 15, 27, 35, 59], see [36] for a comprehensive survey). In RDF
KGs, this method can be effective when the users search categories or classes,
for which they can easily provide positive and negative examples. The method
becomes challenging to use when the query includes non-categorical predicates,
which are typically very sparse and heterogeneous, or when users cannot provide
sufficient examples.

9 Conclusion
In this paper we introduced SPARQLIt, a framework that helps users querying
RDF knowledge graphs, by allowing them to construct semi-formal SPARQL
queries that have a SPARQL syntax but do not necessarily match in contents
and structure to the graph, and hence do not require prior knowledge of the
latter. Provenance is used to track the transformation of the input query to
the candidate formal query, to give the user an intuition on the correspondence
between the parts of the input query and the candidate query, and to allow
them to specify fine-grained feedback at the level of query parts and variable
bindings. This yields iterative and interactive process of adjusting the query
proposals to the user intentions. Our experimental study, conducted on real
knowledge graphs using the QALD benchmark for queries indicate that our
approach is practical in terms of user effort and latency, and that very few
interactions suffice to outperform a state-of-the-art natural language interface
for SPARQL.

For future research, recall that we have listed 3 operators used by the Struc-
tural Edits Generators. Our framework design is flexible in this sense and allows
adding or changing operators. It would be interesting, given logs of queries to
SPARQL endpoints and/or logs of interactions with SPARQLIt, to user ma-
chine learning or data mining to discover useful operators, or weights for the
next operators given a semi-formal query. Moreover, we may consider extend-
ing the fragment of SPARQL we have focused on, to allow for, e.g., group-by,
aggregation, difference, etc. While we believe that fining selection queries solves
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the main challenge in querying an unknown KG, it would be then interesting,
e.g., to combine methods for interactive data science (e.g., [62]) to precise the
query operators. Another challenging direction is considering RDF inference
rules, specified by languages such as OWL.10 In the present work, inference
rules are implicitly accounted for by the Triple Store, which uses inference in
computing query answers. However, we may consider explicitly accounting for
such inferences, thereby, e.g., pruning more candidate groundings.

Acknowledgments This work was partly funded by the Israel Science Foun-
dation (grant No. 2015/21) and by the Israel Ministry of Science and Tech-
nology. This preprint has not undergone peer review or any post-submission
improvements or corrections. The Version of Record of this article is published
in Springer Knowledge and Information Systems, and is available online at
https://doi.org/10.1007/s10115-023-01939-x. An official view-only ver-
sion is freely available at https://rdcu.be/dl53C.

References
[1] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M. Hellerstein, and

A. Silberschatz. Learning and verifying quantified Boolean queries by ex-
ample. In PODS, pages 49–60, 2013.

[2] E. Abramovitz, D. Deutch, and A. Gilad. Interactive inference of SPARQL
queries using provenance. In ICDE, pages 581–592, 2018.

[3] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, Parag,
and S. Sudarshan. BANKS: browsing and keyword searching in relational
databases. In PVLDB, pages 1083–1086, 2002.

[4] Y. Amsterdamer and Y. Callen. SPARQLIt: Interactive SPARQL query
refinement. In ICDE, pages 2649–2652, 2021.

[5] Y. Amsterdamer and Y. Callen. Provenance-based SPARQL query formu-
lation. In DEXA, volume 13426, pages 116–129, 2022.

[6] M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse engineering SPARQL
queries. In WWW, pages 239–249, 2016.

[7] M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov,
and E. Jiménez-Ruiz. SemFacet: semantic faceted search over YAGO. In
WWW, pages 123–126, 2014.

[8] C. Baik, H. V. Jagadish, and Y. Li. Bridging the semantic gap with SQL
query logs in natural language interfaces to databases. In ICDE, pages
374–385, 2019.

[9] N. Bhutani, X. Zheng, and H. V. Jagadish. Learning to answer complex
questions over knowledge bases with query composition. In CIKM, pages
739–748, 2019.

10OWL 2 Web Ontology Language Primer (Second Edition). https://www.w3.org/TR/
2012/REC-owl2-primer-20121211

24

https://doi.org/10.1007/s10115-023-01939-x
https://rdcu.be/dl53C
https://www.w3.org/TR/2012/REC-owl2-primer-20121211
https://www.w3.org/TR/2012/REC-owl2-primer-20121211


PR
EP

RIN
T

[10] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger. SODA:
generating SQL for business users. PVLDB, 5(10):932–943, 2012.

[11] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive inference of join
queries. In EDBT, pages 451–462, 2014.

[12] S. Dastgheib, D. I. McSkimming, K. Natarajan, and K. J. Kochut. Spar-
qling: A graphical interface for SPARQL. In ISWC, volume 1486, 2015.

