
On the Optimality of Top-k Algorithms
for Interactive Web Applications

(Full Version)

Yael Amsterdamer
Tel Aviv University

and INRIA

yaelamst@post.tau.ac.il

Daniel Deutch
Ben Gurion University

and INRIA

deutchd@cs.bgu.ac.il

Tova Milo
Tel Aviv University

milo@post.tau.ac.il

ABSTRACT
In an interactive Web application, the application state changes
according to user choices/actions. To assist users in their
interaction with such applications, there is a need to pro-
vide them with recommendations for the top-k (according
to some ranking metric) interactions. These recommenda-
tions must be continually updated, as the user interacts with
the application, to be consistent with the actual choices she
makes. Efficiency of computation is critical here to pro-
vide fast response time and a pleasant user experience. This
paper establishes formal foundations for measuring the op-
timality of top-k algorithms of the aforementioned type, i.e.
how well they perform relative to other algorithms, with
respect to all possible input instances. We define several in-
tuitive notions of optimality in this setting, analyze the fun-
damental difficulties in obtaining optimal algorithms, and
identify conditions under which such algorithms exist.

1. INTRODUCTION
This paper focuses on interactive Web applications [8, 10,

5], for example applications for online shopping, where the
state (shopping cart, database) changes as the user navigates
in the website and chooses products. To assist users in their
interaction with such applications, there is a need to provide
them with recommendations of the top-k (according to some
ranking metric) interactions. These recommendations have
the form of suggested sequence of navigation steps in the ap-
plication [8, 7]. The user may follow one of the suggestions,
but may also choose differently. In the latter case, new sug-
gestions, consistent with the user choices, are proposed, and
so on. We refer to such sequence of interleaving choices and
recommendations as an interactive top-k computation.

The goal of this paper is to study when, and to what ex-
tent, optimal top-k algorithms are possible in an interactive
setting. To that end, we (1) provide a simple and generic
model for interactive Web application, (2) define (interac-
tive) top-k problems that should be addressed by recommen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011.

dation systems in this context, (3) define cost models and
measures of optimality for algorithms that solve these prob-
lems, and (4) analyze the fundamental difficulties encoun-
tered when attempting to achieve such optimal algorithms
and identify practical conditions under which optimal algo-
rithms exist.

Note that several different models [7, 9, 5, 1] can be used
for interactive Web applications and some dedicated top-k
algorithms were proposed for these models. We stress that
our goal here is not to devise yet another specific, efficient
top-k algorithm for any of these models. Instead, the main
objective of this paper is to study, using a generic model that
abstracts such specific models, the boundaries of optimality
that may be achieved by top-k algorithms on interactive
Web applications.

We next provide a brief overview of our contributions.

Modeling Interactive Web Applications. We model an
interactive We application as a possibly infinite graph. The
nodes represent the application states and the edges model
state transitions, triggered by user choices / input. Some of
the graph nodes are marked as accepting, representing the
completion of some task. A user interaction with the appli-
cation is modeled as a (possibly infinite) path in this graph.
While there are cases where the semantics of state transi-
tions is exposed to the analyst and a tailor-made analysis
may be employed, to capture a generic analysis of applica-
tions we assume that for each transition we are only given
some quantitative information (such as the price that the
transition incurs to the user, the likelihood of the transition
based on choices of previous users, etc.). This is modeled
by edge weights, which may be aggregated, to form a path
weight.

Top-k Problems. We consider here three problems, as fol-
lows.

• We start by considering a (single) top-k computation
at a given state n. The top-k recommendations are
the k highest weighted interactions, starting at n and
leading to an accepting state.

• Second, we study interactive-top-k computation, namely
the on-going process of computing top-k recommenda-
tions following each user choice.

• Finally, we observe that ‘idle’ time intervals, where the
user views a given set of top-k recommendations, and

before she makes her next choice, can be exploited to
preempt some of the future top-k computations (thereby
shortening future response time). We refer to such pre-
emptive computation as lookahead, and study looka-
head algorithms.

Cost Model and Optimality. As described above, our goal
here is not to devise specific algorithms but rather to test the
boundaries of optimality, of top-k algorithms of the above
flavor. To that end, we define a simple cost model for the
operation of a given algorithm on a given Web application
specification, that is based on the number of graph nodes
examined by the algorithm. We then define notions of al-
gorithm optimality, inspired by the seminal work of [13]
that studies optimality of top-k algorithms in relational set-
tings. In [13] the authors introduced the notion of instance-
optimality: given a cost model, they define an algorithm to
be instance-optimal if for any possible input instance, its
cost of operation is at most the same order of magnitude as
that of any other correct algorithm. Due to the criticality of
efficiency in the context of interactive Web applications, this
strong notion is much more suitable than worst case opti-
mality. But we go even deeper, and instead of studying the
algorithms performance in terms of orders of magnitudes,
we define metrics that are affected by the exact cost of al-
gorithms. Namely we define the notion of c-optimality, and
say that an algorithm is c-optimal if for any possible input
instance, its cost of operation is at most greater by a factor
of c than the cost of any other correct algorithm. At the
extreme, a 1-optimal algorithm performs at least as well as
any other algorithm, for any given input instance.

(Non-)Existence of Optimal Algorithms. We next out-
line our results on the (non-)existence of optimal algorithms
for the different algorithms classes, under different restric-
tions.

We start by considering a (single) top-k computation at a
given state n. We show that the properties of path weights
affect the existence of c-optimal algorithms (for different
values of c). Following common practice [13], we focus on
weight functions that are monotonic w.r.t. the progress of
the interaction (path). This captures most practical scenar-
ios (e.g. the total price of a shopping cart subset does not
exceed the price of the full cart, even in presence of dis-
count deals). In the case of general monotone path weights,
we show that for any natural number c, no c-optimal al-
gorithm exists. We then consider a slightly restricted class
of monotone path weights that arise frequently in practice.
We show that a c-optimal algorithm exists here, for c that
depends only on the definition of the class, and we present
a simple generic such algorithm.

Second, we study interactive top-k computation, namely
the on-going process of computing top-k recommendations
following each user choice. Interestingly, we show that, in
general, the existence of a c-optimal algorithm for a single
top-k computation for a given input domain does not imply
the existence of a c-optimal algorithm for interactive top-
k computation. However, we give sufficient conditions for
such implication, and further show realistic domains of input
where these conditions hold.

Finally, we consider algorithms for preemptive ‘lookahead’
computation, and adapt our optimality measures for this

setting. We show that a c-optimal lookahead algorithm does
not exist in general, even when a 1-optimal interactive-top-k
algorithm exists, but identify realistic conditions that allow
for such c-optimal algorithms.

Paper Organization. Section 2 describes our generic data
model. Section 3 then considers (single) top-k computations,
section 4 studies interactive top-k computations and section
5 considers lookahead. We overview related work in Section
6, and conclude in section 7.

2. PRELIMINARIES
We start by presenting the formal definitions for our model,

along with intuitive examples.

Interactive Web Application. We abstractly model an in-
teractive Web application as a possibly infinite directed graph
whose nodes correspond to application states (configura-
tions) and its directed edges stand for possible transitions
between different configurations. Transitions are triggered
by user choices / input. The graph is given by a node r
standing for the application initial state, and a transition
function ψ capturing the edge relation. That is, given a
node n, ψ(n) is a finite set of all possible successors of n.
Some graph nodes are marked as accepting, representing the
completion of some task.

We assume in the sequel a domain V of nodes with distinct
identifiers.

Definition 2.1 (Application Specification). An ap-
plication specification (ASpec) is a tuple s = (r, ψ, acc) where
r ∈ V is the initial node of the application, ψ : V 7→ 2V is
the transition function, s.t. ψ(v) is finite for each v ∈ V,
and the function acc : V 7→ {0, 1} determines the accepting
nodes (those for which acc (v) = 1). The underlying graph
of s, graph(s) = (V,E), is then a (possibly infinite) graph,
where V , E ⊆ V × V are the smallest (in terms of set in-
clusion) sets such that r ∈ V , and if v ∈ V then (v, v′) ∈ E
for each v′ ∈ ψ(v).

Interaction. A user of an interactive Web application makes
a sequence of choices that dictates the transitions in-between
ASpec states. To capture that, an interaction p with a given
ASpec s is defined as a (possibly infinite) path in graph(s).
The first node of p is denoted start(p), its last node (in
case p is finite) is denoted end(p), and its length is denoted
length(p) (for an infinite p, length(p) =∞). We say that an
interaction p is accepting if p is finite and end(p) is accepting.
The set of all possible interactions with s is denoted inter(s).
For two interactions p, p′, we denote p→ p′ if p′ is a one-step
continuation of p, i.e. it consists of the same nodes sequence
as p, followed by an additional node n ∈ ψ(end(p)).

