SPARQLIt: Interactive SPARQL Query

Refinement

Yael Amsterdamer Yehuda Callen

Bar-Ilan University Bar-Ilan University

Abstract

We propose to demonstrate an interactive system called SPARQLIt,
assisting users in the formulation of SPARQL queries. In SPARQLIt,
users start by specifying a well-structured SPARQL query; the challenge
is that the query may not be grounded to a specific ontology schema or
content. The space of possible grounded queries to which the user query
may be mapped is then well-defined, and SPARQLIt allows the user to
interactively explore this space in a systematic way. A key component
of this exploration is a pruning mechanism that is based on identifying
query parts that are correct/incorrect, and using them to efficiently filter
candidate queries of a certain form. Our demonstration will use the Yago
Ontology to exemplify the ease of constructing queries with SPARQLIt
without prior knowledge of its contents. We will allow participants to
specify queries of their choice and will walk them through the interactive
process of query refinement.

1 Introduction

The widespread adoption of knowledge graphs as means for representing in-
formation calls for effective ways to allow users to query and explore them.
SPARQL, the predominant query language for RDF graphs, allows specify-
ing complex data selection criteria. Yet, even users who are familiar with the
SPARQL syntax may find it difficult to exercise their knowledge in practice
since the ontology contents and schema are typically highly complex and may
contain many sparse relationships, synonymous categories, incomplete data and
other irregularities.

These challenges are well-known and have been extensively studied, leading
to different tools for SPARQL query formulation, including natural language
interfaces (e.g., [1]), auto-complete suggestions (e.g., [2, 3]), query-correction
proposals (e.g., [2]) and query-by-example tools (e.g., [4]). Despite this great
progress, the problem is far from being solved. Specifically, due to the schema
complexity, users are likely to be offered queries that do not match their inten-
tion, or that return no results. When this happens, the users have to manually
try to either change their input (e.g., the text in natural language) or their in-
teraction with the system (e.g., choose other auto-completions for some query
elements), without a concrete idea of what lead to the problem and whether
their changes are likely to solve it.



» Header Interaction count: 4

Select * { a Select ™ { -~ O
7x lives_in india. ?x <livesIn>7a.
columbia has_graduate ?x 7x <graduatedFrom> <Columbia_University>.
} ?a <isLocatedIn> <India>
1
original_element proposed_element assignment_example
X X <Shanthi_Pavan>
lives_in <livesin>
7a <Chennai>
has_graduate <graduatedFrom>
columbia <Columbia_University>

Figure 1: SPARQLIt User Interface

To this end, we present a novel interactive framework for assisting users in
formulating SPARQL Queries. The user starts by writing a “semi-formal” query
that follows SPARQL syntax but is not grounded to the ontology that is being
queried. Namely, entity and relation names as well as the query structure may
be imprecise. In a sense, this may be considered as a sort of an intermediate
approach between informal query specification (e.g., in natural language), and
standard formal query engines. Recent empirical evidence [5] (in a relational
context) indicates that such semi-formal queries are much easier to specify than
formal ones, yet are considerably simpler to translate to a formal language in
comparison to unstructured input such as plain text. We focus in this work on
simple SPARQL selection queries, containing only variables and element names.
This fragment is in fact the one that requires knowledge of the schema, and can
serve as a basis for other query fragments (e.g., group-by and difference).

Next, SPARQLIt iteratively presents the user with proposals for formal,
grounded queries along with output examples. Since parts of the proposed
query correspond to parts of the semi-formal query, the Ul then allows the
user to accept or reject each part of the query and output example. Through
this feedback, the system efficiently prunes candidate queries and gradually
computes improved query proposals.

