

Automated Selection of Multiple Datasets for Extension by Integration

Yael Amsterdamer

Moran Ben-Yehuda

Scenario

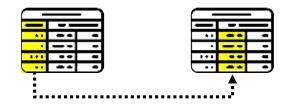
- We have an initial data table (e.g., csv)
- We want to extend this table by integration with other sources
- Which ones to choose?
 - Amount of added data
 - Introduced errors
 - Completeness
 - Quality of matching to the initial table
- A greater challenge: integrating multiple tables

Initial dataset			Candidates for integration							
Products	CA (Companies in Africa)				MEIT (Middle Eastern IT)					
Prod	Manu.	Country	<u>Company</u>	Located	Category	Rev.	Name	Country	Revenue	
GreatPad X4000	BCnD	South Africa	BCnD	NULL	Technology	115.8	Macron	Egypt	155	
GreatPad Y6000	BCnD	South Africa	Macron	NULL	IT	155.3	Netter	UAE	32	
Superb Vital	Macron	NULL	Transact	Senegal	Finance	87.6	Opportune	Qatar	79	
Smarterbook Elite	Netter	Saudi Arabia	XYnZ	Tunisia	NULL	252.2	Promot	Israel	35	
Smarterbook Emerge	Netter	Saudi Arabia					QueenTech	Jordan	28	

Integration Result: Products & CA

<u>Prod</u>	Manu.	Country	Manu. Category	Manu. Rev.
GreatPad X4000	BCnD	South Africa	Technology	115.8
GreatPad Y6000	BCnD	South Africa	Technology	115.8
Superb Vital	Macron	NULL	IT	155.3
Smarterbook Elite	Netter	Saudi Arabia	NULL	NULL
Smarterbook Emerge	Netter	Saudi Arabia	NULL	NULL

Initial dataset			Candidates for integration							
			CA (Companies in Africa)				MEIT (Middle Eastern IT)			
Prod	Manu.	Country	<u>Company</u>	Located	Category	Rev.	Name	Country	Revenue	
GreatPad X4000	BCnD	South Africa	BCnD	NULL	Technology	115.8	Macron	Egypt	155	
GreatPad Y6000	BCnD	South Africa	Macron	NULL	IT	155.3	Netter	UAE	32	
Superb Vital	Macron	NULL	Transact	Senegal	Finance	87.6	Opportune	Qatar	79	
Smarterbook Elite	Netter	Saudi Arabia	XYnZ	Tunisia	NULL	252.2	Promot	Israel	35	
Smarterbook Emerge	Netter	Saudi Arabia					QueenTech	Jordan	28	


Integration Result: Products & CA & MEIT

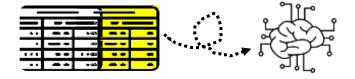
<u>Prod</u>	Manu.	Country	Manu. Category	Manu. Rev.
GreatPad X4000	BCnD	South Africa	Technology	115.8
GreatPad Y6000	BCnD	South Africa	Technology	115.8
Superb Vital	Macron	Egypt	IT	155.3
Smarterbook Elite	Netter	Saudi Arabia	NULL	32
Smarterbook Emerge	Netter	Saudi Arabia	NULL	32

Our two main problems [CIKM 2021]:

- 1. Define a metric for the "value" of integration
- 2. Efficiently find the subset of relations that maximizes it

Previous Work: Source Selection

Finding links between relations Domain Search Finding joinable/unionable relations



Metrics for table join in interactive data science (Zhang et al. 2020)

•••••••••

Source Selection for Data Fusion

Data augmentation for machine learning (Chepurko et al. 2020)

Outline

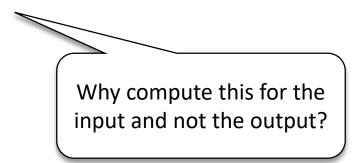
- Problem definition
 - based on integration gain and cost
- Algorithms
- Experimental study