We next exemplify how an interactive online store is ex-
pressed using our simple model.

Example 2.2. Fig. 1 depicts the underlying graph of an
ASpec for an on-line store (ignore for now the prices an-
notating the edges). The root is n0, and each node of the
graph stands for a configuration of the application, includ-
ing for instance the shopping cart of purchased items, user
choices history etc. A user of the application first chooses
from a variety of products, and may then either pay, or make
another choice of product, an unbounded number of times.

The doubly bounded nodes are accepting, and correspond
to the completion of a purchase. Several distinct interac-
tions may end at the same node, e.g. [n0, n10, n21, n30] and
[n0, n12, n22, n30] both correspond to the purchase of Sony
TV and DVD (in different order). The interaction [n0, n10, n20]
is an example for an accepting interaction.

Weighted ASpec. As mentioned in the Introduction, to
capture generic analysis of applications, we assume that for
each possible transition of the application we are only given
some quantitative information (e.g. the transition likeli-
hood, the monetary cost it incurs, etc.). To model this,
we define a domainW of weights with some total order over
its elements. We further define three weight functions over
ASpecs, as follows: We is a function over the ASpec edges,
standing for the weight of each possible choice along an in-
teraction; the weights of edges along an interaction path are
aggregated, using a function aggr , to form the weight of the
entire path, named Wp. We make this formal below:

Edge Weight. Given an ASpec s with graph(s) = (V,E),
we define a weight function over its edges, namely We : E →
W. We may e.g. stand for the price incurred by the choice
that the edge represents, the incurred delivery time of the
purchased product, or its relative popularity among users.

The Aggregation Function. The weights of edges along
an interaction are aggregated using an aggregation function.
The function aggr : W ×W → W receives two weights as
inputs; the first intuitively corresponds to the aggregated
weight computed so far, and the second is the new We to
be aggregated with the previous value. For instance, when
computing purchase cost aggr = + and W = [0,∞); when
computing path likelihood, aggr = × and W = [0, 1].

We consider here aggregation functions that satisfy the
following intuitive constraints:

1. aggr is associative and commutative, namely for each
x, y, z ∈ W, aggr(aggr(x, y) , z) = aggr(x, aggr(y, z)),
and aggr(x, y) = aggr(y, x).

2. aggr is continuous, that is for each x, y, z ∈ W, if
aggr(x, y) < aggr(x, z) then there exists w ∈ W such
that aggr(x, y) < aggr(x,w) < aggr(x, z).

3. aggr has a neutral value, denoted 1aggr . Namely for
each x ∈ W, aggr(x, 1aggr) = aggr(1aggr , x) = x.

4. aggr is monotonically increasing or decreasing over
W. Namely, either for each s, x, y ∈ W x ≥ y =⇒
aggr(s, x) ≥ aggr(s, y) and aggr(s, x) ≥ s, or the same
for ≤.

Observe that the aggregation functions + and ×, used
above for cost and likelihood, satisfy the constraints.

Path Weight. Last, we define the weight of an interaction
path in an ASpec s, namely Wp : inter(s) → W. Wp

is obtained by aggregating the We values of edges along
the interaction path p. For a finite interaction path p =
[n0, n1, ..., nt], Wp is defined recursively as Wp([n0]) = 1aggr ,
andWp([n0, n1, ..., nt]) = aggr(Wp ([n0, ..., nt−1]) ,We (nt−1, nt)).
For infinitely long interactions p = [n0, n1, ...], Wp(p) =
limt→∞Wp([n0, ..., nt]). As we require above that aggr is
monotone, the limit exists (but may be infinite).

Figure 1: Interactive Web Application Specification

Example 2.3. Re-consider Fig. 1, and note now the prices
annotating the different choices (edges). For example
We(n0, n10) = 850$, accounting for the price of a Sony TV.
Also note that the weight function allows expressing depen-
dencies of weights on prior choices, such as combined deals:
the price of a Sony DVD is 150$ when purchased as a single
product (We(n0, n12) = 150$), but is 75$ for customers that
also bought a Sony TV (We(n21, n30) = 75$). aggr = +
here, and thus Wp reflects the total price of the purchases
along a given interaction. For instance, Wp([n0, n12, n22, n30]) =
150$+0$+775$ = 925$, accounting for the total price of pur-
chasing Sony DVD and Sony TV. In this example, the two
interactions leading to the same node (n30) bear the same
weight, but in general different interactions ending at the
same node may bear different weights.

Top-k. Observe that when aggr is monotonically increasing
(resp. decreasing), so is Wp, in the sense that the weight of
an interaction increases (decreases) as it advances. Gener-
ally, when aggr is monotonically increasing (as, e.g., for the
overall price of purchases), we are interested in the bottom-k
interactions (e.g. the cheapest overall price). When aggr is
monotonically decreasing (as, e.g., path popularity), we are
interested in the top-k (e.g. the most likely). As all defini-
tions and algorithms presented below apply symmetrically
to both cases, we consider from now on only monotonically
decreasing functions and top-k interactions.

Given a node n ∈ graph(s), we denote by top-k(s, n) the k-
highest weighted, accepting, finite interactions p in inter(s)
such that start(p) = n 1. top-k(s, n) is well-defined when
there exist at least k distinct such interactions; in the sequel
whenever we consider top-k(s, n) for some s,n,k, we assume
that this is the case.

We focus on finite interactions as they are more interest-
ing for analysis purpose, in the sense that they may serve
as reasonable recommendations for users on how to inter-
act with the application. We shall see, however, that the
existence of infinite interactions with high weight may still
render the identification of the top-k finite ones harder.

In addition, we note that, in general, there are cases where
only interactions that satisfy some query criteria are of in-
terest to the user. For many Web applications models (e.g.
the one based on Business Processes [2, 7], or Active XML
[1]) there are known query evaluation algorithms that es-
sentially “intersect” the ASpec s and the query q, yielding
a refined ASpec s′, consisting only of interactions of s that

1As multiple interactions may share the same weight, this
set is not necessarily unique, and we pick one such set arbi-
trarily.

satisfy q. Top-k analysis may then be employed over s′.
We define TOP-K as the problem of computing, given the

following input: (1) an ASpec s = (r, ψ, acc), (2) weight
functions, namely We over the edges of graph(s) and an
aggregation function aggr , (3) a node n ∈ graph(s) and (4)
a number k of requested results, the set top-k(s, n).

We note that algorithms with the above input may dis-
cover the shape of s only via applications of ψ on the root or
previously discovered nodes, and apply the weight functions
only on such discovered edges / paths.

Interactive Top-k. The user starts her interaction with an
ASpec s at the root state r. To assist the user, typical
recommendation systems provides her with suggestions on
how to interact with the application [8]. In our model, this
corresponds to top-k(s, r). She may then either follow one
of the given recommendations, or choose to make choices
different than those proposed. In the latter case, new top-k
recommendations, consistent with the actual user choices,
are proposed. This is repeated as the interaction continues.

Recall that a TOP-K algorithm takes as input an ASpec s
and a single node n. An interactive top-k algorithm receives,
instead of a single node, an interaction p = [n0, n1, ...], given
node by node. For every node nj of p, the algorithm should
compute top-k(s, nj).

More concretely, we define the problem of ITOP-K as fol-
lows: we are first given an ASpec s = (r, ψ, acc) as input,
and then given an interaction in s, node by node, start-
ing from the ASpec root r = n0. We should first compute
top-k(s, n0). Then, at the i’th step, i > 0, we are given a
node ni ∈ ψ(ni−1), and should output top-k(s, ni). For that,
the algorithm may use computations done in prior steps, and
may also invoke ψ to further explore graph(s) (and obtain
weights of explored edges / paths).

Example 2.4. Re-consider Fig.!1, and assume k = 1.
The top-1 interaction starting from the ASpec root, denoted
top-1 (s, n0), consists of the purchase of Philips DVD, fol-
lowed by a payment, i.e. is the interaction [n0, n13, n24].
Indeed, this is the cheapest product available. The user may
then either make a choice of a Philips DVD, in which case
the top-1 recommendation does not need to be recomputed
(top-1 (s, n13) = [n13, n24]), or she may wish to make other
purchases, and may e.g. choose to purchase a Sony TV,
leading to n10. In this case, the algorithm should compute
top-1 (s, n10). If now the user chooses to continue purchasing
products (i.e. get to n21), then the cheapest product for her
may now be a Sony DVD, thus top-1 (s, n21) = [n21, n30, n40],
etc.

