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Abstract
Organizations often seek to extend their data by integration with avail-

able datasets originating from external sources. While there are many
tools that recommend how to perform the integration for given datasets,
the selection of what datasets to integrate is often challenging in itself.
First, the relevant candidates must be efficiently identified among irrele-
vant ones. Next, relevant datasets need to be evaluated according to issues
such as low quality or poor matching to the target data and schema. Last,
jointly integrating multiple datasets may have significant benefits such as
increasing completeness and information gain, but may also greatly com-
plicate the task due to dependencies in the integration process.

To assist administrators in this task, we quantify to what extent an
integration of multiple datasets is valuable as an extension of an initial
dataset and formalize the computational problem of finding the most valu-
able subset to integrate by this measure. We formally analyze the problem,
showing that it is NP-hard; we nevertheless introduce heuristic efficient
algorithms, which our experiments show to be near-optimal in practice
and highly effective in finding the most valuable integration.

1 Introduction
Data scientists and analysts often face information needs that extend beyond the
original data and require integrating it with external datasets, which we term
extension by integration. The rise in number of online data sources increases
the potential availability, volume and coverage of relevant data. Yet, identi-
fying which datasets are most valuable for integration is often a complicated
task: each newly added dataset may include important information, but at the
same time may also introduce errors and uncertainties. Moreover, it may be
worthwhile enriching an initial dataset with multiple, complementary datasets.
The challenge then is that the value of each potential dataset is dependent on
the choice of other datasets. Some datasets may indeed be complementary to
each other, while some information in a given dataset may be redundant if we
have already integrated another one, etc.

For example, assume Tamara is a data analyst working with a dataset of
products. To gain further insights on why certain products had high or low sales,
Tamara wishes to extend her data with additional information. For instance,
for each manufacturer, add details about the company; for each manufacture
country, add details on the economy of that country; and so on. Tamara finds a
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relevant relation regarding companies, but when she integrates it with the prod-
uct dataset, she discovers the result contains mostly NULL values. Apparently,
the added relation only contained data on companies from a certain region. In-
tegrating datasets about companies in other regions improves the outcome and
the number of NULL values decreases. Then, Tamara discovers that she has
many overlaps in her dataset. She does not wish to pay for the use of redundant
data. What datasets should she retain? Which ones are the most suitable in
terms of schema, coverage, quality?

To this end, we formalize and study in this paper the problem of automat-
ically selecting multiple datasets to be integrated with a given dataset. The
formalization is based on quantifying the cost and gain associated with datasets
selection. Intuitively, the gain is based on the number of acquired table cells
that are (estimated to be) truthful and correctly integrated with the initial
dataset. Our model weighs different such facets, where weights are obtained
from existing data integration tools that measure the uncertainty of integration
in different ways. The cost of integration may be explicitly specified as a price
per candidate dataset, (e.g., the price of data usage rights). Another cost factor
is a decrease in quality as a result of the integration. This decrease is the coun-
terpart of our gain notion, accounting for acquired data values that are either
incorrect or incorrectly integrated. Another cause of quality decrease could be
the increase of incompleteness (NULL values), either due to incompleteness of
the candidate dataset or due to low coverage of the newly introduced attributes
with respect to the original data. The model is detailed in Section 2.

Our model leads to the problem of finding an optimal extension. We show
that the problem is FPNP -complete, via a reduction from Set Cover to the
corresponding decision problem (Section 3.1). Still, we are able to provide
PTIME heuristics (Section 3.2) that are experimentally shown to be effective in
practice. The general scheme of our solution is greedy, choosing at each point
the next best match; yet, the function that we optimize is non-convex, and
therefore we exhaustively integrate as many relations as possible, and then back-
track and return the best integration among the intermediate results. Crucially,
we develop optimizations that identify cases where the marginal contribution
of a given relation is bounded, allowing to significantly prune candidates for
integration. The solution is detailed in Section 3.

We have implemented our algorithms, employing further optimizations based
on locality sensitive hashing (LSH) to speed-up each pairwise integration. We
experimentally evaluated the quality of our solutions using multiple benchmarks.
Our results show that our solutions are highly effective in balancing the inte-
gration gain and cost tradeoff: in any case where a brute-force computation of
the optimal solution was feasible, the results of our algorithms were either equal
or very close to it. The results of our algorithms were much better than those
of baseline alternatives that we have explored. In terms of execution time, our
solutions scale well beyond problem sizes that the brute-force can handle, and
are feasible even when there are many candidate matches. The implementation
and experiments are detailed in Section 4.

The paper is organized as follows. We provide a formal model for extension
by integration and for gain and cost, which serve to define our problem, in Sec-
tion 2. In Section 3, we provide hardness proofs as well as a solution scheme and
optimizations. We implement our solution and conduct an experimental study
in Section 4. We discuss related work in Section 5 and conclude in Section 6.
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Products
Prod Manu. Country Sales

GreatPad X4000 BCnD South Africa 50M
GreatPad Y600 BCnD South Africa 60M
Superb Vital Macron NULL 40M
Smarterbook Elite Netter Saudi Arabia 10M
Smarterbook Emerge Netter Saudi Arabia 5M

Table 1: Example input relation Products

CA (Companies in Africa)
Company Located Category Rev.

