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Abstract

Many applications maintain a repository of user pro�les with seman-
tically rich information on each user. Such repositories have a potential
of allowing active opinion procurement : reaching out to users to ask for
their opinions on di�erent topics. An important desideratum of the pro-
curement process is that it targets a diverse set of users.

To realize this potential, we present Podium: a �rst framework, to our
knowledge, that supports the selection of diverse representatives in pres-
ence of high-dimensional, semantically rich user pro�les. We demonstrate
that data dimensionality is a challenge for both de�ning and achieving
diversi�cation. We address these challenges by proposing a lightweight,
�exible notion of diversity that in turn allows explanations and customiza-
tion of diversi�cation results. We show that the problem of �nding an
optimally diverse user subset is intractable, and provide a greedy algo-
rithm that computes an approximate solution. We have implemented our
solution in a system prototype and tested it on real-world crowdsourcing
platform data. Our experimental results show that Podium is e�ective in
selecting users with diverse properties, and in turn that the opinions of
these users are diverse according to multiple metrics.

1 Introduction

Multiple applications involve active procurement of opinions from users. Con-
sider, for example, a traveler planning a trip and looking for speci�c �tips� on
some destination; an owner of a new restaurant wishing to perform a prelim-
inary customer survey; or a website manager seeking usability feedback. A
recurring desideratum in such applications is that procured opinions are di-
verse: the restaurant owner may seek users with diverse culinary preferences
who live in a certain region, whereas the website manager may seek feedback
from users with diverse activity history. Notably, diversity considerations may
greatly di�er between scenarios, even if users are selected from the same set.

Platforms such as Yelp1 that have a large user base and high-dimensional,
rich data on each user, provide an opportunity for procuring opinions from a
diverse set of users. Yet, to our knowledge, there is no generic solution for
selecting diverse representative users accounting for high-dimensional user pro-
�les. In particular, users chosen for opinion procurement should ideally re�ect
the full range of user properties as observed in the source population � e.g., the
full range of opinions on di�erent topics, from positive to negative; the full range

1Yelp website: https://www.yelp.com
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System Type Range High-Dimension Explanations Customizable

Podium Coverage-based Intrinsic X X X X

Cohen
& Yashinski [2]

Coverage-based Intrinsic X∗ X

Strati�ed sampling
(e.g., [8])

Coverage-based Intrinsic X X

T-Model [4] Coverage-based Predicted X∗

APM [3],
IA-Select [1]

Coverage-based Predicted

Yu et Al. [7] Distance-based Intrinsic X ∗∗

S-Model [4],
DiRec [5]

Distance-based Intrinsic X∗∗∗ X∗∗∗

DivRSci [6] Distance-based Predicted X∗∗∗ X∗∗∗

Table 1: Comparison of selected diversi�cation solutions, according to the as-
pects discussed in Section 2. A diversity notion ful�lls Range if it can diversify

along a range of values (low to high) rather than just among categories, and High-

Dimension if every candidate may be associated with a high number of properties.

See Section 9 for more details on these solutions. Remarks: ∗ Can support range cov-

erage on a single dimension/property. ∗∗ Explanation for item relevance rather than

subset diversity. ∗∗∗ Depends on the choice of distance function.

of user skills or activity levels, from low to high; etc. Hence, existing diversi-
�cation solutions that target the overall accuracy of user answers/relevance of
items and therefore operate by optimizing properties across multiple axes (e.g.,
selecting users' highest skills or activity levels) are inapplicable in this context,
as explained in Section 2.

To this end, we introduce Podium: a novel tool for the procurement of diverse
opinions, utilizing multidimensional user pro�les. We next overview our main
contributions.

Model Our model captures user pro�les including both personal details pro-
vided by the users and their past interactions with the platform. These prop-
erties may be associated with a numeric score (re�ecting, e.g., rating) and form
high-dimensional data. We then provide a formal de�nition of the diverse user
selection problem that is coverage-based [1, 2, 3, 4]: i.e., the goal is selecting
a user subset that in some sense represents or �covers� many of the di�erent,
possibly overlapping groups within a source population. This class of diver-
sity notions �ts typical scenarios of opinion procurement (e.g., surveys, market
research), in contrast with distance-based diversity, which focuses on maximiz-
ing the di�erences between the members of the selected group [5, 6, 4, 7]. As
observable from Table 1, our diversity notion ful�lls a unique combination of
desiderata that arise at an opinion procurement scenario. We overview the
desiderata and the compared solutions in Sections 2 and 9. We further propose
an operative method for computing user groups from a repository of pro�les,
along with weight functions to prioritize the coverage of these groups, where the
coverage of every group is impossible.
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Analysis of the Basic Problem Based on our model, we develop a solution
to the diverse user selection problem. First, we show by a reduction from Set
Cover that the decision problem corresponding to user selection in our context
is NP-complete, and that �nding a user subset of size approximately minimal
that covers all the possible groups is also computationally hard. Moreover, in a
high-dimensional setting, full coverage would typically require an unrealistically
large number of procured opinions. Thus, instead of targeting full coverage and
optimizing the subset size, we bound the size according to some budget and
aim to select a user subset of that size that maximizes the total coverage score,
to be de�ned in Section 3. Fortunately, a user subset whose coverage score is
within a constant factor of the optimal can be found in PTIME. We show a
simple greedy algorithm that achieves this bound, explain its data structures
and optimizations, analyze its time complexity and demonstrate its operation
on a sample user repository.

Customization and explanations The required notion of diversity may
vary based on the concrete application and depending on the multiple dimen-
sions of user data, as exempli�ed above with respect to the di�erent needs of
a traveler versus restaurant owner versus website manager. We thus adopt a
lightweight solution that facilitates interpretation of the results and in turn al-
lows the clients to interact with the system to customize and �ne-tune user
selection. This is achieved through a formal de�nition of explanations for how
the selected subset covers the population groups and the contribution of each
selected user. We then formally de�ne the semantics of a user feedback that al-
lows an informed control over the user groups/data dimensions whose coverage
is targeted. We extend our problem de�nition and analysis accordingly.

Implementation and experiments We have implemented our solution in
Podium, a prototype system including back-end implementation of our diverse
user selection algorithm and a front-end that provides visualizations for our no-
tions of explanations and user-friendly means of providing customization feed-
back (see Figure 1 for its architecture). We use this prototype to examine our
approach over data from large-scale real-life user repositories. We �rst study
the performance of our approximation algorithm, showing that it is e�ective in
achieving diversity in terms of the selected user pro�les according to the target
function it approximates as well as multiple other diversity metrics. Next, we
simulate opinion procurement using our algorithms (using ground truth user
opinions), and test the diversity of procured opinions according to di�erent
metrics. Finally, scalability tests support the practicality of our algorithm for
real-world data.

Paper Outline In Section 2 we describe and motivate the desiderata from a
diversi�cation system in our context. Section 3 presents our model and basic
problem de�nition, without customization, and in Section 4 we develop and
analyze our solution for this basic problem. Next, we extend the basic solution to
support the explanation and customization of the selection results in Sections 5
and 6 respectively. We describe our implementation of Podium in Section 7
and the experimental study conducted over it in Section 8. Section 9 discusses
related work and we conclude in Section 10.
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2 Desiderata

Diversi�cation has been extensively studied in multiple contexts; we claim that
diversi�cation in the concrete context of opinion procurement has a unique com-
bination of traits, which are not accounted for by previous work. We compare
several representative previous solutions under the prism of these traits in Table
1. Next, we explain these features as well as the desiderata of diversi�cation
that follow; further detailed comparison with related work is given in Section 9.

