Interactive Knowledge Graph Querying through Examples and Facets

Department of Computer Science Faculty of Exact Sciences Bar-Ilan University

Motivating Example

Interactive Knowledge Graph Querying through Examples and Facets

Lucy is a criminologist looking for insights in large knowledge graphs.

I am looking for interesting criminal profiles, but where to start?

Motivating Example

Interactive Knowledge Graph Querying through Examples and Facets

"Marrying" Examples and Facets

Interactive Knowledge Graph Querying through Examples and Facets

Model

Facts as RDF triples:

Saddam_Hussein type Leader. Saddam_Hussein birthYear 1937. \in Ent \in Pred \in Ent/Lit

```
Basic graph patterns (BGPs):
```

?x	type	?у.	?x		birthYear 1937.	
<pre>sSPARQL (SPARQ SELECT DISTI WHERE {?e ty MINUS {?e de MINUS {?e co</pre>	<u>Lfragment,</u> NCT ?e pe Person athPlace nvictedOf	simplified . ?e co []} WarCri): nvictedOf mes}.}	[]	stands for an undistinguished variable, allow any value to be assigned to i	ring t

User Interaction

Interactive Knowledge Graph Querying through Examples and Facets

sSPARQL (SPARQL fragment, simplified):

SELECT DISTINCT ?e

- WHERE {?e type Person. ?e convictedOf []
- MINUS {?e deathPlace []}

MINUS {?e convictedOf WarCrimes}.}

Saddam Hussein is not an answer

No matching

answers

Silvio Berlusconi

and

Angela Merkel

Interactive Knowledge Graph Querying through Examples and Facets

"Negative" patterns must never hold.

• Closed world:

"positive" patterns must hold

 Step-wise semantics: Angela Merkel maximal subset of "positive" patterns must hold

• Weighted semantics:

maximal subset of "positive" patterns with maximal weight must hold Only Silvio Berlusconi Silvio Berlusconi

Open world:

"positive" patterns may or may not hold

Example query

```
SELECT DISTINCT ?e
WHERE {?e type Person. ?e convictedOf []
MINUS {?e deathPlace []}
MINUS {?e convictedOf WarCrimes}.}
```

Example Knowledge Graph:

Saddam_Hussein deathPlace Baghdad. Saddam_Hussein type Person. Silvio_Berlusconi convictedOf Fraud. Angela_Merkel type Person.

Multiple Semantics - Results

- **Proposition** [containment between semantics]: for any Q and G, it holds that $Q_{Closed-world}(G) \subseteq Q_{weighted}(G) \subseteq Q_{step-wise}(G) \subseteq Q_{open-world}(G)$
- **Proposition** [monotonicity]: for any sequence of questions and answers, it holds for the queries that encode them that $Q_{closed-world}^{i+1}(G) \subseteq Q_{closed-world}^{i}(G)$ and $Q_{open-world}^{i+1}(G) \subseteq Q_{open-world}^{i}(G)$,

i.e., answer candidate set monotonically decreases

• **Proposition** [encoding in closed-world semantics]: for every sSPARQL query Q and a KG G, there exist sSPARQL queries Q^1, Q^2, Q^3 such that

$$- Q_{step-wise}(G) = Q^{1}_{Closed-world}(G)$$

 $- Q_{weighted}(G) = Q_{Closed-world}^{2}(G)$

$$- Q_{open-world}(G) = Q^3_{Closed-world}(G)$$

Problem definition

For a single question: choose a question $q_{p,o}$ that maximizes the number of eliminated candidate answers

$$E[|E_{\varphi'} - E_{\varphi}|]$$

= $Pr["must"|q_{p,o}]|E_{\varphi} - E_{p,o}| + Pr["must not"|q_{p,o}]|E_{\varphi} \cap E_{p,o}|$

- Depends on the semantics
- In the paper: deriving answer probabilities
- In the paper: selecting an example entity with multiple properties

Summary

- An interactive framework for knowledge graph exploration
- Selecting example entities with example properties to obtain feedback
 - Adding constraints to an sSPARQL query
- Multiple semantics for dealing with incompleteness and avoiding "dead-ends"
- See the paper for more details

Lord George Gordon