Consider for example a data analyst who is interested in searching for Indian
residents who studied at Columbia University. KBs such as Yago [6] contain
such information and may be queried to retrieve it. However, the correct for-
mulation of the intended query depends on how the relevant information (who
is Indian, at which university did one study) is captured in the queried KB. As-
sume the analyst is not familiar with the ontology specifics and has constructed
the SPARQL query appearing at the top-left pane of Figure 1 (ignore, for now,
the rest of the figure). Briefly, this query searches for assignments of some en-
tity e in the KB to a variable 7x such that the KB contains two facts about e:
e lives in India, and Columbia lists e as one of its graduates. This query could



be incorrect with respect to the queried KB, e.g., for the following reasons: (1)
The entity relevant to an input element appears in the KB under a different
name, e.g., <Columbia University> rather than columbia; (2) for a given input
element there are several reasonable candidate matches, e.g., is the KB predi-
cate <isCitizenOf> a good match for lives_in? (3) the query structure does not
conform to the KB schema. E.g., no has_graduate predicate between universities
and people exists in the KB, and instead the KB has an inverse relation called
<graduatedFrom> between people and universities.

We define a set of query refinement operators such that applying an operator
sequence to a semi-formal query yields a formal one. Examples for the operators
include (1) grounding: renaming of the abstract entity and relation names oc-
curring in the semi-formal query to concrete entity and relation names occurring
in the KB (2) reordering: changing the order in which query element appear,
e.g., exchanging the person and university elements in the above example; and
(3) decomposition: splitting a triplet into multiple ones. This resembles trans-
formations in query reformulation [7] and relaxation [8], but the initial input is
not formally specified, and hence our transformations operate under syntactic
similarity rather than under logical equivalence.

Continuing our example, one possible query yielded by such sequence of
operators is shown on the top-right pane of Figure 1. Here, grounding was
required for all the elements of the input, transforming, e.g., columbia into
<Columbia University>, reordering has replaced has_graduate with the inverse
<graduatedFrom> and decomposition has transformed the lives_in relation into
the combination of <livesIn> and <isLocatedIn> (to select places in India).

Naturally, the space of formal queries thereby obtained is very large even if
we impose natural restrictions on the length of the operator sequence. As ev-
ident from the above example, determining which query in this space matches
the user intention may require the user’s judgement, which in turn should be
frugally asked for. We employ two mechanisms to address this. The first is
ordering the space using a ranking function, which we tailor based on the dis-
tance of each query from the original semi-formal query. Here, an advantage of
our semi-formal input is that we can combine well-defined structural distance
as in works on query relaxation (e.g., [8]), with per-element textual distance as
in natural language query interfaces (e.g., [1]).

The second mechanism uses feedback from previous phases to efficiently
prune the space of candidate queries. The bottom pane of SPARQLIt’s Ul in
Figure 1 shows mappings between parts of the original query and of the proposed
query, as well as a sample assignment to each variable. The user can accept or
reject each part of the proposed query or the sample result by marking the
relevant check-boxes. This feedback is then applied to filter candidate queries.
In particular, by monotonicity, we can avoid considering all the candidate queries
sharing a query part that does not conform to the user feedback. For example,
if the user required <Shanthi_Pavan> to appear in the query output (by marking
“V” in the top-most check-box in Figure 1), and the query part ?x <livesIn>
<India> does not return this result, the system avoids the many query candidates
that include this query part. The two mechanisms are used together, to compute
candidate queries in order of ascending distance from the original query and
prune (or avoid computing) unsuitable candidates, until the next minimum-
distance suitable candidate is found and proposed to the user.



We use these components to build our prototype implementation for SPAR-
QLIt. We propose an interactive demonstration of the system, walking partic-
ipants through the query refinement process and demonstrating its usefulness
for posing realistic queries over the Yago Knowledge Base.

Related Work There are many lines of work on algorithms and systems that
assist in query (re-)formulation for different languages, including SPARQL, and
interactive solutions that allow for gradual refinement of the query. Among these
are natural language or semi-formal interfaces to databases (e.g., [1, 9, 10]),
query reformulation (e.g., [7]), query auto-completion (e.g., [2, 3]), semantic
similarity search (e.g., [8]), keyword search over a data graph (e.g., [11, 12]),
and query-by-example (e.g., [4, 13]). The unique features of our work is the
combination of (1) our starting point being a semi-formal specification, an idea
recently shown to be particularly effective for constructing queries of complex
semantics [5], (2) our consequent notion of distance-based cost for candidate
queries, (3) our pruning technique based on sub-queries, and (4) our particular
form of interactive refinement that allows user feedback on sample results and
every query element, increasing the means by which the user can steer the system
to the correct query.