Coverage vs. distance-based A prominent approach for diversi�cation is
to quantify the (dis)similarity between items, and to then aim at �nding items
that optimize some aggregate function over the similarity scores, for instance,
maximizing the minimal pairwise distance (e.g., [5, 6, 4, 7]). Such an approach
is valid in our setting, yet its sensitivity to skews in group sizes may yield less
meaningful results for real-life datasets, as observed in our experimental results
for the Yelp dataset in Section 8.

When it comes to gathering user opinions, a natural desideratum is that
opinions are collected from users that in some sense faithfully represent the
characteristics of the full population. Such representativeness is targeted by
coverage-based approaches in di�erent selection contexts � e.g., retrieving doc-
uments that cover the topics in a repository, or users that represent prede�ned
groups within a source population (e.g., [1, 2, 3, 4]). In contrast with distance-
based approaches, coverage-based approaches can in particular be agnostic of
the similarities within the selected subset.

We next de�ne the proportionate-allocation user subset.

De�nition 2.1. Let G ⊆ P(U) be a set of user groups. A user subset U ⊆ U is
a proportionate allocation of G if for every g ∈ G, it holds that

|g ∩ U |
|U |

=
|g|
|U|

A user subset for which this de�nition holds faithfully represents the source
population in the sense that it has a number of selected representatives from
each group that is proportionate to their number in the population. This trait is
used by surveyors in strati�ed sampling to guarantee that certain inferences from
the survey are statistically sound (e.g., [8, 9]). For that, surveyors and domain
experts carefully de�ne a small set of non-overlapping population groups to
be represented (in particular, |U | ≥ |G|). See further discussion on surveys in
Section 9.

However, in this work we consider user repositories that often form a huge
number of highly overlapping user groups, making proportionate allocation in-
feasible. A user subset of size |U | << |G| with every group even roughly propor-
tionally represented is unlikely to exist. We therefore develop, in the following
sections, solutions for a relaxed problem formulation, in particular, aiming to
avoid under-representation of groups but allowing over-representation and pri-
oritizing the coverage of certain groups over others.

Intrinsic vs. predicted Intrinsic diversity is computed based only on known
properties (e.g., [5, 2, 4, 7]), whereas predicted diversity utilizes a function pre-
dicting unknown values for each selected item (e.g., a probabilistic distribution
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of the answer to some question) [1, 3, 6, 4]. Thus, predicted diversity notions
typically optimize an expected target function (e.g., the expected number of
di�erent answers to be obtained).

In opinion procurement scenarios, the intrinsic approach, i.e., relying on
user pro�les rather than prediction of their opinions, is often preferable. First,
the representation of di�erent groups in the population may be the main client
need, regardless of what their opinions are (e.g., having representatives for as
many genders, age groups, nationalities, etc. as possible). Second, obtaining
a reliable prediction of user opinions may be impractical � at least as hard as
the original opinion procurement task. When this is the case, users with diverse
pro�les may provide a good alternative, since they are likely to provide relatively
diverse opinions (as demonstrated in our experimental results in Section 7 and
in [4]).

Diversi�cation along a range of opinions Diversi�cation for opinion pro-
curement is characterized by the need to diversify along ranges of property values
� for example, one has to represent the full range of user opinions, from negative
to positive; the full range of user activity or expertise levels, from low to high;
users of all ages; etc. In contrast, diversi�cation solutions that target the max-
imization of user skill or item relevance in diverse categories (as in, e.g., [1, 3])
are not applicable for capturing the full range of (skill/relevance) values in each
category.

Support of high data dimensionality In large-scale user repositories, each
pro�le may consist of hundreds to thousands of properties (e.g., up to 2189
properties per user in the TripAdvisor dataset used in Section 8). Using such
properties along with ranges of values associated with them (e.g., frequencies of
some activity from lowest to highest), allows de�ning a huge number of mean-
ingful population groups, larger by orders of magnitude from the number of
selected representatives. A practical diversi�cation solution should address this
dimensionality problem either by signi�cantly reducing the number of consid-
ered groups and/or by adopting a diversity notion and implementation that
scale with the problem dimension.

Explanations and customization Last, we have already noted (in the In-
troduction) that there is no one-size-�ts-all solution for diversi�cation and that
di�erent clients may have di�erent diversi�cation needs. To be able to �ne-tune
the diversi�cation results, the clients must �rst be able to understand them -
via some notion of explanations � and then have user-friendly customization
mechanisms of modifying them according to their needs. The use of intricate
optimization problems and/or interdependencies between selected items, which
often makes sense the context of diversi�cation, as well as the high scale and
dimension make this desideratum nontrivial to achieve. Here, we address this
challenge by adopting a simple diversi�cation notion based on pro�le properties,
which in turn are human-understandable, and then explanations and customiza-
tion pertain to (modifying) how these properties are represented by the selected
subset. (See Sections 5-6.)

In the following sections we describe our model and algorithmic solutions,
achieving these desiderata.



P
R
E
P
R
IN
T

Property Alice Bob Carol David Eve

livesIn Tokyo(2) NYC(1) Bali(1) Tokyo Paris(1)

ageGroup 50-64(2) � 50-64 � �
avgRating Mexican 0.95(3) 0.3(1) � 0.75 0.8
visitFreq Mexican 0.8(1) 0.25(1) � 0.6(2) 0.45
avgRating CheapEats 0.1(1) 0.9(1) 0.45(2) � 0.6
visitFreq CheapEats 0.6(1) 0.85(1) 0.2(2) � 0.3

Table 2: Example user pro�les

3 Model

We next describe how user pro�les are modeled in our framework. We then
formally de�ne the problem of diverse user selection with respect to this model.

3.1 User Pro�les

Let U be a population of users and P be some domain of property labels.
Following [10], we de�ne the pro�le of a user u ∈ U as a tuple Du = 〈Pu, Su〉
where Pu ⊆ P includes all the properties known for u and Su : Pu → [0, 1]
maps each property to a score (normalized to [0, 1]). We use the notation
|p| = |{u ∈ U | p ∈ Pu}|, where U is assumed to be clear from the context.
Property scores may have di�erent interpretations depending on the type of
property, e.g., true/false, user rating, and so on, and may be provided directly
by u or automatically derived from u's activity in the website.

Example 3.1. Table 2 shows a few pro�les from a travel website (for now,
ignore the numbers in superscript). In the �rst two rows, livesIn <city> and
ageGroup <X-Y> are true/false properties for relevant cities and age ranges.
E.g., livesIn Tokyo is a property with score 1 (i.e., true) in Alice's pro�le.
The third and �fth rows show scores that re�ect the user average ratings for
di�erent types of restaurants, normalized to [0, 1]. Not every property is recorded
for every user, e.g., Carol has never rated Mexican food. The fourth and sixth
rows show scores re�ecting the relative frequency that each of the users visits
di�erent types of restaurants.

In practice, user pro�les may contain many properties � e.g., we have con-
structed from TripAdvisor2 a user repository with up to 665 properties per user
(Section 7). This is due to various activities of a user in the system (e.g., pro-
viding opinions about many destinations, each with many di�erent features),
due to various types of analysis performed over the data (e.g., one can compute
the average rating, maximum rating. . . ) and so on.

Using taxonomies to enrich pro�les To allow for an informed selection of
users based on their pro�les, these pro�les should be as complete as possible. To
this end, we perform a preprocessing step and apply inference rules on Boolean
properties or on the raw data from which properties are derived. Such inference

2TripAdvisor website: https://www.tripadvisor.com
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rules can be pre-speci�ed as in RDF languages [11, 12] or derived via rule mining
techniques [13]. A particularly useful type of inference rules is generalization
rules, as exempli�ed next.

