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Abstract

Knowledge graphs are a highly useful form of information representa-
tion. To assist end users in understanding the contents of a given graph,
multiple lines of research have proposed and studied various data explo-
ration tools. Despite major advancements, it remains highly non-trivial to
�nd entities of interest in a large-scale graph where the user requirements
may depend on the initially unknown contents and structure of the graph.
We provide in this paper a formal approach for the problem, which com-
bines in a novel way ideas from two approaches: query-by-example and
faceted search. We �rst provide a novel model for user interaction that in-
cludes di�erent formal semantics for interpreting the answers. The seman-
tics correspond to natural interpretations of feedback in faceted search.
We show that for each of these semantics, any sequence of user feedback
may be encoded as a SPARQL query under standard closed-world se-
mantics. We then turn to the problem of iteratively choosing which user
feedback to prompt in order to optimize the expected length of interac-
tion. We show that depending on the probabilities of user answers, the
optimal choice of question may depend on the semantics; in contrast, we
show that for a natural way of estimating the probabilities, the optimal
choices coincide.

1 Introduction

The widespread adoption of knowledge graphs as means for representing in-
formation calls for e�ective ways to allow users to query and explore them.
SPARQL, the predominant query language for RDF graphs, allows specifying
complex data selection criteria. Yet, writing formal queries requires the user
not only to master the query language, but also to be familiar with the contents
and structure of the queried knowledge graph, and to have a crisp notion of a
question to be asked over this data. Due to the di�culty of these tasks in light
of the the increasing scale of knowledge graphs, assisting the uninformed user
in identifying relevant parts thereof is a crucial need.

These challenges are well known and have been extensively studied, leading
to the development of dedicated data exploration tools. There is a wide range of
approaches and technologies for this task (see [11] for a survey). A particularly
prominent approach is that of query-by-example (e.g., [1, 2, 6, 13, 15, 16, 19,
23, 28, 32, 38]), which aims at the �reverse-engineering� of a query from output
examples provided or evaluated by the user. The work of [2, 6, 15, 23] has
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developed such solutions speci�cally for SPARQL. Another prominent approach,
that of faceted search, allows users to browse through criteria that may be added
to a gradually forming query, typically by providing a friendly interface for
criteria selection, and dynamically updating the results (e.g., [7, 8, 14, 20, 33,
34]).

Despite this great progress, the problem is far from being solved, and specif-
ically, in many cases the user is unable to provide even a single output example
(for query-by-example) or to e�ectively browse through the list of properties to
describe it (for faceted search). Consider, for instance, a criminologist examin-
ing governmental data published in RDF, with the goal of studying properties
of �interesting criminals�. Since this user is not familiar with the contents of
the repository and her query is not well-formulated, she may struggle in �nding
relevant information. Presenting the user example entities and properties may
help her discover, e.g., that �a criminal� in this repository is identi�ed through
convictedOf properties, or realize that the data contains many historic convicts
while she is interested in relatively recent convictions of living people (and what
properties identify this irrelevant data).

In this paper, we develop an approach for querying a given knowledge graph
for entities based on their properties without prior knowledge of the graph con-
tents. This approach �marries� ideas from query-by-example and faceted search.
Brie�y, users are not requested to input example entities, but rather the frame-
work selects example entities to show the user in order to interactively identify
the relevant properties. Importantly, we observe that for knowledge graphs, it is
di�cult for a system to select output examples that would converge to a query
in reasonable time: entity properties are usually numerous, sparse, and partly
unknown; so hitting entities that have the desired properties is unlikely. To this
end, our framework not only presents examples but also asks about (carefully
selected) subsets of their properties, in the spirit of faceted search. Following
interactive variants of query-by-example, the subsets of properties are chosen
to maximize the expected information gain at each step; this may greatly speed
up the convergence to the user intention.

This paper lays formal foundations for the proposed approach, making the
following contributions.