Avocado Ethiopia Technology 115.8
BCnD S. Africa NULL 324.1
Macron NULL IT 155.3
Transact Senegal Finance 87.6
XYnZ Tunisia NULL 252.2

MEIT (Middle Eastern IT)
Name Country Revenue

Macron Egypt 155
Netter UAE 32
Opportune Qatar 79
Promot Israel 35
QueenTech Jordan 28

Table 2: Example candidates for extending Products

2 Preliminaries
We start by recalling the standard relational model, extended by a notion of
correctness probability. Formally, a relation Ri is associated with a finite set of
attributes sort(Ri) = U i = {U i

1, U
i
2, . . . , U

i
|Ui|}

⊆ U for some universal (possibly infinite) attribute set U. We identify the
relation Ri with an instance, such that Ri is a finite set of tuples of the form
t : U i → Dom∪{NULL}, where Dom is some universal domain of values and
NULL 6=∈ Dom represents a missing value. Each Ri has a key key(Ri). To
simplify definitions, we assume a single key consisting of a single attribute,
w.l.o.g. U i

1, with unique, non-NULL values. We note, however, that our solution
supports multiple keys. Pcorrect(Ri) denotes an a-priory probability of an error
in any non-NULL value in Ri. We use R to denote a set of relations. We discuss
below, in Section 4.1, preprocessing of datasets, in particular for estimating the
probability of an error and finding keys.

2.1 Dataset Extension by Integration
Given an initial relation, R0, we next consider its extension by integrating ad-
ditional relations to it from a collection of candidates. As details below, our
framework does not aim to redefine basic operations in integration but to make
an effective use of them as black-boxes (see Section 5 for possible implementa-
tions). Since most tools for data integration operate pair-wise, comparing two
relations at-a-time, we will obtain an integration of multiple datasets through a
sequence of pair-wise integration operations.1 Our model supports asymmetry
in the sense that we distinguish the initial relation from the one integrated to
it, and thus allow the order of integration operations to affect the integration

1Given an initial dataset with multiple relations, we can repeat the process for each relation.
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Ires(Products,MEIT)
Prod Manu. Country Sales Revenue
(Products) (Products) (Products) (Products) (MEIT)

GreatPad X4000 BCnD South Africa 50M NULL
GreatPad Y600 BCnD South Africa 60M NULL
Superb Vital Macron Egypt 40M 155
Smarterbook Elite Netter Saudi Arabia 10M 32
Smarterbook Emerge Netter Saudi Arabia 5M 32

Table 3: Example integration result of Products and MEIT.

result. This could be used, e.g., to give precedence to the values integrated
earlier, and specifically to the input relation’s values.

Matching attributes Our system expects as input a black-box algorithm
that matches attributes of two relations. We next formally define the input and
output of this black-box.

Definition 2.1. Given two relations, Ri and Rj, an attribute matching algo-
rithm returns as output

(i) a function attMatchRi,Rj(·) : U i→U j ∪ {⊥} maps every attribute in U i to
a matching attribute in U j, or to ⊥ if it has no match; and

(ii) a function PattMatch
Ri,Rj

(·) : U i→ [0, 1] – an (estimated) likelihood for an at-
tribute pair match to be correct.

We say that Ri, Rj are matched if attMatchRi,Rj(key(Rj)) 6= ⊥.
Denote by attMatch-1

Ri,Rj
(U j

l ) the inverse mapping, again assigning ⊥ to
unmatched attributes in U j.

The attribute matching defines the schema for an integrated relation Ri,j =
Ires(Ri, Rj). Its attributes are Ui,j := U i∪U j−{U j

l ∈ U j | attMatch-1
Ri,Rj

(U j
l ) 6=

⊥}, i.e., retaining one copy of each matched attribute.

Example 2.2. Recall the datasets in Table 2, and let us number the attributes
from left to right in each relation. Consider an integration between relations
Products and MEIT, matching the attributes such that attMatch(UProducts

2 ) =
UMEIT

1 (manufacturer to name) and attMatch(UProducts
3 ) = UMEIT

3 (country at-
tributes). The attributes of the integration result, after removing the two matched
attributes in MEIT, would be as in Table 3.

Linking records Another input to our system is a black-box tool that matches
between records of integrated relations, given the matched attributes. We de-
fine a weight for the linking based on the probability of matching the key at-
tribute and the matching of values. Given two values, x and y, we denote by
PvalMatch(x, y) the likelihood of these values to have the same meaning.

We next define the result of record linking as well as its weight.
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Definition 2.3. Given two relations, Ri and Rj and an attribute matching
function attMatchRi,Rj , a record linking algorithm returns as output a function
linkRi,Rj : Ri→Rj ∪ ⊥ mapping each tuple in Ri to a matching tuple in Rj if
exists.

The linking between tuples t ∈ Ri, t
′ ∈ Rj yields a linking result tuple

reslink
Ri,Rj

(t) = t′′ defined as follows.

• When attMatchRi,Rj(U i
k) = ⊥ then t′′(U i

k) = t(U i
k);

• If attMatchUi
k,Rj(=)U j

l then if U i
k(t) 6= NULL or t′ = ⊥ we set U i

k(t′′) =
U i

k(t), and otherwise U i
k(t′′) = U j

l (t′).