Example 3.2. The property avgRating Mexican in Table 2 is derived by av-
eraging over the ratings given by each user to restaurants labelled as �Mexican
Cuisine�. On this raw data, we can apply a generalization rule if we know,
e.g., by a cuisine taxonomy, that Mexican cuisine is a particular type of Latin
cuisine. This will enable us to derive properties such as avgRating Latin for
existing user pro�les.

As another example, if livesIn is known to be a function, i.e., each person
can only have one residence location in our repository, we can infer the falsehood
of residence locations other than the one speci�ed. Thus, by SAlice(livesIn Tokyo) =
1 we can infer that SAlice(livesIn X) = 0 for every X 6=Tokyo.

Having inferred all possible properties, we consider all other properties by
the open world assumption: missing properties may be either false or true. For
instance, if no frequency of visiting Mexican restaurants is known for Carol, this
does not mean she has not been to such restaurants.

3.2 Weight-based Diversi�cation

We next de�ne a generic, weight-based approach to coverage-based diversi�ca-
tion. We exemplify di�erent choices of weights and show their usefulness for
capturing user selection strategies.

De�nition 3.3. A diversi�cation instance is a tuple (G,wei, cov) where G ⊆ 2U

is a set of (possibly overlapping) user groups of interest, wei : G→R+ captures
the weight of each group, and cov : G→N captures the number of users required
so that a group is said to be covered.

Given a diversi�cation instance and a selected user set U ⊆ U , we de�ne the
score of U as scoreG(U) =

∑
G∈G wei(G) ·min{|U ∩G| , cov(G)}.

Finally, given a diversi�cation instance and a budget B ∈ N, we de�ne
BASE-DIVERSITY as the problem of �nding a subset U ⊆ U such that |U | ≤ B
and scoreG(U) is maximized.

Note that if groups in G are overlapping, each user may contribute multiple
group weights to the total score. This de�nition accounts for diverse subset
selection in the sense that the score increases as more groups in G have (more)
representatives in U . Excessive representation (|U ∩G| > cov(G)) is not re-
warded but also not penalized.

The problem is de�ned in a generic way with the diversi�cation instance
given as input. We next discuss and exemplify the three parts of this instance.

Groups Our diversi�cation solution can support any set of groups input by the
client, including manually crafted groups as typically de�ned by surveyors [8, 9].

To support large-scale, high-dimensional user repositories we develop here a
concrete group de�nition that is e�ciently computable for such repositories on
the one hand, and e�ective in identifying meaningful groups for diversi�cation
on the other hand. Recall that user pro�les comprise of properties from P with
scores in [0, 1].
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De�nition 3.4. Let p ∈ P be a property and b ⊆ [0, 1] be a (continuous) range
of scores. A simple user group is the subset of users whose score for p falls in
b, formally,

Gp,b :− {u ∈ U | Du = 〈Pu, Su〉 ∧ p ∈ Pu ∧ Su(p) ∈ b}

For the ranges of scores, we split the range of scores of each property p ∈ P
into a set of non-overlapping buckets β(p). The rationale is, e.g., to group Mex-
ican food lovers and dislikers separately. The computation of β(p) is done by
partitioning the 1-d data into intervals (clusters). There are several methods
for 1-d interval splitting that are more e�ective than general clustering since the
data is ordered (e.g., Jenks optimization [14], K-means, Expectation Maximiza-
tion and by kernel density).

Simple user groups can be used to de�ne more complex ones as the intersec-
tion or union of a few simple groups.

We note that the simplicity of our group de�nition is key for allowing ex-
planations (see Section 5). There are more complex alternatives to splitting
ranges into groups, such as multidimensional clustering (in our case, over mul-
tiple properties); however, these generally do not facilitate explainability. For
instance, multidimensional clusters have no intuitive �label" or meaning.

Example 3.5. Reconsider Table 2. Let p be the property livesIn Tokyo and
b = [1, 1]; then Gp,b = {Alice, David} (group of �Tokyo residents�). Let p′ be
the property avgRating Mexican and b′ = (0.65, 1]; then Gp′,b′ = {Alice, David,
Eve} (group of �Mexican food lovers�). One can also de�ne, e.g., Gp,b∩Gp′,b′ =
{Alice,David} (�Tokyo Residents who are also Mexican food lovers�).

Our default de�nition of G consists only of simple groups, and we examine its
e�ectiveness in Section 8. In particular, we empirically show that this approach
also implicitly accounts for more complex groups in the population (such as
`Tokyo Residents who are also Mexican food lovers� from the example above).

Group functions Similarly to group de�nition, the group weights (wei) and
cover sizes (cov) functions can in principle be manually tailored for a speci�c
domain and diversi�cation context. As a more practical alternative, we next
propose a few general-purpose choices, which can be �ne-tuned by clients via
our customization mechanism (see Section 6).

De�nition 3.6. Weights are used to prioritize groups. The following are three
examples of wei(G):

� Identical Group Importance (Iden): wei(G) :− 1 (constant function).

� Group Importance Linearly By Size (LBS): wei(G) :− |G|.

� Group Importance Enforced By Size (EBS): de�ne ord(·) as an ordering of
the groups from smallest to largest, 3 then de�ne wei(G) :− (|U |+ 1)ord(G)

Iden is the most �diverse� choice in the sense that it does not distinguish
between groups, which by our problem de�nition will lead to representing as
many groups as possible. However, in cases where only a small fraction of the

3Ties, i.e., groups of equal size, are broken arbitrarily.
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groups can be represented/covered, one may choose to prioritize certain groups �
e.g., large groups. Using LBS, the group importance is linear with its size, thus,
e.g., the total weight of two groups of size X equals the weight of one group
of size 2X. This roughly corresponds to maximizing the number of groups
represented per user. In EBS group importance by size is enforced, meaning
that representing larger groups is always preferred over smaller ones. The latter
requirement may apply to some diversi�cation contexts, e.g., political surveys
may aim to have at least one representative for each of the largest population
groups.

De�nition 3.7. The coverage function cov(G) is used to guide how many users
will be selected from each group. Examples include

� Single Representative (Single): cov(G) :− 1 (constant function).

� Proportional Representation (Prop): cov(G) :− max{b |U | · |G|/|U|c, 1} where
|U | is the size of the subset to be selected.

Here, Single is the most �diverse� de�nition in the sense that it requires only
one representative from a group to consider it covered. In contrast, Prop rewards
a representation that is proportional to the group size in the population.

We next exemplify the e�ect of using di�erent functions on the resulting user
choices.

Example 3.8. Reconsider the user pro�les in Table 2 and assume that we
de�ne, for each property, three groups of users: those with scores in [0.65, 1]
(�high�), in [0.4, 0.65) (�medium�) and in [0, 0.4) (�low�). The numbers in su-
perscript at the table show the weights according to LBS � i.e., number of users
� on the �rst user of each group. E.g., the only group with 3 users is avgRating

Mexican high. The diverse user subset of size 2 that would be selected is {Alice,
Eve} with total score 17. Single and Prop behave similarly here, and EBS would
yield the same result with di�erent scores. If instead we use Iden, then {Alice,
Bob} will be selected with total score 11 (number of represented groups). This
exempli�es the tendency of Iden to select more eccentric users, in this case Bob
who is the only member of his groups, where LBS and EBS prioritize represen-
tatives of larger groups, in this case leading to a larger overlap (Alice and Eve
are both Mexican food lovers).

Having de�ned our model, we next address the computational problem of
BASE-DIVERSITY.