Formal Model for User Interaction. Our �rst contribution is a formal
model for user interactions. The model is based on fairly standard notions of
questions and answers; questions are properties of entities in the knowledge
graphs and answers take the form of �yes�/�no�/�Don't care�. The novelty lies
in the interpretations of answers: our main observation is that since knowledge
graphs are inherently incomplete, an entity may in fact match the desiderata of
the user even if a requested property is not present with respect to it. We provide
four di�erent semantics for interpreting user feedback and de�ning its e�ect on
qualifying entities. We show that there is a chain of inclusion between the sets
of qualifying entities according to the four semantics. Thus, the semantics may
be viewed as means of balancing the precision and recall of queries, taking into
account the incomplete nature of knowledge graphs.

Encoding in Standard Semantics. The end result of the interaction is
a speci�cation of the properties that make an entity interesting to the user.
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We show that regardless of the semantics of user interaction, the end result
may be encoded as a SPARQL query under standard closed-world semantics
that SPARQL engines use, and that further the resulting SPARQL query is a
member of a simple SPARQL fragment. Retrieving the relevant entities then
simply involves invoking a SPARQL query engine.

Choosing the Right Questions. Given a choice of semantics for user in-
teraction, the problem is then to choose questions in a way that minimizes the
set of candidate entities. We provide a natural probabilistic formulation of the
problem and show that, in general, the optimal choice of question may depend
on the semantics assigned to user feedback. In contrast, we show a concrete way
of inferring the probabilistic distribution of anticipated future answers based on
statistics of past answers, and show that for this particular way of setting the
probabilities, the optimal question to ask no longer depends on the semantics
of user feedback.

The rest of this paper is organized as follows. Section 2 describes the theoret-
ical model underlying our solution. Section 3 discusses the choice of questions to
be asked in the course of interaction in order to optimize it. Section 4 overviews
related work and we conclude in Section 5.

2 Model

We next overview a standard model of knowledge graphs, and de�ne our notion
of user interaction.

2.1 Knowledge Graphs

We use here a simple knowledge graph model in the spirit of languages such as
RDF and OWL, abstracting away details that are not necessary for our setting.
Let E and P be sets of element ids and property ids respectively, standing for
entities/concepts from the knowledge domain, and their properties. We further
allow de�ning literal values from Σ∗ assuming Σ∗ ∩ E = Σ∗ ∩ P = ∅.

De�nition 2.1 (Facts and knowledge graph). A fact over E, P, Σ∗ is a triple
of the form {subject property object} where subject ∈ E, property ∈ P and
object ∈ E ∪ Σ∗. A knowledge graph is a set of facts.

Example 2.2. The knowledge graph could include facts {Saddam_Hussein type

Leader} and {Saddam_Hussein birthDate "1937-04-28"}. In this case,
Saddam_Hussein, Leader∈ E, type,birthDate∈ P and "1937-04-28"∈ Σ∗.

A knowledge graph can be also viewed as a labelled directed graph with
parallel edges and self-edges, where the vertices are elements in E or Σ∗, and
every directed edge (subject, object) is labelled by some property ∈ P. We
interpret the meaning of a knowledge graph under an open world assumption:
facts in the knowledge graph are asserted to be true and facts not in it may be
true or false. This allows incompleteness, which typically holds in practice.
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2.2 Interaction Model

Let u be a user who seeks entities in the knowledge graph G. Denote by Eu the
set of all entities that are acceptable by u. We pose questions to this user in order
to identify entities in Eu. For that, we ask u questions that can be interpreted as
�Should entities in Eu have property p with object o?� e.g., �Should entities in
Eu have the property type with object Leader?� (See Section 5 for a discussion
of additional question forms.) Formally,

De�nition 2.3 (Question and answer model). A user question in our frame-
work is denoted by qp,o where p ∈ P and o ∈ E ∪Σ∗∪{[]}. In response a user u
chooses an answer a ∈ {�p(o),�¬p(o),♦p(o)}, where for o 6= [], �p(o) (resp.,
�¬p(o)) implies that for every e ∈ Eu, the fact {e p o} is true (resp., is false);
♦p(o) implies that this fact may or may not hold for any e ∈ Eu (�don't care�).
If o = [], �p([]) (resp., �¬p([])) implies that for every e ∈ Eu there is some
(no) value o′ ∈ E ∪ Σ∗ such that the fact {e p o′} is true (resp.,is false).