Denote U = key(Ri), U ′ = attMatchRi,Rj(U) 6= ⊥ and t′ = linkRi,Rj(t). The
weight for the record link is defined as Wlink

Ri,Rj
(t) :=

PattMatch
Ri,Rj

(U) ·Wcorrect(U, t) ·Wcorrect(U ′, t′) · PvalMatch(t(U), t′(U ′))

where Wcorrect(U, t) is a weight assigned to reflect the correctness of t(U) (we
derive its formulation in Def. 2.6).

Intuitively, our definition of an integrated tuple resembles a left outer join,
using the values of both original tuples, and NULLs for the right tuple if not
exists. For matched columns, we take the non-NULL value between the two
tuples, and if both are non-NULL, we prefer the left tuple. The weight assigned
to a link is an aggregation of our confidence in the attributes and value matches,
as well as in the correctness of the individual tuples.

We define further two indicator functions that will be useful in the sequel,
and that distinguish two types of values introduced via the integration.

• t′′(U j
l ) is a non-NULL value added through an unmatched column from

Rj , denoted by the indicator function
added(U j

l , t
′′, Ri, Rj) ∈ {0, 1}.

• U i
k(t′′) is a non-NULL value obtained by replacing a NULL in Ri by a value

from Rj for a matched attribute and record, denoted by the indicator
function resolved(U i

k, t
′′, Ri, Rj) ∈ {0, 1}, since it corresponds to resolving

a missing value.

Example 2.4. Continuing Example 2.2, we now consider the linking of t, the
third tuple in Products with t′, the first in Meit, resulting in t′′, the third tuple
in Table 3. The first, second and fourth values were taken from t, the rest are
from t′. In this case, the integration helped us resolve a NULL in t(UProducts

3 )
(missing country), which we denote by
resolved(UProducts

3 , t′′,Products,Meit) = 1. The last value of t′′, 155, belongs
to an attribute UMEIT

3 (t) (Revenue) added to the integration result, denoted by
added(UMEIT

3 , t′′,Products,Meit) = 1.
Now consider the weight of linking, Wlink

Products,Meit(t). The Manu. column in
Products is matched to a key of MEIT. Say
PattMatch

Products,Meit(UProducts
2 ) = 0.95, Pcorrect(Products) = 1,

Pcorrect(MEIT) = 0.8 and PvalMatch(Macron,Macron) = 1. The linking weight
is then 0.95 · 1 · 0.8 · 1 = 0.76.
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As another example, note that for the first two tuples of Product, no tuple
of MEIT was matched and so their value for Revenue is NULL. Further note
that in case of value disagreement, e.g., on the country of Netter (tuples 4-
5 of Products, tuple 2 of MEIT), we use the value of the left relation (Saudi
Arabia).

Overall integration result We now use the above definitions to obtain an
overall definition of relation extension by integration.

Definition 2.5. We define an integration as a tuple
I = (attMatch,PattMatch,PvalMatch, link, Ires), where attMatch,
PattMatch are defined in Def. 2.1, PvalMatch in the beginning of the Record linking
par. and link in Def. 2.3. Given two relations Ri, Rj, we define Ires(Ri, Rj) =
{t | ∃t′ ∈ Ri, t = reslink

Ri,Rj
(t)}.

2.2 Gain and Cost of Integration
We now formally define notions of gain and cost in our context, based on the
correctness of data and operations captured by our model and measures of
information gain and quality loss. We start by assigning weights to values based
on our estimation of their correctness, in turn derived from the initial dataset
correctness probabilities and from our estimation of the linkage and matches
correctness.

Definition 2.6. Let t ∈ R be a tuple, U be an attribute of R such that t(U) 6=
NULL.

• If R is an initial relation (as opposed to the result of an integration), we
define Wcorrect(U, t) = Pcorrect(R).

• Else if added(U, t,Ri, Rj) and let t = reslink
Ri,Rj

(t′), we compute Wcorrect(U, t) =
Wlink

Ri,Rj
(t′) ·Wcorrect(U, linkRi,Rj(t′)).

• Else if resolved(U, t,Ri, Rj), and let t = reslink
Ri,Rj

(t′), we compute Wcorrect(U, t) =
Wlink

Ri,Rj
(t′) · PattMatch

Ri,Rj
(U)·

Wcorrect(attMatchRi,Rj(U), linkRi,Rj(t′))

Gain Our gain function is based on a notion of informativeness, by count-
ing the expected number of (correct) values added/resolved by the integration
process.

Definition 2.7. Given two relations Ri, Rj, the gain from their integration is
defined as

gain(Ri, Rj) :=
∑

t∈Ires(Ri,Rj)

∑
U∈Ui,j

t(U)6=NULL

Wcorrect(U, t)

Next, we consider three complementary factors of integration cost, concern-
ing incompleteness, errors and fixed integration cost (e.g., monetary). All of
these naturally depend on black-box integration solution; the I notation is
omitted for brevity when clear from context.
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Incompleteness cost The first cost factor is completeness, namely the num-
ber of NULL in the integration result, which is denoted by CostNULL(Ires(Ri, Rj)).
During the integration process, NULL values may be included in integrated ta-
bles, but also introduced through added attributes and unlinked records, even
if the integrated relation contains no NULLs. This is demonstrated by the fol-
lowing example.

