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Abstract

We present in this paper a novel solution for assisting users in formulat-
ing SPARQL queries. The high-level idea is that users write �semi-formal
SPARQL queries�, namely, queries whose structure resembles SPARQL
but are not necessarily grounded to the schema of the underlying Knowl-
edge Base (KB) and require only basic familiarity with SPARQL. This
means that the user-intended query over the KB may di�er from the spec-
i�ed semi-formal query in its structure and query elements. We design a
novel framework that systematically and gradually re�nes the query to
obtain candidate formal queries that do match the KB. Crucially, we in-
troduce a formal notion of provenance tracking this query re�nement pro-
cess, and use the tracked provenance to prompt the user for �ne-grained
feedback on parts of the candidate query, guiding our search. Experi-
ments on a diverse query workload with respect to both DBpedia and
YAGO show the usefulness of our approach.

1 Introduction

A huge body of information is stored in RDF knowledge Bases (KBs) such as
YAGO [34], DBpedia [12] and others. Such KBs can be queried using SPARQL,
the W3C standard query language [33]. Familiarity with the SPARQL syntax,
however, is not su�cient for using it: writing a SPARQL query requires a deep
understanding of the KB content and structure. In turn, in many useful KBs,
this structure is highly complex and contains many irregularities. The KB
structure often further evolves over time, and so even users who are initially
familiar with it may struggle to adapt to such modi�cations.

To this end, our system SPARQLIt1 (see Figure 1 for a high-level architec-
ture) allows users to write a �semi-formal� query (step 0 in the Figure), i.e.,
a query whose syntax follows that of SPARQL, but its contents � entities and
properties � do not necessarily match the KB. For example, a user seeking grad-
uates of Columbia University living in India may write a query with the selection
criteria ?x livesIn India. ?x graduatedFrom columbia. When evaluated over
YAGO, the user may discover that the query returns little or no results. The
reason is that in YAGO, livesIn is usually populated with cities rather than
countries and that Columbia is represented as <Columbia_University> � but it is
di�cult for a user to discover this. To this end, our solution generates candidate
formal queries, i.e., queries that match the KB. Semi-formal queries are trans-
formed to candidate formal queries via sequences of operations of two �avors:
structural edits (step 1 in Figure 1), which are proposals for similar, alterna-
tive structures of semi-formal queries, e.g., replacing ?x livesIn India by ?x

1The code of SPARQLIt implementation is available at [11].
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Figure 1: Overall architecture of SPARQLIt
livesIn ?y. ?y isLocatedIn India; and groundings (step 2) where elements of
semi-formal queries are replaced by elements of the KB, e.g., replacing columbia

by <Columbia_University>. We detail in Sections 3-5 the ways in which struc-
tural edits and groundings are generated to yield relevant candidate queries.
Candidate queries are evaluated over the KB (step 3) so that query results may
also serve to �lter candidates (see below).

Crucially, we introduce a formal notion of provenance tracking throughout
the process: we track the sequence of transformations that are performed, lead-
ing from the input semi-formal query to each candidate formal query, as well
as the binding of variables of candidate queries to the KB. Provenance tracking
serves as the basis of procuring �ne-grained feedback from the user with respect
to proposed formal queries. Namely, for a candidate formal query, we present
not only the query itself and its example evaluation results, but also the way
in which each element in the candidate query was obtained, i.e., from which
element in the user's semi-formal query it has been (indirectly) transformed, if
any. This is combined with the provenance of query evaluation (i.e. binding of
formal query variables to KB elements). See bottom pane of Figure 2 for an
example of presented provenance, in the form of (semi-formal element, formal
element, binding example). Feedback is then procured with respect to each such
piece of provenance: the user may mark �must�, �must not� or �don't care�. The
user feedback is converted by the Constraints Manager (step 5) to constraints
on proposed queries, which are accumulated and used by the other modules to
prevent the generation of queries that do not comply with user feedback. This
is repeated until the user �nds a proposed query satisfactory.

We have implemented our solution in a prototype system (SPARQLIt) and
examined (Section 6) its performance over two large-scale KBs, YAGO [34] and
DBpedia [12], and a standard query benchmark [35]. The experimental results
support the practicality of our approach, requiring only few interactions and a
few seconds to �nd most of the examined queries.