[13] G. I. Diaz, M. Arenas, and M. Benedikt. SPARQLByE: Querying RDF
data by example. PVLDB, 9(13):1533–1536, 2016.

[14] D. Diefenbach, K. D. Singh, and P. Maret. WDAqua-core1: A question
answering service for RDF knowledge bases. In WWW comp., pages 1087–
1091, 2018.

[15] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example: an
automatic query steering framework for interactive data exploration. In
SIGMOD, pages 517–528, 2014.

[16] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and J. Lehmann. AskNow:
A framework for natural language query formalization in SPARQL. In
ESWC, pages 300–316, 2016.

[17] A. El-Roby, K. Ammar, A. Aboulnaga, and J. Lin. Sapphire: Querying
RDF data made simple. PVLDB, 9(13):1481–1484, 2016.

[18] S. Elbassuoni, M. Ramanath, and G. Weikum. Query relaxation for entity-
relationship search. In ESWC, pages 62–76, 2011.

[19] S. Ferré. Expressive and scalable query-based faceted search over SPARQL
endpoints. In ISWC, pages 438–453, 2014.

[20] E. García-Barriocanal and M. Á. S. Urbán. Designing ontology-based in-
teractive information retrieval interfaces. In R. Meersman and Z. Tari,
editors, OTM, volume 2889, pages 152–165, 2003.

[21] K. Golenberg and Y. Sagiv. A practically efficient algorithm for generating
answers to keyword search over data graphs. In ICDT, pages 23:1–23:17,
2016.

[22] F. Haag, S. Lohmann, S. Siek, and T. Ertl. QueryVOWL: Visual compo-
sition of SPARQL queries. In ESWC, pages 62–66, 2015.

[23] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao. Answering natural lan-
guage questions by subgraph matching over knowledge graphs. IEEE Trans.
Knowl. Data Eng., 30(5):824–837, 2018.

[24] P. Huang, C. Wang, R. Singh, W. Yih, and X. He. Natural language
to structured query generation via meta-learning. In NAACL-HLT, pages
732–738, 2018.

[25] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer.
Learning a neural semantic parser from user feedback. In ACL, pages 963–
973, 2017.

25



PR
EP

RIN
T

[26] M. Iyyer, W. Yih, and M. Chang. Search-based neural structured learning
for sequential question answering. In ACL, pages 1821–1831, 2017.

[27] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge
graphs by example entity tuples. In ICDE, pages 1494–1495, 2016.

[28] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In PVLDB, pages 505–516, 2005.

[29] G. Kadilierakis, P. Fafalios, P. Papadakos, and Y. Tzitzikas. Keyword
search over RDF using document-centric information retrieval systems. In
ESWC, volume 12123, pages 121–137, 2020.

[30] H. Kim, B. So, W. Han, and H. Lee. Natural language to SQL: where are
we today? PVLDB, 13(10):1737–1750, 2020.

[31] V. Kritsotakis, Y. Roussakis, T. Patkos, and M. Theodoridou. Assistive
query building for semantic data. In SEMANTiCS, volume 2198, 2018.

[32] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. Dbpedia -
A large-scale, multilingual knowledge base extracted from Wikipedia. Se-
mantic Web, 6(2):167–195, 2015.

[33] F. Li and H. V. Jagadish. NaLIR: an interactive natural language interface
for querying relational databases. In SIGMOD, pages 709–712, 2014.

[34] X. Lin, Z. Ma, and L. Yan. RDF keyword search using a type-based sum-
mary. J. Inf. Sci. Eng., 34(2):489–504, 2018.

[35] M. Lissandrini, K. Hose, and T. B. Pedersen. Example-driven exploratory
analytics over knowledge graphs. In EDBT, pages 105–117, 2023.

[36] M. Lissandrini, D. Mottin, T. Palpanas, and Y. Velegrakis. Data Explo-
ration Using Example-Based Methods. Synthesis Lectures on Data Man-
agement. 2018.

[37] M. Lissandrini, D. Mottin, T. Palpanas, and Y. Velegrakis. Graph-query
suggestions for knowledge graph exploration. In WWW, pages 2549–2555,
2020.

[38] Q. Liu, B. Chen, J. Lou, G. Jin, and D. Zhang. FANDA: A novel approach
to perform follow-up query analysis. In AAAI, pages 6770–6777, 2019.

[39] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Exemplar
queries: Give me an example of what you need. PVLDB, 7(5):365–376,
2014.

[40] K. Munir, M. Odeh, and R. McClatchey. Ontology-driven relational query
formulation using the semantic and assertional capabilities of OWL-DL.
Knowl. Based Syst., 35:144–159, 2012.