Example 2.8. Returning to our running example, for a simple case of increas-
ing incompleteness by integration an incomplete relation, consider the integra-
tion of CA to Products in Table 2. CA includes three NULL values, that will also
appear in the integration result, i.e., we have CostNULL(Ires(Products,CA)) = 4
along with the single NULL Products. In contrast, relation MEIT from Table 2
contains no NULLs; but since the first two records of Product (BCnD) are not
linked to any record in MEIT, they have NULL values in the newly-added at-
tribute Revenue (see Table 3). Moreover, in this case MEIT resolves the NULL
value in the third record of Products, resulting in CostNULL(Ires(Products,MEIT)) = 2

Error cost The error cost is defined as the expected number of erroneous
(non-NULL) values in the integration result, and its formula is thus symmetric
to the gain formula.

Definition 2.9. Given two relations Ri, Rj, the error cost of their integration
is defined as

Costerr(Ires(Ri, Rj)) :=
∑

t∈Ires(Ri,Rj)

∑
U∈Ui,j

t(U)6=NULL

(1−Wcorrect(U, t))

Note that by definition, our weights are in [0, 1] and resemble probabilities,
hence subtracting from 1 in the above formula makes sense. In particular, by
this definition, if R = Ires(Ri, Rj) and U = Ui,j then |R| · |U | = gain(R) +
CostNULL(R) + Costerr(R).

Fixed cost per integration Finally, in some cases a fixed cost is attached to
each dataset integration. This could be the case, e.g., when the use of datasets
is associated with monetary cost, or to penalize a larger number of integrated
tables.

Definition 2.10. Given two relations Ri, Rj, the fixed cost of their integration
is defined by Costfixed(Ires(Ri, Rj)) := Costfixed(Ri) + Costfixed(Rj), where for
each candidate dataset Ri ∈ R (not the result of an integration), Costfixed(Ri)
is given.

Combining cost and gain We now combine the gain and cost functions
together to obtain an optimization problem definition, as follows.

Definition 2.11. Let R0 be an initial dataset, R = {R1, . . . , Rn} a set of
candidate datasets, I an integration and α, β, γ ∈ [0, 1] parameters. We define
OPT-EXTENSION as the problem of finding a sequence [Ri1 , Ri2 , . . . , Rik

] such that

R = Ires(. . . Ires(Ires(R0, Ri1), Ri2) . . . , Rim)
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i.e., sequentially integrating them in order, maximizes

score(R,α, β, γ) :=
gain(R)− (αCostNULL(R) + β Costerr(R) + γ · Costfixed(R)) (1)

For brevity, we omit α, β, γ from the score(·) input when their values are
clear or irrelevant in the context.

3 Results
We next show a hardness result for our problem and then detail a heuristic
scheme that effectively solves it in practice.

3.1 Hardness of OPT-EXTENSION

We first define the decision problem corresponding to OPT-EXTENSION.

Definition 3.1. Let R0 be an initial dataset, R = {R1, . . . , Rn} a set of candi-
date datasets, I an integration, α, β, γ ∈ [0, 1] parameters and Θ a target score.
We define DEC-EXTENSION as the problem of deciding whether there exists a se-
quence [Ri1 , Ri2 , . . . , Rik

] such that
score(Ires(. . . Ires(Ires(R0, Ri1), Ri2) . . . , Rim

)) ≥ Θ.

Proposition 3.2. Given an initial relation R0, a set of candidate relations
{R1, . . . , Rn} and parameters α, β, γ, and a polynomial-time integration I, solv-
ing OPT-EXTENSION is FPNP-hard2 in the number of candidate relations, n.

Conversely, we have a FPNP algorithm for finding a solution R such that
score(R) = bscore(OPT)c, where OPT is the solution to OPT-EXTENSION.

Proof (sketch). Hardness is proved by a reduction from SET COVER. Membership
is proved by an algorithm using oracle calls to DEC-EXTENSION, first in a binary
search to determine the optimal Θ, and then in incrementally selecting the
relations to integrate that allow reaching the target score of the integration
result.

While we show a reduction from SET COVER, known approximation results
for SET COVER do not apply for our score function: the marginal contribution of
an integrated dataset may depend on the other integrated datasets, and hence
our score function is in general not monotonic or even convex. We next develop
a greedy heuristic for solving OPT-EXTENSION, which in particular accounts for
the non-convexity of the score(·) function.

3.2 Solutions to OPT-EXTENSION

We start by describing a greedy approach for solving OPT-EXTENSION. Our gen-
eral scheme is given in Algorithm 1, which integrates as many relations as pos-
sible with the initial one, one-by-one, then returns the intermediate result with
highest score (recall that the score may decrease and then increase in this pro-
cess).