The user feedback may then be encoded as a SPRAQL query. To this end
we next recall the syntax of a simple fragment of SPARQL, which we refer to
as sSPARQL. It consists of the following basic patterns for facts.

De�nition 2.4. A fact pattern is a triple $e p o where $e is a variable (�xed
for a given query) and p ∈ P and o ∈ E ∪ Σ∗ ∪ {[]}. A fact {s pred obj}
matches the pattern if p = pred, if either o = obj or o = [] (the latter stands
for an undistinguished variable, allowing any value to be assigned to []). s is
assigned to $e. We say that an entity s matches a pattern P with respect to a
knowledge graph G if there exists a fact {s pred obj} ∈ G that matches P .

An sSPARQL query is composed of a SELECT and WHERE clauses, as well as an
optional MINUS operator.

WHERE. The WHERE clause consists of groups of fact patterns (in curly brackets),
which may be nested in MINUS operators.

SELECT. Queries in our fragment always contain the clause SELECT DISTINCT

$e, which means the result of a queryQ over a knowledge graph G, denoted
Q(G), includes every distinct assignment to $e that is consistent with the
query contents (whose semantics are de�ned below).

Example 2.5. Figure 1a illustrates a query selecting all human convicts of
who are still alive and have not been convicted of war crimes. This is done by
selecting entities (assignments to $e) that appear in a fact with a convictedOf

predicate (with any object), have a type Person, do not appear in a fact with
a deathPlace predicate (with any object), and do not appear in a fact with
convictedOf predicate and WarCrimes object.

Given a set of questions and respective answers {〈qp1,o1 , a1〉,
. . . , 〈qpn,on , an〉} after n interaction steps, we encode them in a query Qn, as
follows.

� ai = �pi(oi) is encoded by $e pi oi.

� ai = �¬pi(oi) is encoded by MINUS{$e pi oi}.
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1 SELECT DISTINCT $e

2 WHERE {$e type Person.

3 $e convictedOf []

4 MINUS {$e deathPlace []}

5 MINUS {$e convictedOf WarCrimes}.}

(a) Qex under �standard� Closed-world semantics.

1 SELECT DISTINCT $e

2 WHERE {$e [] []

3 MINUS {$e deathPlace []}

4 MINUS {$e convictedOf WarCrimes}.}

(b) Equivalent of Qex under Open-world Semantics.

1 SELECT DISTINCT $e

2 WHERE {{$e type Person} UNION {$e convictedOf []}

3 MINUS {$e deathPlace []}

4 MINUS {$e convictedOf WarCrimes}.}

(c) Equivalent of Qex under Step-wise Semantics.

1 SELECT DISTINCT $e

2 WHERE $e convictedOf []

3 MINUS {$e deathPlace []}

4 MINUS {$e convictedOf WarCrimes}.}

(d) Equivalent of Qex under Weighted Semantics.

Figure 1: Variations of example selection query Qex.

Note that Qn does not encode ♦p(o), as it has no e�ect on the selected
entities (but we record the answer, to avoid repeating a question more than
once).

The query can be evaluated according to the aforementioned four semantics,
which corresponds to di�erent levels of strictness (Closed-world is most strict)
or �exibility (Open-world is the most inclusive in adhering to the user input.

We illustrate the translation from a user interaction to an sSPARQL query
via an example.

Example 2.6. The query in Figure 1a is an encoding of the answer sequence
♦gender(male), �¬deathPlace(Any), �convictedOf(Any),�type(Person),
�¬convictedOf(WarCrimes). Note that the order of answers in not important,
and that the �rst, �Don't care� answer is not encoded.

2.3 Multiple Semantics for User Interactions

As explained in the Introduction, there are multiple reasonable semantics that
could be assigned to the user feedback, and thereby to the sSPARQL query cor-
responding to it. We can also view the di�erent semantics as di�erent ways of
balancing the precision and recall of queries over an incomplete knowledge graph
with respect to a (complete) ground truth. We next overview these semantics.