Metrics for Valuable Integration

• By properties of the integration result

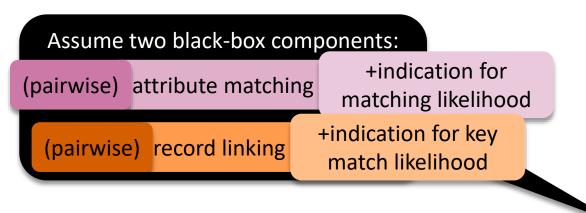
Some derivable from

- \rightarrow Properties of integrated relations
- \rightarrow Quality of integration
- Cost and gain of the integration


Let us start from the end:

- Assume a black-box for multi-relation integration
- Integration gain number of correct values in the integration result
 - Expected
 - How do we compute correctness likelihood?
- Integration cost:
 - Incompleteness cost number of NULLs
 - Error cost expected number of erroneous values
 - Fixed cost per integration

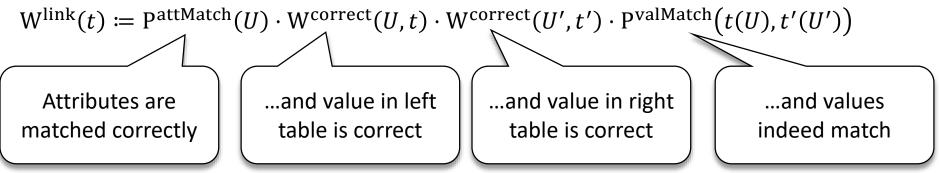
If the black box provides cell correctness probability estimation – we are done.


Properties of Integrated Relations

- Initial relation R_0 , set of candidate relations $\mathcal{R} = \{R_1, R_2, ...\}$
- Each R_i has
 - $U^i = \{U_1^i, U_2^i, ...\}$ attributes
 - $key(R_i)$
 - Tuples with values (possibly NULL)
 - $P^{correct}(R_i)$ probability of error in each value

Properties of Integration

- Many existing tools for data integration
 - Matching attributes
 - linking records
 - Mostly for relation pairs