2FPNP is the class of PTIME functions that use an oracle for a problem in NP.
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Algorithm 1: OPT-EXTENSION Solver General Scheme
Input: R0: initial relation; R = {R1, . . . , Rn}: set of candidate

relations; I: integration black-box; α, β, γ: weights for score
function; f : a function selecting a single next relation to
integrate

Output: Rmax final integration result
1 Rcurr, Rmax ← R0;
2 maxScore← score(R0, α, β, γ);
3 while R 6= ∅ do
4 Ri,R ← f(Rcurr,R, I, α, β, γ);
5 if Ri = ∅ then break;
6 R = R− {Ri};
7 Rcurr = Ires(Rcurr, Ri);
8 Update Rmax,maxScore if the score of Rcurr is greater;
9 return Rmax;

In more detail, Algorithm 1 starts from an initial relation R0, each time in-
tegrating it with a single relation Ri ∈ R. Choosing Ri is done via a function f ,
which we will instantiate in the sequel with different implementations. f may
discard relations from R – to make this explicit, the output of f also includes
the modified R. The scheme iterates until R is empty (line 3) or until f does
not find another relation that can be integrated and returns an empty relation
(line 5). Then, the intermediate integration result with highest score is returned.

Greedy approach Our first algorithm for f , Edmint-Greedy, inspects all the
relations that can be integrated (namely, that have a key attribute that matches
one of the attributes of the current relation), and greedily chooses the one which
maximizes the integration score, formally,

Edmint-Greedy(R,R, I) := arg max
Ri∈R

score(Ires(R,Ri)) (2)

Optimizations for Edmint-Greedy Next, we overview an optimized imple-
mentation for the f function; this implementation identifies cases when the
marginal contribution of the relation is bounded or fixed, and which allow us
to immediately integrate or discard relations. We call the overall algorithm
obtained by using this implementation Edmint-Opt.

Algorithm 2 details the steps of this optimized method. First, in lines 1-
3, we discard relations whose marginal contribution is negative, based on the
following observation.

Observation 3.3. Given an integration candidate Ri, the marginal contribu-
tion of Ri when integrated to any relation R is bounded by score(Ires(R,Ri))−
score(R) ≤ gain(Ri)− β Costerr(Ri)− γ Costfixed(Ri)

Since the bound depends only on Ri, it will prune all the relations that
match the conditions already on the first iteration of the general scheme.

Next, the algorithm iterates over the (remaining) candidate relations. In
lines 7-10, the algorithm checks for relations that have no more matches to any
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Algorithm 2: Edmint-Opt implementation of f (selection of the next
relation to integrate in Algorithm 1)
Input: R: initial relation; R = {R1, . . . , Rn}: set of candidate

relations; I: integration black-box; α, β, γ: weights for score
function

Output: Rmax ∈ R: single relation to integrate; R updated set of
candidates

1 for Ri ∈ R do
2 maxDelta← gain(Ri)− β Costerr(Ri)− γ Costfixed(Ri);
3 if maxDelta < 0 then R ← R− {Ri};
4 Rmax ← ∅;
5 maxScore← −∞;
6 for Ri ∈ R do
7 if ∀U i

k ∈ U i, attMatch+
R,R(U i

k) = ∅ then
8 delta← score(Ires(R,Ri))− score(R);
9 if attMatch-1

R,Ri
(key(Ri)) 6= ⊥ and delta > 0 then Return Ri,R;

10 else R ← R− {Ri};
11 else if attMatch-1

R,Ri
(key(Ri)) 6= ⊥ then

12 R′ ← Ires(R,Ri);
13 Update Rmax,maxScore if the score of R′ is greater;
14 return Rmax,R;

attribute in another candidate. It uses the transitive and symmetric closure
of the attMatch function, denoted attMatch+. While matches may change, we
observe that in practice the fact that there are currently no matches at all to
other candidates serves as a strong indication that no new matches for Ri will
be discovered in future iterations. Consequently in such cases the marginal con-
tribution of Ri to the final score score(Ires(R,Ri)) − score(R) may be viewed
as fixed. If Ri matches the current integration result (its key is matched) with
a positive marginal contribution, we can integrate Ri at any point without the
need to account for the effect of hypothetical future integrations. Therefore, Al-
gorithm 2 returns it as the selected candidate for integration (line 9). Otherwise,
the algorithm immediately discards Ri (line 10).

In lines 11-13, if the marginal contribution of Ri is not fixed, we perform a
hypothetical integration between R and Ri, and save in Rmax the relation with
maximal integration score (even if this score is negative). Unless we reach line 9
in one of the iterations, the overall Rmax is returned as the selected candidate.

Complexity We next analyze the time complexity of our algorithms, depend-
ing on two main factors: the integrations computed by a black-box algorithm,
and score computation.

The general scheme in Algorithm 1 line 3 may perform up to |R| iterations,
in each of which Edmint-Greedy and Edmint-Opt iterate over the remaining
relations in R. Edmint-Opt further checks each relation against all the other
candidates in line 7, therefore the number of integrations performed is O(|R|2)
by Edmint-Greedy and O(|R|3) by Edmint-Opt. In Section 4.1, we describe an
architecture that can significantly reduce the number of performed integrations.
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For score computation, we can observe that the contribution of each added/resolved/
cell introduced through integration to each of the gain and cost factors depends
only on a fixed number of other values. E.g., an added non-null value t(U)
depends on Wcorrect(U, t) which depends on PattMatch and Wlink. We can use
this property to prove that when integrating relation Ri, score computation is
at most linear in the size of Ri,

4 Implementation and Experiments
We next briefly describe Edmint, a prototype implementation for our solutions,
and then use it in an experimental study.