Closed-world semantics. Given a query over a knowledge graph G, typical
SPARQL engines interpret it as follows: an assignment s to $e is consistent
with a pattern group if for each pattern p in the group s matches p with respect
to G/ (This also holds if a matching fact could be inferred from G's contents,
using logical inference rules as in RDF Schema and OWL.) MINUS has the usual
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meaning of di�erence. This semantics is closed-world in the sense that we regard
missing facts as false.

Open-world Semantics. Closed-world semantics is conservative in the sense
it only returns entities that certainly match the query. However, this limits the
ability of a user to explore entities with missing information or to err in the
interaction with the system. An alternative semantics which complies with the
open-world assumption ignores fact patterns in a �positive� context, i.e., not
nested in negation. We cannot prune entities for which a matching fact does
not occur in the graph, but may still be true. MINUS has the same semantics as
in Closed-world.

Step-wise Semantics. Closed world semantics may miss valuable results due
to missing facts, while Open-world semantics misses important characterization
of entities via positive fact patterns. As an intermediate solution, step-wise
semantics has the same semantics as closed-world, as long as query result set is
not empty. If it is empty, the query results contain all the entities that match
a maximal subset of the fact patterns in positive context.

Weighted Semantics. Finally, we consider a semantics that accounts for
which positive fact patterns are matched by each selected entity, and the im-
portance of each constraint, which is not re�ected in Open-world and Step-wise
semantics. For that, we associate with each fact pattern group G = {P1, . . . , Pn}
an importance weight w(G). Let G(G) denote the set of entities that match the
pattern group under Closed-world Semantics, and let {G1, . . . , Gm} denote the
maximal subsets of positive constraints use in Step-wise semantics. We will
then return the entities that match one of arg maxGi

w(Gi) as well as the MINUS
constraints.

An example weight function, in the spirit of information content is w(G) =

− log
(
|G(G)|
|G|

)
, i.e., inverse to the number of entities matching the group in the

knowledge graph G.
We next exemplify the di�erent semantics.

Example 2.7. Reconsider the query Qex in Figure 1a, and now assume a small
knowledge graph Gex that contains the following facts: {Saddam_Hussein type

Person. Saddam_Hussein deathPlace Baghdad. Silvio_Berlusconi

convictedOf Fraud. Angela_Merkel type Person.} Saddam_Hussein matches
the third pattern and hence does not match the �rst MINUS constraint, and will
not appear in the query result under any of our semantics.

Under Closed-world semantics, Qex(Gex) = ∅, as each entity does not match
some constraint: Silvio_Berlusconi and Angela_Merkel do not match the
�rst pattern and the second patterns respectively.

Under Open-world semantics, we ignore the positive constraints and will
return both of these entities.

Under Step-wise semantics, we have two maximal subsets of the patterns in
positive context that match some entity: {$e type Person} and {$e convicted

of []}, matched by Silvio_Berlusconi and Angela_Merkel respectively, Hence
in this case, Step-wise semantics yields the same output as Open-world.
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Finally, assuming a weight function inverse to number of matching entities,
the second pattern will have a higher weight (having only one matching person, as
opposed to two matching the �rst pattern). This means we will return the results
adhering to the maximal subset of patterns containing only the second pattern,
and adhering to the MINUS constraints - only Silvio_Berlusconi. This makes
sense if, intuitively, the omission of Silvio_Berlusconi type Person is more
likely than the omission of Angela_Merkel convictedOf o for any o.

We may show:

Proposition 2.8. For any Q and G, it holds that

QClosed−world(G) ⊆ QWeighted(G) ⊆ QStep−wise(G) ⊆ QOpen−world(G)

Assume we start with the entire domain E as the set of candidate entities. We
may also show that under Closed-world and Open-world semantics, a sequence
of questions and answers is yields queries whose set of answers monotonically
decreases. This matches the intuition that query answers are equivalent to
constraints that serve to narrow down the set of candidate entities.