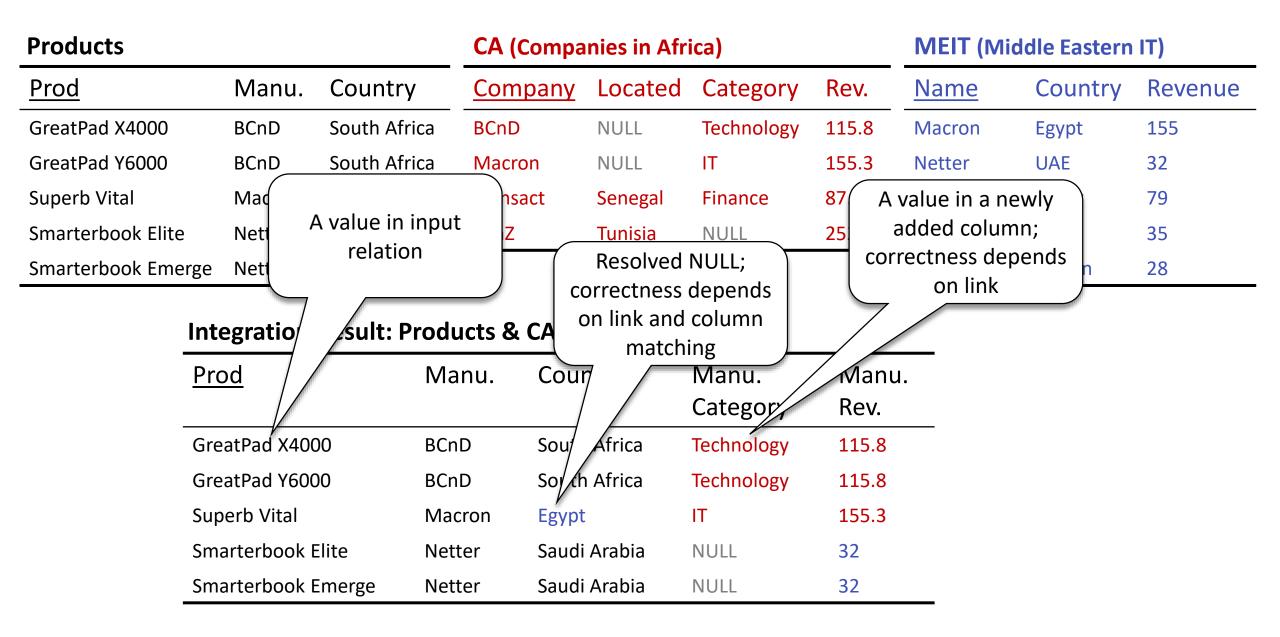


• The integration result is

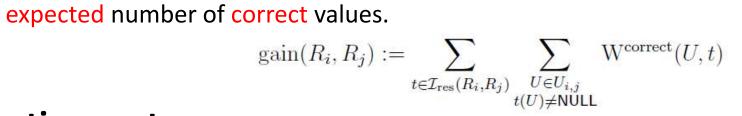
$$R = \mathcal{I}_{\text{res}} \left(\dots \mathcal{I}_{\text{res}} \left(\mathcal{I}_{\text{res}} \left(R_0, R_{i_1} \right), R_{i_2} \right) \dots, R_{i_m} \right)$$

Correctness Derivation: Linking tuples

- Let t be a tuple matched to tuple t' based on their values in U, U'
 - E.g., GreatPad X4000 matched to BCnD based on their values on attributes Manu. and Company
- Link weight for tuple *t*:


Products	CA (Companies in Africa)				MEIT (Middle Eastern IT)				
Prod	Manu.	Country	<u>Company</u>	Located	Category	Rev.	Name	Country	Revenue
GreatPad X4000	BCnD	South Africa	BCnD	NULL	Technology	115.8	Macron	Egypt	155
GreatPad Y6000	BCnD	South Africa	Macron	NULL	IT	155.3	Netter	UAE	32
Superb Vital	Macron	NULL	Transact	Senegal	Finance	87.6	Opportune	Qatar	79
Smarterbook Elite	Netter	Saudi Arabia	XYnZ	Tunisia	NULL	252.2	Promot	Israel	35
Smarterbook Emerge	Netter	Saudi Arabia					QueenTech	Jordan	28

Integration Result: Products & CA & MEIT


<u>Prod</u>	Manu.	Country	Manu. Category	Manu. Rev.
GreatPad X4000	BCnD	South Africa	Technology	115.8
GreatPad Y6000	BCnD	South Africa	Technology	115.8
Superb Vital	Macron	Egypt	IT	155.3
Smarterbook Elite	Netter	Saudi Arabia	NULL	32
Smarterbook Emerge	Netter	Saudi Arabia	NULL	32

Correctness Derivation: Values

- Correctness of t(U) in R
 - If R is an input relation, $W^{correct}(U, t) \coloneqq P^{correct}(R_i)$
 - If t(U) was added in a new column as a result of integrating R', $W^{correct}(U,t) \coloneqq W^{link}(t) \cdot W^{correct}(U,t')$
 - If t(U) was a NULL resolved by integrating R', $W^{correct}(U,t) \coloneqq W^{link}(t) \cdot P^{attMatch}(U,U') \cdot W^{correct}(U',t')$

Formal Pairwise Definitions

Integration cost:

Gain

• Incompleteness cost number of NULL in the integration result

 $\operatorname{Cost}_{\operatorname{NULL}}(\mathcal{I}_{\operatorname{res}}(R_i, R_j))$

Error cost expected number of erroneous values.