4.1 Implementation
The main bottleneck in implementing a solution to OPT-EXTENSION is the num-
ber of costly (hypothetical) integrations performed by the solution algorithms.
We therefore employ a hashing-based technique, following previous work on
scalable dataset integration [36]: we compute a sketch for each attribute – a
set of hash values – such that attributes likely to be matched will coincide on
hash values with high probability. A suitable index can then be used to find, in
constant time, the candidate matches to each attribute. We then use the index
in our implementation as follows.

• In Algorithm 1 line 4, every implementation of f uses the index first to
check if the key of the candidate dataset matches any attribute of the
current integration result Rcurr, thereby avoiding candidates that do not
match our current dataset. E.g., line 11 in Algorithm 2.

• In line 7 of Algorithm 2 we can check in constant time whether a dataset
Ri has no potential matches, and then if its key attribute is not matched
– immediately discard it, even without computing its integration score.

• When we update Rcurr in line 7 of Algorithm 2, we only have to remove
the attributes of Ri from the index, and add/recompute the hash values
for the attributes that were added or included resolved values in the new
Rcurr. This can be done in time linear in the size of Ri.

The choice of hash function depends on the method for matching attributes,
employed by the black-box integration tool, e.g., Jaccard set containment [12,
29, 36], Jaccard Similarity [12], Cosine Similarity and others [20].

We have implemented our solutions in a prototype system using Python 7.3
and datasketch (https://pypi.org/project/datasketch/) for hashing. The
system accepts as input relations in CSV files, and pre-processes them with a
few simple steps of normalizing the data. This included (1) deleting special
characters; (2) normalizing cell format, by e.g., identifying values such as N/A
and empty cells as NULL values, using a uniform format for numbers, phone
numbers, etc.; (3) identifying and cleaning key attributes, by finding attributes
that are near-keys (having X% unique values), and removing tuples with non-
unique or NULL key. According to Section 2, our architecture includes a few
black-boxes. In our experimental study, for attribute matching, we used the
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Jaccard Set Containment [36]. We normalized this metric to derive matching
probabilities, and used exact matching for values (with probability 1 for an exact
match after preprocessing, and 0 otherwise).

4.2 Experimental Setup
We now describe the experimental study we have conducted using our system.
Our experiments were conducted on a Linux machine with Intel Xeon Gold 6240
processor and 32GB of DDR4 memory.

Data collections We have used collections of real data of varying scale and
heterogeneity, as follows.

• Kaggle Collection. This collection includes 40 relational datasets obtained
from Kaggle (https://www.kaggle.com/), focusing on movies, books and
related topics, with 120-1M tuples and 3-49 attributes per table. Overall
percentage of matching relation pairs is 0.41. This collection illustrates a
scenario where the user already collected datasets relevant to the topic of
interest.

• Medley Collection. This collection includes 100 relational datasets on vari-
ous topics (including art, music, literature, COVID-19 and others) and is a
union of several smaller collections from Canadian Government Open Data
(https://open.canada.ca/en/open-data), data.world (https://data.
world/), data.gov (https://www.data.gov/), Institute of Museum and
Library Services(https://www.imls.gov/) and the aforementioned Kag-
gle dataset. Each relation consists of 120-1M tuples and 2-67 attributes.
Overall percentage of matching relation pairs is 0.12. This collection illus-
trates scenario where the users start with a data lake consisting of datasets
that are not necessarily related.

Each of our experiments on these datasets is averaged over 10 executions,
where we randomly draw the percentage of accurate data between 0.45-0.99 and
the fixed cost of each relation, between 0 and the relation size (the former can
be estimated, e.g., as in [7] and the latter can be determined by the user). We
also draw the initial relation uniformly at random. The default value used for
α, β, γ was 0.1.

Compared algorithms The algorithms that we compare operate according
to the general scheme of Algorithm 1, namely they choose and integrate one re-
lation at-a-time, considering only relations that can be integrated, using hashing
for efficient identification of matching candidates and eventually returning the
intermediate result with highest score. This renders even our baseline algorithms
more effective than, e.g., algorithms that perform integrations until reaching a
certain size or score of the integration result.

• Random. This baseline chooses at each step, uniformly at random, a
relation among the remaining datasets that can be integrated.

• AccDesc. Integrated relations that lower the accuracy of the integration
result also affect the subsequent integrations accuracy. Thus, this baseline
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Figure 1: Experiments with varying number of input candidate relations

orders candidates by their initial correctness probability and each time
integrates the most accurate dataset that can be integrated at this point.

• Edmint-Greedy. As described in Section 3.2.

• Edmint-Opt. As described in Section 3.2.

• Brute-Force. This algorithm tests every possible order of integration of
the candidate relations, and returns the one with maximal score among
all the intermediate results observed. Thus, the score achieved by this
algorithm is optimal. Due to its high cost, we use this baseline only in
small-scale experiments.