Proposition 2.9. Let 〈qp1,o1 , a1〉, . . . , 〈qpn,on , an〉 be a sequence of questions and
answers. For every i, 1 ≤ i < n, and any input graph G, Qi+1

sem(G) ⊆ Qi
sem(G),

where Qi is the query encoding of {〈qp1,o1 , a1〉, . . . , 〈qpi,oi , ai〉}, and Qi
sem(G) is

its evaluation on G under semantics sem which is one of Closed-world, Open-
world.

This monotonicity property does not hold for Step-wise and Weighted se-
mantics, since as more constraints are added, new fact pattern subsets that
select additional entities may be formed.

Encoding in Closed-world Semantics. Since standard SPARQL engines
evaluate queries under Closed-world semantics, it may be useful to encode
queries under other semantics by their Closed-world equivalents. Indeed, we
may show:

Proposition 2.10. For every sSPARQL query Q and a Knowledge Graph G,
there exist sSPARQL queries Q1, Q2, Q3 such that

� QStep−wise(G) = Q1
Closed−World(G)

� QWeighted(G) = Q2
Closed−World(G)

� QOpen−World(G) = Q3
Closed−World(G).

Proof. We next provide the encoding for each semantics.

� Open-world to Closed-world. Given a query Q under Open-world seman-
tics, a query Q′ such that
QOpen−world ≡ Q′Closed−world can be obtained by omitting the positive
constraints from Q.

� Step-wise to Closed-world. Given a query Q under Step-wise semantics, a
queryQ′ such thatQStep−wise(G) = Q′Closed−world(G) for a given knowledge
graph G can be obtained by using a UNION operation, which operates over
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two fact pattern groups and is supported by standard SPARQL engines
under the standard (Closed-world) semantics: de�ne a group for each
maximal subset of the fact patterns, and replace the positive part of the
query by this union. As the semantics depends on the knowledge graph
contents, the encoding depends on the input graph.

� Given a queryQ under Weighted Semantics, a queryQ′ s.t.QStep−wise(G) =
Q′Closed−world(G) for a given knowledge graph G and weight function w can
be obtained similarly to Step-wise semantics, except that we take the union
of the groups with the maximal weight only.

Note that for Step-wise and Weighted semantics, the encoding depends on
the input graph, since these semantics depend on the (non-)emptiness of queries.
The encoding of the latter further depends on the weight function. To bind $e

when the positive part of the query is empty, we have added the fact pattern $e

[] []. When a union consists of only one group, we replace it by that group.

Example 2.11. Figures 1b, 1c and 1d demonstrate, respectively, the encoding
of Qex from Figure 1a under Open-world, Step-wise and Weighted semantics.

3 Optimizing the Interaction

We have de�ned a model of interaction with users, including formal semantics
for interpreting their answers. We next provide a framework for choosing the
questions, namely combinations of property and object that should/not hold for
the sought entities. We next discuss the iterative choice of questions, conditional
on the semantics of previous answers.

Problem de�nition. We focus on the following scenario.

(a) Questions of the form qp,o are the only means of interacting with users, as
opposed to e.g., allowing to users to type input such as search strings.

(b) For a given query semantics sem, there exists a query Q in our fragment
such that Qsem(G) = Eu.

(c) Users always give answers that are accurate to their needs by de�nition 2.3,
as opposed to users who may make mistakes.

(d) The process can halt as soon as an entity e ∈ Eu is presented to the user,
as opposed to only when the intended query Q is discovered.

These assumptions follow a �clean� model of exploration focusing on the
type of questions that we consider (assumptions (a)-(c)), and allowing for fast
convergence (assumption (d)).