$$\operatorname{Cost}_{\operatorname{err}}(\mathcal{I}_{\operatorname{res}}(R_i, R_j)) := \sum_{t \in \mathcal{I}_{\operatorname{res}}(R_i, R_j)} \sum_{\substack{U \in U_{i,j} \\ t(U) \neq \mathsf{NULL}}} (1 - \operatorname{W}^{\operatorname{correct}}(U, t))$$

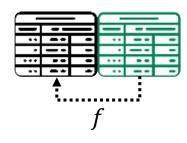
• Fixed cost per integration e.g., monetary cost

 $\operatorname{Cost_{fixed}}(\mathcal{I}_{\operatorname{res}}(R_i, R_j)) := \operatorname{Cost_{fixed}}(R_i) + \operatorname{Cost_{fixed}}(R_j)$

OPT-EXTENSION

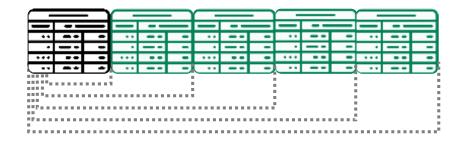
FindSub-sequence
$$R_{i_1}, R_{i_2}, \dots, R_{i_m}$$
Integration Result $R = \mathcal{I}_{res}(\dots \mathcal{I}_{res}(\mathcal{I}_{res}(R_0, R_{i_1}), R_{i_2}) \dots, R_{i_m})$

Maximize metric


 $\operatorname{score}(R, \alpha, \beta, \gamma) \coloneqq \operatorname{gain}(R) - (\alpha \operatorname{Cost}_{\operatorname{NULL}}(R) + \beta \operatorname{Cost}_{\operatorname{err}}(R) + \gamma \operatorname{Cost}_{\operatorname{fixed}}(R))$

Hardness of OPT-EXTENSION

- OPT-EXTENSION is FP^{NP}-hard
 - By a reduction from SET COVER
 - Membership result
- Score function is not monotone / convex


Algorithms

Our Solution Scheme

- Iteratively select the next relation to integrate
 - using function f
- Exhaustively integrate
- Select intermediate best result


Our Solution Scheme

- Iteratively select the next relation to integrate
 - using function f
- Exhaustively integrate
- Select intermediate best result

Our Solution Scheme

- Iteratively select the next relation to integrate
 - using function f
- Exhaustively integrate
- Select intermediate best result

Selection Criteria

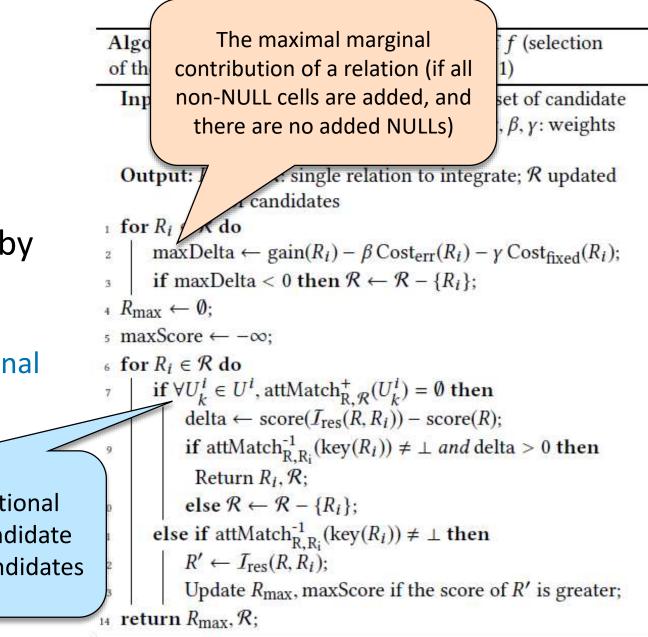
EDMINT-Greedy:

- Greedily maximize the score at each iteration
- Empirically achieves near-optimal scores
- But: performs many integrations

Selection Criteria

EDMINT-Opt:

- Reduce number of integrations by
 - Identifying relations that cannot increase the score
 - Identifying relations whose marginal contribution is fixed


