
Provenance-Based SPARQL
Query Formulation
Yael Amsterdamer, Yehuda Callen

Pronounced
“ya-ELLE”

Like the city

Querying a Knowledge Graph Provenance-Based SPARQL Query Formulation

Find individuals who are
graduates of Columbia University

and who now live in India

NL Interface

SPARQL

Querying a Knowledge Graph Provenance-Based SPARQL Query Formulation

Find individuals who are
graduates of Columbia University

and who now live in India

Issue 1: getting “stuck”.

What if the result is empty?

Issue 2: sparsity and
heterogeneity

How can we find relevant
examples?

Residence location
is typically a city

Semi-formal Queries Provenance-Based SPARQL Query Formulation

Find individuals who are
graduates of Columbia

University and who now
live in India

Select * {
columbia graduate ?x
?x lives_in india

}

Select * {
?x <graduatedFrom> <Columbia_University>

?x <lives_in> ?s2
?s2 <isLocatedIn> <India>

}

Natural Language
query:

Unstructured, not
grounded

Easy to write 

Difficult to ground 

Semi-formal query:

Well-structured, not grounded

Requires SPARQL familiarity

Easier to ground

Formal query:

Well-structured, grounded

Requires familiarity with SPARQL and KG 

Can be directly evaluated 

The SPARQLIt Framework: Highlights Provenance-Based SPARQL Query Formulation

Transform
semi-formal query
candidate formal

queries

Provenance
tracks

transformations
+query evaluation

User feedback
on query parts

and results

Structural changes

Grounding terms

Prune candidates

Traverse by cost

Triple Store

Search Engine

KG

Outline

Model

Structural Edits

Feedback

Experimental Study

4

5

2

Grounding3

Model Provenance-Based SPARQL Query Formulation

Facts as triples:

Yael lives_in India. India created_on 1947
Ent Pred Ent/Lit

Basic graph patterns (BGPs):

?x lives_in ?y. ?y created_on 1947

Query evaluation:
𝜑1: ?x↦Yael, ?y↦India
𝜑2: ?x↦Kareena_Kapoor, ?y↦India
…
Q(G)={(Yael,India),(Kareena_Kapoor, India),…)

Variable bindings

Query answer

User inputs a semi-formal query Provenance-Based SPARQL Query Formulation

SPARQL syntax

Not in the KG
vocabulary

Empty results

Step 1: Structural Edits Provenance-Based SPARQL Query Formulation

Select * {
?x graduate columbia.
?x lives_in india.

}

𝑄

𝑃 =

Select * {
columbia graduate ?x.
?x lives_in india.

}

Select * {
columbia graduate ?x.
?x ?s1 india.

}

Select * {
columbia graduate ?x.
?x lives_in ?s2.
?s2 ??Y1 india.

}

Input semi-
formal query.

Cost: 0

Candidate semi-
formal query.

Cost: 2c

Candidate semi-
formal query.

Cost: 100c

Candidate semi-
formal query.

Cost: 30c

Step 1: Structural Edits Provenance-Based SPARQL Query Formulation

Select * {
?x graduate columbia.
?x lives_in india.

}

Select * {
columbia graduate ?x.
?x ?s1 india.

}

Select * {
columbia graduate ?x.
?x lives_in ?s2.
?s2 ??Y1 india.

}

Candidate semi-
formal query.

Cost: 2c

Candidate semi-
formal query.

Cost: 30c

Select * {
columbia graduate ?x.
?x lives_in ?s2.
?s2 ??Y1 india.

}
Candidate semi-

formal query.
Cost: 30c+2c = 32 c

• Operation cost is accumulated
• Lazily compute minimum-cost candidate

Given two (semi/formal) BGPs 𝑄,𝑄′

their transformation provenance is prov 𝑄, 𝑄′ = 𝑃, 𝐶

Structural Edits Provenance Provenance-Based SPARQL Query Formulation

Select * {
?x graduate columbia.
?x lives_in ?s2.
?s2 ??Y1 india.

}

𝑄
Select * {
columbia graduate ?x.
?x lives_in india.

}

{(columbia, columbia)

(graduate, graduate)

(?x, ?x)

(, ?s2)

(, ??Y1)

(lives_in, lives_in)

(india, india)}

𝑃 =

Select * {
?x graduate columbia.
?x lives_in ?s2.
?s2 ??Y1 india.

}

{(columbia, columbia)

(graduate, graduate)

(?x, ?x)

(?s2, ?s2)

(??Y1, ??Y1)

(lives_in, lives_in)

(india, india)}

𝑃 =

Outline

Model

Structural Edits

Feedback

Experimental Study

4

5

2

Grounding3

Formal query

Step 2: Grounding Generator Provenance-Based SPARQL Query Formulation

Select * {
?x graduate columbia.
?x lives_in india.

}

{(columbia, Columbia_University)

(graduate, graduatedFrom)

(?x, ?x)

(lives_in, livesIn)

(india, India)}

𝑃 =Search Engine
[Elasticsearch]

“lives in india”
1. ?x <livesIn> <India>
2. ?x <livesIn> <Indianapolis>
3. …

1. “Kareena Kapoor lives in india ”
2. “Yael lives in indianapolis”
3. …

Select * {
?x <graduatedFrom> <Columbia_University>.
?x <livesIn> <India>.

}

Step 3: Triple Store Provenance-Based SPARQL Query Formulation

{(columbia, Columbia_University, ),

(graduate, graduatedFrom, ),

(?x, ?x, Prakash_Apte),

(lives_in, livesIn, ),

(india, India, )}

1. <Prakash_Apte>

Select * {
?x <graduatedFrom> <Columbia_University>.
?x <livesIn> <India>.

}

Triple Store
[Apache Jena]

Prune queries based
on results. E.g.:
empty results

Step 4: Feedback Provenance-Based SPARQL Query Formulation

Step 4: Feedback Provenance-Based SPARQL Query Formulation

Outline

Model

Structural Edits

Feedback

Experimental Study

4

5

2

Grounding3

Experimental Setup Provenance-Based SPARQL Query Formulation

• Datasets
• YAGO
• DBpedia

• Queries: QALD-9 (NL to formal in DBpedia)
• Semi-formal queries:

• Manual translation
• YAGO vs DBpedia

• Baselines
• gAnswer
• Restricted variants

Some Results Provenance-Based SPARQL Query Formulation

SPARQLIt+
QALD
Translated

SPARQLIt+
QALD Cross-KB

With-Empty+
QALD
Translated

gAnswer+
QALD-9

DBpedia 78% 81% 64% 36%

YAGO 84% 81% 64% N/A

DBpedia YAGO

Some Results Provenance-Based SPARQL Query Formulation

Low correlation
between datasets

Time increase is
linear in

transformations

Summary Provenance-Based SPARQL Query Formulation

• An interactive framework for
SPARQL query construction
• Using provenance to track query

transformations and output

• Search engine + triple store
+ fine-grained user feedback
help pruning candidates

• Future work:
• Extending query fragment (to e.g., aggregation)
• Additional operations

Thank you!