2 Model

We start with preliminaries on RDF, then introduce our notions of semi-formal
queries and provenance.
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RDF Knowledge Bases. An RDF Knowledge Base (KB) can be abstractly
viewed as a set of facts in the form of triples. Let Ent be a domain of entity
names (e.g., India, University) and Lit be a domain of literals (e.g., 2021). Let
Pred be a domain of predicate names (e.g., livesIn). An RDF knowledge base
is a set of triples of the form (s, p, o) where s ∈ Ent is the subject, p ∈ Pred is
the predicate and o ∈ Ent ∪Lit is the object. We use element to uniformly refer
to an entity, literal or predicate. We will sometimes represent multiple triples
〈s, p, o〉, 〈s′, p′, o′〉 by the n3 notation s p o. s' p' o'.

Formal SPARQL selection queries. To query RDF, we use the notion of
Basic Graph Patterns (BGPs). Let Var = {?x, ?y, . . . } be a set of variables.
A Triple Pattern is a member of the set (Ent ∪ Var) × (Pred ∪ Var) × (Lit ∪
Pred ∪Var). Namely, in a triple pattern, subjects, predicates and objects may
be replaced by variables. A BGP is a set of triple patterns, and its graph view
may be obtained in the same way RDF KBs are encoded as graphs. A formal
SPARQL selection query Q = (GQ, VQ) then consists of a BGP GQ and a set
of output variables VQ, which is a subset of the variables occurring in GQ.

Query evaluation. Given a formal SPARQL selection query Q = (GQ, VQ)
and an RDF KB G, let ϕ be a mapping of all variables in GQ to RDF terms
in G. Denote by ϕ(GQ) the result of replacing in GQ every variable v by ϕ(v).
If ϕ(GQ) ⊆ G (i.e. all obtained triples are in the KB G) then we say that ϕ
is a binding. Each binding ϕ yields a query answer A = ϕ|VQ

(ϕ restricted to
output variables) and the query result Q(G) is the set of all such answers.

Semi-formal queries. We now introduce the notion of semi-formal queries,
that have a similar form to that of formal SPARQL queries, but their labels are
not necessarily bound to the corresponding set of names in the KG. Addition-
ally, they may include special temporary place-holder elements from Tempsf =
{??X, ??Y, . . . } to be replaced by any KB term (entity/literal/predicate) when we
transform the query into a formal one (see below). Formally, let Entsf ⊃ Ent ,
Litsf ⊃ Lit, Predsf ⊃ Pred be extended sets of entity, literal and predicate
names, abstractly capturing any element the user may write, including formal
elements. A semi-formal BGP is then a BGP whose triple patterns are elements
of (Entsf ∪ Var∪{Tempsf }) × (Predsf ∪ Var∪{Tempsf }) × (Entsf ∪ Litsf ∪
Var∪{Tempsf }). A semi-formal query Q = (GQ, VQ) consists of a semi-formal
BGP and a distinguished subset VQ of output variables.

Example 2.1. Figure 2 is a screenshot of SPARQLIt, where the top-left panel
displays a semi-formal query: its syntax follows that of SPARQL, yet some of its
elements, e.g., columbia, has_graduate, do not occur in the queried KB (YAGO).
The top-right panel displays a formal SPARQL query matching YAGO, for which
an example binding is ϕ(?x) =Rajnesh_Domalpalli and ϕ(?s2) =Hyderabad. The
binding ϕ yields the following YAGO triples:
Rajnesh_Domalpalli graduatedFrom Columbia_University. Rajnesh_Domalpalli

livesIn Hyderabad. Hyderabad isLocatedIn India.

Provenance model. We introduce two types of provenance. The �rst is
�standard�: the provenance of a binding ϕ obtained by evaluating a formal
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Figure 2: SPARQLIt User Interface
SPARQL Query Q over a KB G, denoted prov(Q,G,ϕ), is represented as a set
of variable-value pairs of the form (x, v). The provenance of a query answer A ∈
Q(G), denoted prov(Q,G,A) is then a set of such provenance representations,
for all the bindings of Q in G yielding A. The second type of provenance is novel,
and is geared towards tracking the gradual re�nement of queries, as follows.

De�nition 2.2. Given two (formal or semi-formal) BGPs Q and Q′, a prove-
nance expression for a transformation of Q to Q′ is denoted by prov(Q,Q′) =
(P,C): P is a set of pairs (e, e′) where e is either ⊥ or an element of Q and e′

is either ⊥ or an element of Q′, such that (1) (⊥,⊥) ∈ P and (2) each element
of Q and of Q′ appears in exactly one pair. C ∈ N is the transformation cost.