Algorithm 2: Edmint-Opt implementation of f (selection of the next relation to integrate in Algorithm 1) **Input:** *R*: initial relation; $\mathcal{R} = \{R_1, \ldots, R_n\}$: set of candidate relations; *I* : integration black-box; α , β , γ : weights for score function **Output:** $R_{\max} \in \mathcal{R}$: single relation to integrate; \mathcal{R} updated set of candidates 1 for $R_i \in \mathcal{R}$ do maxDelta \leftarrow gain $(R_i) - \beta \operatorname{Cost}_{\operatorname{err}}(R_i) - \gamma \operatorname{Cost}_{\operatorname{fixed}}(R_i)$; 2 if maxDelta < 0 then $\mathcal{R} \leftarrow \mathcal{R} - \{R_i\}$; 3 $A R_{\max} \leftarrow \emptyset;$ ⁵ maxScore $\leftarrow -\infty$; 6 for $R_i \in \mathcal{R}$ do if $\forall U_k^i \in U^i$, attMatch⁺_R $_{\mathcal{R}}(U_k^i) = \emptyset$ then delta \leftarrow score($I_{res}(R, R_i)$) - score(R); 8 if attMatch⁻¹_{R,Ri}(key(R_i)) $\neq \perp$ and delta > 0 then 9 Return R_i, \mathcal{R} ; else $\mathcal{R} \leftarrow \mathcal{R} - \{R_i\};$ 10 else if attMatch⁻¹_{R,Ri}(key(R_i)) $\neq \perp$ then 11 $R' \leftarrow I_{res}(R, R_i);$ 12 Update R_{max} , maxScore if the score of R' is greater; 13 14 return $R_{\max}, \mathcal{R};$

Selection Criteria

EDMINT-Opt:

- Reduce number of integrations by
 - Identifying relations that cannot increase the score
 - Identifying relations whose marginal contribution is fixed

There are no additional matches of this candidate relation to other candidates

Integrations are still a bottleneck

- We use an implementation based on locality sensitive hashing (LSH):
 - Attribute sketches used to estimate matching probability
 - An index used to find matches in constant time

• Depends on the attribute matching method

Experimental Study

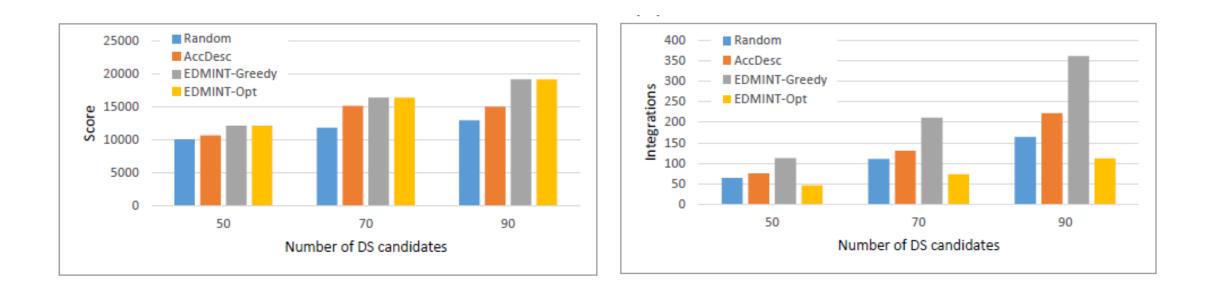
Compared algorithms

- AccDesc f greedily selects the most accurate relation that can be integrated
- Random f selects a random relation that can be integrated
- Brute-Force
- EDMINT-Greedy
- EDMINT-Opt