Under these assumptions, we consider the choice of questions that would
eliminate as many candidate entities as possible, thereby increasing the likeli-
hood of discovering an entity in Eu. The e�ect of a question in this respect
clearly depends on its answer, but the answer is unknown; we therefore adopt a
probabilistic model for user answers, and seek to maximize the expected number
of eliminated entities.
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De�nition 3.1 (Problem de�nition). Denote by Prp,o(�) and Prp,o(�¬) the
probability of �must� and �must not�, respectively, for a speci�c question qp,o
at a certain point of the interaction. The probability of �don't care� is then
Prp,o(♦) = 1− Prp,o(�)− Prp,o(�¬). Let Eϕ and Eϕ′ denote, respectively, the
output of the current query ϕ, encoding the user answers thus far, and the output
of the next query ϕ′. Let Ep,o ⊆ Eϕ be the set of currently relevant entities e
(i.e., in the output of the current ϕ) with the property {e p o}. The expected
number of eliminated entities for a question qp,o, under Closed-world semantics
is then

E[|Eϕ − Eϕ′ |] = Prp,o(�) |Eϕ − Ep,o|+ Prp,o(�¬) |Ep,o|

For Open-world semantics we can replace |Eϕ − Ep,o| by 0. We seek the question
qp,o that maximizes this quantity.

We next study the problem assuming that the probabilities used in the above
formula are known. We then propose an estimation for these probabilities based
on property frequencies and analyze its e�ect on selected questions.

3.1 Assuming Known Probabilities

Problem De�nition 3.1 gives rise to a simple greedy algorithm that computes
the expected probability for each combination of property and object, and then
poses the question that maximizes this value. We next describe two optimiza-
tions to this algorithm.

First, we observe that only questions in {qp,o | {s, p, o} ∈ G∧s ∈ Eϕ}∪{qp,[] |
∃o {s, p, o} ∈ G ∧ s ∈ Eϕ}, i.e., questions on facts about candidate entities, may
lead to entity elimination greater than 0. We may thus only consider questions
in this set.

Second, to compute the formula we need to compute Ep,o for each question
in the above mentioned set. To do so in a comparatively e�cient way, we can do
a single pass over all the facts {s, p, o} such that in s ∈ Eϕ, and with each such
fact increment the counter for Ep,o and Ep,[], ignoring questions already asked.
The set of such facts may be retrieved by adding a pattern $e $p $o to ϕ and
executing a SPARQL query that returns the values of these three variables.

The number of eliminated entities may di�er between di�erent semantics.
For example, if the probability to a �must� answer is high, Closed-world seman-
tics will prefer a question corresponding to a pattern that matches few entities.
In contrast, Open-world semantics only eliminates entities given a negative an-
swer, and will thus prioritize patterns that match many entities.

Example 3.2. Assume |Eϕ| = 10 and that, among these 10 entities, 6 entities
match the pattern p1 and 4 match p2. Let the probabilities for �,�¬ and ♦
be 0.75, 0.25 and 0 respectively for the questions corresponding to the two pat-
terns. In this case, as illustrated by Table 1, for Closed-world semantics we will
prefer p2 and for Open-world we will prefer p1.

3.2 Estimating the probabilities

We next consider the estimation of Prp,o(�) and Prp,o(�¬) at each step of
the interaction, assuming no external information (e.g. statistics for past user
interaction). As preliminary results, we focus on the case where the user is
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pattern Ep,o Pr·(�) Pr·(�¬) E[|Eϕ − Eϕ′ |
p1(Closed-world) 4 0.75 0.25 4 · .75 + 6 · .25 = 4.5
p2(Closed-world) 6 0.75 0.25 6 · .75 + 4 · .25 = 5.5
p1 (Open-world) 4 0.75 0.25 0 + 6 · .25 = 1.5
p2 (Open-world) 6 0.75 0.25 0 + 4 · .25 = 1

Table 1: Expectation for eliminated entities for di�erent semantics (Exam-
ple 3.2).

interested in �nding a single entity, with each entity in Eϕ having an a-priori
equal probability of being the chosen one. Let the general probability of �don't

care� be Pr♦, then Prp,o(�) = (1− Pr♦)
|Ep,o|
|Eϕ| , and similarly Prp,o(�¬) = (1−

Pr♦)
|Eϕ−Ep,o|
|Eϕ| . By substituting these expressions in the expectation formula

above, we get that to maximize the expected number of eliminated entities with
a single question qp,o it su�ces to choose one that maximizes |Ep,o| |Eϕ − Ep,o|.