Intuitively, pairs encode �mappings� of individual elements in Q to elements
in Q′; the notation ⊥ is used to mark deletions/insertions of elements.

We will show in the sequel how to attach provenance to concrete trans-
formations, yet we already note that an important property of provenance is
composability: namely, need to be able to combine provenance expressions of a
sequence of re�nements to yield a provenance expression for the entire sequence.

De�nition 2.3. Let Q0, Q1, Q2 be three queries, and let prov(Q0, Q1) = (P0, C0)
and prov(Q1, Q2) = (P1, C1). We compose them to provenance prov(Q0, Q2) =
(P2, C2) by P2 = {(e0, e2) | ∃e1 6= ⊥.(e0, e1) ∈ P0 ∧ (e1, e2) ∈ P1}∪ {(⊥, e) |
(⊥, e) ∈ P1} ∪{(e,⊥) | (e,⊥) ∈ P0}. As for cost, C2 = C0 + C1.

Intuitively, mappings are composed wherever elements occur in Q1; other-
wise, elements are either deleted inQ1 or inserted only inQ2, and the provenance
records this insertion/deletion. The cost of transformations is cumulative.

3 Structural Edits

A �rst type of edits that we apply to semi-formal queries are geared towards
modifying the query structure. Edits are applied to triple patterns, capturing
reordering/deletion/insertion of the following �avors (we note, however, that
our approach is generic and other types of edits may easily be incorporated).
For each edit operation, we also de�ne its provenance (see de�nition 2.2), but
keep the costs abstract at this point and discuss concrete cost choices below.

Subject-Object Switching: switch the subject and object of T = 〈s, p, o〉,
yielding T ′ = 〈o, p, s〉. The provenance captures an identity mapping, i.e., its
set of pairs is {(e, e)} for each element e of the (original and result) query.
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Element Exclusion: replace the subject/object/predicate of T = 〈s, p, o〉 by
a fresh variable ?x, yielding T ′ = 〈?x, p, o〉 or T ′ = 〈s, ?x, o〉 or T ′ = 〈s, p, ?x〉.
The fresh variable is not in the output and thus can be bound to any element of
the KB. For T ′ = 〈?x, p, o〉 the provenance will include the pairs (s,⊥), (⊥, ?x),
(p, p) and (o, o) and (e, e) for every other element e; the provenance is similarly
de�ned for T ′ = 〈s, ?x, o〉 or T ′ = 〈s, p, ?x〉. Note that the excluded element is
mapped to ⊥ which means we indeed stop tracking it.

Predicate Splitting: replace T = 〈s, p, o〉 by two triples T ′ = 〈s, p, ?x〉, T ′′ =
〈?x, ??Y, o〉 where ?x is a fresh variable and ??Y is a fresh placeholder. This
stands for replacing a direct predicate by a path including two predicates. The
provenance includes the pairs (s, s), (p, p), (⊥, ?x), (⊥, ??Y), (o, o), and (e, e) for
every other element e.

Example 3.1. Consider the triple pattern ?x lives_In India. If an inverse
predicate is used in the KB, a candidate query may be generated by Subject-
Object Switching yielding India lives_In ?x; the provenance expression (e, e)
for each element e connects the subject (object) of the original triple pattern to
the object (subject) of the re�ned one. Alternatively, applying Element Exclu-
sion could yield ?x ?p India or ?x lives_In ?y, generalizing the query so that
instead of the particular relation or entity we place a variable that may be bound
to any predicate/entity. The provenance includes a record of the newly added
variable ((⊥, {?p) or (⊥, {?y)) and associates the other nodes and edges with
their counterparts in the re�ned query. Last, it may be the case that the KB in-
cludes information about people living in cities rather than directly in countries.
Applying Predicate Splitting on ?x lives_In India would yield the two triple pat-
terns ?x lives_In ?s2. ?s2 ??P1 India. The placeholder ??P1∈ Tempsf will be
ultimately replaced in further edit steps by a predicate such as isLocatedIn.

Example 3.2. Reconsider the semi-formal query in Figure 2, and consider
the application of Predicate Splitting to ?x lives_In India to ?x lives_In ?s2.

?s2 ??P1 India, followed by Subject-Object Switching for columbia has_graduate

?x. Composing the two provenance expressions we obtain the pairs (⊥, ?s2) and
(⊥, ??P1) along with pairs (e, e) for e = India, ?x, etc.