We next consider TOP-K algorithms, then study ITOP-K

algorithms, and finally accompany such algorithms with a
preemptive computation. For each problem we define ap-
propriate notions of optimality, and explore under which
conditions they can be achieved.

3. TOP-K
Observe that, as our model captures arbitrary infinite

state machines (and specifically Turing Machines), solving
TOP-K is generally impossible (as a solution to TOP-K would
imply a solution to the halting problem). Consequently, we
define ATOP-K as the class of all sound (and not necessar-
ily halting) deterministic algorithms for TOP-K that have no
additional input other than that depicted above.

However, we may impose a reasonable restriction over the
input to guarantee termination of analysis algorithms. Intu-
itively, we study input instances that satisfy a “small world”
property allowing top-k algorithms to look only at a finite
subset of interactions. To formalize this, let kWeight(n) de-
note the lowest weight of an interaction in top-k(s, n).

Definition 3.1. Given an ASpec s (with some weight
functions) and a number k, we say that s is k-finitely enu-
merable if for each node n, there exists a finite l such that
for every path p s.t. start(p) = n and length(p) ≥ l ,
Wp(p) < kWeight(n).

We note that typically, the “interesting” fragments of real-
life applications (and weight functions over which) are k-
finitely enumerable, for every value of k (where top-k(s, n)
is well-defined). Consider e.g. a weight function reflect-
ing the popularity of each choice among users: it’s unrea-
sonable in real-life cases that the cumulative popularity of
some infinitely long interaction is higher than that of the
k-most popular finite interactions. For weight functions de-
picting product prices, an example for an application that
is not k-finitely enumerable is one with an infinitely long
path where all choices induce 0 price; such path is typically
“not interesting” for analysis purposes, and may be pruned
in pre-processing.

Denote I as the set of all input instances for TOP-K, and
further denote Ifin ⊂ I as the subset of input instances
where the weighted ASpec is k-finitely enumerable (w.r.t.
k given as part of the input). We show below (proof of
Theorem 3.6) the existence of a sound TOP-K algorithm for
I, which is further guaranteed to terminate when given as
input an instance from Ifin .

3.1 Cost Model and Optimality Notions
We next define a cost model for the operation of top-k

algorithms in this context. This cost model will be used in
the sequel for defining the optimality of algorithms.

Given an algorithm A and an ASpec s = (r, ψ, acc) fed
as input to A, we consider the number of calls A makes to
ψ, referred to as data accesses, as the dominant computa-
tional cost factor, since it indicates the number of nodes of
graph(s) that A visits. Given an algorithm A ∈ ATOP-K and
an input instance I ∈ I, we denote nodes(A, I) as the set of
all nodes n for which A invokes ψ(n), when executed over I.
We note that in principle, an algorithm may invoke ψ mul-
tiple times over the same node. However, we focus here on
algorithms that, whenever they invoke ψ(n) for some node
n, can record the results set ψ(n) in memory and reuse it
later on when needed. Consequently, each data access is per-
formed at most once. Such algorithms have naturally lower
cost (in terms of data access) than algorithms with repeated
accesses, and thus are better candidates for optimality anal-
ysis. We mention the case of limited amount of memory in
Section 7.

Optimality Notions. We next define several optimality no-
tions for top-k algorithms on interactive Web applications.
As outlined in the Introduction, we will consider very strong
notions of optimality, namely optimality for every possible
input instance, in a given input domain. We further care
about constants in the algorithms cost, and define notions
of optimality with respect to such constants, as follows.

Given a natural number c, we say that an algorithm A ∈
ATOP-K is c-optimal with respect to an input domain D ⊆ I
if for every A′ ∈ ATOP-K and an input instance I ∈ D,
|nodes(A, I)| ≤ c · |nodes(A′, I)|. For c = 1, a 1-optimal
algorithm A satisfies |nodes(A, I)| ≤ |nodes(A′, I)| for each
such A′ and I, i.e. a 1-optimal algorithm is the “best possi-
ble”, in a very strong sense.

For an algorithmA that does not terminate when executed
over I, we assume that there exists some natural number
n such that A performs at least one data access following
every n computation steps; in this case |nodes(A, I)| = ∞,
and consequently any other algorithm has at most the cost
of A for the input instance I.

We also introduce here an additional, stricter, notion of
optimality. Recall that c-optimality concerns the number
of data accesses, and requires that every sound algorithm
must make at least the same number of accesses as the c-
optimal algorithm (up to a fraction of c), and possibly more.
We define the notion of strict c-optimality that concerns the
data accesses themselves, and requires that every terminat-
ing sound algorithm makes the exact same accesses as the
strictly c-optimal algorithm (except for c−1 such accesses2)
and possibly more.

Formally, let c ≥ 1 be a natural number. A ∈ ATOP-K

is strictly c-optimal w.r.t. D if for every A′ ∈ ATOP-K,
and for every I ∈ D s.t. A′ halts when given I as input,
|nodes(A, I)− nodes(A′, I)| < c.

Clearly, if A is strictly c-optimal then it is c-optimal, and
specifically if it is strictly 1-optimal then it is 1-optimal. The
need for this stronger term of strict c-optimality will become
evident later on, when we discuss optimality of interactive
top-k algorithms.

3.2 Optimal Top-k algorithms
As we next show, the existence of a c-optimal top-k algo-

rithm depends on properties of the path weight function Wp.
First, we may show that in general, for any given natural
number c, no algorithm is c-optimal, even for the restricted
input domain Ifin .

Theorem 3.2. For every natural number c, there exists
no c-optimal algorithm within ATOP-K w.r.t. Ifin .

Proof. Let c be a natural number. Assume, in con-
tradiction, that some algorithm A ∈ ATOP-K is c-optimal.
Consider k = 1, namely we look for the top-1 interaction.
Let n = c2. We gradually construct an ASpec s, consist-
ing (at the end of the construction) of 2n nodes. At each
step we obtain an intermediate ASpec, execute A on it, and
change parts of its structure (only those parts that were not
observed by A) according to the execution of A. The con-
struction is repeated until we obtain an ASpec for which A
performs Θ(n) (= Θ(c2)) data accesses, but some other al-
gorithm A′ ∈ ATOP-K performs only O(log(n)) = O(2·log(c))
- a contradiction to the c-optimality of A.

At the beginning s = (r, ψ, acc), where ψ(r) = {N1, N2},
and we set at first ψ(N1) = ψ(N2) = {a}, and only a is
accepting. We(e) = 1 for every edge e, and we use mul-
tiplication for aggr . We execute A over s, and observe on
which node A invoked ψ first: N1 or N2. Since A ∈ ATOP-K,
this choice does not depend on ψ(N1) and ψ(N2). Thus,

2Using c − 1 here instead of c is only for considerations of
symmetry w.r.t. the definition of c-optimality

we change s as follows: if A chose to invoke ψ(N1) first,
we set ψ(N1) = {N3, N4}, for two new nodes N3, N4, while
keeping ψ(N2) intact (and symmetrically if A chose to in-
voke ψ(N2)). We also set ψ(N3) = ψ(N4) = {a}. Next,
A has three choices for the next invocation of ψ: N2 (or
N1), N3, and N4. For the chosen node N ′, we again set
ψ(N ′) = {N5, N6}, for two new nodes N5, N6, and ψ(N5) =
ψ(N6) = {a}. We repeat this process for the node N ′ chosen
next, until obtaining an underlying graph with 2n nodes.

Observe that when A is executed over the constructed
ASpec s, it invokes ψ on n distinct nodes. We argue that
there exists an algorithm A′ ∈ ATOP-K that, when executed
on s, performs O(log(n)) invocations of ψ. To show this, we
first observe that there exists an accepting interaction pshort

in s of length O(log(n)). This follows from the fact that (1)
without the accepting state a, graph(s) has the shape of a
binary tree, (2) the length of the shortest root-to-leaf path
in a binary tree is at most logarithmic in the tree size, and
(3) a is pointed exactly by all the leaves of the tree.

We show two lemmas, as follows:

Lemma 3.3. There exists an accepting interaction pshort

in inter(s), with Wp = 1, such that the length of pshort is at
most log(n).

Proof. Assume by contradiction that every accepting in-
teraction in inter(s) consists of more than log(n) nodes.
Since every node in graph(s) has two descendants, each
containing a distinct nodes, we obtain that there are over
2log(n) = n distinct nodes in s, in contradiction to the way
s was constructed.

Lemma 3.4. There exists an algorithm A′ ∈ ATOP-K that,
when executed on s to find its top-1 interaction, invokes ψ
only on nodes appearing in pshort .