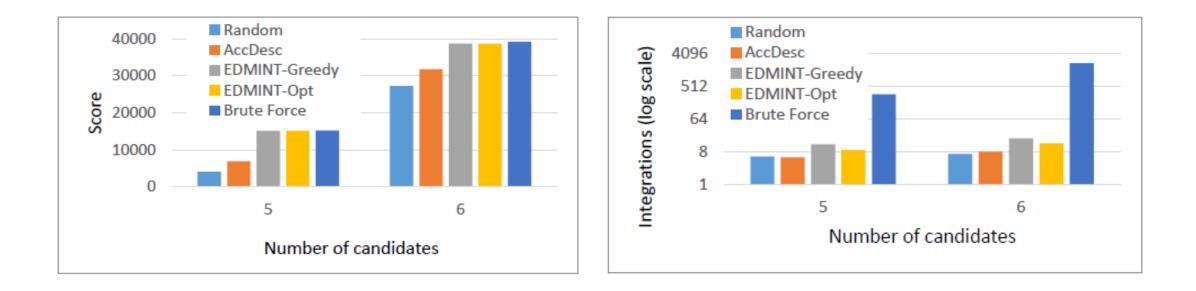
Metrics

We consider three general types of metrics for the integration result:

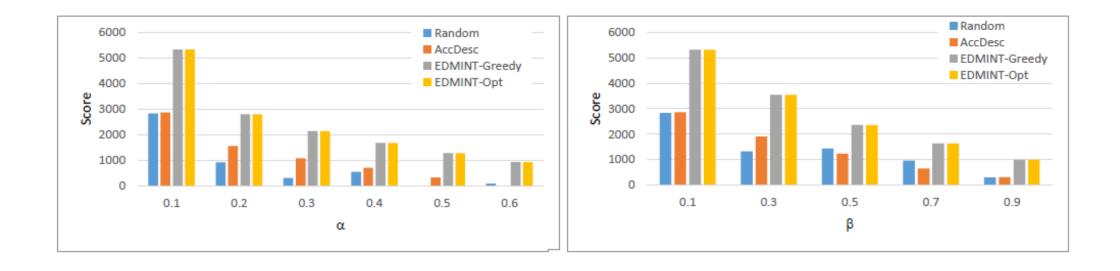
- Score of the integration
- Number of rounds
- Number of integrations


Datasets

- Kaggle Collection: 40 relations related to movies and books
 → scenario: user already collected relevant datasets
- Medley Collection. 100 relations on various topics
 → scenario: using a data lake
- Each relation consists of 120-1M tuples and 2-67 attributes.


Experimental Results

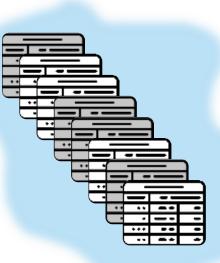
Varying candidate collection sizes:


Experimental Results

Comparison to the optimal algorithm:

Experimental Results

Varying the parameters:



Execution times

$ \mathcal{R} $	$\sum U^i $	% match	Index time	Avg. Integration time						
				Random	AccDesc	Edmint-Greedy	Edmint-Opt			
90	3628	0.11	07:32	<00:01	<00:01	<00:01	<00:01			
70	2221	0.15	05:09	<00:01	<00:01	<00:01	<00:01			
50	2358	0.13	03:33	<00:01	<00:01	<00:01	<00:01			
19	300	0.63	03:07	00:02	00:01	00:02	00:02			
12	183	0.85	00:35	00:01	00:01	<00:01	<00:01			
5	76	0.4	00:22	<00:01	<00:01	<00:01	00:01			

Summary

- We defined the problem of extension by integration
 - Cost and gain of integration
 - Using pair-wise black-boxes for attribute matching and tuple linking
 - Direct optimization is hard
- We proposed a scheme and algorithms for the solution
- Experiments on real data
 - Near-optimal score
 - Efficiency by reducing the number of integrations
- Our solution can be combined with various integration methods

Future work

- Extending non-relational data
- Accounting explicitly for other aspects of integration
 - Relevance
 - Data cleaning
 - Data fusion
- Perform automated transformations (group by, filter, pivot) on relations to improve integration quality

Thank You!