Searching for structural edits We next brie�y describe the process of gen-
erating candidate queries. We store a frontier of semi-formal queries, initially
including only the input one. Whenever prompted, the Generator applies to
each semi-formal query currently in the frontier, the least costly possible edit.
Two types of pruning are applied to the generation of semi-formal queries. First,
multiple sequences of edit operations may result in the same semi-formal query,
in which case we keep in the frontier only the minimum-cost representative. Sec-
ond, the structural edits generator maintains a cache of semi-formal sub-queries
for which no formal query exists, i.e., they were rejected by other modules (as
described in the sequel). These and queries contained in them are ignored in
subsequent steps. Queries that are not pruned are stored in the frontier and the
minimal-cost candidate is passed on to the Grounding Generator, along with its
provenance.

Cost. The assignment of cost for each operation may be viewed as a con�gura-
tion choice. We have experimented with di�erent cost assignments, and observed
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that it generally useful to render a single structural edit operation more costly
than grounding the entire query (i.e. we prefer groundings that use the current
structure, if exist). We thus set the structural edit costs to be greater than C,
which is an upper bound on the grounding cost (see Section 4). Speci�cally, we
have superior optimal results with costs 2C, 100C and 30C for Object-Subject
Switching, Element Exclusion and Predicate Splitting respectively.

4 Grounding Generator

The Grounding Generator gets as input a semi-formal queryQ′ and the KBG. It
generates formal queries by replacing entities/predicates in Q′ that do not occur
in G by ones that do. We start by generating a ranked list of groundings for
individual triple patterns in Q and then combine groundings that are consistent
with each other to form a query. We next explain each of the two steps.

Triple Groundings. Given a semi-formal triple pattern t′ we generate a
ranked list of k formal triple patterns t1, ..., tk. These are generated as follows.
First, we represent t as a string s(t) by removing SPARQL syntax (including
variables and placeholders) and performing tokenization. Then we feed s(t) to a
black-box search engine that indexes triples from the KB. The engine returns the
top-k relevant KB triples along with their string representation. We augment
these triples back to triple patterns, plugging into them any variable that has
occurred in t′. Unlike variables, placeholders are not added back to the triple
patterns, so that they are grounded by KB elements.

Example 4.1. Consider for example the triple pattern ?x lives_in India. First,
we remove SPARQL notations and perform an initial tokenization, which yields
�lives in India�. The search engine results includes, e.g., the strings �Aadya lives
in India� and �Aarav lives in indianapolis�, attached to the KB triples <Aadya>

<livesIn> <India>, <Aarav> <livesIn> <Indianapolis>. Since the original triple
pattern has ?x as subject, we replace the subject in the KB triples by ?x and ob-
tain the ranked list ?x <livesIn> <India>, ?x <livesIn> <Indianapolis>.

Provenance. We de�ne the provenance for groundings in a similar way to
that of re�nements. For a semi-formal triple pattern t′ = (s′, p′, o′) and a
choice of formal triple pattern t = (s, p, o) as grounding, we introduce the pairs
(s′, s), (p′, p), (o′, o) to be stored in the provenance. We discuss costs below.

From grounded triple patterns to formal BGPs. We use the ranked
lists of formal triple patterns obtained for each triple pattern t′ in the semi-
formal query, to yield candidate formal BGPs. We traverse these lists in order,
each time choosing a single candidate triple pattern for each t′ (i.e. we start
with the set of all top-1 triple patterns). For each choice of triples, we check
their provenance for consistency, namely, that no two pairs (x, y), (x, z) such
that y 6= z appear in their provenance. If the set is consistent then the formal
triple patterns are concatenated to form a BGP GQ. Otherwise (or when the
Grounding Generator is prompted for the next query), the process is repeated,
with one of the triple patterns being replaced by the next-best one in the ranked
list, and so forth.
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Provenance revisited. Recall that only triple patterns with consistent prove-
nance expressions were combined. The overall provenance is then de�ned as
follows: its pairs set is the union of pairs sets in the provenance of all triple
patterns; the cost is the sum of costs stored in these provenance expressions.