Metrics We consider two general types of metrics for the integration result.
The first is the score of the integration result, reflecting the quality of the inte-
gration, and aggregating metrics for completeness (number of NULLs), accuracy
(number of errors), cost (fixed cost) and size (gain). The second type of metrics
relate to the efficiency of the algorithms, which we measure by

• Number of rounds. This metric considers the number of actual integrations
performed by the algorithm, excluding hypothetical integrations. Equiva-
lently, this is the number of iterations in the external loop of the general
scheme (Algorithm 1).

• Number of integrations. This metric is our main indication for the algo-
rithm cost in terms of time (and space), assuming integrations may be
relatively costly, but their exact cost varies depending on the black-box
implementation.

• Execution time. To verify that our approach is practical, we also consider
execution times for the process of solving OPT-EXTENSION, per integration
or overall.

13



PREPRIN
T

0

10000

20000

30000

40000

50000

60000

0.20% 0.54% 0.86%

Sc
o

re

Percentage of match

Random
AccDesc
EDMINT-Greedy
EDMINT-Opt

(a) Output score

0

2

4

6

8

10

12

0.20% 0.54% 0.86%

R
o

u
n

d
s

Percentage of match

Random

AccDesc

EDMINT-Greedy

EDMINT-Opt

(b) Number of rounds

0

10

20

30

40

50

60

70

0.20% 0.54% 0.86%

In
te

gr
at

io
n

s

Percentage of match

Random

AccDesc

EDMINT-Greedy

EDMINT-Opt

(c) Number of integrations

Figure 2: Varying the percentage of matching attributes for subsets of Kaggle

4.3 Experimental Results
Varying candidate collection sizes Our first experiment has tested the
effect of the number of candidates in the initial set on the integration cost and
results, by randomly choosing candidate sets of varying sizes. Figures 1a-1c
show, respectively, the final score, number of rounds and number of integrations
for subsets of the Kaggle Collection. Figures 1d-1f show the same for the Medley
Collection. The results may be summarized as follows.

• Edmint-Greedy and Edmint-Opt tie for the best score reached, which in-
dicates the optimizations of Edmint-Opt indeed do not affect the achieved
score. These algorithms achieve the best score by a significant gap.

• The three metrics increase as the number of datasets increases for all
algorithms, since the integration result can include more relations. The
gap in score between Edmint and the baselines is more significant, since
there is more room for optimization.

• The optimizations of Edmint-Opt are highly successful in reducing the
number of rounds and integrations compared to Edmint-Greedy. The gap
is more significant for the number of integrations, whose upper bound is
quadratic in the number of candidate relations.

• The Medley Collection requires on average less rounds than Kaggle, since
its matching probability is lower. For the former, Edmint-Opt is able
to make even less integrations than the baselines, by effective pruning of
irrelevant candidates.

The effect of matching attributes We now examine, as another factor of
our system’s performance, the percentage of relations, in pairs, that are apriori
matched (i.e., the key of one matches the attribute of the other). For that, we
select subsets of our Collections and compute the matching percentage, compute
the matching percentage and order the results accordingly. Figure 2 shows the
results for the Kaggle Collection.

• Edmint-Opt and Edmint-Greedy consistently tie for the best score (Fig-
ure 2a). The score does not necessarily increase with the matching per-
centage, since the subset of relations considered in each percentage is
different. This proves that even when there are more matches, they may
not be beneficial matches that increase the score.
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Figure 3: Comparison with Brute-Force over subsets of Kaggle

• The number of rounds (Figure 2b) and integrations (Figure 2c) increase
with matching percentages since more tables are matched (even if the
match is eventually not used). With low percentages Edmint-Opt is able
to save integrations, but as the percentages increase it becomes closer to
Edmint-Greedy, since fewer relations can be pruned.

Comparison to the optimal algorithm Next, we compare the performance
of our heuristic algorithms to the optimal, Brute-Force approach. Due to the
high cost of the latter, we perform these experiments on 5-6 relations from
Kaggle, varying the number of candidates and the percentage of matching re-
lation pairs – the latter is done by selecting subset with higher or lower match
percentage. Our main findings are shown in Figure 3.

• Edmint-Greedy and Edmint-Opt achieve optimal or near-optimal score
(Figures 3a, 3d). In the few executions where a difference was observed,
it was due to different ordering of the same selected datasets, which lead
to slightly different value resolution and weights.

• Again Edmint-Opt achieves the best balance between high scores and ef-
ficient execution.

• As expected, the number of rounds and integrations of Brute-Force are
exponentially larger than other algorithms, and grows exponentially with
the number of datasets (Figures 3b, 3c) whereas the others grow roughly
linearly.

• The optimal score is not affected here by the percentage of matching
columns, since the eventually selected integration did not increase in size
(Figure 3d). However, while Edmint-Greedy and Edmint-Opt remain close
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Figure 4: Output scores for varying weight parameters, for the Kaggle Movie
Collection

|R|
∑∣∣U i

∣∣ % match Index time Avg. Integration time

Random AccDesc Edmint-Greedy Edmint-Opt

90 3628 0.11 07:32 <00:01 <00:01 <00:01 <00:01
70 2221 0.15 05:09 <00:01 <00:01 <00:01 <00:01
50 2358 0.13 03:33 <00:01 <00:01 <00:01 <00:01
19 300 0.63 03:07 00:02 00:01 00:02 00:02
12 183 0.85 00:35 00:01 00:01 <00:01 <00:01
5 76 0.4 00:22 <00:01 <00:01 <00:01 00:01

Table 4: Execution times for various inputs (minutes)

to optimal, the performance of the baselines deteriorates, since the num-
ber of optional matches increases, and they cannot distinguish the good
matches from the bad ones.