4 Solving BASE-DIVERSITY

We next consider the computation of a diverse subset of users according to
Def. 3.3 of the BASE-DIVERSITY problem. We start by analyzing the complexity
of the problem.

Unsurprisingly, we show that achieving an optimal solution is intractable in
the subset size B unless P = NP, even for simple weight functions and even
without customization. The decision problem DEC-DIVERSITY corresponding to
BASE-DIVERSITY is that of the existence of a subset U with |U | ≤ B such that
the sum of (customized) weights of covered groups exceeds a threshold T . We
can then show:
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Proposition 4.1. DEC-DIVERSITY is NP-complete in B.

Proof. Membership is immediate, since computing the total weight of a given
user subset is in PTIME.

Hardness is proved by a reduction from Set Cover: Given a universe {1 . . . N},
a set of subsets {S1, . . . , Sm} and an integer k, we de�neB = k, G = {G1, . . . , GN}
and U = {u1, . . . , um}, such that i� i ∈ Sj , then uj ∈ Gi. Finally, we set
T =

∑
G∈G wei(G) · min{cov(G) , B}, where wei(G) can be any legal function

and we set cov(G) as the constant function 1 (Single, as we need only one set
to cover each element). Since T is the maximum total score achievable, by cov-
ering every group in G, it will be achieved by and only by a user subset that
corresponds to a Set Cover.

Approximate solution The reduction from Set Cover implies not only the
intractability of an exact solution but also of a constant-factor approximation
in terms of the size of the covering group. To formalize this, given an instance
of BASE-DIVERSITY and a threshold score T , let opt(T ) be the minimal size of
a subset U ⊆ U whose score exceeds T . We then have, based on [15] inapprox-
imability result for set cover:

Proposition 4.2. Assuming P 6= NP , there is no PTIME algorithm for BASE-DIVERSITY
that given a threshold score T , �nds a user subset U of size (1−O(1)) · ln(|G|) ·
opt(T ) with scoreG(U) ≥ T .

Fortunately, this does not exclude the possibility of approximation in the
second axis, namely achieving a near-optimal score while conforming to the given
budget. Indeed, a simple greedy algorithm achieves a constant approximation
ratio in this sense.

Algorithm 1 outlines this greedy selection. Its input is a repository of users,
a bound B on the number of users and a diversi�cation instance (groups, weight
function and coverage function). The algorithm starts by initializing an empty
U (line 1) and computing, for each user the value margu,U , which stands for the
potential marginal contribution of u to the total score if added to U (line 2).
The algorithm then iteratively selects B users. Unless U is empty (line 4), the
user maxUser with the greatest marginal contribution is selected (line 5) and
moved from U to U (line 6). For each group G covered by maxUser, its required
coverage cov(G) decreases by 1 (line 8), and if no more representatives are
required to cover G (cov(G) = 0) then G should have no e�ect on the selection
of the following users. We thus, subtract wei(G) from the marginal contribution
of its other members (line 10). After B iterations (or earlier, if |U| < B) the
algorithm returns U .

Data Structures For e�ciency, we represent both the groups and the users
as lists, each group G ∈ G with its current wei(G) and cov(G) values, and each
user u ∈ U with margu,U . We further keep links in both directions between the
lists, from groups to their members and vice versa. Whenever we (re)compute
margu,U we can remove the links from the user to groups with weight 0 or
coverage size 0, which are not (or no longer) relevant for the user selection, to
improve the performance of subsequent computations.
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Algorithm 1: Greedy User Selection

Input: U , B, G, wei, cov
Output: U (a set of ≤ B users)

1 U ← ∅;
2 foreach u ∈ U do margu,U ←

∑
G∈G|u∈G wei(G) ;

3 for i ∈ 1..B do

4 if U is empty then break;
5 maxUser← argmaxu∈U margu,U ;

6 U ← U ∪ {maxUser}, U ← U − {maxUser};
7 foreach Group G such that maxUser ∈ G and cov(G) > 0 do

8 cov(G)← cov(G)− 1;
9 if cov(G) = 0 then
10 foreach u ∈ G do margu,U ← margu,U −wei(G);

11 return U

Example 4.3. We next exemplify the execution of Algorithm 1 for the user
selection scenario in Example 3.8, using LBS and Single. After executing line 2
the marginal contributions of Alice, Bob, Carol, David and Eve, namely, the
sum of weights of their properties, are 10, 5, 7, 6 and 10 respectively. Assume
that at the �rst iteration of the external loop Alice is chosen and removed from
U to U (ties are arbitrarily broken; in this example, selecting Eve happens to
lead to the same output). Then the coverage of each of Alice's groups is set to 0.
For each such update, the marginal contribution of other members of the groups
is reduced: �rst, the contribution of David is reduced by 2 due to the livesIn

Tokyo group; next, the contributions of David and Eve are reduced by 3 due to
the avgRating Mexican high group; and so on. At the end of the �rst iteration,
the contributions of Carol, David and Eve are updated to 5, 2 and 7 respectively.
Thus, Eve is chosen at the next iteration, and {Alice, Eve} would be the output,
which in this case is also the optimal solution.

Proposition 4.4. Algorithm 1 computes a (1−1/e)-approximation of BASE-DIVERSITY,
i.e. achieves a score that within a multiplicative factor of at least ≥ (1− 1/e) of
the optimal for the given budget, in time O(B ·maxG∈G |G| ·maxu∈U |{G′ ∈ G | u ∈ G′}|).

Proof. The complexity of Algorithm 1 isO(B · |U| · |G|) due to the updates of the
marginal user contributions (line 10). This line is nested within three loops. The
loop line 3 repeatsO(B) times, the loop at line 7 repeatsO(maxu∈U |{G′ ∈ G | u ∈ G′}|)
times, namely, bounded by the maximal number of groups per user, and the in-
nermost loop (line 10) repeats at most O(maxG∈G |G|) times, namely, bounded
by the size of the largest group. We assume constant complexity for arithmetic
computations and for getting the next group of a given user/next user of a given
group (as links in both directions are maintained).

As for the approximation ratio, observe that the score function satisfy the
following properties regardless of the choice of wei, cov:

� Submodularity. For any U ⊆ U ′ ⊆ U and u ∈ U we have scoreG(U ∪ {u}) −
scoreG(U) ≥ scoreG(U

′ ∪ {u})− scoreG(U
′).

� Non-negativity. scoreG(·) > 0 since wei(G) and cov(G) are positive.
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� Monotonicity. If U ⊆ U ′ then scoreG(U) ≤ scoreG(U
′).

� Bounded input. The size of a selected subset is bounded by B.

For such functions, a greedy algorithm that iteratively adds one user u to
the selected subset U so as to maximize scoreG(U ∪ {u}) is known to guarantee
the stated approximation ratio [16].

Clearly, maxG∈G |G| = O(|U|) and maxu∈U |{G′ ∈ G | u ∈ G′}| = O(|G|). If
we use only simple groups, the complexity bound of Prop. 4.4 may be simply
written as O(B ·maxG∈G |G| ·maxu∈U |Pu|).

5 Explanations

We have proposed a simple generic framework for diverse user selection. We next
consider notions of explanations of the diversi�cation results, allowing clients
to understand why certain users were selected and how certain groups were
covered. This, in turn will enable the clients to use customization (see the next
section) to re�ne these results.

Recall �rst that we have de�ned user pro�les based on support values with
respect to properties. We will use the set of property names in P to de�ne labels;
in practice, this entails that we will keep them in a human-readable form, and
their combination will be used in presented explanations.

We further introduce labeling to simple groups, as follows. Each bucket
is given a label, e.g. �low scores�, �medium scores� and �high scores�. Then,
the label Gp,b of each group can be constructed from the property name p and
the label corresponding to the bucket b, e.g., �high scores for Mexican cuisine
(average rating)�.