2 Technical Background

We next overview the key technical notions to be used in our system.

2.1 RDF and SPARQL Queries

Let £ be a domain of entity names/literals (e.g., India, University). Let P be
a domain of predicate names (e.g., livesIn). An RDF' dataset is a set of triples
modeled as a labeled directed multigraph G = (Vg, Eg), where Vg C € is a
finite set of vertices and Eg C Vg x P X Vi is a finite set of edges that connect
entities/literals through predicates from P. An edge is directed from the subject
of the predicate to its object. We use element to uniformly refer to an entity,
literal or predicate. We will sometimes represent edges/triples (s, p, o), (s, p’, 0')
by the n3 notation s p o. s’ p’ o’.

A formal SPARQL query is similarly defined as a multi-subgraph Q =
(Vg, Eq), with the exception that Vg C EUVar and Eg C Vg x (PUVar) x Vg,
i.e., names from £ and P may be replaced with variables from Var, where it
holds that €N Var = PN Var = (), and variable names start with 7. The general
SPARQL syntax is broader, and allows for filtering conditions, difference, and
group by — but we focus here on simple selection as the most difficult part for
a user unfamiliar with the KB contents. A result of Q(G) of a formal query
is a (multi-)subgraph G’ C G defined by a function ¢ : Var — Vg U E¢ such
that by replacing in @ every x € Var with ¢(x) we will obtain G’, or, abusing
notation, G’ = ¢(Q). The result set of Q(G) includes all such results (and may
be empty).

We now introduce the notion of semi-formal queries, that have a similar
form to that of formal SPARQL queries, but its labels are not bound to the
corresponding set of names in the KB, i.e., Q@ = (V, Eq), where Vg C €% U Var



and Eg C Vg x (P* U Var) x Vg. We may assume that £ C &%, P C P* and
E¥ N Var = P¥N Var = (.

2.2 Interactive Refinement of Queries

Given a semi-formal query Q@ = (Vp, Eg), we shall (iteratively) compute a
formal query Q; = (V;, E;) and a partial mapping ¢; : Vg UEg—V,UE; U{ L},
where | stands for the choice not to map some element of @ to Q);. ; will adhere
to a set of constraints I';_; derived from user feedback in iterations 0,...,7 — 1.
We will aim to minimize a cost function A, that captures the dissimilarity of Q;
to . We will now define the notions of constraints and cost function, starting
with the latter.

We view Q; and 1; as the result of a sequence of edit operations on @, where
edits are split into element-wise and structural edits. Element-wise edits occur
when 1; maps some e € E* U P* to a KB element in £ U P, e.g., when the
user-input columbia & £ is mapped to Columbia University€ £. Structural edits
are performed by edit operators that reorder, decompose or remove elements,
such as the following.

e Object-Subject switching: given an edge (s,p,0) € Eq there is an edge
(s',p',0"y € E; such that 9;(s) = o' and 9;(0) = s’. E.g., map India

hasResident 7x tO ?x livesIn India.

e Element to variable: given an edge (s,p,0) € Eq, for some non-variable
e € {s,p,0} (e & Var), we have the mapping ¢;(e) = v where v is a fresh
variable in Var. E.g., map ?x resident India to 7x 7p India.

e Predicate splitting: given an edge (s, p,0) € Eq), there are edges (s, p’, 0'),
(o',p",0") € E; such that 9;(s) = &', ¥;(p) = p', ¥i(0) = 0" and o' € Var
— i.e., the subject and object are not connected directly but through a
path of length 2, using variables for the intermediate elements. E.g., map
?x livesIn India to ?x livesIn ?7y. 7y isLocatedIn India.

The cost A is then a weighted edit distance assigning each edit operation
a cost that intuitively quantifies the semantic change incurred by the edit. We
propose below a practical implementation of such a cost function.