From BGPs to queries. So far, we have generated formal BGPs as candi-
dates, mapping the semi-formal BGP to each of them. Recall that the semi-
formal query Q′ includes a distinguished subset VQ′ of output variables. For
each formal BGP GQ with provenance prov(GQ′ , GQ) = (P,C), the set of out-
put variables is de�ned as VQ = {v | (v′, v) ∈ P ∧ v′ ∈ VQ′}. The query
Q = (GQ, VQ) is the obtained candidate, with the carried provenance staying
intact, i.e., prov(Q′, Q) = prov(GQ′ , GQ). We next show how provenance of
edits and groundings may be composed.

Example 4.2. Following a sequence of structural edits as in Example 3.2, we
generate candidate groundings for lives_In, India, has_graduate, columbia and
the placeholder ??P1. One such combination of groundings may be <livesIn>,
<India>, <graduatedFrom>, Columbia_University, and isLocatedIn respectively.
The resulting formal query is shown on the top-right part of Figure 2 and
its provenance is shown on the bottom: e.g., has_graduate has transformed to
<graduatedFrom>, while isLocatedIn is newly added (so it has no original element
counterpart).

Cost. The cost for grounding a triple pattern t to t′ is set based on the string
distance measures between their representative strings s(t), s(t′), generated by
the search engine as explained above. Speci�cally, we use the Levenshtein edit
distance. An exception is the grounding of placeholders, which has 0 cost by
de�nition, and is thus excluded from edit distance computation. To account for
semantic synonyms that are represented by very di�erent strings, we generate a
set of synonyms for each string (using https://www.datamuse.com/api/), and
de�ne the distance as the minimal edit distance between a synonym of s(t) and
a synonym of s(t′). We revisit this design choice in Section 6. Last, recall that
our choice of structural edit costs relied on an upper bound C for the grounding
cost; we set C to be the maximal string length of a representative string of an
element in the KB, multiplied by the number of query terms.

5 Procuring Feedback

The Triple Store Manager receives as input a formal SPARQL query Q produced
by the Grounding Generator, and executes it over a black-box triple store (we
have used Apache Jena [5]). The query result may be empty: this is typically
an indication that Q does not match the user intention, and we search for
alternative queries (we revisit this assumption in Section 6). If the query result
is non-empty, we choose an example result, and an example binding yielding it.
To procure feedback, we combine the provenance accumulated throughout the
process of generating the candidate query, with the provenance of the example
query result.

De�nition 5.1. Let Q′, Q be a semi-formal and formal query respectively and
let prov(Q′, Q) = (P,C). Further let G be a KB, A ∈ Q(G) an answer,
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Figure 3: Overall performance for DBPedia and YAGO

ϕ a binding yielding A and prov(Q,G,ϕ) its provenance. The provenance
prov(Q′, Q,G, ϕ) = (P ′, C) where P ′ = {(e, e′, v) | (e, e′) ∈ P∧e′ ∈ Var∧(e′, v) ∈
prov(Q,G,ϕ)}∪ {(e, e′,⊥) | (e, e′) ∈ P ∧ e′ 6∈ Var∧(e, e′) 6= (⊥,⊥)}.

The user is then prompted for feedback on each triplet in the provenance,
and may choose one of the following responses for a given triplet (e, e′, v).
MUST: this feedback entails that from now on, only formal queries Q for which
(e, e′, v) ∈ prov(Q′, Q,G, ϕ′) for some binding ϕ′ will be proposed.
MUST NOT: only formal queries Q for which (e, e′, v) 6∈ prov(Q,Q′′, G, ϕ′) for all
bindings ϕ′ will be proposed.
MAYBE: no restrictions with respect to the triplet.

Example 5.2. Reconsider Figure 2; we have already explained (Example 4.2)
how the formal query is obtained and how the mapping of elements is based on
provenance information. We now also include, in the rightmost column, vari-
able bindings for a query output example, e.g., the binding of ?s2 to Hyderabad.
This allows procuring feedback for each triplet, through the checkboxes to their
left. Due to our �ne-grained provenance tracking, the feedback is highly infor-
mative: for instance, the user may con�rm that the <livesin> predicate captures
their intention expressed by lives_in. This will lead to considering only queries
which include the triple (lives_in, <livesin>,⊥). In contrast, they may e.g.
convey that the assignment of Rajnesh_Domalpalli to ?x is incorrect, leading to
pruning any candidate that includes (?x, ?x, Rajnesh_Domalpalli) (using our edit
operations, every variable is always mapped to itself or ⊥). Such �ne-grained
feedback, both positive and negative, signi�cantly narrows the search space of
possible queries.