We defer the proof of this Lemma to the end of this sec-
tion, as it will make use of tools introduced below. This
concludes the proof of Theorem 3.2.

Nevertheless, we show that in some important sub-domains,
c-optimal algorithms do exist. For that, we define the notion
of i-strongly monotone path weight functions:

Definition 3.5. Let i be a natural number. Wp is i-
strongly monotone w.r.t. an ASpec s, if for every node n
in graph(s), there are at most i interactions starting at n
that have equal Wp values. I.e., for every node n and every
w ∈ W, | {p|p ∈ inter(s) , start(p) = n,Wp(p) = w} |≤ i.

Such functions occur naturally in practice, with a rela-
tively low value of the bound i. For instance, if the weight
function stands for popularity of choices (e.g. for Data
Cleaning), then Wp captures the aggregated popularity of
choices sequence, and it is uncommon for many such se-
quences to have the exact same popularity. Similarly in an
online shopping setting, the number of different purchases
incurring the exact same price is typically bounded; an ex-
ception to this are paths having a weight of 0 (where no
products are purchased), but, as we mentioned above, such
paths are typically “not interesting” for analysis purposes,
and may be pruned in pre-processing.

Denoting by Imono(i) the class of all input instances in Ifin

where Wp is i-strongly monotone, we obtain:

Theorem 3.6. Let c be a natural number. There exists
an algorithm A s.t. A is strictly c-optimal, w.r.t. the input
domain Imono(i), when i = c+ 1.

Proof. Consider the following simple TOP-K-ALGO algo-
rithm that follows the lines of the well-known A∗ algorithm
[19] (that, in turn, follows Dijkstra’s algorithm [11]).

TOP-K-ALGO. The algorithm maintains two global priority
queues, Frontier and Out , of interactions along with their
Wp values. The interactions in each queue are ordered byWp

(best to worst), with accepting interactions having priority
over non-accepting ones in case of equal weights. Initially,
Frontier contains only a single interaction, consisting of the
input node r, and Out is empty. The algorithm operates it-
eratively, where in each iteration it pops the top interaction
p from Frontier . If p is accepting, then the algorithm inserts
it to Out . If Out contains k interactions, the algorithm halts
and outputs them. Otherwise it adds to Frontier all inter-
actions p′ s.t. p→ p′ (if there are such). These interactions
are obtained from p by considering the last node n of p, and
concatenating each n′ ∈ ψ(n) to p.

Whenever the algorithm invokes ψ(n) for a node n, the
results set ψ(n) is recorded in memory. Consequently, if at
some later point of the computation, the algorithm again
requires ψ(n) for the same node n, it can use the recorded
results rather than performing another invocation of ψ.

To conclude the proof, we will show that TOP-K-ALGO

is strictly c-optimal with respect to Imono(i). This will be
proved by assuming by contradiction that there is a correct
algorithm A that performs c less data accesses than TOP-K-

ALGO for some input instance I, and showing that it leads us
to a contradiction.

Formally,

Lemma 3.7. For every natural number c, TOP-K-ALGO is
strictly c-optimal w.r.t. Imono(i) , when i = c+ 1.

Proof. Assume by contradiction that TOP-K-ALGO is not
strictly c-optimal, then there exists some input instance I =
(s, r) ∈ Imono(i), where s is an ASpec and r its root node,
and an algorithm A′ such that |nodes(TOP− K− ALGO, I)−
nodes(A′, I)| ≥ c. Let pterm be the worst solution (with
lowest weight) that appears in Out upon termination, and
let wterm = wp(pterm). We note that whenever TOP-K-ALGO

pops an interaction p from Frontier , then wp(p) ≥ wterm . As
I ∈ Imono(i), the number of such p for which wp(p) = wterm

is at most i (recall that i = c+ 1).
First, assume there exists at least one interaction p s.t.

wp(p) > wterm , but A′ does not access n = end(p) (while
TOP-K-ALGO, as we noted, does call ψ(n)). Let w∗ be a
weight such that wterm < aggr(wp(p), w

∗) < wp(p) (As aggr
is continuous, there exists such w∗). We construct a new
ASpec s′ which is exactly the same as s, except for setting
ψ(n) = a, for a new accepting node a, and setting the edge
weight We(n, a) = w∗. Now the corresponding interaction
has a weight higher than wterm and should be outputted.
But it will be missed by Algorithm A′ in contradiction to A′

being correct.
Consequently, we can assume that the c nodes accessed by

TOP-K-ALGO but not by A′ are ends of (non-accepting) paths
with weight wterm . This means that pterm is the only accept-
ing path with weight wterm , and must be also outputted by
A′. By the order in the priority queue Frontier , we know

that pterm can only be inserted to frontier after the last non-
accepting path with weight wterm , p′ was popped out of the
queue; otherwise, TOP-K-ALGO would pop and output pterm

before accessing all the ends of all non-accepting paths of
weight wterm . Thus, it must be the case that p′ → pterm . But
then, since A′ outputs pterm , it must have called ψ(end(p′)),
an thus there can be at most c − 1 nodes accessed by TOP-

K-ALGO and not by A′.

This concludes the proof of theorem 3.6.

We note that it is easy to show that the algorithm TOP-K-

ALGO used in our positive results above is sound for I, and
complete for Ifin . We omit the proof for space constraints.

We use Imono as another denotation for Imono(1), where
every two distinct interactions p 6= p′ ∈ inter(s) that start
at any given node n do not bear the same weight, which
gives a strongly monotone weight fuction. Since TOP-K-ALGO

is strictly 1-optimal w.r.t. Imono(2) ⊃ Imono , we obtain:

Corollary 3.8. There exists an algorithm A ∈ ATOP-K

that is strictly 1-optimal with respect to Imono .

The algorithm TOP-K-ALGO is not strictly (c−1)-optimal
w.r.t. Imono(i), i = c + 1 > 1. We next show that this is
inevitable, as there exists no such strictly (c− 1)-optimal
algorithm.

Theorem 3.9. For a natural c > 1 and i = c+1, no algo-
rithm within ATOP-K is strictly (c−1)-optimal w.r.t. Imono(i).

Proof. Let k = 1. We gradually construct an input
I, as follows. Let the root of the ASpec s be r, and let
(r, n1), ...(r, nc) be edges with some weight w, going out of
r, where n1, ..., nm are non-accepting nodes. Assume by con-
tradiction that there exists an algorithm A which is strictly
(c−1)-optimal w.r.t. Imono(i). Assume that after calling ψ(r),
A calls ψ(nj). Then we set ψ(nj) = {n′j}, and set some
weight for (nj , n

′
j) such that wp([r, nj , n

′
j]) < w. We repeat

this construction for every nj A accesses, except for the last
one. Assume w.l.o.g. that A accesses nc last. Then we set
ψ(nc) to consist of a new accepting node nc+1, such that
wp([r, nc, nc+1]) = w. [r, nc, nc+1] is then the top-1 interac-
tion that A should output.

Note that (s, r) ∈ Imono(i), since there are i = c+ 1 paths
of weight w (and we can set every other path going from r to
have a different weight lower than w). A accesses c+1 nodes
totally, whereas an algorithm A′ optimal for (s, r) would call
ψ only on r and nc. Thus |nodes(A, I) − nodes(A′, I)| =
c− 1, and A is not strictly (c−1)-optimal w.r.t. Imono(i).

Note that in particular, in input domains for which exists
a strictly 1-optimal algorithm, every 1-optimal algorithm is
also strictly 1-optimal. In combination with Theorem 3.9,
we get the next corollary.

Corollary 3.10. No algorithm within ATOP-K is 1-optimal
w.r.t. Imono(i), for i > 2.

Proof of Lemma 3.4. Now that we have seen Algorithm
TOP-K-ALGO, we are ready to present the proof of Lemma
3.4 and conclude this section.

Proof. Recall that the algorithm TOP-K-ALGO described
above maintains a priority queue Frontier where interactions

are ordered by their wp values; the algorithm does not spec-
ify an order in-between two equal weight interactions that
are both not accepting; any variant that sets such order is
also correct. In particular, as wp values of all interactions
with s are equal, the variant that, when invoked on s, in-
vokes ψ exactly on the nodes of pshort , is a correct one, thus
∈ ATOP-K.

4. INTERACTIVE TOP-K
In the previous section we have considered TOP-K, namely

a single computation of top-k interactions starting from a
given node. We now turn to study ITOP-K, i.e. the on-going
process of computing top-k recommendations following each
user choice.