We then de�ne the notion of explanation to be presented to the client along-
side the computed user subsets. Such explanations may be practically shown to
users by visual means (see Section 7).

De�nition 5.1. We introduce three types of explanations.

� Group explanations. Let G ∈ G be a group labeled lG, we de�ne its explanation
as expl(g) = 〈lG,wei(G) , cov(G)〉, namely the property and bucket that de�nes
it, along with its weight and required coverage.

� User explanation. The explanation of a selected user u ∈ U ⊆ U is de�ned as
expl(u) = {G ∈ G | u ∈ G}, namely, the groups which u represents.

� Subset-group explanation. Let U ⊆ U and G ∈ G be a selected user subset and
a group. The explanation of how U covers G is the pair 〈cov(G) , |U ∩G|〉,
which represents the required versus actual coverage.

These explanations are complementary in the sense that they provide intu-
ition about di�erent aspects of the diverse selection: respectively, of the group
meaning and importance; of why a given user was selected; and on how the
selected user subset, as a whole, covers a certain group.
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Example 5.2. Reconsider the selection of {Alice, Eve} in Example 3.8 in our
running example. Assume that each property is given a human readable label,
and we are further given labels for the buckets of Boolean properties and prop-
erties with a score. Group explanations may then be 〈�high average rating for
Mexican Cuisine�, 3, 1〉, since the weight of this group re�ects its size, 3, and
we use Single � one user to cover each group. �High� is the label of the bucket
in range (0, 65, 1]. Similarly, we may have 〈�lives in Tokyo�, 2, 1〉, where the
label of the bucket [1, 1] is empty for Boolean properties, and �lives in Tokyo�
is the property label. Next, an explanation for Alice would be the groups she
represents, �high average rating for Mexican Cuisine�, �lives in Tokyo� and so
on. The explanation for {Alice, Eve} with respect to the former group would be
〈1, 2〉, meaning both selected users belong to this group, exceeding the required
coverage.

6 Customization

Given the user selection results and their explanations, clients may �ne-tune
the algorithms if the results do not �t their needs. Speci�cally, we introduce
customization at the level of individual groups (which, in a sense, correspond to
the granularity of explanations that are shown). This customization is applied
�on top� of the high-level decisions of how weights are assigned, which would
typically not be made at the group level.

De�nition 6.1. A customization feedback of the user is composed of four sub-
sets of G.

� G+ : �must have� groups, each selected user must belong to all of them.

� G
�

: �must not� groups, each selected user must belong to none of them.

� Gd : �priority coverage� groups, whose coverage is prioritized over others.

� Gd? : �standard coverage� groups, whose coverage is of a lower priority with
respect to the priority coverage groups.

Intuitively, the �rst two types of feedback serve to �lter the repository of
users. To avoid contradictions, if G+ contains more than one bucket of some
property p, users need only belong to one of them. By default, G+ = G� = ∅.
The priority and standard coverage group de�nitions allow to prioritize the cov-
erage of certain groups, or completely ignore them in terms of coverage (groups
in G − (Gd ∪ Gd?)). By default, Gd = ∅ and Gd? = G.

Example 6.2. Assume that for a particular application, the client prefers users
from diverse locations and who are familiar with Mexican food. This may be
captured by the following customization feedback:

� The �must have� groups consists of the three buckets of AvgRating Mexican,
thereby requiring that the selected users have provided some rating for some
Mexican restaurant.

� The �priority coverage� groups Gd consists of the multiple livesIn <city>

properties.
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Figure 1: System Architecture

� Finally, G
�

= ∅ and Gd? = G − Gd.

We will demonstrate below how these choices guide user selection.

The e�ect of a customization feedback on the chosen groups is formalized as
follows.

De�nition 6.3. Given a customization feedback G+,G�,Gd and Gd?, de�ne the
re�ned set of users as

U ′ ={u ∈ U | ∀Gp,b ∈ G+, ∃b′ ∈ β(p) : u ∈ Gp,b′ ∧Gp,b′ ∈ G+}
∩ {u ∈ U | ∀Gp,b ∈ G� : u 6∈ Gp,b}

The customized diversity problem CUSTOM-DIVERSITY is then to select new subset
U ⊆ U ′, of size ≤ B, that maximizes scoreGd

(U), namely, the sum of weights
over covered groups from Gd, breaking ties by scoreGd?

(U).

Example 6.4. Reconsider the problem of selecting a user subset of size 2 from
Example 3.8. We now incorporate the customization feedback of Example 6.2.
The re�ned user set will exclude Carol who did not rate Mexican food. The
best user subsets using Single and LBS functions is still {Alice, Eve}: �rst, it
maximizes the sum of weights over livesIn <city> properties (to 3). Among
other subsets that achieve this maximum (e.g., {Alice, Bob}), the selected subset
further maximizes the sum of weights over other properties (to 14). Note that
a di�erent customization feedback would yield a di�erent result; e.g., if we set
Gd? = ∅ then any subset maximizing the sum of weights over livesIn <city>

properties may be selected.

Results revisited CUSTOM-DIVERSITY is NP-complete, as an easy consequence
of the NP-completeness of BASE-DIVERSITY. Further, the counterpart of Propo-
sition 4.4 holds:

Proposition 6.5. CUSTOM-DIVERSITY may be approximated within a multiplica-
tive factor of at least (1 − 1/e) in time
O(B ·maxG∈G |G| ·maxu∈U ′ |{G′ ∈ G | u ∈ G′}|)



P
R
E
P
R
IN
T

Proof. The approximation algorithm is an adaptation of Algorithm 1 to account
for customization feedback, as follows.

We �rst change the weights of the total score function to simulate a primary
order by �priority coverage� groups and secondary order by �standard cover-
age� groups. The s̃core(U) = scoreGd

(U) ·MAX-SCORE+scoreGd?(U) where
MAX-SCORE is a value greater than the maximum value of scoreGd?(U).

It now holds that:

Lemma 6.6. The s̃core(U) function is submodular, non-negative and mono-
tone.

We further re�ne the user repository to be U ′ of De�nition 6.3, by �ltering
out user pro�les that do not satisfy the conditions.

Last, we change Algorithm 1 so that instead of greedily selecting from U
based on scoreG(U), it selects from U ′ based on s̃core(U). Following Lemma
6.6, the re�ned algorithm satis�es the approximation guarantees.

Explanations The explanations de�ned in Section 5 can also be used for
explaining customized results. The set of users and weights of groups may
be di�erent; in particular priority coverage groups will have a higher weight
indicating a higher priority. Clients may not be able to interpret the values of
weights, but they will be able to compare weights between groups to understand
their relative importance.

7 Implementation

We developed Podium as a prototype system, implemented in Python using
Flask4. Its architecture is depicted in Figure 1. The input to Podium is a set
of user pro�les, as explained in Section 3.1, in JSON format. Given a set of
user pro�les, the Grouping Module computes the bucketing of properties and
the weights of groups in an o�ine process. Podium also allows an administrator
to feed in an initial set of diversi�cation con�gurations with associated textual
descriptions.

