
Worst-case Analysis for
Interactive Evaluation of
Boolean Provenance
Antoine Amarilli, Yael Amsterdamer

Boolean Provenance Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

1 SELECT DISTINCT a.Acquired, e.Institute
2 FROM Acquisitions AS a, Roles AS r, Education AS e
3 WHERE a.Acquired = r.Organization AND
4 r.Member = e.Alumni AND a.Date >= 2017.01.01 AND
5 r.Role LIKE '%found%' AND e.YEAR <= year(a.Date)

Input database

Output relation

Boolean Provenance Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

1 SELECT DISTINCT a.Acquired, e.Institute
2 FROM Acquisitions AS a, Roles AS r, Education AS e
3 WHERE a.Acquired = r.Organization AND
4 r.Member = e.Alumni AND a.Date >= 2017.01.01 AND
5 r.Role LIKE '%found%' AND e.YEAR <= year(a.Date)

Input database

Output relation

𝑎0 ∧ 𝑟0 ∧ 𝑒0

Boolean Provenance Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

1 SELECT DISTINCT a.Acquired, e.Institute
2 FROM Acquisitions AS a, Roles AS r, Education AS e
3 WHERE a.Acquired = r.Organization AND
4 r.Member = e.Alumni AND a.Date >= 2017.01.01 AND
5 r.Role LIKE '%found%' AND e.YEAR <= year(a.Date)

Input database

Output relation

𝑎0 ∧ 𝑟0 ∧ 𝑒0 ⋁(𝑎0 ∧ 𝑟1 ∧ 𝑒1)

Boolean Provenance: Possible Worlds Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

For any truth valuation 𝑣𝑎𝑙:
an output tuple 𝑡 evaluates to true iff it appears in the possible world of 𝑣𝑎𝑙

Input database

Output relation

𝑎0= False, others=True

𝑎0 ∧ 𝑟0 ∧ 𝑒0 ∨ (𝑎0 ∧ 𝑟1 ∧ 𝑒1) ∨ (𝑎0 ∧ 𝑟2 ∧ 𝑒3)=False

Boolean Provenance: Uses Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

Access control

Deletion propagation Probabilistic databases

Consent Management

Consent Management* Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

Data owners are probed on a need basis for fine-grained consent
– per tuple

*Managing Consent for Data Access in Shared Databases [ICDE 2021, Drien, Amarilli, A.]

Consent Management Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• We can use the output iff we can derive it from input tuples with consent

• We can choose which variables truth values to probe

• Effectiveness depends on the answer and Boolean expressions structure

𝑒5

Example Evaluation Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

𝑎0 ∧ 𝑟0 ∧ 𝑒0 ∨ (𝑎0 ∧ 𝑟1 ∧ 𝑒1) ∨ 𝑎0 ∧ 𝑟2 ∧ 𝑒3

(𝑎0 ∧ 𝑟2 ∧ 𝑒2)

𝑎1 ∧ 𝑟3 ∧ 𝑒3

𝑎1 ∧ 𝑟3 ∧ 𝑒2 ∨ (𝑎1 ∧ 𝑟4 ∧ 𝑒4)

𝑎0?

False

𝑎1?

True

False

False

𝑟3 ∧ 𝑒3

𝑟3 ∧ 𝑒2 ∨ (𝑟4 ∧ 𝑒4)

𝑟3?

True

False

False

𝑒3

𝑒2 ∨ (𝑟4 ∧ 𝑒4)

𝑒3?

True

False

False

𝑎1 ∧ 𝑟3 ∧ 𝑒3

𝑎1 ∧ 𝑟3 ∧ 𝑒2 ∨ (𝑎1 ∧ 𝑟4 ∧ 𝑒4)

No need to ask
about 𝑟0, 𝑒0, 𝑟1, 𝑒1

…

We can use an
output tuple iff we
can derive it from
input tuples with

consent

Optimizing the Worst-case Evaluation Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• We are interested in a “cautious” probing strategy that minimizes the
number of probed variables for any valuation

𝑤 ∧ 𝑥 ∨ 𝑥 ∧ 𝑦 ∨ (𝑦 ∧ 𝑧)Boolean
Decision

Diagram (BDD) x

y y

true w

true false

falsez

true false

true false

true

true

truefalse false

falsefalse true

w

z z

x

true false

y

true false

true truefalse false

false
false true

x

true y

true false

true

true false

true false

false
true

x

y

true false

true

true false

false

false

Three Problem Definitions (Intuitive) Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