To extend this estimation to sets of properties, one can de�ne the probability
of a combination of answers analogously to a single answer (or as the product of
probabilities, assuming independence). One di�culty here, beyond the increased
computational complexity, is that now the Pr♦ factor no longer cancels out, as
the number of �don't care� answers can vary; e.g., if Pr♦ is high, feedbacks with
more �don't care� answers are more likely, and should have more weight in the
comparison between candidate question sets. Unfortunately, an estimation of
Pr♦ seems to be tightly coupled with external information, since it is related
to how users de�ne their needs (by how many requirements) rather than what
needs can be de�ned by the knowledge graph. A possible simpli�cation adopted
by our current preliminary prototype is assuming that properties are roughly

independent, namely, for any p, o, p′, o′ the fraction of entities in
|Ep,o|
|Eϕ| resembles

|Ep,o−Ep′,o′ |
|Eϕ−Ep′,o′ | , and thus it su�ces to choose the k questions qp,o with highest

|Ep,o| |Eϕ − Ep,o| values.
For open-world semantics, the �rst term is equal to 0, but since the sec-

ond term is proportional to |Ep,o| |Eϕ − Ep,o|, it turns out that, in contrast
to Example 3.2 where probabilities do not re�ect frequency, for this choice of
probabilities, the same questions are selected for Closed-world and Open-world
semantics, even though the entities they eliminate are di�erent.

4 Related Work

We overview related work with respect to multiple areas.

4.1 RDF and the Semantic Web

We have overviewed RDF [25] (Resource Description Framework) a standard
used to represent information on the web. Many publicly available RDF knowl-
edge bases (KBs) exist including large, general-purpose KBs, for instance, Yago1

1http://www.yago-knowledge.org/
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and DBpedia2, along with various domain-speci�c KBs, such as Hansard,3 the
o�cial collection of all parlamentary debates of the UK, or GeoNames, 4 a geo-
graphical database that covers all countries. Some of those KBs are automati-
cally generated, while others are built collaboratively by volunteer contributors.
These structured KBs have a great potential for the end users in terms of the
data they provide, and e�orts to create interfaces to ease the interaction with
such KBs are thus of great importance.

Several standards extend RDF with enriched semantics, enabling to express
complex semantics of relationships between entities, predicates and classes (e.g.,
RDFS [25] and OWL [31]) or describe domain-speci�c data (e.g., FOAF for rep-
resenting social networks [21]). The concrete model that we have developed has
accounted for interaction that may be captured via SPARQL queries of par-
ticular expressive power; further accounting for semantic relationship between
entities that is encoded in the Knowledge Graph itself is an interesting goal for
future research.

4.2 Knowledge Graphs Exploration

Indeed, the challenges faced by users interacting with huge Knowledge Bases
are well known and there is a vast body of research on knowledge graph explo-
ration; we refer the reader to the comprehensive survey in [11] and the references
therein. Still, as noted in [11], existing systems are generally not well-suited to
large-scale repositories with a large number of entities each having a large num-
ber of properties.

Query by Example. Querying by means of providing examples is a con-
venient method for (interactive) query re�nement. The general idea is that a
query can be inferred based on positive/negative output examples and given
some assumptions on the query type (e.g., conjunctive queries in relational
databases [13, 16, 38]). In an interactive query by example process, the user
is repeatedly presented with output examples, and may accept/reject them to
re�ne the query, until the desired query is obtained [2, 13]. Such a process is
especially helpful when the user has little or no prior knowledge of the structure
of the database.

There is a broad line of work [1, 13, 16, 19, 32, 38] on query by example in
relational databases, but these techniques are not directly suitable for querying
RDF data because of its rich semantics, non-uniform schema, and because of
the open world assumption described above. Query-by-example solutions are
scarcer for knowledge graphs, compared to their prominence in the relational
settings. Existing query-by-example frameworks for knowledge graphs (e.g., [2,
6, 15, 23]) require the user to provide seed examples; this may be non-trivial as
demonstrated above. (In the relational setting there exist systems that do not
require such seed examples, e.g., [13, 16].) This may be explained by the unique
features of knowledge graphs that render reasonable convergence by enquiring
on proactively chosen entities to be unlikely.