6 Experiments

We have implemented our solution in a prototype called SPARQLIt. The proto-
type is implemented in .Net, using Blazor [9] for its front-end, Elasticsearch [18]
for the Search Engine (used for groundings) and Apache Jena [5] for the Triple
Store. All experiments were run on Intel i7-core processors with 32GB of RAM.
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As Knowledge Bases, we have used YAGO [34] English facts (approx. 160M
triples) and DBPedia [12]. Since the notion of semi-formal queries is novel,
to our knowledge, no existing benchmarks are available. To this end, we have
constructed benchmarks based on the �rst 50 NL questions in the training set of
QALD-9 [35]. Their translation to gold formal queries w.r.t. DBpedia is given
in [35], and we have formulated the gold queries w.r.t. YAGO; we have stripped
aggregation to obtain selection queries, see [11]. We have then constructed two
benchmarks of semi-formal queries: (1) QALD Translated is based on manual
translation that is oblivious to the terminology used in the KBs, e.g., �Who is the
tallest player of the Atlanta Falcons?� is translated to the semi-formal selection
query ?x type AtlantaFalcons. ?x height ?y (see [11]); (2) QALD Cross-KB
uses the formal query for YAGO as a semi-formal query to be evaluated with
respect to DBPedia, and vice versa. Intuitively, QALD Translated and QALD
Cross-KB are used to simulate users who are unfamiliar with neither KBs and
users who are familiar with one KB and wish to use the other, respectively (user
feedback is simulated using the underlying, hidden, formal query). Finally, we
have generated a synthetic benchmark, where we have varied di�erent aspects
of the query structure, to examine their e�ect on our solutions.

As solution baselines we have used the NL-to-SPARQL query engine gAn-
swer [23], which achieved the best results in the QALD-9 Challenge [35], as
well as multiple variants of our solution: (1) With-Empty. A variant which does
not prune queries with empty results; (2) No-Syn. This variant does not use
synonyms for distance computation, unlike our standard implementation (see
Section 4); (3) Top-50. By default, we con�gure the Search Engine to return
the top-100 results, whereas in this variant it is con�gured to return only 50.

Our evaluation metrics are the number of user interactions, i.e., the number
of executions of step 4 in Figure 1; and the total response time, i.e., the total
computation time of proposed queries, throughout the interactive session. If the
query was not found after 50 interactions we consider it a failure.

We next summarize our experimental results.

Overall Performance. In Figures 3a and 3b we show the cumulative per-
centage of formal queries successfully found by the di�erent solutions, for the
QALD Translated workload and DBpedia, with di�erent bounds on the number
of user interactions and total computation time. The results show that SPAR-
QLIt is the most successful solution. In particular, interacting once with the
user is already su�cient to outperform gAnswer, and to successfully �nd 52%
of the queries; with up to 3 interactions this percentage increases to 62%; and
with up to 10 interactions (and up to 23 seconds total time) this percentage in-
creases to 68%. All restricted variants perform worse than SPARQLIt in terms
of the number of interactions, showing the e�ect of our design choices. Fig-
ures 3c and 3d show results for the same experiment over the YAGO KB. We
exclude gAnswer here since it is tailored for DBpedia. SPARQLIt achieves the
best results in both metrics; With-Empty is signi�cantly worse, indicating that
the design choice of discarding queries that yield empty results is e�ective. We
summarize the success rates of SPARQLIt using up to 50 interactions in Table 1
(�rst column), and contrast them with With-Empty and gAnswer.

We have executed the above experiments using the QALD Cross-KB work-
load (where YAGO queries are used as semi-formal queries over DBpedia and
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SPARQLIt+
QALD Translated

SPARQLIt+
QALD Cross-KB

With-Empty+
QALD Translated

gAnswer+
QALD-9

DBpedia 78% 81% 64% 36%
YAGO 84% 81% 64% -

Table 1: Percent of successfully found QALD queries
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Figure 4: Time segmentation for SPARQLIt

vice versa). The trends were similar: with one interaction, we have successfully
found 44% of the queries in both KBs; using up to 3 interactions we found 53%
(resp., 56%) of the queries in DBpedia (resp., YAGO); and using up to 10 inter-
actions we found 67% (resp., 65%) of the DBpedia (resp., YAGO) queries. We
summarize the success rates with up to 50 interactions in Table 1 (second col-
umn). Overall, SPARQLIt had a high success rate and has succeeded in �nding
formal queries for the same semi-formal input over di�erent KBs, as well as in
�nding the same formal query starting from di�erent semi-formal queries.