Input: a set of Boolean provenance expressions

• OPT-BDD-DEPTH: minimize the worst-case number of probes
• (there is always a trivial strategy that queries all variables in order)

• DEC-BDD-DEPTH: decide whether there exists a strategy making at most k
probes

• DEC-BDD-EVASIVE: decide whether the expressions are evasive = no
strategy is better than the trivial one
(making less than n probes over n variables)

Used in Boolean
Function Learning

Previous Work Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Expected depth optimization by testing variables of Boolean formulas
• Interactive Boolean Evaluation, Sequential System Testing, Active

Learning, Consent management

• Worst-case BDD Analysis
• Graph/ String properties
• Construction based on input-output pairs
• Deciding among Boolean functions

• Other metrics

Today

Model

General Provenance Expressions

Read-Once Expressions

Monotone Expressions

1

3

4

2

BDDs for Expression Sets Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

𝑟2
true false

Φ: 𝑎0 ∧ 𝑟0 ∧ 𝑒0 ∨ (𝑎0 ∧ 𝑟1 ∧ 𝑒1) ∨ 𝑎0 ∧ 𝑟2 ∧ 𝑒3

(𝑎0 ∧ 𝑟2 ∧ 𝑒2)

𝑎1 ∧ 𝑟3 ∧ 𝑒3

𝑎1 ∧ 𝑟3 ∧ 𝑒2 ∨ (𝑎1 ∧ 𝑟4 ∧ 𝑒4)

𝑥 ∧ ¬𝑥

false

𝜑0: 𝑥 ∧ ¬𝑥 ∧ 𝑦

𝜑1: False

𝜑2: 𝑦 ∨ ¬𝑦

𝜑0 ↦ False
𝜑1 ↦ False
𝜑2 ↦ True

BDD for
Φ𝑟2=False

BDD for
Φ𝑟2=T𝑟𝑢𝑒

𝜑0 ↦ True
𝜑1 ↦ True

…

1
Model

Depth Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• BDD Depth: maximal path length from the root to a leaf

• Expression Set Depth: minimal BDD depth

• Constant expression set ⇔ depth = 0

1
Model

General Provenance Expressions Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Proposition: DEC-BDD-DEPTH is coNP-hard,
even if the input Boolean expression is in DNF/CNF and the
depth upper bound is 𝑘 = 0.

• Proof: by reduction from CNF satisfiability / DNF falsifiability.
A non satisfiable CNF ⇒ constant False ⇒ depth 0

2

𝑥 ∧ ¬𝑥

false

General

Read-Once Provenance Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

Φ: 𝑎0 ∧ 𝑟0 ∧ 𝑒0 ∨ (𝑎0 ∧ 𝑟1 ∧ 𝑒1) ∨ 𝑎0 ∧ 𝑟2 ∧ 𝑒3

(𝑎0 ∧ 𝑟2 ∧ 𝑒2)

𝑎1 ∧ 𝑟3 ∧ 𝑒3

𝑎1 ∧ 𝑟3 ∧ 𝑒2 ∨ (𝑎1 ∧ 𝑟4 ∧ 𝑒4)

Not read-once: variables repeat
within/across expressions

Φ: 𝑎0 ∧ 𝑟0 ∧ 𝑒0 ∨ 𝑟1 ∧ 𝑒1 ∨ 𝑟2 ∧ 𝑒3

𝑎1 ∧ 𝑟3 ∧ 𝑒2 ∨ 𝑟4 ∧ 𝑒4

Read once: no variable repetitions
(in equivalent)

Φ: 𝑎0 ∧ 𝑟0 ∧ 𝑒0 ∨ (𝑎0 ∧ 𝑟1 ∧ 𝑒1) ∨ 𝑎0 ∧ 𝑟2 ∧ 𝑒3

𝑎1 ∧ 𝑟3 ∧ 𝑒2 ∨ (𝑎1 ∧ 𝑟4 ∧ 𝑒4)

Previous work: query classes
yielding read-once provenance

or compiling provenance to
read-once form.
E.g., SP queries

3
Read-once

Analysis for Read-Once Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Proposition: Sets of read-once of Boolean expressions (without
constants), and their equivalents, are evasive.