2http://dbpedia.org
3https://hansard.parliament.uk
4http://www.geonames.org
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Faceted Search. Faceted Search is a popular technique for re�ning search
results by proposing further constraints, such as features of products in e-
commerce websites (e.g., [22, 24, 26, 29, 30, 33, 34]) or properties fromWikipedia
infoboxes [10, 9]. There is a large body of work employed faceted search over
knowledge graphs (e.g., [8, 20, 33]). However, these studies focus on facet com-
putation, hierarchical browsing and visualization. To our knowledge, no previ-
ous work in this context has studied the alleviation of the exploration problem
by combining query-by-example with principles of faceted search. Further, the
formal semantics we have proposed for the interaction process and their for-
mal analysis are novel to our knowledge, and may serve as foundations for the
developments of solutions in this context.

4.3 Choosing Examples

Finally, we brie�y overview works that are related to the choice of entity ex-
amples that we have discussed in Section 3. Recall that at each point of the
interactive example selection process, the entities proposed to the user should
be selected carefully from the numerous candidate entities that may exist in the
large RDF KB, in order to facilitate the interactive entity search while avoiding
overwhelming the user. In particular, the set of examples may be restricted in
size. This topic is considered also in previous work on query by example [16],
mentioned above, and these techniques my also be adapted to our setting. We
next further consider related work from the �elds of RDF querying and search,
and from information retrieval.

RDF result ranking. The �rst line of works that we mention in this context
is related to RDF query output ranking. One option, given keywords provided
by the user, one can rank entities by relevance to the keywords [17, 27, 37].
Another option is to rank entities by popularity or frequency estimates. For
instance, one can issue keyword queries for each entity or property against
a major search engine (such as Google) and store the reported result size in
indexes as a popularity estimate [18].

Similarity Search. Similarity search is a means of querying RDF by ex-
tending an initial query. For instacne, Zheng et al. introduced in [40] a novel
similarity measure of RDF graphs, the semantic graph edit distance. This mea-
sure can be used to e�ciently select similar subgraphs and thereby extend a
given query to capture further similar results.

In our context, we may leverage such techniques in two ways. First, due to
the open-world assumption and to the non-uniform schema, �nding the relevant
candidates for the constructed query may not be straightforward. For instance,
some entities that are relevant to the user needs may lack required properties due
to incompleteness of the KB or because they have these properties expressed in
a di�erent RDF structure. In this case we would like to estimate which entities
are similar or likely to be relevant to the constructed query.

Second, we may allow the user to provide feedback of the form �Give me
similar results� with respect to a given example. In this case again similarity
metrics may be used to rank candidate entities by their similarity to the chosen
example.

12
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Diversity. Finally, a related notion of relevance of examples is based on met-
rics of diversity. Beyond increasing the likelihood that the user will �nd relevant
examples, diversity can also be helpful in the interactive query re�nement pro-
cess, as feedback on diverse examples is intuitively more likely to apply to larger
parts of the search space. There are di�erent works on diversifying search re-
sults [3, 5, 35, 36, 39]. This can be done, e.g., by clustering the results and
choosing examples from each cluster [12, 39], or by using metrics of diversity on
the selected results to further �lter them [5, 36].

5 Conclusion and Future Work

We have presented a novel approach for the exploration of knowledge graphs
that �marries� query-by-example and faceted search techniques, and have pro-
vided formal foundations for the approach. The foundations have included for-
mal semantics for the interactive process of interaction and an analysis of their
properties. We have further outlined principles of our implementation and in-
terface design, including the choice of entities on which to exemplify properties
appearing in questions to be posed to the users.

We have focused here on a basic type of queries (�star� queries with negation),
which should be extended to a wider range of queries. Some RDF languages,
such as OWL, encode inference rules that allow to derive or contradict facts
based on existing facts. An important future research direction is thus studying
the interplay between inference and query search in more depth. Finally, our
interaction scheme may be seen as complementary to other technologies such
as knowledge graph visualization, textual search and reverse-engineering queries
from entity relevance information. Combining our approach with these solutions
is an important task for future work.
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