To that end, we use AITOP-K to denote the class of all
deterministic algorithms that receive as input an ASpec s
along with a weight function, a number k and an interaction
p ∈ inter(s), node by node, and no additional input, and
solve ITOP-K. Furthermore, we have defined above I as the
domain of all possible inputs for TOP-K. We use Iinter to
denote the domain of all possible inputs for ITOP-K. Iinter

consists of pairs of (instance from I, interaction).
Similarly, for every input domain D ⊆ I we use Dinter

to denote the input domain obtained by accompanying each
input of D with some interaction. Note that Dinter ⊆ Iinter .

The cost of an interactive top-k algorithm is measured,
similarly to the cost of top-k algorithms, by the data accesses
it performs. We thus adopt the cost model and optimality
notions defined in Section 3, and analyze the existence of
a c-optimal algorithm in AITOP-K, with respect to these no-
tions. Clearly, for an input domain D where no c-optimal
solution exists for TOP-K, no c-optimal solution exists for
ITOP-K over Dinter. It remains to study, thus, the existence
of a c-optimal ITOP-K algorithm in domains Dinter s.t. a
c-optimal TOP-K algorithm exists for D.

4.1 Optimality
We first show that the existence of even a 1-optimal algo-

rithm for TOP-K does not imply the existence of a c-optimal
algorithm for ITOP-K. This holds even for sub-domains of
Ifin .

Theorem 4.1. There exists an input domain D ⊆ Ifin of
infinite cardinality s.t. there exists an algorithm in ATOP-K

that is 1-optimal w.r.t. D, but, for every natural number c,
no algorithm in AITOP-K is c-optimal w.r.t. Dinter.

Proof. We use in our construction weight functions such
that aggr = ×, and weights are in [0, 1]. Given an ASpec s
and a node n in s, we denote by ZeroPaths(s, n) the set of
all maximal (as defined below) accepting paths p ∈ inter(s)
reachable from n s.t. for the first edge e of p, We(e) = 0
(note that, in particular, Wp(p) = 0). “Maximal” means
here that p is not a sub-path of any other path satisfying the
above criteria. D is then the domain of all ASpecs s, such
that (1) for every node n, all paths in ZeroPaths(s, n) are of
equal lengths, and (2) there are no two paths p 6= p′ outgoing
n such that Wp(p) = Wp(p

′) 6= 0. For this domain, we will
now first show the existence of a 1-optimal top-k algorithm,
then show that for every natural number c there exists no
c-optimal interactive top-k algorithm. This is proved in the
following two lemmas.

Lemma 4.2. There exists a 1-optimal algorithm within
ATOP-K over D.

Proof. We construct a slight adaptation of TOP-K-ALGO
given in the previous section: in case of “ties”, i.e. two inter-
actions with equal weights, their order in Frontier was arbi-
trary. In contrast, in case of weight ties we now give priority,
in Frontier , to interactions containing more nodes (and in
case of tie also of length, choose their order arbitrarily). The
obtained algorithm is 1-optimal within ATOP-K with respect
to D. Consider two cases. First, assume that the top-k in-
teractions do not contain an interaction of weight 0. In this
case, our algorithm never pops an interaction of weight 0
from Frontier . From the properties of D, this means that
in all parts of the ASpec that the algorithm observed, Wp

is in fact strongly monotone. Thus in this case, following
Lemma 4.2 our algorithm is 1-optimal (with respect to all
algorithms that did not traverse a 0-weighted edge; an ad-
versary algorithm that did traverse a 0-weighted edge, of
course performed only worse).

Moreover, as TOP-K-ALGO is strictly 1-optimal over strongly
monotone weight functions, it follows that every algorithm
must have made at least the same data accesses made by
our algorithm up until reaching a 0-weight path. From the
properties of TOP-K-ALGO it further follows that if the algo-
rithm does pop an interaction of weight 0, this means that
there exists such 0-weight interaction within the top-k re-
sults. Thus that every algorithm would have to traverse
such 0-weighted interaction. As our algorithm orders in-
teractions, in Frontier , by their length, we are guaranteed
to consider first the longest interactions of weight 0; as all
such accepting 0-weighted interactions are of equal length,
traversing longest interactions first guarantees minimal data
accesses until reaching an accepting node.

Finally, the following lemma holds.

Lemma 4.3. For every natural number c, there is no c-
optimal algorithm within AITOP-K over D.

Proof. For each natural number n, consider the follow-
ing ASpec s = (r, ψ, acc). graph(s) is a balanced tree, where
r is the tree root, each node has n2 children, and the tree
height is n. the leaves of graph(s) are the accepting nodes.
The weight We of every edge is 0, aggr = ×, and we seek
for top-1 interaction. Given an interaction p ∈ inter(s),
the “best” algorithm for s, p would perform just n data ac-
cesses (this is an algorithm that happens to computes p as
the top-1 interaction, and thus does not require additional
data accesses as the interaction continues). Assume, by con-
tradiction, that some algorithm A ∈ AITOP-K is c-optimal;
in particular it is c-optimal for s and for every interaction
p ∈ inter(s). We construct an interaction p gradually, ac-
cording to the algorithm behavior. At the first step (r is
the first node of p), if A invokes ψ for all children of r, then
it performs at least n2 data accesses and is not c-optimal.
Otherwise, let m1 ∈ ψ(r) be a node s.t. A does not in-
voke ψ(m1). We set m1 as the next node of p; again, A
either accessed all children of m1 thus making at least n2

steps, or there exists a node m2 not accessed, etc. Consider
I = (r,m1, ...,mn). When executed on (s, p), in each step of
the interaction A is given a node that it has not accessed be-
fore and thus must compute a full top-1 path starting from
this node. In the i’th step, the length of such a path is n− i

and thus A must perform at least n−i data accesses, leading
to a total of Ω(n2). Recall that there is a correct algorithm
making just n accesses for the same input instance, thus A
is not c-optimal.

This concludes the Theorem proof.

In contrast, we may show that the existence of a strictly
1-optimal TOP-K algorithm guarantees the existence of a 1-
optimal ITOP-K algorithm. In fact, it also assures the exis-
tence of a strictly 1-optimal such algorithm.

Theorem 4.4. For any input domain D ⊆ I, if there
exists a strictly 1-optimal TOP-K algorithm w.r.t. D, then
there exists a strictly 1-optimal algorithm ITOP-K algorithm
w.r.t. Dinter.

Proof. The proof builds on the fact that any ITOP-K al-
gorithm must perform (at least) all data accesses the strictly
1-optimal TOP-K algorithm would perform for the individual
nodes on the interaction path. Thus it may not benefit from
replacing data accesses done to compute the top-k interac-
tions at a given node by others performed in previous steps.

Consider a simple interactive top-k algorithm B that, for
an ASpec s and an interaction p = (n1, ..., nm) ∈ inter(s),
repeatedly runs the strictly 1-optimal top-k algorithm A and
keeps in memory all results of data accesses performed by
A. We claim that B is strictly 1-optimal. Thus, we show
that for each ASpec s and an interaction p ∈ inter(s), for
each node n such that B invokes ψ(n), so does every correct
algorithm B′ applied over (s, p) as input. Assume the exis-
tence of a contradicting node n, and assume that ψ(n) was
invoked at the i’th step. Now consider a top-k algorithm A′

that makes the exact invocations of ψ as B′ does, and in
particular, invokes ψ on all nodes of p. A′ computes in par-
ticular top-k(s, ni) without invoking ψ(n), while A invoked
ψ(n) in this computation, in contradiction to the strict 1-
optimality of A.

Combined with Theorem 3.6 and Corollary 3.8, we obtain
the following.

Corollary 4.5. There exists a strictly 1-optimal ITOP-K
algorithm for Iinter

mono and Iinter
mono(2).

Similarly, we may show that for every natural number
c the existence of a strictly c-optimal top-k algorithm suf-
fices for the existence of a c-optimal interactive top-k al-
gorithm. Observe that this is slightly weaker than what
we have previously seen for the case of 1-optimality (there
strict 1-optimality for top-k implied strict 1-optimality for
interactive top-k). Finding sufficient conditions for a strictly
c-optimal ITOP-K algorithm is an open problem.

Theorem 4.6. For any input domain D ⊆ I, if there
exists an algorithm A ∈ ATOP-K that is strictly c-optimal over
D for some natural number c, then there exists an algorithm
B ∈ AITOP-K that is c-optimal over Dinter.