• Proof: by induction

• This result does not hold if variables repeat across expressions
Φ = 𝑥 ∧ 𝑦, 𝑥 ∨ 𝑧 x

y z

{true,
true}

{false,
true}

{false,
false}

{false,
true}

true false

true truefalse false

3
Read-once

Monotone Provenance Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Monotone 𝑘-DNF expressions: no negation, every term
(conjunction) contains up to 𝑘 unique variables

• In the paper: we show a 2-way correspondence between 𝑘-
DNF expressions and SPJU queries

• Question: monotone expressions are satisfiable and falsifiable.
What is the minimal depth for monotone Boolean expressions?

4
Monotone

Bounds for Monotone Provenance Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Lower bound on depth: maximal term in DNF/clause in CNF
• Each can be a minimal 0/1 certificate

• Theorem: for arbitrarily large n there exists a monotone
Boolean expression with a BDD of depth linear in this bound
• Term/clause size is O log 𝑛 - exponentially smaller than

“trivial” solution.
• The BDD is optimal in this case

(𝜓𝑖−1 ∧ 𝑢𝑖) ∨ 𝑢𝑖 ∧ 𝑣𝑖 ∨ (𝑣𝑖 ∧ 𝜓𝑖−1
′)

4
Monotone

Proof Sketch Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Recursively define: 𝜓𝑖 = 𝜓𝑖−1 ∧ 𝑢𝑖 ∨ 𝑢𝑖 ∧ 𝑣𝑖 ∨ 𝑣𝑖 ∧ 𝜓𝑖−1
′ where 𝑢𝑖 , 𝑣𝑖 are fresh

variables and 𝜓𝑖−1
′ is a copy of 𝜓𝑖−1 using fresh variables.

Let 𝜓0 = 𝑤0 ∧ 𝑥0 ∨ (𝑥0 ∧ 𝑦0) ∨ (𝑥0 ∧ 𝑦0)

• Observation: 𝜓𝑖 cannot be evaluated without probing at least one of 𝑢𝑖 , 𝑣𝑖

• If 𝑢𝑖 = 𝑣𝑖 we’re done by probing both

• Otherwise, we need to evaluate either 𝜓𝑖−1 or 𝜓𝑖−1
′ but not both

• Observation: 𝜓𝑖 includes 2𝑖 copies of 𝜓0 and 𝑛 = Θ 2𝑖 variables

• “Bad” algorithm: evaluate all copies of 𝜓0 first. Each copy requires 2-4 probes.

• “Good” algorithm: evaluate 𝑢𝑖 , 𝑣𝑖 first, then if needed proceed to one of the 𝜓𝑖−1 and
continue recursively. We query at most 2𝑖 + 3 = Ο log𝑛

4
Monotone

Monotone Acyclic Graph DNF Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

𝑤 ∧ 𝑥 ∨ 𝑥 ∧ 𝑦 ∨ (𝑦 ∧ 𝑧)

• When each term is of size 2, terms can be viewed as edges
• When the resulting graph is acyclic, we have the following

• Theorem: Given a monotone acyclic graph DNF,
DEC-BDD-EVASIVE is in PTIME.

• Proof: We define an non-evasiveness pattern,
which exists iff the provenance is not evasive

w x y z

y zw y

true false

4
Monotone

…

Proof Sketch Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

z0

x

y0

w0

y1 y2 ym

x

Isolated vertex
= non-evasive

Evasive (e.g., if all are
true)

…
x

y0 y1 y2 ym

Each child has grand-child
with non-evasiveness
pattern
= non-evasive

z1

w1

z2

w2

zm

wm

Probe every 𝑦i.
If all are false – no need to probe x.
Assume w.l.o.g 𝑦0 is true.

𝑧0 ∧ True = 𝑧0 absorbs 𝑧0 ∧ 𝑤0

𝑤0 is the new root.
By recursive argument – it is non-
evasive!

The other direction is by induction on
the tree structure, showing having no
pattern entails that any probe and any
answer yields remaining sub-graphs
without our pattern

Conclusion and Future Work Worst-case Analysis for Interactive Evaluation
of Boolean Provenance

• Overview
• Optimizing the BDD depth for deciding the truth value of Boolean

provenance expressions
• Results for different classes of queries and provenance shapes
• Many open questions

• Further application domains, further query classes

Thank you!

Questions/
remarks?