• The numbers of rounds and integrations (Figures 3e, 3f) resemble the
trends of Figure 2. The performance of Brute-Force approaches trying
all the possible orders, since the high matching percentages enable more
matching orders.

Varying the weight parameters Next, we consider the effect of weight
parameters on the comparative performance of the different algorithms. In each
experiment, we have varied the value of one parameter, with the default value 0.1
for the others. The results for the Kaggle Collection are depicted in Figure 4.

• All scores consistently decrease with the parameters, but comparatively,
the decrease of Edmint-Opt and Edmint-Greedy is slower, such that rel-
ative gap between them and the baselines increases.

• CostNULL(·) leads to a faster decrease in score, due to the number of NULL
values, and at α ≥ 0.6 the baselines are unable to match any relation.
This is not surprising, since these algorithms do not consider NULLs.

Execution time Table 4 shows some examples of execution times of Edmint
and of the baselines. For each example execution, we specify the number of

16



PREPRIN
T

candidate relations |R|, the overall number of attributes
∑∣∣U i

∣∣, and the per-
centage of matching relation pairs. We then show the time needed to compute
the hash values and construct the index (see Section 4.1) and the average time
per integration in the executions of the different algorithms. We can observe
that the index time (which is done offline, and can be reused) generally increases
with the number of relations and match percentages, and that integration time
takes less than a second or at most 2 seconds. This shows the efficiency of our
framework for a computationally nontrivial problem. Clearly, using a different
black-box for integration, e.g., that includes machine learning or complex rea-
soning, may increase the time per integration and thus the overall time; the
optimizations of Edmint-Opt would be even more critical in such a case.

5 Related Work
Data integration and related tasks have been extensively studied, and we now
overview the work on sub-tasks related to our context.

Source selection Source selection for data integration considers the retrieval
and/or selection of most adequate datasets for a given target. One broad line of
work that falls under this category, and is perhaps the most related to ours is the
search for joinable/unionable datasets or links between datasets, typically within
an enterprise or a datalake. This includes finding links between tables based on
similar attribute content (also termed domain search) [22, 34, 36, 35], relation
profiles [6, 11], semantic information [15, 14, 33], structural properties [3, 27] and
provenance [15, 34]. Most of these works solve a problem different from ours,
of finding top-k or even all pair-wise links. The work of [5] considers the join
of multiple tables, but their evaluation of the join is based on a concrete usage
scenario in feature selection, rather than inherent properties of the integration
result like our gain and cost metrics. Some metrics that resemble our gain are
discussed in the recent [34] (rate of new rows and columns) but are defined for
a single join.

Another related problem is that of source selection for data fusion, which
considers the integration of multiple sources for the same data, trying to resolve
conflicts [7, 21]. The work of [7] relies on gain and cost notions, but for different
metrics suitable for their setting. Data fusion is complementary to our solutions:
given means for choosing the best value in case of a conflict and measuring
its accuracy, the integration result in our case would have a higher accuracy,
which may improve the overall score. Using such methods effectively in our
framework may require adapting our different optimizations, and will probably
lead to integrations that are more expensive, computationally.

Schema matching A component of our problem, which we consider as a
black-box, is Relational schema matching takes two relational database schemata
(attributes) as input and returns a mapping between their attributes as output.
Previous work has studied means of efficiently and accurately finding the best
matching, see e.g., the surveys of [8, 25]. Our work is more related to instance-
level matchers, which consider the content of relations for the attribute matching
task. This includes, e.g., the work of [1, 4, 23, 24, 28], which use different tech-
niques, mainly based on machine learning but also in inference [1], to learn
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mappings between schemata. The uncertainty of matching can be mitigated by
different methods, including human feedback obtained via crowdsourcing meth-
ods [10], and different similarity metrics accounting for the contents of matched
attributes [12, 20, 29, 36].

Record linking and entity resolution Another component of our problem
is that of matching tuples, which is related to the areas of record and entity
linkage/matching/mapping/resolution/alignment. Extensive previous work in
different fields proposed solutions for linking databases [19, 13, 18, 32], Web
tables [2, 16, 26], knowledge bases [30, 31], entities from textual sources [17]
and many others. Such solutions may be used as the record linking black-box in
our framework, since many of them rely on an underlying notion of similarity or
even probability of linking [9, 30], and in turn, this may be used as link weights
or value matching probabilities.

6 Conclusion
In this work we have defined the problem of finding, for a given relation, a
set of relations such that when integrated together the result optimizes the
balance between information gain and cost related to decrease in accuracy and
completeness, and the cost of integration itself. We have shown a concrete
model and a solution framework that performs well both in terms of the score
it achieves, as well as efficiency of computation. Future work includes many
opportunities for enhancing this framework with e.g. support of non-relational
data; accounting for other aspects of integration such as content relevance, data
cleaning and data fusion; and allowing operations (querying) of datasets to
change their structure and improve the integration quality.
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