The Graphical User Interface of Podium was created using AngularJS 1.6.45.
Given a user selection request, the Selection Module executes the user selection
algorithm and returns the selected subset and its explanations to the client
via the Visualization module. Figure 2 shows the explanation page for the
initial con�guration titled �Summer Pavilion�, which only considers properties
related to a restaurant in that name. The labels of the groups in this page
are taken from the group explanations of Def. 5.1. The left pane displays the
names of selected users, along with the top-weight groups that were covered by
each (corresponding to user explanations of Def. 5.1). The middle pane uses
the subset-group explanations of Def. 5.1 to show the percentage of top-weight
relevant groups covered by the selected subset (in this case, 97%). The list of
groups, ordered by decreasing weight, is displayed below with covered groups in
green and the others in red.6 When clicking any group, the right pane displays

4Flask. http://flask.pocoo.org
5AngularJS. https://angularjs.org
6For space constraints, some group names in Figure 2 are truncated.
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Figure 2: Screenshot of Podium UI: selection explanation

a graph comparing the score distribution for the relevant property between the
entire population and the selected subset (in Figure 2 the distributions are
almost identical). Users can browse the di�erent groups and re�ne the selection
by adding groups to G+ and G- (�Selected users must / not have this property�);
and to Gd and Gd? (�Do not / diversify on this property�).

8 Experimental Study

We have examined the performance of our system, �rst, by evaluating the in-
trinsic diversity of the selected subset, i.e., how well it represents the source
population (as explained in Section 2, proportional allocation is generally im-
possible in our setting). While an intrinsically diverse subset is su�cient in
some user selection scenarios, in others one cares also for the eventual diversity
of procured opinions. In order to examine this aspect, we have selected datasets
with known ground truth, i.e., where user opinions are already recorded. We
have used these to simulate opinion procurement from the selected user subset
and evaluate the diversity of collected opinions.

8.1 Datasets

The datasets used in our experimental study are real-world user repositories,
focusing on the domain of restaurant reviews. The raw data is pre-processed
to obtain aggregated scores for di�erent categories based on user activity, as
explained below.

The �rst dataset that we use consists of a sample of TripAdvisor [17] restau-
rant reviews data. This dataset contains data from 4475 users reviewing a total
of 50K restaurants, and 11749 di�erent groups. The raw data contains both user
submitted data (e.g. age, residence) and user activity data (e.g. visited desti-
nations), pre-processed and enriched as explained in Section 3.1, to generalize,
e.g., Mexican cuisine to Latin cuisine.

The second dataset is the Yelp Open Dataset [18], which contains businesses,
reviews, and user data for use in academic purposes. In our experiments we have
used a subset of the data: for compatibility with the TripAdvisor dataset we
used only restaurant-related data and took the 60K users with most reviews �
reviewing a total of 52K restaurants and forming 8491 di�erent groups. This
limit was used in our qualitative experiments (see Section 8.4) due to memory
limitations of some of the other baselines � recall that each user belongs to many
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groups. In comparison with the TripAdvisor dataset, the Yelp dataset has more
users, but less groups due to its simpler semantics.

The datasets include two types of properties: ones that appeared explicitly
in the original data, such as age and address; and ones that we have derived
based on aggregation of user activities, as follows.

� Average Rating. The average rating given by a user to restaurants of a
certain category (e.g. French cuisine), normalized by the overall average
rating of that user.

� Visit Frequency. The fraction, among all the restaurants visited by a user,
of restaurants from a certain category.

� Enthusiasm Level. A combination of rating and visit frequency, computed
as the fraction of rating points given by the user to restaurants of a certain
category.

8.2 Metrics

We next introduce metrics for algorithm performance, in three categories. In-
trinsic diversity metrics are computed from the known properties of the selected
user subset. Opinion diversity metrics are computed from opinions of the user
subset, which are unknown to the user selection algorithms as explained in the
beginning of this section. Finally, we evaluate the scalability of the algorithms.

Intrinsic diversity metrics We consider a few complementary metrics, in-
cluding our de�nition of total score � since our algorithm only approximates its
optimal value � but also metrics of coverage that are not targeted directly by
Podium.

� Selection total Score. According to Def. 3.3. We focus on the LBS weights
and Single coverage functions, which our algorithm aims to approximate.
This score can give us an intuition about alternative algorithms, since it
re�ects the number of groups and users within them that are represented
by the subset.

� Top-k groups coverage. There are thousands of groups within the source
population, which cannot be covered even by one representative in a small
selected subset. We consider whether the top-k largest groups have se-
lected representatives. In our experiments we have set k = 200.

� Intersected-Property Coverage. This metric is similar to the previous one,
but now we consider intersections of simple groups that are at least as
large as the k-th largest simple group.

� Distribution Similarity. This metric examines the similarity of user distri-
bution between the source population and the selected subset, according
to Def. 8.1 below.

The last metric aims at testing whether the number of representatives se-
lected for groups is proportional to their number in the population, even if
the coverage size is Single. Intuitively, our algorithm is likely to choose more
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representatives for larger groups without targeting it explicitly. However, stan-
dard distribution similarity metrics (such as Kolmogorov-Smirnov goodness of
�t test) are not adequate for this purpose: to enhance coverage, small groups
must be over-represented. We therefore de�ne a distribution similarity metric
that only taxes the selected user subset for under-representation of groups.

De�nition 8.1. Let B = b1, . . . , bk be a discrete set of values. Let fsubset, fall :
B→ [0, 1] be two functions over B, intuitively applied to the entire population
and the selected subset respectively. We de�ne the coverage-oriented distribution
similarity (CD-sim, for short), as cd-sim(fsubset, fall) =

1− 1

k

∑
fsubset(bi)<fall(bi)

(fall(bi)− fsubset(bi))
fall(bi)

Note that this de�nition sums only over values of the domain for which
the subset (fsubset) returns a lower result than the full population (fall), corre-
sponding to under-representation. Normalizing by the size of the full population
guarantees that under-representations of larger groups are preferred, since the
relative tax each missing user incurs is smaller.

For the group bucket distribution similarity, for a given property p ∈ P,
we set B = β(p) (i.e., the set of buckets computed for p) and for b ∈ β(p),

we de�ne fall(b) 7→ wei(Gp,b)∑
b′∈β(p) wei(Gp,b′)

(the fraction of the weight that falls in

the b bucket, which corresponds to the fraction of the users that belongs to

this group). Similarly, we de�ne fsubset(b) 7→ wei(Gp,b∩U)∑
b′∈β(p) wei(Gp,b′∩U)

for a selected

subset U ⊆ U . For the overall distribution score, we average CD-sim for the
top-20 largest groups.

Example 8.2. An example user distribution for the property �Mexican Food
Average Rating� could be [0.23,0.4,0.37], meaning 23% of the population rate
Mexican food poorly, etc. A selection distribution of [0.4,0.5,0.1] would receive
a CD-sim score of 0.76, re�ecting a penalty solely for the under-representation
of the third sub-group, and not for the over-representation of the others.

Diverse opinion metrics Thus far, the diversity metrics we considered were
de�ned over user pro�les. We next introduce metrics that consider the diversity
of the procured opinions. For that, we have split the data into pro�le data
used for selection, and data that simulates the procured opinions. For instance,
we can select users from TripAdvisor based on their pro�les excluding the data
related to some destination, then evaluate diversity of the reviews written by
the selected subset of the users on the excluded destination.

To measure diversity of opinions we have used complementary metrics that
relate to the rating provided by the selected subset and their reviews' contents.
Importantly, user opinions range not only over sentiment (positive or negative),
but also over the facets that interest them with respect to the object in review.

� Topic+Sentiment Coverage. We consider the coverage of the reviews con-
tents as an indication for the coverage-based diversity of the selected sub-
set. TripAdvisor provides, for each destination, a list of prevalent topics
that are mentioned in its reviews. We measure the fraction of topics that
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Figure 3: Quality experimental results

appear in the selected subset reviews, and since the topics are mostly ob-
jective (e.g., �fries�, �seaside� ) we also consider the review sentiment �
namely, 100% coverage means that every topic appears in both a positive
and a negative review.