Proof. We use the same algorithm B from the proof
of Theorem 4.4, this time invoking a strictly c-optimal al-
gorithm A. Given an interaction [n0, ...nm], consider the
set Ni of nodes for which A invokes ψ, when invoked to
find top-k(s, ni). As A is strictly c-optimal, every algo-
rithm that computes top-k(s, ni) invokes ψ on some N ′i s.t.
|Ni − N ′i | < c. The overall number of nodes for which B

Figure 2: Interactive Session

invokes ψ but not every correct algorithm does is bounded
by m ·c (for the rest of accessed nodes, the proof proceeds
as in Theorem 4.4). Now, any algorithm must perform at
least m steps (as m is the length of the interaction), thus B
is c-optimal.

Combined with Theorem 3.6, we obtain:

Corollary 4.7. For every natural c ≥ 1, there exists a
c-optimal ITOP-K algorithm over Iinter

mono(i), with i = c+ 1.

5. LOOKAHEAD
So far, we have measured the performance of algorithms

for ITOP-K as a function of the overall computation (data ac-
cesses) it performs. In real-life interactive Web applications,
the timing of computations is also crucial: there are inter-
vals of time during the interaction where the system is idle,
namely in the time interval where the user views the top-
k results, and before she makes her next choice. An ideal
algorithm would preempt some computations and execute
them in these intervals of time (thereby shortening future
response time). We refer to such preemptive computation
as lookahead.

Figure 2 depicts an interaction on a time axis, highlighting
the time frame allocated for lookahead computations; Intu-
itively, this is the time in-between the retrieval of top-k(s, ni)
and receiving the next input node ni+1. ∆i is the number
of data accesses that the look-ahead algorithm may perform
during that time. It aims that the data accesses that it per-
forms, are indeed used by the interactive-top-k algorithm in
later stages of the interaction.

A lookahead algorithm LA aims to assist an algorithm
A ∈ AITOP-K by instructing it which top-k computations to
perform in advance, when, and how much resources (data
accesses) to allocate for each such computation. A looka-
head instruction is thus a pair (n, st) such that n is a node
and st is a natural number. Its semantics is: “(continue to)
compute top-k(s, n) for st steps (or until interrupted)”. If
st =∞, the semantics of the instruction is to run top-k(s, n)
until completing the computation (unless interrupted ear-
lier). We assume that the top-k computation can be stopped
at any point and resumed later on from the same point, thus
previous (partial) computations are useful.

To decide which instructions to issue, the lookahead al-
gorithm has access to the ASpec s = (r, ψ, acc). Similarly
to algorithms in AITOP-K, the lookahead algorithm is further
given an interaction in s, node by node, starting from the
root r = n0. At the i’th step, i > 0, we are given a node

ni ∈ ψ(ni−1); our goal is to preempt computations per-
formed for top-k(s, nj), for j > i. (The top-k(s, nj) results
for j ≤ i were already computed.)

Example 5.1. Re-consider Example 2.4; say that we have
presented the user with the results of computing top-1 (s, n0),
but she has not yet made her next interaction choice. We
may use the time before she submits her next choice to per-
form additional computations, which may be required in later
stages of the interaction. For instance, if we know that
a Sony TV is popular among users, it may be worthwhile
to start performing an analysis of top-k(s, n10). We will
interrupt this analysis when the actual user choice is sub-
mitted; but in case this choice is indeed of Sony TV, the
computations already done will be utilized by the algorithm
to promptly respond to the user choice. Alternatively, we
may divide the available computation steps among several
options, to be helpful for a larger number of interactions (at
the cost of being less helpful for each individual interaction).
For example, we may perform some partial computations for
both top-k(s, n10) and top-k(s, n12).

5.1 Performance Measures
We define the class ALA of all deterministic lookahead

algorithms that are given the same input as depicted above.
We consider two properties of lookahead algorithms, namely
its resources consumption and its utilization, defined next.

Resources. At any point i of the interaction, a lookahead
algorithm has a limited time interval in which it may per-
form computations. This time interval is the time after top-k
computation for the user choice ni has been completed, and
before the following user choice ni+1 is submitted. We de-
note the maximal number of data accesses that fits in this
time interval by ∆i. For a lookahead algorithm, the number
of data accesses it induces at the i’th interval of the interac-
tion is the total number of data accesses it performs itself,
plus the total number of steps listed in instructions (to the
top-k algorithm) it outputted. This quantity must not ex-
ceed ∆i. As ∆i is unknown to the lookahead algorithm, in
practice, the instructions (and further operations, for this
step) of LA are “cut” once the total number of data accesses
incurred reaches ∆i.

Utilization. The utilization of an algorithm LA captures
the quality of its instructions, namely how many useful com-
putations (data accesses) it preempted. To define this for-
mally, we use the following notation. Consider an algorithm
A ∈ AITOP-K (with no lookahead used) when operating on
an ASpec s and an interaction p = [n0, ..., nt] with s. We
use nodes>i(A, s, p), for i = 0, ..., t−1, to denote the set of
all nodes for which A invokes ψ, after receiving ni+1 and up
until the end of the interaction. Now, given also a lookahead
algorithm LA , each instruction of LA causes A to perform
some preempted sequence of data accesses; we denote the set
of such preempted accesses performed at the i’th step (i.e.
after computing top-k(s, ni) but before receiving ni+1), as
prei(LA , A, s, p). The utilization of LA w.r.t. A is then
defined as follows.

Definition 5.2. Let LA ∈ ALA and A ∈ AITOP-K. Given
an ASpec s and some interaction p = [n0, ..., nt] with s, the
utilization of LA w.r.t. A, s and p, is defined as util(LA , A, s, p) =∑
i=0,...,t−1

∣∣prei(LA , A, s, p)
⋂

nodes>i(A, s, p)
∣∣.

We note that the utilization of LA also implicitly de-
pends on the time intervals allowed for lookahead. When
we shall compare below utilizations of different lookahead
algorithms, we thus always assume that they are both al-
lowed the same lookahead time. We next study a number of
possible optimality measurements for lookahead algorithms,
based on the notion of utilization. We denote bellow by
accInter(s) the set of accepting interactions with s, starting
at its initial state.

Maximal Utilization. One possible goal of a lookahead al-
gorithm LA is to maximize util(LA , A, s, p) for all possi-
ble algorithms A ∈ AITOP-K, and all ASpecs s and inter-
actions p ∈ accInter(s). This is appealing, as such algo-
rithm will minimize the overall response time for all accept-
ing interactions. We thus say that, given a natural num-
ber c, an algorithm LA is c-optimal if c·util(LA , A, s, p) ≥
util(LA ′, A, s, p) for every A, s and p and every LA ′ ∈ ALA.

Maximal Expected Utilization. As we show below, devis-
ing such a c-optimal algorithm is impossible. Thus, we also
consider a more relaxed notion of optimality, based on the
observation that not all interactions are equally common.
To that end, we define the notion of interaction likelihood
as a specific weight function. Namely, we use We that is
a distribution (i.e. for every n that has outgoing edges,∑
n′∈ψ(n) We(n, n

′) = 1), and use aggr = ×. We denote the

obtained Wp function by pLikelihood . Based on this func-
tion, we then define the expected utilization of a lookahead
algorithm, where the expectancy is over all accepting inter-
actions with the given application.

Definition 5.3. The expected utilization of lookahead al-
gorithm LA , w.r.t. an ASpec s and A ∈ AITOP-K is de-
fined as E[util](LA , A, s) =

∑
p∈accInter(s) pLikelihood(p) ·

util(LA , A, s, p).

We say that an algorithm LA is exp-c-optimal for a given
natural number c if c·E[util](LA , A, s) ≥ E[util](LA ′, A, s)
for every A, s and every LA ′ ∈ ALA.

Fairness. While an exp-c-optimal algorithm serves well the
“average”user, it may be unfair, in the sense that some users
benefit more than others. To ensure a minimal utilization
over all users, we consider fairness-optimal algorithms. To
that end, we define

MinUtil(LA , A, s) = minp∈accInter(s)
util(LA ,A,s,p)

|p| . This is

the utilization of LA w.r.t. the “worst” interaction p with
s, averaged by the interaction length to avoid bias towards
short interactions. An algorithm LA is fairness-c-optimal
for a given natural number c if
c·MinUtil(LA , A, s) ≥ MinUtil(LA ′, A, s) for every A, s and
LA ′ ∈ ALA.

5.2 Negative Optimality Results
We next discuss the existence of optimal lookahead algo-

rithms in ALA, with respect to the optimality notions de-
fined above. We will show that none of the above optimal-
ity notions may be achieved in the general case. This holds
even under restrictive assumptions on the input, that do al-
low for 1-optimal top-k (and interactive top-k) algorithms.
More concretely, let Iinter

MonoTree be the class of all input ASpec

whose weight function is strictly monotone, and furthermore
whose graph is tree-shaped. We show that even in Iinter

MonoTree

no c-optimal and no fairness-c-optimal lookahead algorithm
exists, and no exp-1-optimal algorithm exists. The existence
of an exp-c-optimal algorithm for the general case remains
an open problem.