Next, we allow users to provide a “yes”/“no” answer on each element map-
ping. A “yes” answer on ;(e) ¢ Var, means that this mapping will occur in
every proposed query from @; and on. Conversely, a “no” answer will exclude
such a mapping starting @;+1. To allow feedback on variables we present the
user with a sample result G’ € Q;(G); in this case, a “yes” (resp., “no”) an-
swer for 1;(e) € Var will be interpreted as stating that the result set of any
subsequent query @4k, must (resp., cannot) include a result with the example
assignment ¢(1);(e)). These accumulated constraints form a set I';, which serves
to narrow down the query search space.

2.3 Query Search Algorithm

As mentioned above, even for queries of bounded size the search space for formal
queries is huge. We therefore employ an A*-like search algorithm to traverse



the possible queries in increasing order of cost, and further employ pruning to
discard unsuitable queries, as follows.

For the cost function, we use a black-box search engine for elements, that
may also account for linguistic aspects such as tokenization, semantic similarity,
etc. Given an input element e, assume that €’ is returned by the search engine
with relevance relev(e, ¢’). The cost of editing e into €’ is the inverse of relevance,
Le, ———0p0 eéele SO using linear normalization to ensure relevance scores are
in the range [1,00). We associate a cost with each type of structural edit,
defined to roughly capture the increase in the search space that they incur: e.g.,
subject-object switching has a higher cost than per-element edit. The cost of a
proposed query is then the minimal sum of costs in a sequence of edit operations
yielding it (i.e. its edit distance from the original semi-formal query).

For the search algorithm, we employ an A*-like search in two levels: for
structural edits, we start at the root with the structure of the input semi-
formal query, and from each node branch out by considering every possible
edit step. Some branches may merge, e.g., if we apply subject-object switch
twice on the same element, or perform the same edits in a different order. For
element-wise edits, we use the black-box search engine to retrieve a ranked list
of candidates per input element, such that each combination of such candidates
is a candidate grounding for the entire query. We start at the root by taking the
top-1 candidate of each element and combining them; from each node we then
branch out by considering every replacement of a candidate by the next-best
candidate. The queries/structures with minimal cost are stored in frontiers,
such that as soon as a query is rejected we add its branches to the frontier and
proceed to the next minimal-cost query.

We introduce some optimizations to this general scheme. First, as a major
optimization, we allow users to search only queries that return a non-empty
result-set. This eliminates many candidate queries that are syntactically cor-
rect but have no realization in the KB. The form of queries that we consider are
monotone, in the sense that adding triples/edges only reduces the number of
results. Thus, we can specifically test for the emptiness of sub-queries against
a triple store, cache the results, and eliminate search branches and candidate
queries that include this sub-query. For efficiently returning initial results, we
perform a triple-wise search using the search engine, which returns the most
relevant triples (say, top-10000) for each triple in the input semi-formal query.
E.g., for 7x lives_in india it may return Aadya livesIn India, Aarav livesIn

India, ...Aaron livesIn Indiana, ...Diya citizenOf India and so on. By in-
tersecting the sets of assignments to the triple variables we may quickly find an
assignment to the relevant variable (in this case, 7x) that is consistent across
triples and that uses the minimum cost element edits. Finally, if the results
set of a sub-query is of small size (but non-empty), we extend them to larger
sub-queries by examining all neighbouring edges of the sub-query results. This
allows us to efficiently discover all possible groundings for additional parts of
the query.

3 System Overview

SPARQLIt is implemented in .Net, using Blazor [14] for its front-end. Fig-
ure 2 depicts the main modules of SPARQLIt and their interplay. The user



Structure
Search

Frontier

—
3 |Structure
D —
Query Element L
< €t o
Feedback Search E _::L;
o

NEl(e @ Triple
BB Store
Figure 2: High-level Architecture

starts by specifying a semi-formal SPARQL Query via the User Interface as
shown in the top-left corner of Figure 1. This triggers an interactive process
of searching for the user-intended query. The process starts with the structure
of the input (semi-formal) query and searches for a mapping of its individual
elements to parts of the ontology. It interacts with a black-box search engine
(we use Elasticsearch [15]), in which we treat the query elements and ontology
triples as strings and look for approximate matches. The matches are ranked
by cost and filtered (as explained in the previous section), and yield candidate
queries. The resulting queries can be applied to the underlying triple-store to
verify constraints on the output (we use Apache Jena [16]). We further store in
a cache information on unsuitable sub-queries, which allows to avoid their ma-
terialization in other structures. Non-empty query results as well as the query
and corresponding element mappings are presented to the user (see top-right of
Figure 1 for an example query, and the bottom pane for mappings). The system
then prompts the user for feedback (see check-boxes in the bottom pane of Fig-
ure 1). Accordingly and based on the cost function, the system either searches
new element mappings for the same structure or invokes a structure search,
i.e., examines structure edit operators. This process continues until the user is
satisfied with the result or decides to restart the process, e.g., by submitting a
new query.