� Usefulness. Available only for Yelp dataset, based on user feedback to
reviews. A review is more useful when it is well-written, but also when a
larger group of users agree or can relate to its contents. In this sense, the
review is more likely to represent the opinions of large population groups,
which is what we target in coverage-based diversity. We compute this
metric by summing over individual reviews usefulness levels.

� Rating Distribution Similarity. Reusing our distribution similarity metric
CD-sim, we measure the similarity in rating distribution between the se-
lected subset and the entire population. For a given destination we set B =
{1, . . . , k} (i.e., the set of possible rating values) and for i ∈ {1, . . . , k},
let Ri ⊆ U be the set of users that gave this destination a rating of i. We

de�ne fall(i) 7→ |Ri|∑k
j=1|Rj |

. Similarly, for a selected subset U ⊆ U we de�ne

fsubset(i) 7→ |Ri∩U |∑k
j=1|Rj∩U |

� Rating variance. Variance of the rating given by the selected subset to a
given destination.

All of the above metrics are de�ned per destination, to obtain an overall
score we average over all destinations.
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Scalability We have tested the system execution times and scalability with
respect to the number of users and pro�le size.

8.3 Baselines

We consider the following alternatives algorithms for diverse user selection.

� Podium. Our implementation as described above. By default, we use
no customization feedback, LBS weights (Def. 3.6), the Single coverage
function (Def. 3.7) and a budget B = 8, which also applies to the other
baselines.

� Random Selection. An algorithm that selects a subset of the users uni-
formly at random. This method is a common practice in user selection
for opinion procurement in the context of e.g. surveys, and under certain
conditions there are reasons to assume the selected set of users is likely
to be diverse. However, it has already been observed that explicitly man-
aging diversity is often helpful in improving the results [4], which we will
demonstrate in our setting.

� Clustering. Splitting the entire user repository into clusters, and choosing
one representative from each � assuming each cluster represents a com-
munity. This approach has an inherent drawback as the clusters may
have no intuitive explanation or customization; yet here we compare its
performance to ours on other metrics. There are many options for cluster-
ing algorithms and representative choice. We have tested several options
and show here one generally practical choice: computing B clusters us-
ing k-means (Scikit-Learn implementation7), then taking the near-mean
user as the representative per cluster. k-means is particularly suitable
to our settings: large, high-dimensional normally-distributed data, easy
parametrization and is known to achieve comparatively high quality and
low execution times (see, e.g., a comparison of clustering solutions in [19]).

� Distance-based diversity. While the distance-based approach for diversi�-
cation has a di�erent goal than coverage-based diversity (as explained in
Section 2), it is still interesting to compare its performance to ours. As
a representative distance-based baseline we use the S-Model of [4] via a
greedy algorithm that maximizes the pairwise Jaccard distances between
the properties of the selected subset.

� Optimal Selection. Naïve iteration over all user subsets of size B to obtain
the optimal total score. This baseline is naturally applicable only for small
values of B, and used to examine how good is the approximation achieved
by our algorithm in practice, compared to the theoretical bound.

8.4 Qualitative Results

We next describe our experimental results regarding the achieved diversity. All
experiments have been conducted on a Windows 10 machine powered by an
Intel Core i7 7500U processor with a 16 GB of DDR4 memory.

7Scikit-Learn. http://scikit-learn.org
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Intrinsic diversity results We depict the intrinsic diversity comparison be-
tween baselines for the TripAdvisor and Yelp datasets in Figures 3a and 3c,
respectively. For showing di�erent metrics on a similar scale, all scores are nor-
malized relative to the leading algorithm's score; the value of the leading score
is denoted on the relevant bar. Our main �ndings are summarized as follows.

� Podium outperforms its alternatives in every tested diversity metric.

� Yelp is a more di�cult dataset than TripAdvisor, since the former has less
properties and less �room for maneuver�; for this dataset our results are
better than the baselines by a signi�cantly larger gap.

� Results for top-200 coverage and intersected property coverage indicate
that our algorithm implicitly accounts for representing a high percentage
of the largest groups, including complex ones � suggesting that selection
based on simple groups may be su�cient for coverage purposes.

� The distance-based baseline performs poorly in covering complex groups,
since it explicitly avoids intersections with overlapping properties between
users.

� Surprisingly, our algorithm achieves a high similarity to the group distri-
bution in the source population, although we do not optimize this directly.

� Our algorithm achieves the best total selection score by a large gap - this
is expected, since our algorithm approximates the optimal value for this
function.

� We were only able to test the optimal selection algorithm on a restricted
source population and very small subset sizes due to the exponential run-
time, hence it is omitted from the graphs. Generally, the total score
achieved by Podium greatly exceeded the approximation bound and was
near-optimal in all of our experiments. E.g., for selecting 5 out of 40 users
Podium provided a .998 approximation ratio of the optimal.

� Since each user belongs to many groups, we can achieve high coverage
even with a small B. As B increases, all the quality metric improve and
the gaps between the baselines slightly decrease, but the general trends
are preserved. The graph is thus omitted.

These results indicate that it is able to select good representatives of the
sources population in di�erent respects, covering most large groups and leav-
ing few under-represented groups. Regarding the competitors, we observe that
clustering is inferior in almost every metric; this indicates that the splitting of
population into cluster is probably unable to identify meaningful groups, and is
outperformed even by random sampling.

The results also indicate that distance-based selection is less able to represent
groups not explicitly de�ned in the dataset, which is a shortcoming of this
approach with respect to ours. Generally, the main di�erence between the
distance-based approach and ours is the pairwise intersection in user properties
� e.g., 2 on average for the Yelp dataset for the former approach, versus tens on
average for the latter. Consequently, when there are a few prevalent categories
that are shared by many users, the distance-based approach tends to seek the
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few users that do not have these categories, which comes at the expense of
coverage and distribution similarity.

Opinion diversity results. We now consider whether indeed the selected
user subset, by Podium and its alternatives, provides diverse opinions, according
to the metrics de�ned in Section 8.2. Naturally, the considered groups in G
may a�ect the opinion diversity for algorithms that rely on groups. In these
experiments, we have chosen to consider groups that are de�ned from properties
related to cuisine and location, as a client seeking opinions about a restaurant
might have chosen.

For the TripAdvisor dataset (Figure 3b) we have examined 50 destinations
with an average of 90 reviews per destination.

For the Yelp experiment (Figure 3d) we have considered 130 destinations
with an average of 1730 reviews per destination.

Concluding both experiments, our main �ndings are:

� Podium achieves the best results in any tested metric for each dataset,
with the exception of rating variance.

� Distance-based is the strongest competitor of Podium in this set of exper-
iments; however, in the Yelp dataset we still see a signi�cant gap w.r.t.
Podium in topic coverage and usefulness.

� Podium achieves a good balance in the tradeo� between attaining dissim-
ilar ratings/sentiments (as re�ected in rating variance and distribution
similarity) � which tends to the selection of �eccentric� users � and attain-
ing representative opinions that cover prominent topics (as re�ected in
topic coverage, usefulness) � which tends to the selection of �mainstream�
users.

� Random achieves a comparatively better performance in �dissimilarity�
metrics (rating variance and distribution similarity), although still inferior
to Podium and distance-based, and inferior results in �representativeness�
metrics (topic-sentiment, usefulness), as expected.

� Clustering shows the opposite trends to those of Random, probably due
to selection of near-mean users as representatives, which reduces the ran-
domness of their selection but increases their representativeness.