Formally,

Theorem 5.4. For every natural c, there is no c-optimal
algorithm in ALA, w.r.t. Iinter

MonoTree .

Proof. Assume, by contradiction, the existence of a c-
optimal algorithm LA . I.e., there exists a c such that
util(LA , A, s, p) ≥ c·util(LA ′, A, s, p) for every lookahead al-
gorithm LA ′. We use for A our interactive top-k algorithm
from the proof of Thm. 4.4 above, using TOP-K-ALGO for A.
We construct an ASpec s = (r, ψ, acc) and an interaction
p ∈ inter(s) of length c, gradually, according to the oper-
ation of LA . Initially, we set ψ(r) = {n, n0, ..., n∆0} (∆i

values are unknown to LA , but we may still use it in our
construction), ψ(n) = {m1,m2}, and only m1 is accepting.
We(r, n) = 0.75, We(n,m1) = 0.99,We(n,m2) = 0.01 and
the sum of weights of all We(r, n

i) is 0.25 (while they are
all distinct). The interaction starts at n0 = r, with a top-1
computation that only accesses r,m1. As the cost of LA
may not exceed ∆0, there exists some node n1 6= n ∈ ψ(r)
such that, at the first step of p, LA neither accesses n1 nor
instructs the top-k algorithm to operate on it. We then set
the next node of the interaction to be n1, and change s such
that ψ(n1) is a copy of ψ(r), with new identifiers assigned
to nodes, and corresponding weights. At the next point of
the interaction, denote the node that LA did not accessed
by n2 and so on, up to n|p|. The utilization of LA w.r.t. p
is 0; a lookahead algorithm LA ′ that instructs A to execute
top-1 (ni,∞) at each point bears utilization of 2·|p| = 2·c, in
contradiction to the assumption of c-optimality.

Similarly,

Theorem 5.5. For every natural number c, there is no
fairness-c-optimal algorithm in ALA, w.r.t. Iinter

MonoTree .

Proof. The construction in this proof is based on the
fact that the more outgoing paths some node has, the less
top-k computations can be done for each of them. Thus,
a lookahead algorithm which allocates more computation
steps for the more “branching” nodes is better in terms of
fairness. However, the “branching” of uninspected nodes is
not known to the algorithm, and thus it cannot be fairness-
c-optimal for every ASpec.

Assume by contradiction that a lookahead algorithm LA
is fairness-c-optimal for some natural number c, i.e. that
MinUtil(LA , A, S) ≥ c ·MinUtil(LA ′, A, S) for each looka-
head algorithm LA ′, interactive top-k algorithm A and AS-
pec s. We consider an ASpec s = (r, ψ, acc) where ψ(r) =
{n1, ..., n2c}, and assume first that LA does not invoke ψ.

W.l.o.g., we may assume that LA performs a round-robin
of instructions over {n1, ..., nc}, i.e. its instruction sequence
are of the form ((n1, 1), ...(n2c, 1), (n1, 1), ...) (it is easy to
show that other allocations will not increase the minimal
utilization in some cases). We set |ψ(ni)| = 1 for i =
1, ..., 2c − 1, and |ψ(nc)| = 2c; all nodes in ψ(ni) are ac-
cepting (LA does not invoke ψ, thus is indifferent to its
construction). The minimal utilization of LA is ∆

2c
. How-

ever, an algorithm that “guesses” that ψ(n2c) is a large set,

would allocate more such steps to ψ(nc) in advance. Namely,
the best algorithm for this case would allocate x·∆ data ac-
cesses to nc and (1− x)·∆ data accesses divided equally by
ni, i = 1, ..c − 1. The optimal value for x is 2c−2

2c−1
(compu-

tation omitted for brevity), yielding a minimal utilization
of (2c−2

2c−1
+ 1

c
)·∆. This is better by a fraction of more than

c than the minimal utilization of LA . If LA does invoke
ψ, we may construct an ASpec whose graph is an arbitrary
long chain, followed by a construction as above, and we may
again show that LA is not fairness-c-optimal.

Last, there is no exp-1-optimal algorithm in ALA, even
under the above restrictions.

Theorem 5.6. For every natural number c, there is no
exp-1-optimal algorithm in ALA, w.r.t. Iinter

MonoTree .

Proof. In this proof we use the fact that when the fol-
lowing time intervals are long, an algorithm that performs
computations for the possible immediate next user choices
is better; and when the following time intervals are short, an
algorithm which performs computations for the most likely
user choice (which are not necessarily a possible immediate
next choice) is better, because there will not be enough time
to make these computations later on.

Assume the existence of an exp-1-optimal lookahead al-
gorithm LA , and consider an ASpec s = (r, ψ, acc) such
that ψ(r) = {m,n}, ψ(n) = {n1, n2}, ψ(m) = {m1,m2},
ψ(n1) = ψ(n2) = ψ(m1) = ψ(m2) = {a}, and only a is ac-
cepting. The likelihood function assigns a likelihood of 0.9
to (r, n), 0.1 to (r,m), 0.9 to (n, n1), 0.1 to (n, n2), 0.9 to
(m,m1), 0.1 to (m,m2), and 1 to (x, a) for every x.

The weight function used for top-k computation is some
arbitrary strongly monotone weight function. It is easy to
show that at the first step of the interaction, the instructions
of LA must start by (n,∞), i.e. fully compute top-k(s, n)
(otherwise we may improve the expectancy). Denote by K
the number of data accesses such computations incur. We
set the time for the first lookahead ∆0 = K+ 2 (i.e. there is
time for two additional steps). Let us review possible action
courses the algorithm might take:

1. LA may instruct the top-k algorithm to compute 2
steps of top-k(s,m), in which case we consider the case
where ∆j = 0 for all j ≥ 1, i.e. there is no additional
lookahead time. The expected lookahead of LA in this
case is 0.9 ·K+0.1 ·2. A different lookahead algorithm
that would first invoke ψ over n, then instruct the top-
k algorithm to compute a single step for n1, will have
an expectancy of 0.9 ·K+ 0.81 higher than that of LA
(note that the expectancy of all accepting interactions
starting at n1 is 0.9 · 0.9 = 0.81).

2. If LA indeed performs ψ(n) followed by instructing the
top-k algorithm to compute a single step for n1, we set
∆j = 100 for all j ≥ 1. Now a lookahead algorithm
that at the current step execute 2 steps for m, and then
in the second step complete the top-k computation for
the remaining nodes, has an expectancy that is greater
by 0.2.

An algorithm that performs any other 2 steps may easily
be shown to be not 1-exp-optimal.

5.3 Positive Optimality Results
While for c-optimal algorithms it seems difficult to identify

natural classes of input, we are able to identify such classes
for exp-c-optimal and fairness-c-optimal algorithms.

Exp-c-optimality. Given a natural number i, denote by
Ishallow(i) the domain of all input instances such that the to-
tal number of interactions p, p′ where length(p) > length(p′)
and pLikelihood(p) > pLikelihood(p′), is bounded by i.

For example, consider an ASpec of an online shop, where
paths correspond to choices of products categories, sub-categories,
etc. up until the choice of a specific product. The above
bound means here e.g. that not many individual products
are more likely than an entire category of products, which
is typically the case.

We may show that there exists a natural number i s.t.
no lookahead algorithm is c-optimal over Ishallow(i) for any
value of c. The proof adapts that of Theorem 5.6, while
guaranteeing “shallowness” of the obtained specification (de-
tails omitted for lack of space). But, in contrast, for exp-c-
optimality we can show the following positive result.

Theorem 5.7. For every natural number c, there exists
an exp-c-optimal lookahead algorithm over Ishallow(c)

Proof sketch. We first present a lookahead algorithm,
and then prove that it is exp-c-optimal over Ishallow(c). As
explained in the proof of theorem 5.6, different lookahead in-
structions are better in different scenarios, and specifically
the algorithm must choose between computations for possi-
ble user choices that are more “immediate”, and those that
are more likely. This entails that there are multiple “equally
good strategies” i.e. lookahead instruction sets among which
none is best for all users. Our proof will show that in
Ishallow(c), we can bound the number of equally good strate-
gies and split the computation between them in a fair way.