4 Demonstration

We will demonstrate SPARQLIt using the Yago ontology [6], focusing for the
demonstration purposes on queries related to academic information (e.g. involv-
ing relations such as Doctoral advisor, university graduates, etc.), but connect-
ing such facts to other domains, such as places around the globe, politics and
sports. The demonstration will serve to show that, with SPARQLIt, one may
formulate queries without familiarity with the queried ontology. We will first
demonstrate some pre-selected queries, showing the interaction with our system
in cases where different operators are needed to reach the correct formal query.
We will show examples of positive and negative feedback on query parts and
results, as well as the gradual traversal of the search space. We will then invite
participants to write semi-formal SPARQL queries of their choice in this domain



and feed them into SPARQLIt. We refer the reader to the accompanying video
for an example of the interactive process to be demonstrated.

For the second part of the demonstration, we will allow participants to look
“under the hood” of the interactive process they have went through. We will
in particular show candidate queries generated but pruned, the cost assigned to
them, and other decisions made by the underlying search algorithm.

Acknowledgements

This work was funded in part by the Israel Science Foundation (grant No.
1157/16).

References

[1] D. Diefenbach, K. D. Singh, and P. Maret, “WDAqua-corel: A question
answering service for RDF knowledge bases,” in WWW comp., 2018.

[2] A. El-Roby, K. Ammar, A. Aboulnaga, and J. Lin, “Sapphire: Querying
RDF data made simple,” PVLDB, vol. 9, no. 13, 2016.

[3] K. Rafes, S. Abiteboul, S. C. Boulakia, and B. Rance, “Designing scientific
SPARQL queries using autocompletion by snippets,” in eScience, 2018.

[4] G. 1. Diaz, M. Arenas, and M. Benedikt, “Sparqlbye: Querying RDF data
by example,” PVLDB, vol. 9, no. 13, pp. 1533-1536, 2016.

[5] T. Wolfson, M. Geva, A. Gupta, Y. Goldberg, M. Gardner, D. Deutch, and
J. Berant, “Break It Down: A question understanding benchmark,” Trans.
Assoc. Comput. Linguistics, vol. 8, 2020.

[6] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of Semantic
Knowledge,” in 16th International Conference on the World Wide Web,
2007.

[7] M. Benedikt, E. V. Kostylev, F. Mogavero, and E. Tsamoura, “Reformu-
lating queries: Theory and practice,” in IJCAI 2017.

[8] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, “Semantic
SPARQL similarity search over RDF knowledge graphs,” PVLDB, vol. 9,
no. 11, 2016.

[9] F.Liand H. V. Jagadish, “NaLIR: an interactive natural language interface
for querying relational databases,” in SIGMOD, 2014.

[10] F. Li, T. Pan, and H. V. Jagadish, “Schema-free SQL,” in SIGMOD, 2014.

[11] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” in VLDB, 2005.

[12] K. Golenberg and Y. Sagiv, “A practically efficient algorithm for generating
answers to keyword search over data graphs,” in ICDT, 2016.



[13] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-example:

an automatic query steering framework for interactive data exploration,”
in SIGMOD, 2014.

[14] “Blazor,” https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor/.
[15] “Elasticsearch,” https://www.elastic.co/elasticsearch/.

[16] “Apache jena,” https://jena.apache.org/.


https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor/
https://www.elastic.co/elasticsearch/
https://jena.apache.org/

	Introduction
	Technical Background
	RDF and SPARQL Queries
	Interactive Refinement of Queries
	Query Search Algorithm

	System Overview
	Demonstration