These results recon�rm the assumption, proposed in previous work, that
diverse users provide diverse opinions [4]. We have been able, by selecting
a small user subset, to capture prominent topics and the ratings of the source
population � even though Podium is not explicitly calibrated to predict opinions.

The e�ect of customization We next consider the e�ect of customization
on the selected user subset, with respect to the intrinsic quality metrics of the
selected subset. We focus on the e�ect of �priority coverage� feedback from
Def. 6.1. For that, we have selected from the Yelp dataset with 30K users,
uniformly at random, four subsets G20 ⊆ G40 ⊆ G60 ⊆ G80 ⊆ G such that |Gi| = i.
Each subset was, in turn, fed into Podium as the set of priority coverage groups
Gd. Then, we have selected a user subset of size 8 in the customized setting. We
have repeated this process 20 times and recorded the average for each metric.
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Figure 4: Yelp intrinsic diversity with customization

The results are detailed in Figure 4, along with the intrinsic diversity metrics
for the setting without customization, for comparison. Notably, all the quality
metrics slightly decrease with every increase of the subset size, indicating that
covering the priority groups restricts Podium's ability to cover standard priority
groups � surprisingly, not by a signi�cant gap. The newly-added Feedback Group
Coverage metric measures the percentage of priority groups that were covered.
Note that the groups are randomly selected with equal probability and are thus
likely to be small and non-overlapping. Hence, there may not be 8 users who
cover all of them. As expected, we can observe that the more priority groups
are de�ned their coverage signi�cantly decreases.

8.5 Scalability Results

We have examined the scalability of our algorithm w.r.t. the number of users and
size of user pro�les, which a�ect the number of groups. Here we only compare
results with the clustering and distance-based baselines (random is immediate).

Scalability in number of users In these experiments we have used user
pro�les with up to 200 properties. Following the complexity analysis in Section 4
we expect to witness a linear growth in the running time of the algorithm with
accordance to the change in population size.

Scalability in pro�le size The number of users has been set at 8K, and
we varied the properties assembling the user pro�les thus a�ecting their size.
Again, we expect the running time to be linear to the average pro�le size.

Figures 5a and 5b depict the running times achieved by the algorithms. Our
main �ndings are:

� Both Podium and distance-based considerably outperform the clustering
alternative in execution time, and are ∼9 times faster.

� Execution time for Podium scales linearly in the size of the population as
well as the number of properties.

� The Optimal baseline, due to its exponential complexity, demonstrated
poor scalability. E.g., for |U| = 40 and B=5 its execution time was 443
seconds, and for |U| = 100 we have terminated its execution after an hour.
It is therefore omitted from the graphs.
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9 Related Work

A comparison between diversi�cation approaches is given in Table 1. We now
elaborate more on these solutions and others.

Diversity in crowdsourcing A few studies (e.g., [2, 3, 4]) have considered
the selection of diverse users in the context of crowdsourcing, namely performing
tasks with the collaborative help of Web users/workers. The work of [4] is the
most relevant to ours since it also studies diverse opinion procurement. They
present two approaches for diversi�cation: S-Model is distance-based, where
pairwise distance is assumed to be known; and T-Model is coverage-based on
predicted data, i.e., targets the selection of a user subset with a certain opinion
distribution, but only in a single category. Other studies consider the selection
of diverse crowd workers in order to improve the overall accuracy. In [3] the
authors study the selection of diverse users by modeling the dependence of error
rates within access paths (corresponding to non-overlapping user groups), and
optimizing the information gain by the selected subset. This, however, does not
apply to opinion procurement where there are no errors and every opinion should
be accounted for. The recent [2] resembles ours in considering coverage-based
diversity de�ned by user properties and in supporting customization. However,
they consider only a single group per worker, essentially allowing for diversi�-
cation only over a single dimension.

Diverse search results Search results diversi�cation has been extensively
studied in the �eld of information retrieval (e.g., [1, 20, 6, 21]). Apart from
solving query ambiguity, diversi�cation is used to avoid over-personalization of
search results [22]. The classi�cation of diversity de�nitions as coverage-based
versus distance-based is also considered in this context [23, 24]. In contrast
with our approach, IR solutions generally target relevance and therefore are
inadequate for diversifying along di�erent axes and accounting for positive and
negative opinions.

Diversity in recommender systems Diversi�cation has also been studied
in the context of recommender systems. Diversity can be computed based on
item properties [6] or collaborative �ltering, namely, the ratings of similar users
to similar items [5, 7]. Speci�cally, in [7] a notion of explanation-based diversity
is presented, but is di�erent than ours � certain item properties are identi�ed
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as recommendation-relevant and these are used for diversi�cation. In contrast,
we do not assume that relevant properties are prede�ned but rather derive ex-
planations from the actual diversi�cation results. Moreover, to our knowledge,
coverage-based approaches have not been considered in the context of recom-
mender systems.

User sampling in survey research The selection of people representing
some population has been vastly studied in the context of surveys. While also
concerned with opinion procurement, the focus of this research �eld is di�erent.
Speci�cally, as explained in Section 2, the dimensionality of user pro�les in
surveys is typically, by design, much lower than ours. This is because the
goal of surveys is to ensure the statistical soundness of speci�c inferences from
the participants' answers to larger populations [8, 9]. Statistical soundness may
require the selected participants to be proportionally allocated (Def. 2.1), which,
as explained in Section 2, is impossible in our high-dimensional setting due to
the presence of many overlapping groups. Our approach involves a di�erent
problem formulation suitable for the high-dimensional setting. Also in contrast
to surveys, which require a careful design and thereby a heavy load of manual
curation, our solution applies to a given user repository as-is and may be easily
executed multiple times, e.g., to incorporate data updates.

User selection Various studies have considered the selection or �ltering of
users who undertake a task in crowdsourcing platforms or social networks, by
di�erent criteria. This includes, in particular, assessment of crowd worker skill
and �ltering of low-skill workers [25]; �ltering of low trust or spammer users [26];
�ltering of slow or ine�cient users [27]; expert �nding [28, 29, 30]; and general-
purpose declarative crowd selection [10, 31, 32, 33]. In general, these works are
orthogonal to ours, since we can view the scores they derive as additional user
properties that can be used for diversi�cation.

A particular line of work considers team formation (or group formation),
namely the selection of a set of workers that in some sense function as a team, by
having e.g. complementary skills, similar properties, and/or better collaboration
means [2, 34, 35, 36, 37]. Among these, [2] is the most relevant to ours in
targeting worker diversi�cation, as discussed above. [37] uses coverage and
diversity notions that our quite di�erent than ours and thus render the problem
and solution techniques quite di�erent: diversity is considered between formed
groups and is distance-based; and coverage is considered with respect to items
rather than groups and does not support dimensionality.

10 CONCLUSION AND FUTURE WORK

In this work, we presented a framework for the selection of diverse user sub-
sets for opinion procurement. We de�ne a generic diversity notion that, while
simple, satis�es a unique combination of desiderata that arise in presence of
high-dimensional user pro�les. In particular, as we showed, this notion admits
e�cient near-optimal computation and allows explanations and customization
by the client. Our experimental study, on real user data, examines di�erent met-
rics for diverse selection and shows that our algorithm outperforms a variety of
baselines.
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In future work, we plan to investigate further enhancement of the usability
of our system, by methods of proposing relevant re�nements for the user and
by additional visualizations of the selection results. Another direction involves
foundational study of the statistical properties of our algorithm: we have empir-
ically shown that it performs well with respect to various measures other than
our total score, e.g., distribution similarity and coverage of complex groups;
the next step is formulating the guarantees for the algorithm performance in
these metrics. Finally, we would like to examine additional weight and coverage
functions, and their performance in practice.
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