[41] M. Papadaki, N. Spyratos, and Y. Tzitzikas. Towards interactive analytics
over RDF graphs. Algorithms, 14(2):34, 2021.

26



PR
EP

RIN
T

[42] H. Poon. Grounded unsupervised semantic parsing. In ACL, pages 933–943,
2013.

[43] S. Purkayastha, S. Dana, D. Garg, D. Khandelwal, and G. P. S. Bhargav.
A deep neural approach to KGQA via SPARQL silhouette generation. In
IJCNN, pages 1–8, 2022.

[44] K. Rafes, S. Abiteboul, S. C. Boulakia, and B. Rance. Designing scientific
SPARQL queries using autocompletion by snippets. In eScience, pages
234–244, 2018.

[45] S. Sana e Zainab, M. Saleem, Q. Mehmood, D. Zehra, S. Decker, and
A. Hasnain. FedViz: A visual interface for SPARQL queries formulation
and execution. In VOILA@ISWC, volume 1456, page 49.

[46] R. Schenkel, A. Theobald, and G. Weikum. Semantic similarity search on
semistructured data with the XXL search engine. Inf. Retr., 8(4):521–545,
2005.

[47] J. Sen, C. Lei, A. Quamar, F. Özcan, V. Efthymiou, A. Dalmia, G. Stager,
A. R. Mittal, D. Saha, and K. Sankaranarayanan. ATHENA++: natural
language querying for complex nested SQL queries. PVLDB, 13(11):2747–
2759, 2020.

[48] N. Stojanovic, R. Studer, and L. Stojanovic. An approach for step-by-step
query refinement in the ontology-based information retrieval. In WI, pages
36–43, 2004.

[49] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A Core of Semantic
Knowledge. In WWW, pages 697–706, 2007.

[50] A. Suhr, S. Iyer, and Y. Artzi. Learning to map context-dependent sen-
tences to executable formal queries. In NAACL-HLT, pages 2238–2249,
2018.

[51] S. Tata and G. M. Lohman. SQAK: doing more with keywords. In SIG-
MOD, pages 889–902, 2008.

[52] R. Usbeck, R. H. Gusmita, A. N. Ngomo, and M. Saleem. 9th challenge
on question answering over linked data (QALD-9). In ISWC, pages 58–64,
2018.

[53] H. Vargas, C. B. Aranda, A. Hogan, and C. López. RDF Explorer: A visual
SPARQL query builder. In ISWC, volume 11778, pages 647–663, 2019.

[54] D. Vollmers, R. Jalota, D. Moussallem, H. Topiwala, A. N. Ngomo, and
R. Usbeck. Knowledge graph question answering using graph-pattern iso-
morphism. 53:103–117, 2021.

[55] D. Vrandecic and M. Krötzsch. Wikidata: a free collaborative knowledge-
base. Commun. ACM, 57(10):78–85, 2014.

[56] S. Walter, C. Unger, P. Cimiano, and D. Bär. Evaluation of a layered
approach to question answering over linked data. In ISWC, volume 7650,
pages 362–374, 2012.

27



PR
EP

RIN
T

[57] X. Wang, S. Wu, L. Shou, and K. Chen. An interactive NL2SQL approach
with reuse strategy. In DASFAA, volume 12682, pages 280–288, 2021.

[58] Y. Wang, A. Khan, T. Wu, J. Jin, and H. Yan. Semantic guided and
response times bounded top-k similarity search over knowledge graphs. In
ICDE, pages 445–456, 2020.

[59] Y. Y. Weiss and S. Cohen. Reverse engineering SPJ-queries from examples.
In PODS, pages 151–166, 2017.

[60] T. Wolfson, M. Geva, A. Gupta, Y. Goldberg, M. Gardner, D. Deutch, and
J. Berant. Break It Down: A question understanding benchmark. Trans.
Assoc. Comput. Linguistics, 8:183–198, 2020.

[61] X. Yin, D. Gromann, and S. Rudolph. Neural machine translating from
natural language to SPARQL. Future Gener. Comput. Syst., 117:510–519,
2021.

[62] Y. Zhang and Z. G. Ives. Finding related tables in data lakes for interactive
data science. In SIGMOD, pages 1951–1966, 2020.

[63] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao. Seman-
tic SPARQL similarity search over RDF knowledge graphs. PVLDB,
9(11):840–851, 2016.

[64] G. Zhu and C. A. Iglesias. Sematch: Semantic similarity framework for
knowledge graphs. Knowl. Based Syst., 130:30–32, 2017.

28


	Introduction
	Model
	RDF and Queries
	Semi-formal queries.
	Provenance Model

	Structural Edits
	Grounding Generator
	Triple Store Manager
	Procuring Feedback
	Implementation and Experimental Study
	Implementation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