Component Breakdown. Figure 4 shows a breakdown of the total compu-
tation time to (1) the Search Engine; (2) Triple Store and (3) all other compo-
nents. The Triple Store and Search Engine are indeed responsible for a large
fraction of the overall execution time (median 93% and 86% of the total time,
respectively for YAGO and DBpedia); among the two, the time incurred by the
Search Engine is typically higher: many query candidates are typically pruned
and do do not reach the Triple Store Manager. In contrast, when the overall
response time is slower, we observe that it is mainly due to high latency Triple
Store queries.

E�ect of the KB. Figures 5a and 5b examine the e�ect of the KB on the
di�culty of �nding the target query. They show for each query the needed num-
ber of interactions (resp., total response time) for DBpedia (x-axis) vs. YAGO
(y-axis). The graphs show relatively weak correlation (Pearson correlation co-
e�cient is∼0.6 for both graphs), given that DBpedia and YAGO have many
common information sources (most notably, Wikipedia). This serves as evi-
dence that the speci�cs of the KB structure are indeed essential when writing
formal queries.

Synthetic Queries. Figure 6 shows the response time of SPARQLIt for rep-
resentative synthetic queries. Queries include 8 triple patterns structured as
chains (subsequent triple patterns share a single variable) or stars (all triple
patterns share a single variable), and we vary the number of edits needed to
obtain the correct formal query. The response time grows roughly linearly, al-
though the space of relevant structures grows exponentially with the number of
edits. This demonstrates the e�ectiveness of our approach in pruning irrelevant
sub-queries.

10
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Figure 6: Response time vs. number of Subject-Object Switches.

7 Related Work

The SPARQLIt system prototype was demonstrated in ICDE '21 [3], but the
short paper accompanying the demonstration does not include details of our
solution. Many other lines of research study solutions that assist users in query
formulation. In particular, there is a large body of work on NL interfaces over
KBs (e.g., [14, 16, 23, 37, 41]) or databases (e.g., [8, 24, 27, 28, 32]). Com-
pared to the NL approach, our solution requires users to provide a more struc-
tured speci�cation, yet leverages this structure for an improved interactive pro-
cess (see Section 6). Another approach is that of Keyword Search over a KG
(e.g., [26, 21]); here again a major challenge is recovering from a situation where
no suitable query was found, i.e., how to make the process interactive. Other
works focus on autocompletion of SPARQL queries (e.g., [17, 30, 40]); these
lines of work are complementary to ours: in future work we will study adap-
tations of auto-completion tools to semi-formal queries, towards incorporating
them in our framework. Another relevant line of work focuses on similarity
search, studying means of �nding, for a given initial query, similar queries that
return additional results (e.g., [19, 29, 31, 38, 42]. In particular, Zheng et al. [42]
studied semantic similarity search for SPARQL, and introduced an edit distance
notion for RDF graphs. While there is some resemblance to our work in the
use of structural edit operations, the operations that we consider are di�erent,
since we do not require a formal query as input. Instead, we use measures based
on syntactic similarity and string similarity. In Query-by-example, queries are
reverse-engineered based on positive/negative result examples provided by the
user (e.g., [1, 2, 10, 6, 13, 15, 25, 39]). This method can be e�ective when
the users search typed instances for which they can easily provide positive and
negative examples, but is typically challenging to use when the query includes
non-categorical predicates, which are typically very sparse and heterogeneous,
and when users cannot provide su�cient examples. Finally, Faceted (naviga-
tional) Search enables users to re�ne their search options by navigating (drilling)
down, and has been studied in the context of RDF querying (e.g., [7, 20, 22, 36]).
A challenge for interaction in this context arises when the browsed query parts
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may not match the other intended parts of the user query. If the user performs
a sequence of drilling-down steps leading to a �dead-end�, it is unclear which
steps should be modi�ed and how.

8 Conclusion

We have introduced a novel framework that assists users in querying RDF KBs.
Users write queries that do not necessarily match in contents and structure to
the KB, and are given proposals for queries that do. Leveraging provenance, the
framework procures �ne-grained feedback on the proposed queries, guiding the
translation. In future research we will extend our Structural Edits operators as
well as the fragment of SPARQL we have focused on, including e.g., group-by,
aggregation and di�erence.
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