We define the following Lookahead algorithm LA . The
algorithm maintains an ordered list Inters of interactions,
ordered by their pLikelihood value. Denote the input node
of LA by n, then the algorithm inserts to Inters all inter-
actions [n, n′] such that n′ ∈ ψ(n). While the most popu-
lar interaction pmax in Inters is also the shortest one, LA
instructs (end(pmax) ,∞), removes pmax from Inters and
adds to Inters all p′ such that pmax → p′. If pmax is not
the shortest, then we create a set candidates, containing,
for each interaction length l, the best weighed interaction
pl of length l, if pLikelihood(pl) > pLikelihood(pl−1). By
definition of Ishallow(c), |candidates| ≤ c. We can show
that while top-k computations for end-nodes of interactions
in candidates were not completed, then the “best” looka-
head algorithm for this case first performs computations for
these nodes. We employ a round-robin method for dividing
the lookahead computations evenly between all these nodes.
We may show that the worst case occurs when the best al-
gorithm performs all computations over a single such node,
while we perform only a fraction of 1

c
of these computa-

tions.

Fairness-c-optimality. We next consider fairness-c-optimality.
We assume in the sequel that the ratio between each two
time intervals ∆i, ∆j allowed for lookahead, is bounded by
some natural number d independent of the input size. This
is reasonable as these time intervals are dictated by the delay
in user choices, and not by the application structure.

Furthermore, for every natural number i, denote Ibalanced(i)
as the domain of all input instances s.t. (1) graph(s) is a tree
and (2) ∀n1, n2 ∈ graph(s) | ψ(n1) | − | ψ(n2) |< i for some
natural number i. Namely, the difference in the fan-out of
each two nodes is bounded by i. In general, such bound
is natural as the fan-out of every node is bounded by some
(small) constant, describing the total number of choices that
a user can make at a single point of the interaction. For in-
stance, in shopping applications, only a bounded number of
choices are simultaneously presented on the screen; more-
over, this number is typically low, to avoid visual overload.

The following theorem holds.

Theorem 5.8. For every natural number c, there exists
a fairness-c-optimal algorithm LA ∈ ALA when the input
domain is restricted to Ibalanced(c).

Proof. Given a node n, our algorithm LA simply em-
ploys a round-robin of instructions for computation of top-k,
up to a single data access starting at each node n′ ∈ ψ(n).
We claim that LA maximizes MinUtil(LA , A, S) up to a
constant fraction for every A and for every S ∈ Ibalanced(i).
Denote the interaction pmax (pmin) for which the utiliza-
tion of LA , divided by the interaction length, is highest
(lowest) by pmax (pmin), and its length by L1 (L2). We
further denote |ψ(ni)| = xi (|ψ(n′i)| = x′i) where ni (n′i)
is the i’th node along pmax (pmin). We claim that the ra-
tio between util(LA , A, S, pmax) and util(LA , A, S, pmin) is
bounded by c, where c is the balance factor of S. We ob-

tain: util(LA ,A,S,pmax)
util(LA ,A,S,pmin)

=

∆0
x0

+...+
∆n1−1
xn1−1

n1
÷

∆0
x′0

+...+
∆n2−1

x′
n2−1

n2
≤

1
x0

+...+ 1
xn1−1

1
′x0

+...+ 1
x′
n2−1

·n2
n1
·d, where d is the maximal ratio in-between

two time intervals ∆i and ∆j .
In the worst case, all xi values are x and all x′i values are

c·x, for some value of x (as c is the balance factor of s). We

get
1
x

+...+ 1
x

1
cx

+...+ 1
cx

· n2
n1
·d =

n1
1
x

n2
1
cx

· n2
n1

=
1
x
1
cx

= c·d. Now, it is easy

to show that util(LA , A, S, pmax) ≥ util(LA ′, A, S, p′min) for
every algorithm LA ′, where p′min is the “worst” interaction
for LA ′ (utilization-wise). This concludes the proof.

6. RELATED WORK
Top-k algorithms were studied in different contexts (e.g.

[13, 18, 20, 17, 4, 6]), Specifically, the seminal work of [13]
introduced the notions of instance-optimality, and had many
follow-ups (e.g. [20, 4]). Instance-optimality uses order of
magnitude of the computational cost as the measure for op-
timality. Due to the criticality of efficiency in the context
of interactive applications, our work has further considered
the exact computational cost rather than orders of magni-
tude. Analogous definitions appear in the context of on-line
algorithms, referred to as competitiveness notions [16].

Our work has built upon a simple and generic modeling of
interactive Web applications as state machines. Various top-
k algorithms were developed for analysis of state-machines
/graphs (e.g. [3, 6, 12]). However, our work is the first (to
our knowledge) to propose generic measures of optimality
for interactive top-k algorithms, and to characterize under
which conditions such optimality may be achieved. Our re-
sults may be used as yardsticks on what one may expect, in
terms of optimality, from (interactive) top-k algorithms on
a given application model.

We note that our notion of optimal utilization and fair-
ness, used to measure the quality of lookahead algorithms,
is inspired by notions from the theory of communication
networks [15, 14]. As in networks, we aim to optimize the
quality of service [14] provided to users; however, research
in this area does not consider (interactive) top-k analysis of
applications, rendering the problems and algorithms com-
pletely different.

7. CONCLUSION
This paper establishes formal foundations for measuring

the optimality of top-k algorithms for interactive Web ap-
plications. We have defined several intuitive notions of c-
optimality, analyzed the difficulties in achieving them, and
identified conditions under which c-optimal algorithms exist.

Future Work. We assumed that the algorithms may record
in memory, and then reuse, information about previous data
accesses. Limited memory renders c-optimality harder. Ini-
tial results that we obtained show that, in the general case,
if the available memory does not suffice to record all nodes
accessed by a strictly c-optimal TOP-K (resp. ITOP-K) algo-
rithm operating without memory constrains, then no TOP-

K (resp. ITOP-K) algorithm operating with such memory
bound is c-optimal (even for input domains where c-optimality
was previously achievable). In contrast, if the graph of the
input ASpec is guaranteed to be tree-shaped, sufficient mem-
ory for (a single) TOP-K computation allows all our optimal-
ity results, for both TOP-K and ITOP-K, to go through. A
full analysis of c-optimality under memory (and other) bud-
getary constraints is an ongoing research direction. Addi-
tional challenging future work includes the analysis of fur-
ther restricted, practical cases that allow for c-optimal solu-
tions.

8. REFERENCES
[1] S. Abiteboul, P. Bourhis, and B. Marinoiu.

Satisfiability and relevance for queries over active
documents. In PODS, 2009.

[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo.
Querying business processes. In Proc. of VLDB, 2006.

[3] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of
stochastic shortest path problems. Math. Oper. Res.,
16(3):580–595, 1991.

[4] Nicolas Bruno, Nick Koudas, and Divesh Srivastava.
Holistic twig joins: optimal xml pattern matching. In
SIGMOD, 2002.

[5] T. Bultan, J. Su, and X. Fu. Analyzing conversations
of web services. IEEE Internet Computing, 10(1),
2006.

[6] D. Deutch and T. Milo. Top-k projection queries for
probabilistic business processes. In Proc. of ICDT,
2009.

[7] D. Deutch, T. Milo, N. Polyzotis, and T. Yam.
Optimal top-k query evaluation for weighted business
processes. PVLDB, 3(1), 2010.

[8] D. Deutch, T. Milo, and T. Yam. Goal Oriented
Website Navigation for Online Shoppers. In Proc. of
VLDB, 2009.

[9] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and
D. Zhou. A verifier for interactive, data-driven web
applications. In Proc. of SIGMOD, 2005.

[10] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.
Verification of communicating data-driven web
services. In PODS, 2006.

[11] Edsger W. Dijkstra. A note on two problems in
connexion with graphs. Numerische Mathematik, 1,
1959.

[12] D. Eppstein. Finding the k shortest paths. In FOCS,
1994.

[13] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4), 2003.

[14] P. Ferguson and G. Huston. Quality of Service:
Delivering QoS on the Internet. Addison-wesley, 1998.

[15] F. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability. JORS, 49, 1998.

[16] Mark Manasse, Lyle McGeoch, and Daniel Sleator.
Competitive algorithms for on-line problems. In
STOC, 1988.

[17] A. Marian, S. Amer-Yahia, N. Koudas, and
D. Srivastava. Adaptive processing of top-k queries in
xml. In ICDE, 2005.

[18] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k
query evaluation on probabilistic data. In Proc. of
ICDE, 2007.

[19] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2002.

[20] M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman,
R. Schenkel, and G. Weikum. Best-effort top-k query
processing under budgetary constraints. In ICDE,
2009.

